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8.4. Noether Normalisation.

Theorem (Noether normalisation Lemma). Let k be a field and A a finitely gener-
ated k-algebra; then there are elements z1,...,zm € A such that B = k[z1,. .., 2m)
is isomorphic to a polynomial ring in m-variables and A is integral over B. In fact
A is a finitely generated B-module.

Proof. Suppose A is generated by z1,...,x, over k. If the x; are algebraically
independent over k then we may take m =n and B = A.

Otherwise, there is a non-trivial polynomial f = Y ; ast' in k[t,...,t,] such
that f(z1,...,2,) = 0. Given positive integers a1, as,...,a,—1 we may define
y; = x; — x% for i < n. Substituting into f and writing a = (a;) (with a,, = 1) we
obtain )

Z a1 4+ g(x, Y2, Yn) =0
1

for some polynomial g containing no monomials purely in z,. Now if a; = d**

for some large positive integer d — say d > deg f — then we may arrange for
i-a# j-a whenever i # j and aj, o are both non-zero. Thus z,, is integral over
klyi, ..., Yn—1]. But x1,...,x,_1] are manifestly integral over k[y1, ..., yn—1,Tpn] SO
by transitivity of integral extensions A is integral over k[y1, ..., yn—1]. By induction
on the number of generators of A we may find z1,...,2m € k[ys, ..., yn] such that
21,...,2m are algebraically independent over k and k[yi, ..., yn—1] is integral over
klz1,. .., 2zm]. By transitivity of integral extensions again, we get A is integral over
klz1, ..., 2zm] as required. O
Remarks.

(1) If k is an infinite we can use a linear change of variables instead of the one
described: this is an older (and sometimes more useful) result.

(2) Geometrically the theorem says that if A is a finitely generated k-algebra
then there is finite map from Spec(A) to affine m-space=Spec(B).

Corollary (Weak Nullstellensatz). If A is a finitely generated k-algebra and a field
then A is a finite algebraic extension of k.

Proof. By Noether Normalisation there is a subring B of A such that B = k[z1, ..., zm]
is free on m-generators and A is integral over B.

Now K-dim A = K-dim B since A is integral over B. But since A is a field
K-dim A = 0. Thus K-dim B = 0. It follows that m = 0 since otherwise 0 < (z1) is
a chain of prime ideals in Spec(B) of length 1.

So B = k and A is integral over k as required. O

Notice that the argument actually shows that if A is a finitely generated k-
algebra there is an m such that K-dim A = K-dim k[x1, ..., x,]. It is easy to see
that K-dim k[z1, ..., z,] > m. We will see late that it is actually m.

8.5. Valuations.

Definition. Let A be an integral domain. We say that A is a valuation ring if for
every © € Q(A)\0 either z € A or 71 € A.

We will now try to show that if A is an integral domain then the integral closure
of A in its field of fractions Q(A) is the interection of all the valuation rings of
Q(A) containing A. We’ll also use valuation rings to give another proof of the weak
Nullstellensatz.
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Ezxamples.

(1) Z is not a valuation ring, e.g. 2/3,3/2 & Z.
(2) Zp) is a valuation ring. (Notice Z = MpZ))-

Lemma. If A is a valuation ring, then

(i) A is a local ring.

(i) Every ring that contains A and is contained in Q(A) is a valuation ring.
(iii) A is integrally closed.

Proof.

(i) We want to show that the set of non-units of A is an ideal. For this it
suffices to show that if  and y are not units in A then z + y is not a unit in A.
WLOG z, y are both non-zero, so one of 'y or y 'z is in A. WLOG 2z~ 'y. Then
x4y = (1+ 2 1y)z. Since x is not a unit it follows that = + y is not a unit.

(ii) Is clear.

(iii) Suppose that z is in Q(A) and is integral over A but is not in A. Then z~
is in A. Moreover, 2" + a1z ' + - -+ + a,, = 0 for some a; in A.

But we may deduce from this equation that

1

r=—(a1 +agx™ 4+ Fa,ztT™).

Since the RHS is in A so is the LHS, a contradicton O
Now we prove a technical lemma that we will use later.

Lemma. If A is a local integral domain with mazimal ideal m and x € Q(A)\O
then either (m) < Alx] is a proper ideal or (m) <1 Alx~1] is a proper ideal.

Proof. Suppose not, then choose m + n to be minimal such that we may find
a5 -+, n,bos ... by € mowith Y7 a2t = 1 = Z;n:o b;z~*. Without loss of
generality, 0 < m < n.

Now (1 —bo) =>.1"  biz=t € A*. So

i=1

m n—1
" =" (1 - bo)fl(z biz™") € Z ma’
i=1 i=0
so there are af), ..., al,_, € mwith """ afz? = 1, giving the desired contradiction.

d

Now we consider the following set-up: Suppose that A is an integral domain and
that K is an algebraically closed field and consider the set X of pairs (B, f) with
B a subring of Q(A) containing A and f: B — K a ring homomorphism.

We make X into a poset by (B, f) < (C, g) precisely it BC C and g|p = f. It is
easy to check that the poset (X, <) is chain complete and so has maximal elements.

Theorem. If (B, f) is a mazimal element of (X, <) then B is a valuation ring in
Q(A) with mazimal ideal ker f.

Proof. First we show that ker f contains all the non-units in B: certainly f(B) is
a subring of K and so an integral domain, so ker f is prime. Letting S = B\ ker f,
we may extend f to a ring homomorphism fg: Bg — Kg = K. By maximality of
the pair (B, f) we see that necessarily Bg = B and so every element of S is a unit
in B and ker f is the unique maximal ideal in B.
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Now we want to show that if x € Q(A) then either x € B or 27! € B. By replac-
ing x by 21 if necessary and applying the lemma we may assume that (ker f)<iB[z]
is a proper ideal.

Let m be an element of maxSpec(B][z]) containing ker f. Since z € Q(B) = Q(A),
x is algebraic over Q(A) so B|x]/m is algebraic over B/ ker f, so as K is algebraically
closed, we may extend f: B/kerf — K to g: B[z]/m — K. Then g induces
g: Blz] — K extending f and so x € B. O

Corollary. If A is an integral domain then its integral closure in Q(A) is the
intersection of all valuation rings in Q(A) containing A.

Proof. Since valuation rings are all integrally closed, the integral closure of A is
Q(A) is contained in every valuation ring in Q(A) containing A so we just need to
show that if x is not in the integral closure of A then there is such a valuation ring
not containing it.

So suppose x is Q(A) but not integral over A. Let B = A[z~!]. Then x ¢ B.
So x7! is not a unit in B and there is a maximal ideal m of B containing x~!. Let
K be the algebraic closure of B/m then there is a natural ring homomorphism f
from B to K with kernel m. Picking a maximal element (C,g) of X above (B, f),
we see that C' is a valuation ring in Q(A) and g(x~!) = 0 so x is not in C. O

We can now reprove the weak Nullstellensatz.

Corollary. Suppose A C B are integral domains and B is a finitely generated A-
algebra. For each b € B\0, there exists a € A\O such that any homomorphism
f from A to an algebraically closed field K with f(a) # 0 may be extended to a
homomorphism g from B to K with g(b) # 0.

In particular, if K =k and B is a finitely generated k-algebra and a field, then
B is isomorphic to a finite algebraic extension of k.

Proof. By inducting on the number of generators of B as an A-algebra we can
assume B = A[z]. Then either z is algebraic or trancendental over A. In the latter
case, we may write b = apx™ + - -+ + an,, with a; € A and ag # 0. Let a = ag. Since
K is infinite, whenever f: A — K is a ring homomorphism with f(a) # 0, there is
a a € K that is not a root of f(ag)t" 4+ --- + f(a,). We can define g: B — K to
be the extension of f that sends x to « so g(b) # 0 as required.

If x is algebraic over A, then so is b since the set of algebraic elements of Q(B)
over Q(A) is a field. So there are ag,...,a, in A and ag,...,a,, in A such that
Yoigair’ =0and 37" jalb) = 0.

Let a = anal so x and b~! are both integral over A,, and suppose that f is a
homomorphism A — K such that f(a) # 0. So f extends to f,: As — K. But
now by our theorem we may extend f, to a map h: C — K for some valution ring
C in Q(B). Since z is integral over A,, C contains = and so also B and we can
define g = h|p.

Finally, as b~ is integral over A, it must live in C, thus b is a unit in C' and
g(b) = h(b) # 0 as required.

For the last part, take v =1, A =k, O
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9. DEDEKIND DOMAINS
9.1. Discrete valuation rings.

Definition. If K is a field then a discrete valuation on K is a surjective group
homomorphism v: K*(Z,+) such that v(z +y) > min(v(z),v(y) for all z,y € K*.
[By convention v(0) := oo > n for all n € Z]. Then K, = {z € K |v(z) > 0} is a
subring of K, the valuation ring of v.

Notice if z € K* either v(x) > 0 or v(z~! > 0 so K, is a valuation ring.

Ezxamples.
1) If K =Qand p € Z is prime, v,: A* — Z; p*Z +— a (for z,y coprime of p
p y
is a discrete valuation and K,, = Z).
2) If K = C(z) and A € C, let vy: C(2)* — Z; (z — N L2 — 4 (for
g(z
f()\)ug()‘) 7& 0) Then Kv,\ = (C[‘T](zfA)

FEzercise. Show that these are all the discrete valuations of Q and C(x).

|

Definition. An integral domain A is a discrete valuation ring (DVR) if there is a
discrete valuation v of Q(A) such that Q(A), = A.

Since a DVR is a valuation ring, it must be local and it is easy to see that the
unique maximal ideal of A is m = {x € Q(A4) | v(x) > 1}.

Notice too that if v(x) = v(y) then v(zy~!) = 0 so zy~' is a unit in A and
() = (y). Given any non-zero ideal I in A. If € I has least value amongst
elements of I then v(yz=!) >0 for all y € I so (x) C I C (x). It follows that in a
DVR every ideal is principal and of the from {x € A | v(z) > k}. Thus DVRs are
Noetherian and have Krull dimension 1; the only primes are (0) and m.

Since v is surjective, there is x € A with v(z) = 1. Then (m) = () any every
ideal is of the from (z¥). Also we never have m* = m**1 since v(z¥) =k < k+1 =
v(zF ).

There are many ways to characterise DVRs:

1

Lemma. Let A be a Noetherian local integral domain of Krull dimension 1 with
mazimal ideal m. The following are equivalent:
(i) Ais a DVR;
(i) A is integrally closed;
(ii) m is principal;
(iv) There is x € m such that every non-zero ideal is of the form (z*) for some
k>0;
(v) Frac(A) = Cart(A); that is A is a Dedekind domain;
(’Ui) dimA/m m/m2 =1.

Proof.

(i) = (4i): DVRs are valuation rings and valuation rings are integrally closed

(i1) = (i4i): we use the fact that z is integral over A if and only if there is an
Alz]-module M such that Annsp,)(M) = 0 and M is f.g. over A.

Let © € m non-zero. Then A/(x) has a unique prime ideal m = m/(x). As
A/(z) is Noetherian, m is nilpotent so there is a least n such that m"™ = 0. Pick
y € m" 1\ (z). Then yz~! € Q(A)\A so is not integral over A by assumption. Thus
yr~lm ¢ m as m is finitely generated over A so cannot be an A[yz~!]-module.
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But yz7!m C Aasym C m" C (z). So yz7'm = A and m € Cart(4) so is
principal (Pic(A) = 0 since A is local).

(i41) = (iv): let x € A generate m and 0 # I <1 A. There is n largest such that
m"™ C I as again m/[ is nilpotent in A/I. Then there is y € I\m"*! and y = aa™
some a € A\m = A*. Soz" =a 'y €I and (z") C I C (z").

(iv) = (i): let v: A\O — Np be given by v(a) = k if (a) = (z¥). Nakayma’s
Lemma gives that (x%)supsetneq(z**!) for all k so v is well-defined. It is easy
to check that v(ab) = v(a)v(b) for all a,b and v(a + b) > min(v(a),v(b)) since if
(a) = (z*) and (b) = () then (a + b) C (z™n(D),

Next, we extend v to a map from Q(A)\0 to Z by v(a/b) = v(a) — v(b). It is
then straightforward to check v is a well-defined discrete valuation on Q(A) and
Q(A)v =A.

(i71) <= (vi) follows from Nakayama’s Lemma

Finally we see that (v) <= every fractional ideal is principal (since Pic(A)
must be 0 when A is local). Now (v) = (¢i¢) and (iv) = (v) are clear O

Proposition. Let A be a local integral domain with maximal ideal m # 0. Then A
is a DVR or a field if and only if Frac(A) = Cart(A). In particular local Dedekind

domains are Noetherian of Krull dimension 1.

Proof. The forwards implication follows from the lemma. For the reverse implica-
tion it suffices to handle the last sentence since then it follows from the lemma.
So suppose Frac(A) = Cart(A). Since line bundles are finitely generated and
every ideal is a fractional ideal and so a line bundle we see A is Noetherian.
Suppose P € Spec(A)\{m,0} [ie KdimA > 1]. Then m~!P C A as P C m.
But m(m~!P) = P so as P is prime and m ¢ P, m~!P C P. Then P C mP
contradicting Nakayama’s Lemma. O

9.2. Dedekind domains. We now drop the locality hypotheses of the previous
section.

Theorem. Suppose A is a Noetherian domain of Krull dimension 1. The following
are equivalent:

(i) A is a Dedekind domain
(ii) A is integrally closed
(iii) Ap is a DVR for all P € Spec(A) non-zero.

Proof. (it) <= (ii1) follows from the facts that for A to be integrally closed
is a local property and that local integrally closed Noetherian domains of Krull
dimension 1 are DVRs.

For (i) <= (4i%) it will suffice to prove that to be a Dedekind domain is a local
property. That is Frac(Ap) = Cart(Ap) for all P € Spec(A)\0 <= Frac(A) =
Cart(A).

Suppose I € Frac(A). Let J ={z € Q(A) |2l C A}. SoIJC Aand IJ = A
precisely if I € Cart(A).

Then for each P € Spec(A), z € Q(A) we have xIp C Ap if and only if there is
s € A\P such that szI C Aifand onlyif x € Jp. So Jp = {x € Q(A) | zIp C Ap}.

Now I € Cart(A) if and only if IJ = A if and only if (I.J)p = IpJp = Ap for
each P € Spec(A) if and only if Ip € Cart(Ap) for all P € Spec(A) as required. O
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Suppose now that A is a Dedekind domain. A is Noetherian since ideals are all
line bundles and so finitely generated. Moreover K-dim A < 1 since if P € Spec(A4)
then Ap is a local Dedekind domain so has Krull dimension at most 1.

Suppose that I is a non-zero ideal in A then for each P € Spec(A)\0 we have Ap
isa DVR and Ip = (Pp)kP for some k, > 0. Moreover, if kp > 0 then I C P. But
A/I is Noetherian of Krull dimension 0 so has only finitely many non-zero prime
ideals (minimal primes). So kp = 0 for all but finitely many primes.

Now we may define J = HPespcc(A)\o PFr g finite product since all but finitely
many terms are 1. But by contruction Jp = Ip for all P € Spec(A) and so I = J.
Thus we have proven the following result.

Theorem. If A is a Dedekind domain then every non-zero ideal may be expressed
uniquely as HPeSpec(A)\O P*? with kp € Ny and kp = 0 for all but finitely many
P.

Ezercise. Show that we may extend to Frac(A) is the free abelian group generated
by Spec(A)\0 whenever A is a Dedekind domain.

We’ll close this section with one final characterisation of Dedekind domains

Theorem. If A is a Noetherian integral domain then the following are equivalent:

(i) every finitely generated torsion free A-module is projective;
(i) if M is a finitely generated A-module and X is a finitely generated projective
A-module and m € Hom (X, M) is surjective then kerw is projective;
(iii) A is a Dedekind domain

Part (i¢) is sometimes phrased as A has global dimension at most 1.

Proof.

(i) = (i1): since X is finitely generated projective and so torsion free, ker
is finitely generated (as A is Noetherian) and torsion free. So ker 7 is projective by
assumption.

(16) = (i9i): let 0 # I be a fractional ideal in A then there is a non-zero
f € A such that fI is an ideal in A. Let w: A — A/fI be the natural projection
so kerm = fI. By assumption ker 7 is projective. But Q(A) ®4 fI = Q(A) so fI
is a line bundle. Thus fI € Cart(A). But f~! € Cart(A) so I is a Cartier divisor.

(191) = (4): let M Dbe a finitely generated torsion free A-module. We proceed
by induction on rks((0)).

If rkps((0)) = 0 then M = 0 as so projective since M is torsion free.

Suppose 1kps((0)) = n + 1. Then Q(A) ®4 M = Q(A)"*. Let m: Q(A)"H —
Q(A) project onto the first coordinate. Then consider the image My of M under the
composite M — Q(A) @4 M — Q(A)"+1 5 Q(A). Since M is finitely generated
My is also. Thus My is a fractional ideal and so a line bundle by assumption.

In particlar My is projective and so the projection map M — M splits and M =
Moy @ M’ for some finitely generated torsion free A-module M’ with rkps ((0)) = n.
By the induction hypothesis M’ is projective and we’re done. ([l



