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8.4. Noether Normalisation.

Theorem (Noether normalisation Lemma). Let k be a field and A a finitely gener-
ated k-algebra; then there are elements z1, . . . , zm ∈ A such that B = k[z1, . . . , zm]
is isomorphic to a polynomial ring in m-variables and A is integral over B. In fact
A is a finitely generated B-module.

Proof. Suppose A is generated by x1, . . . , xn over k. If the xi are algebraically
independent over k then we may take m = n and B = A.

Otherwise, there is a non-trivial polynomial f =
∑

i αit
i in k[t1, . . . , tn] such

that f(x1, . . . , xn) = 0. Given positive integers a1, a2, . . . , an−1 we may define
yi = xi − xai

n for i < n. Substituting into f and writing a = (ai) (with an = 1) we
obtain ∑

i

αix
i·a
1 + g(xl, y2, . . . , yn) = 0

for some polynomial g containing no monomials purely in xn. Now if ai = dn−i

for some large positive integer d — say d > deg f — then we may arrange for
i · a 6= j · a whenever i 6= j and αi, αj are both non-zero. Thus xn is integral over
k[y1, . . . , yn−1]. But x1, . . . , xn−1] are manifestly integral over k[y1, . . . , yn−1, xn] so
by transitivity of integral extensions A is integral over k[y1, . . . , yn−1]. By induction
on the number of generators of A we may find z1, . . . , zm ∈ k[y2, . . . , yn] such that
z1, . . . , zm are algebraically independent over k and k[y1, . . . , yn−1] is integral over
k[z1, . . . , zm]. By transitivity of integral extensions again, we get A is integral over
k[z1, . . . , zm] as required. �

Remarks.

(1) If k is an infinite we can use a linear change of variables instead of the one
described: this is an older (and sometimes more useful) result.

(2) Geometrically the theorem says that if A is a finitely generated k-algebra
then there is finite map from Spec(A) to affine m-space=Spec(B).

Corollary (Weak Nullstellensatz). If A is a finitely generated k-algebra and a field
then A is a finite algebraic extension of k.

Proof. By Noether Normalisation there is a subring B of A such that B = k[z1, . . . , zm]
is free on m-generators and A is integral over B.

Now K-dimA = K-dimB since A is integral over B. But since A is a field
K-dimA = 0. Thus K-dimB = 0. It follows that m = 0 since otherwise 0 < (z1) is
a chain of prime ideals in Spec(B) of length 1.

So B = k and A is integral over k as required. �

Notice that the argument actually shows that if A is a finitely generated k-
algebra there is an m such that K-dimA = K-dim k[x1, . . . , xm]. It is easy to see
that K-dim k[x1, . . . , xm] ≥ m. We will see late that it is actually m.

8.5. Valuations.

Definition. Let A be an integral domain. We say that A is a valuation ring if for
every x ∈ Q(A)\0 either x ∈ A or x−1 ∈ A.

We will now try to show that if A is an integral domain then the integral closure
of A in its field of fractions Q(A) is the interection of all the valuation rings of
Q(A) containing A. We’ll also use valuation rings to give another proof of the weak
Nullstellensatz.
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Examples.

(1) Z is not a valuation ring, e.g. 2/3, 3/2 6∈ Z.
(2) Z(p) is a valuation ring. (Notice Z = ∩pZ(p)).

Lemma. If A is a valuation ring, then

(i) A is a local ring.
(ii) Every ring that contains A and is contained in Q(A) is a valuation ring.
(iii) A is integrally closed.

Proof.
(i) We want to show that the set of non-units of A is an ideal. For this it

suffices to show that if x and y are not units in A then x + y is not a unit in A.
WLOG x, y are both non-zero, so one of x−1y or y−1x is in A. WLOG x−1y. Then
x + y = (1 + x−1y)x. Since x is not a unit it follows that x + y is not a unit.

(ii) Is clear.
(iii) Suppose that x is in Q(A) and is integral over A but is not in A. Then x−1

is in A. Moreover, xn + a1x
n−1 + · · · + an = 0 for some ai in A.

But we may deduce from this equation that

x = −(a1 + a2x
−1 + · · · + anx1−n).

Since the RHS is in A so is the LHS, a contradicton �

Now we prove a technical lemma that we will use later.

Lemma. If A is a local integral domain with maximal ideal m and x ∈ Q(A)\0
then either (m) ⊳ A[x] is a proper ideal or (m) ⊳ A[x−1] is a proper ideal.

Proof. Suppose not, then choose m + n to be minimal such that we may find
a0, . . . , an, b0, . . . , bm ∈ m with

∑n
i=0 aix

i = 1 =
∑m

j=0 bix
−i. Without loss of

generality, 0 < m ≤ n.
Now (1 − b0) =

∑m
i=1 bix

−i ∈ A×. So

xn = xn(1 − b0)
−1(

m∑

i=1

bix
−i) ∈

n−1∑

i=0

mxi

so there are a′
0, . . . , a

′
n−1 ∈ m with

∑n−1
i=0 a′

ix
i = 1, giving the desired contradiction.

�

Now we consider the following set-up: Suppose that A is an integral domain and
that K is an algebraically closed field and consider the set X of pairs (B, f) with
B a subring of Q(A) containing A and f : B → K a ring homomorphism.

We make X into a poset by (B, f) ≤ (C, g) precisely if B ⊂ C and g|B = f . It is
easy to check that the poset (X,≤) is chain complete and so has maximal elements.

Theorem. If (B, f) is a maximal element of (X,≤) then B is a valuation ring in
Q(A) with maximal ideal ker f .

Proof. First we show that ker f contains all the non-units in B: certainly f(B) is
a subring of K and so an integral domain, so ker f is prime. Letting S = B\ ker f ,
we may extend f to a ring homomorphism fS : BS → KS = K. By maximality of
the pair (B, f) we see that necessarily BS = B and so every element of S is a unit
in B and ker f is the unique maximal ideal in B.
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Now we want to show that if x ∈ Q(A) then either x ∈ B or x−1 ∈ B. By replac-
ing x by x−1 if necessary and applying the lemma we may assume that (ker f)⊳B[x]
is a proper ideal.

Let m be an element of maxSpec(B[x]) containing ker f . Since x ∈ Q(B) = Q(A),
x is algebraic over Q(A) so B[x]/m is algebraic over B/ ker f , so as K is algebraically
closed, we may extend f : B/ ker f → K to g : B[x]/m → K. Then g induces
g : B[x] → K extending f and so x ∈ B. �

Corollary. If A is an integral domain then its integral closure in Q(A) is the
intersection of all valuation rings in Q(A) containing A.

Proof. Since valuation rings are all integrally closed, the integral closure of A is
Q(A) is contained in every valuation ring in Q(A) containing A so we just need to
show that if x is not in the integral closure of A then there is such a valuation ring
not containing it.

So suppose x is Q(A) but not integral over A. Let B = A[x−1]. Then x 6∈ B.
So x−1 is not a unit in B and there is a maximal ideal m of B containing x−1. Let
K be the algebraic closure of B/m then there is a natural ring homomorphism f
from B to K with kernel m. Picking a maximal element (C, g) of X above (B, f),
we see that C is a valuation ring in Q(A) and g(x−1) = 0 so x is not in C. �

We can now reprove the weak Nullstellensatz.

Corollary. Suppose A ⊂ B are integral domains and B is a finitely generated A-
algebra. For each b ∈ B\0, there exists a ∈ A\0 such that any homomorphism
f from A to an algebraically closed field K with f(a) 6= 0 may be extended to a
homomorphism g from B to K with g(b) 6= 0.

In particular, if K = k̄ and B is a finitely generated k-algebra and a field, then
B is isomorphic to a finite algebraic extension of k.

Proof. By inducting on the number of generators of B as an A-algebra we can
assume B = A[x]. Then either x is algebraic or trancendental over A. In the latter
case, we may write b = a0x

n + · · ·+ an, with ai ∈ A and a0 6= 0. Let a = a0. Since
K is infinite, whenever f : A → K is a ring homomorphism with f(a) 6= 0, there is
a α ∈ K that is not a root of f(a0)t

n + · · · + f(an). We can define g : B → K to
be the extension of f that sends x to α so g(b) 6= 0 as required.

If x is algebraic over A, then so is b since the set of algebraic elements of Q(B)
over Q(A) is a field. So there are a0, . . . , an in A and a′

0, . . . , a
′
m in A such that∑n

i=0 aix
i = 0 and

∑m
j=0 a′

jb
j = 0.

Let a = ana′
0 so x and b−1 are both integral over Aa, and suppose that f is a

homomorphism A → K such that f(a) 6= 0. So f extends to fa : Aa → K. But
now by our theorem we may extend fa to a map h : C → K for some valution ring
C in Q(B). Since x is integral over Au, C contains x and so also B and we can
define g = h|B.

Finally, as b−1 is integral over Au it must live in C, thus b is a unit in C and
g(b) = h(b) 6= 0 as required.

For the last part, take v = 1, A = k, �
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9. Dedekind domains

9.1. Discrete valuation rings.

Definition. If K is a field then a discrete valuation on K is a surjective group
homomorphism v : K×(Z, +) such that v(x+ y) ≥ min(v(x), v(y) for all x, y ∈ K×.
[By convention v(0) := ∞ ≥ n for all n ∈ Z]. Then Kv = {x ∈ K | v(x) ≥ 0} is a
subring of K, the valuation ring of v.

Notice if x ∈ K× either v(x) ≥ 0 or v(x−1 ≥ 0 so Kv is a valuation ring.

Examples.

(1) If K = Q and p ∈ Z is prime, vp : A× → Z; pa x
y 7→ a (for x, y coprime of p)

is a discrete valuation and Kvp
= Z(p).

(2) If K = C(x) and λ ∈ C, let vλ : C(x)× → Z; (x − λ)a f(x)
g(x) → a (for

f(λ), g(λ) 6= 0). Then Kvλ
= C[x](x−λ).

Exercise. Show that these are all the discrete valuations of Q and C(x).

Definition. An integral domain A is a discrete valuation ring (DVR) if there is a
discrete valuation v of Q(A) such that Q(A)v = A.

Since a DVR is a valuation ring, it must be local and it is easy to see that the
unique maximal ideal of A is m = {x ∈ Q(A) | v(x) ≥ 1}.

Notice too that if v(x) = v(y) then v(xy−1) = 0 so xy−1 is a unit in A and
(x) = (y). Given any non-zero ideal I in A. If x ∈ I has least value amongst
elements of I then v(yx−1) ≥ 0 for all y ∈ I so (x) ⊂ I ⊂ (x). It follows that in a
DVR every ideal is principal and of the from {x ∈ A | v(x) ≥ k}. Thus DVRs are
Noetherian and have Krull dimension 1; the only primes are (0) and m.

Since v is surjective, there is x ∈ A with v(x) = 1. Then (m) = (x) any every
ideal is of the from (xk). Also we never have m

k = m
k+1, since v(xk) = k < k+1 =

v(xk+1).
There are many ways to characterise DVRs:

Lemma. Let A be a Noetherian local integral domain of Krull dimension 1 with
maximal ideal m. The following are equivalent:

(i) A is a DVR;
(ii) A is integrally closed;
(iii) m is principal;
(iv) There is x ∈ m such that every non-zero ideal is of the form (xk) for some

k ≥ 0;
(v) Frac(A) = Cart(A); that is A is a Dedekind domain;
(vi) dimA/m

m/m
2 = 1.

Proof.
(i) =⇒ (ii): DVRs are valuation rings and valuation rings are integrally closed
(ii) =⇒ (iii): we use the fact that x is integral over A if and only if there is an

A[x]-module M such that AnnA[x](M) = 0 and M is f.g. over A.
Let x ∈ m non-zero. Then A/(x) has a unique prime ideal m = m/(x). As

A/(x) is Noetherian, m is nilpotent so there is a least n such that mn = 0. Pick
y ∈ m

n−1\(x). Then yx−1 ∈ Q(A)\A so is not integral over A by assumption. Thus
yx−1

m 6⊂ m as m is finitely generated over A so cannot be an A[yx−1]-module.
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But yx−1
m ⊂ A as ym ⊂ m

n ⊂ (x). So yx−1
m = A and m ∈ Cart(A) so is

principal (Pic(A) = 0 since A is local).
(iii) =⇒ (iv): let x ∈ A generate m and 0 6= I ⊳A. There is n largest such that

m
n ⊂ I as again m/I is nilpotent in A/I. Then there is y ∈ I\mn+1 and y = axn

some a ∈ A\m = A×. So xn = a−1y ∈ I and (xn) ⊂ I ⊂ (xn).
(iv) =⇒ (i): let v : A\0 → N0 be given by v(a) = k if (a) = (xk). Nakayma’s

Lemma gives that (xk)supsetneq(xk+1) for all k so v is well-defined. It is easy
to check that v(ab) = v(a)v(b) for all a, b and v(a + b) ≥ min(v(a), v(b)) since if
(a) = (xk) and (b) = (xl) then (a + b) ⊂ (xmin(k,l)).

Next, we extend v to a map from Q(A)\0 to Z by v(a/b) = v(a) − v(b). It is
then straightforward to check v is a well-defined discrete valuation on Q(A) and
Q(A)v = A.

(iii) ⇐⇒ (vi) follows from Nakayama’s Lemma
Finally we see that (v) ⇐⇒ every fractional ideal is principal (since Pic(A)

must be 0 when A is local). Now (v) =⇒ (iii) and (iv) =⇒ (v) are clear �

Proposition. Let A be a local integral domain with maximal ideal m 6= 0. Then A
is a DVR or a field if and only if Frac(A) = Cart(A). In particular local Dedekind
domains are Noetherian of Krull dimension 1.

Proof. The forwards implication follows from the lemma. For the reverse implica-
tion it suffices to handle the last sentence since then it follows from the lemma.

So suppose Frac(A) = Cart(A). Since line bundles are finitely generated and
every ideal is a fractional ideal and so a line bundle we see A is Noetherian.

Suppose P ∈ Spec(A)\{m, 0} [ie KdimA > 1]. Then m
−1P ( A as P ( m.

But m(m−1P ) = P so as P is prime and m 6⊂ P , m
−1P ⊂ P . Then P ⊂ mP

contradicting Nakayama’s Lemma. �

9.2. Dedekind domains. We now drop the locality hypotheses of the previous
section.

Theorem. Suppose A is a Noetherian domain of Krull dimension 1. The following
are equivalent:

(i) A is a Dedekind domain
(ii) A is integrally closed
(iii) AP is a DVR for all P ∈ Spec(A) non-zero.

Proof. (ii) ⇐⇒ (iii) follows from the facts that for A to be integrally closed
is a local property and that local integrally closed Noetherian domains of Krull
dimension 1 are DVRs.

For (i) ⇐⇒ (iii) it will suffice to prove that to be a Dedekind domain is a local
property. That is Frac(AP ) = Cart(AP ) for all P ∈ Spec(A)\0 ⇐⇒ Frac(A) =
Cart(A).

Suppose I ∈ Frac(A). Let J = {x ∈ Q(A) | xI ⊂ A}. So IJ ⊂ A and IJ = A
precisely if I ∈ Cart(A).

Then for each P ∈ Spec(A), x ∈ Q(A) we have xIP ⊂ AP if and only if there is
s ∈ A\P such that sxI ⊂ A if and only if x ∈ JP . So JP = {x ∈ Q(A) | xIP ⊂ AP }.

Now I ∈ Cart(A) if and only if IJ = A if and only if (IJ)P = IP JP = AP for
each P ∈ Spec(A) if and only if IP ∈ Cart(AP ) for all P ∈ Spec(A) as required. �
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Suppose now that A is a Dedekind domain. A is Noetherian since ideals are all
line bundles and so finitely generated. Moreover K-dimA ≤ 1 since if P ∈ Spec(A)
then AP is a local Dedekind domain so has Krull dimension at most 1.

Suppose that I is a non-zero ideal in A then for each P ∈ Spec(A)\0 we have AP

is a DVR and IP = (PP )kP for some kp ≥ 0. Moreover, if kP > 0 then I ⊂ P . But
A/I is Noetherian of Krull dimension 0 so has only finitely many non-zero prime
ideals (minimal primes). So kP = 0 for all but finitely many primes.

Now we may define J =
∏

P∈Spec(A)\0 P kP a finite product since all but finitely

many terms are 1. But by contruction JP = IP for all P ∈ Spec(A) and so I = J .
Thus we have proven the following result.

Theorem. If A is a Dedekind domain then every non-zero ideal may be expressed
uniquely as

∏
P∈Spec(A)\0 P kP with kP ∈ N0 and kP = 0 for all but finitely many

P .

Exercise. Show that we may extend to Frac(A) is the free abelian group generated
by Spec(A)\0 whenever A is a Dedekind domain.

We’ll close this section with one final characterisation of Dedekind domains

Theorem. If A is a Noetherian integral domain then the following are equivalent:

(i) every finitely generated torsion free A-module is projective;
(ii) if M is a finitely generated A-module and X is a finitely generated projective

A-module and π ∈ HomA(X, M) is surjective then kerπ is projective;
(iii) A is a Dedekind domain

Part (ii) is sometimes phrased as A has global dimension at most 1.

Proof.
(i) =⇒ (ii): since X is finitely generated projective and so torsion free, kerπ

is finitely generated (as A is Noetherian) and torsion free. So kerπ is projective by
assumption.

(ii) =⇒ (iii): let 0 6= I be a fractional ideal in A then there is a non-zero
f ∈ A such that fI is an ideal in A. Let π : A → A/fI be the natural projection
so kerπ = fI. By assumption kerπ is projective. But Q(A) ⊗A fI ∼= Q(A) so fI
is a line bundle. Thus fI ∈ Cart(A). But f−1 ∈ Cart(A) so I is a Cartier divisor.

(iii) =⇒ (i): let M be a finitely generated torsion free A-module. We proceed
by induction on rkM ((0)).

If rkM ((0)) = 0 then M = 0 as so projective since M is torsion free.
Suppose rkM ((0)) = n + 1. Then Q(A) ⊗A M ∼= Q(A)n+1. Let π : Q(A)n+1 →

Q(A) project onto the first coordinate. Then consider the image M0 of M under the

composite M → Q(A) ⊗A M → Q(A)n+1 π
→ Q(A). Since M is finitely generated

M0 is also. Thus M0 is a fractional ideal and so a line bundle by assumption.
In particlar M0 is projective and so the projection map M → M0 splits and M ∼=

M0⊕M ′ for some finitely generated torsion free A-module M ′ with rkM ′ ((0)) = n.
By the induction hypothesis M ′ is projective and we’re done. �


