

## 7.2. The Picard group of a ring.

**Definition.** A line bundle over a ring  $A$  is a finitely generated projective  $A$ -module such that the rank function  $\text{Spec } A \rightarrow \mathbb{N}$  is constant with value 1. We call  $A$  itself the trivial line bundle.

We want to put an abelian group structure on the set of isomorphism classes of line bundles over  $A$ . The product will be given by tensor product and the inverse by a kind of duality. We know that  $\otimes$  is associative and commutative and the trivial line bundle is an identity up to isomorphism in each case. But to show that the group operation is well-defined and we have inverses we need to prove a few results.

**Definition.** If  $X$  is a f.g. projective module, we define its dual by

$$X^* := \text{Hom}_A(X, A).$$

**Lemma.** Let  $X$  and  $Y$  be f.g. projective  $A$ -modules

- (1)  $X \otimes_A Y$  is a f.g. projective  $A$ -module and  $\text{rk}_{X \otimes_A Y} = \text{rk}_X \cdot \text{rk}_Y$  pointwise;
- (2)  $X^*$  is a f.g. projective  $A$ -module and  $\text{rk}_{A^*} = \text{rk}_A$ ;
- (3) If  $X$  is a line bundle then  $X^* \otimes_A X \cong A$ .

*Proof.* Since  $X$  is projective there exists an  $A$ -module  $Z$  such that  $X \oplus Z \cong A^n$  is free. Then  $(X \otimes_A Y) \oplus (Z \otimes_A Y) \cong A^n \otimes_A Y \cong Y^n$ . Since  $Y$  is f.g. projective,  $Y^n$  is f.g. projective and so  $X \otimes_A Y$  is a direct summand of a f.g. projective and so is a f.g. projective.

Next we compute the ranks: if  $P$  in  $\text{Spec}(A)$ , then  $X_P \cong A_P^m$  and  $Y_P \cong A_P^n$  say, then  $(X \otimes_A Y)_P \cong X_P \otimes_{A_P} Y_P \cong A_P^{nm}$  and (1) follows.

Similarly  $\text{Hom}_A(X, A) \oplus \text{Hom}_A(Z, A) \cong \text{Hom}_A(A^n, A) \cong A^n$  and so  $X^*$  is f.g. projective.

Also as  $X$  is finitely presented,  $(X^*)_P \cong (X_P)^* \cong A_P^n$  and (2) follows.

Finally if  $m = 1$ , let  $\theta: X^* \otimes X \rightarrow A$ ;  $\theta(f, x) = f(x)$ . Locally we have

$$\theta_P: \text{Hom}_{A_P}(A_P, A_P) \cong \text{Hom}_A(X, A)_P \rightarrow A_P$$

is an isomorphism and so  $\theta$  is an isomorphism.  $\square$

**Definition.** If  $A$  is a ring we may define the *Picard group* of  $A$ ,  $\text{Pic}(A)$  to be the set of isomorphism classes of line bundles over  $A$ , with multiplication given by  $\otimes$  and inverses given by  $X \mapsto X^*$ .

**Corollary.**  $(\text{Pic}(A), \otimes)$  is an abelian group.

*Examples.*

- (1) If  $A$  is a local ring then all line bundles are trivial, and so  $\text{Pic}(A) \cong 0$ .
- (2) If  $\mathcal{O}$  is the ring of integers of a number field then (as we will see)  $\text{Pic}(\mathcal{O})$  is just the ideal class group of  $\mathcal{O}$

*Exercise.*  $\text{Pic}$  is a functor from rings to abelian groups; more specifically if  $f: B \rightarrow C$  is a ring homomorphism then there is a group homomorphism  $\text{Pic}(f): \text{Pic}(A) \rightarrow \text{Pic}(B)$  given by  $X \mapsto C \otimes_B X$  and if also  $g: A \rightarrow B$  is a ring homomorphism then  $\text{Pic}(fg) = \text{Pic}(f) \text{Pic}(g)$ .

As hinted in Example 2, when  $A$  is an integral domain, the Picard group of  $A$  is something that arises classically in a familiar way: Since  $\text{Spec}(A)$  is connected in this case a f.g. projective  $A$ -module is a line bundle if and only if  $Q(A) \otimes_A X \cong$

$Q(A)$ ; that is  $\text{rk}_X((0)) = 1$ . Indeed since projective modules are flat (Ex. Sheet 2 Q2) the exact sequence  $0 \rightarrow A \rightarrow Q(A)$  induces an injection

$$X \cong A \otimes_A X \rightarrow Q(A) \otimes_A X \rightarrow Q(A).$$

Thus  $X$  is isomorphic to a finitely generated submodule of  $Q(A)$ .

**Definition.** A *fractional ideal*  $I$  of  $A$  is a non-zero  $A$ -submodule of  $Q(A)$  that is contained in a cyclic  $A$ -submodule of  $Q(A)$ .

In particular every finitely generated  $A$ -submodule of  $Q(A)$  is a fractional ideal. It is easy to see that if  $I$  and  $J$  are both fractional ideals of  $A$  then  $IJ$  is also fractional ideal. Thus the set  $\text{Frac}(A)$  of fractional ideals in  $A$  is a commutative monoid with identity given by  $A$ .

**Definitions.** We call a fractional ideal *invertible* or a *Cartier divisor* if it has an inverse in  $\text{Frac}(A)$ . We call the set of Cartier divisors  $\text{Cart}(A)$  — an abelian group.

If  $f \in Q(A)^\times$ , then the fractional ideal  $Af$  is a Cartier divisor with inverse  $Af^{-1}$ . We call these divisors *principal divisors* of  $A$ .

Now if  $I, J \in \text{Cart}(A)$  with  $IJ = A$  then there are  $x_1, \dots, x_n$  in  $I$  and  $y_1, \dots, y_n$  in  $J$  such that  $\sum x_i y_i = 1$ . So we can define maps  $f: I \rightarrow A^n$  by  $f(a) = (ay_1, \dots, ay_n)$  and  $g: A^n \rightarrow I$  by  $g(e_i) = x_i$  and  $gf(a) = a \sum x_i y_i = a$ . Thus  $I$  is a summand of  $A^n$  and so is a f.g. projective  $A$ -module. Moreover  $Q(A) \otimes_A I \cong Q(A)$  and so  $I$  is a line bundle. Thus all Cartier divisors are line bundles.

Now suppose  $I$  and  $J$  are any Cartier divisors in  $A$ , we want to show that  $IJ \cong I \otimes_A J$  and so the map  $\text{Cart}(A) \rightarrow \text{Pic}(A)$  sending a Cartier divisor to its isomorphism class is a group homomorphism. Since  $I$  is projective it is flat (Q2 of example sheet 2), so  $I \otimes_A J \rightarrow I \otimes_A Q(A) \cong Q(A)$  is an injection and sends  $x_i \otimes y_i$  to  $x_i y_i$ . Thus its image is the set  $IJ$  and  $IJ \cong I \otimes_A J$  as claimed.

We've seen that every line bundle is isomorphic to a fractional ideal. In fact the fractional ideal must be invertible: suppose  $X$  is a line bundle isomorphic to the fractional ideal  $I$ . Then  $X^* = \text{Hom}_A(X, A) \cong J$  for some fractional ideal  $J$ . Then  $A \cong X \otimes X^* \cong IJ$  so  $IJ = Af$  some  $f \in Q(A)^\times$  is a principal divisor. Thus  $I(Jf^{-1}) = A$  and  $I$  is in  $\text{Cart}(A)$ .

Suppose now that  $I \in \ker(\text{Cart}(A) \rightarrow \text{Pic}(A))$ . Then  $I \cong A$  and so  $I$  is a principal divisor.

Thus we have proven the following proposition.

**Proposition.** *If  $A$  is a integral domain, then every Cartier divisor is a line bundle, moreover there is an exact sequence of abelian groups*

$$1 \rightarrow A^\times \rightarrow Q(A)^\times \rightarrow \text{Cart}(A) \rightarrow \text{Pic}(A) \rightarrow 0.$$

*In particular the first non-trivial map is inclusion, the second maps  $f$  to the Cartier divisor  $fA$ , and the third just realises a Cartier divisor as a line bundle. Thus  $\text{Pic}(A) \cong \text{Cart}(A)/(\text{principal divisors of } A)$ .*

**Definition.** We say a ring is a *Dedekind domain* if every fractional ideal is invertible.

We'll see other ways to characterise Dedekind domains later.

*Examples.*

- (1) Every principal ideal domain is a Dedekind domain. Clearly,  $\text{Pic}(A) = 0$  in this case. In fact a Dedekind domain is a principal ideal domain if and only if  $\text{Pic}(A) = 0$ .
- (2) If  $K$  is an algebraic number field and  $\mathcal{O}$  is its ring of algebraic integers, then  $\mathcal{O}$  is a Dedekind domain and  $\text{Pic}(\mathcal{O})$  is known as the *ideal class group*. It is known that this group is always finite. Understanding this group is very important in algebraic number theory.
- (3) If  $X$  is a smooth affine curve over  $\mathbb{C}$ , then the coordinate ring  $\mathbb{C}[X]$  of  $X$  is a Dedekind domain. In particular if  $X$  is obtained by removing a single point from a smooth projective curve (Riemann surface)  $\overline{X}$ , then  $\text{Pic}(\mathbb{C}[X])$  is known as the Jacobian variety of  $\overline{X}$  and is known to be isomorphic to  $(\mathbb{R}/\mathbb{Z})^{2g}$  where  $g$  is the genus of  $\overline{X}$ .
- (4) (Claborn 1966) Incredibly every abelian group arises as the Picard group of some Dedekind domain.

## 8. INTEGRAL EXTENSIONS

**8.1. Integral dependence.** Suppose that  $A$  and  $B$  are rings, with  $A$  a subring of  $B$ . We say an element of  $B$  is integral over  $A$  if  $x$  is a root of a *monic* polynomial with coefficients in  $A$ .

*Examples.* If  $K$  is an algebraic extension of  $\mathbb{Q}$  then the set of integral elements of  $K$  over  $\mathbb{Z}$  is by definition  $\mathcal{O}_K$ , the algebraic integers of  $K$ . In particular an element of  $\mathbb{Q}$  is integral over  $\mathbb{Z}$  if and only if it is an integer. (Exercise if you haven't seen this: cf Numbers and Sets sheet 3 2006).

**Proposition.** Suppose  $A$  is a subring of  $B$  and  $x$  is an element of  $B$ . Write  $A[x]$  for the subring of  $B$  generated by  $x$  and  $A$ . The following are equivalent:

- (i)  $x$  is integral over  $A$ ;
- (ii)  $A[x]$  is a finitely generated  $A$ -module;
- (iii)  $A[x]$  is contained in a subring of  $B$  that is a finitely generated  $A$ -module;
- (iv) There is an  $A[x]$ -module  $M$  with  $\text{Ann}_{A[x]}(M) = 0$  which is finitely generated as an  $A$ -module.

*Proof.* (i)  $\implies$  (ii): if  $x$  is a root of monic polynomial  $f$  of degree  $n$ , then also of  $x^r \cdot f$  for each  $r \geq 0$ . Thus  $x^{n+r}$  is in the  $A$ -module generated by  $1, x, \dots, x^{n+r-1}$  for each  $r \geq 0$ . Inductively we see that  $A[x]$  is generated by  $1, \dots, x^{n-1}$ .

(ii) implies (iii): is clear:  $A[x]$  is a subring of  $B$  with the required properties.

(iii) implies (iv): Let  $C$  be the subring of  $B$  given by (iii). We may consider  $C$  is a finitely generated  $A$ -module by definition. Moreover if  $x \in \text{Ann}_{A[x]}(C)$  then  $x \cdot 1 = 0$  so  $x = 0$ .

(iv) implies (i): Let  $m_1, \dots, m_n$  be a generating set for  $M$  as an  $A$ -module. Then certainly we can find  $a_{ij}$  in  $A$  such that  $x \cdot m_i = \sum_{j=1}^n a_{ij} m_j$ . Thus the matrix  $B = (b_{ij})$  with  $A[x]$  coefficients given by  $xI - (a_{ij})$  satisfies  $\sum_{j=1}^n b_{ij} m_j = 0$ , it follows (by Cramer's rule) that  $\det B$  acts as 0 on each  $m_j$ , and so on the whole of  $M$ . But in  $A[x]$  only 0 can act as 0 on  $M$  so  $\det B = 0$ . But  $\det B$  is a monic polynomial in  $x$  with coefficients in  $A$ , and so  $x$  is integral over  $A$  as required.  $\square$

**Lemma.** *If  $A \subset B \subset C$  is a chain of subrings such that  $B$  is a finitely generated  $A$ -module and  $C$  is a finitely generated  $B$ -module, then  $C$  is a finitely generated  $A$ -module.*

*Proof.* If  $b_1, \dots, b_m$  is a generating set for  $B$  as an  $A$ -module and  $c_1, \dots, c_n$  is a generating set for  $C$  as a  $B$ -module then it is easy to check that  $\{b_i c_j\}$  is a generating set for  $C$  as an  $A$ -module.  $\square$

**Corollary.** *The set  $C$  of elements of  $B$  that are integral over  $A$  is a subring of  $B$ .*

**Definitions.**

- We call the ring  $C$  the *integral closure* of  $A$  in  $B$ .
- We say  $A$  is *integrally closed* in  $B$  if  $A = C$ .
- We say  $B$  is *integral over*  $A$  if  $C = B$ .

*Proof of Corollary.* It suffices to show that if  $x, y$  are in  $C$  then  $x \pm y$  and  $xy$  are in  $C$ . Suppose that  $x, y$  are in  $C$  and consider the chain of rings  $A \subset A[x] \subset A[x][y] \subset B$ . We have  $A[x]$  is a finitely generated  $A$ -module. Moreover as  $y$  is integral over  $A$  then also over  $A[x]$ , and so  $A[x][y]$  is finitely generated as an  $A[x]$ -module. It is now follows from the lemma that  $A[x][y]$  is a finitely generated  $A$ -module. Thus every element of  $A[x][y]$  is integral over  $A$  by the lemma. In particular  $x \pm y$  and  $xy$  are integral.  $\square$

**Definition.** We say that an integral domain  $A$  is *integrally closed* or *normal* if it is integrally closed in its field of fractions,  $Q(A)$ .

In particular the ring of integers  $\mathcal{O}_K$  of a number field is integrally closed.

Geometrically, an integral domain  $A$  is normal means that the singularities of  $\text{Spec}(A)$  all lie in codimension 2. In particular if  $\text{Spec}(A)$  is an algebraic curve then  $A$  is normal means that the curve is non-singular.

*Exercise.* Suppose  $A$  is a subring of  $B$  and  $x_1, \dots, x_n$  in  $B$  are each integral over  $A$ , then  $A[x_1, \dots, x_n]$ , the subring of  $B$  generated by  $A$  and each  $x_i$  is finitely as an  $A$ -module. [Hint the result for  $n = 2$  is the content of the proof of the last result].

**Corollary.** *If  $A \subset B \subset C$  is a chain of subrings and  $C$  is integral over  $B$  and  $B$  is integral over  $A$  then  $C$  is integral over  $A$ .*

*Proof.* Suppose  $x \in C$  then as  $x$  is integral over  $B$  we may find an equation  $x^n + b_1 x^{n-1} + \dots + b_n = 0$  with all the  $b_i$  in  $B$ . If we let  $D$  be the subring of  $C$  generated by  $A, b_1, \dots, b_n$  we see that  $D$  is a finitely generated  $A$ -module by the exercise. Moreover,  $D[x]$  is a finitely generated  $D$ -module since  $x$  is integral over  $D$  by the equation. So by the lemma above  $D[x]$  is a finitely generated  $A$ -module. Thus  $x$  is integral over  $A$  as required.  $\square$

**Corollary.** *If  $A$  is a subring of  $B$  then the integral closure of  $A$  in  $B$  is integrally closed in  $B$ .*

*Proof.* Let  $C$  be the integral closure of  $A$  in  $B$  and suppose  $x$  in  $B$  is integral over  $C$ . Then  $C[x]$  is integral over  $A$  by the above and so  $x$  is in  $C$ .  $\square$

*Exercise.* Suppose that  $A$  is a subring of  $B$ , and  $B$  is integral over  $A$ . Then

- (1) If  $I$  is an ideal in  $B$  then  $B/I$  is integral over  $A/(I \cap A)$ .
- (2) If  $S$  is a m.c. subset of  $A$  then  $B_S$  is integral over  $A_S$ .

In fact we can say more than this:

**Proposition.** *If  $A$  is a subring of  $B$ ,  $S$  is a m.c. subset of  $A$  and  $C$  is the integral closure of  $A$  in  $B$  then  $C_S$  is the integral closure of  $A_S$  in  $B_S$ .*

*Proof.* By the exercise we have  $C_S$  is integral over  $A_S$ .

Suppose that an element  $x$  in  $B_S$  is integral over  $A_S$  so we have an equation

$$x^n + r_1x^{n-1} + \cdots + r_n = 0 \in B_S$$

with  $r_i \in A_S$ .

Multiplying through by the product  $s$  of the denominators of  $x$  and the  $r_i$  we see that  $\iota(y) = sx$  satisfies a monic polynomial with coefficients in  $\iota(A)$ . So there is a  $t \in S$  such that  $ty$  satisfies a monic polynomial with coefficients in  $A$ . Thus  $ty$  is integral over  $A$  and so in  $C$  and  $x = (st)^{-1}\iota(y) \in C_S$  as required.  $\square$

Now, we can show that to be integrally closed is a local property:

**Theorem.** *If  $A$  is an integral domain then the following are equivalent:*

- (i)  $A$  is integrally closed;
- (ii)  $A_P$  is integrally closed for every prime ideal  $P$  in  $A$ ;
- (iii)  $A_{\mathfrak{m}}$  is integrally closed for every maximal ideal  $\mathfrak{m}$  in  $A$ .

*Proof.* Notice that  $Q(A) = Q(A_P)$  for every prime ideal  $P$ , so (i) implies (ii) follows from the above proposition.

(ii) implies (iii) is trivial as usual.

For (iii) implies (i), let  $C$  be the integral closure of  $A$  in  $Q(A)$  and let  $\iota : A \rightarrow C$  be the inclusion. For each maximal ideal  $\mathfrak{m}$  in  $A$ ,  $C_{\mathfrak{m}}$  is the integral closure of  $A_{\mathfrak{m}}$  in  $Q(A)$  so by the above proposition again, we have  $\iota_{\mathfrak{m}} : A_{\mathfrak{m}} \rightarrow C_{\mathfrak{m}}$  is an isomorphism by assumption. Since isomorphism is a local property of module maps we can deduce that  $\iota$  is also an isomorphism and  $A = C$  as required.  $\square$

## 8.2. Going-up and Going-down Theorems.

**Proposition.** *Suppose that  $A \subset B$  are rings with  $B$  integral over  $A$ . Let  $\mathfrak{p} \in \text{Spec}(B)$  and  $P = \mathfrak{p} \cap A$ . Then  $P$  is maximal if and only if  $\mathfrak{p}$  is maximal. That is the natural map  $\text{Spec}(B) \rightarrow \text{Spec}(A)$  sends closed points to closed points and the fibres of a closed point are all closed.*

*Proof.* By a previous exercise we know that  $B/\mathfrak{p}$  is integral over  $A/P$ . So we may assume that  $A$  and  $B$  are integral domains,  $\mathfrak{p} = 0$  and need to show that  $A$  is a field if and only if  $B$  is a field.

Suppose that  $A$  is a field and  $b \in B$  is non-zero. We want to show that  $b$  is a unit in  $B$ . We know that  $b$  satisfies a polynomial

$$b^n + a_1b^{n-1} + \cdots + a_n = 0$$

with  $a_i \in A$ . Since  $B$  is an integral domain by dividing by  $b$  if necessary, we may assume that  $a_n \neq 0$ . But then  $(b^{n-1} + a_1b^{n-2} + \cdots + a_{n-1})b = -a_n$  is a unit in  $A$  thus  $b$  is a unit in  $B$ .

Conversely, suppose that  $B$  is a field, and  $x \in A$  is non-zero. Now  $x$  is invertible in  $B$  so we may write

$$x^{-m} + a_1x^{-m+1} + \cdots + a_m = 0$$

with  $a_i \in A$ . Thus  $x^{-1} = -(a_1 + a_2x + \cdots + a_mx^{m-1}) \in A$  as required.  $\square$

**Corollary.** *If  $A \subset B$  are rings with  $B$  integral over  $A$  then the natural map  $\iota^*: \text{Spec}(B) \rightarrow \text{Spec}(A)$  preserves strict inclusions and is surjective.*

*Proof.* Let  $P$  be in  $\text{Spec}(A)$ . Then  $B_P = A_P \otimes_A B$  is integral over  $A_P$  and  $A_P$  has a unique maximal ideal  $P_P$ . Thus by the proposition above,  $\iota_P(\mathfrak{p}_P) = P_P$  if and only if  $\mathfrak{p}_P$  is a maximal ideal of  $B_P$ . Thus for  $\mathfrak{p} \in \text{Spec}(B)$ ,  $\iota^*(\mathfrak{p}) = P$  if and only if  $\mathfrak{p}_P$  is a maximal ideal in  $B_P$ .

Both parts follow easily since  $\text{Spec}(B_P)$  is in natural order-preserving 1-1 correspondance with points of  $\text{Spec}(B)$  that meet  $A \setminus P$  trivially: for the first, if  $\mathfrak{p} \subset \mathfrak{q}$  are in  $\text{Spec}(B)$  and both map to  $P$  in  $\text{Spec}(A)$  then  $\mathfrak{p}_P$  and  $\mathfrak{q}_P$  are both maximal and so equal. Hence  $\mathfrak{p} = \mathfrak{q}$ . Finally, for each  $P \in \text{Spec}(A)$ ,  $B_P$  has a maximal ideal which lifts to a prime ideal  $\mathfrak{p} \in \text{Spec}(B)$  and then  $\iota^*(\mathfrak{p}) = P$  by construction.  $\square$

Suppose that we have a ring homomorphism  $f: A \rightarrow B$ .

**Definition.** The *going-up theorem* is said to hold for  $f$  if for every pair of primes  $P \subset Q$  in  $\text{Spec}(A)$  and every  $\mathfrak{p} \in \text{Spec}(B)$  such that  $f^*(\mathfrak{p}) = P$  there is  $\mathfrak{q} \in \text{Spec}(B)$  such that  $\mathfrak{p} \subset \mathfrak{q}$  and  $f^*(\mathfrak{q}) = Q$ .

**Definition.** Similarly the *going-down theorem* is said to hold for  $f$  if for every pair of primes  $P \subset Q$  in  $\text{Spec}(A)$  and every  $\mathfrak{q} \in \text{Spec}(B)$  such that  $f^*(\mathfrak{q}) = Q$  there is  $\mathfrak{p} \in \text{Spec}(B)$  such that  $\mathfrak{p} \subset \mathfrak{q}$  and  $f^*(\mathfrak{p}) = P$ .

**Theorem.** *If  $A \subset B$  are rings and  $B$  is integral over  $A$  then the going-up theorem holds for the natural inclusion map.*

*Proof.* Let  $P \subset Q$  in  $\text{Spec}(A)$  and  $\mathfrak{p} \in \text{Spec}(B)$  with  $\iota^*(\mathfrak{p}) = P$ . By the exercise above  $B/\mathfrak{p}$  is integral over  $A/P$ . Thus by the corollary above, there is  $\mathfrak{q}/\mathfrak{p} \in \text{Spec}(B/\mathfrak{p})$  such that  $\iota^*(Q/P) = \mathfrak{q}/\mathfrak{p}$ . The result follows easily.  $\square$

The proof of the going-down theorem is a little more subtle, and depends on the following fact that we will not prove:

**Theorem.** *Suppose that  $A$  is an integrally closed integral domain,  $F$  is a normal field extension of  $Q(A)$  (in the sense of Galois theory) and  $B$  is the integral closure of  $A$  in  $F$ . Then  $\text{Aut}(F/Q(A))$  acts transitively on  $\{\mathfrak{p} \in \text{Spec}(B) \mid \iota^*(\mathfrak{p}) = P\}$  for each  $P \in \text{Spec}(A)$ .*

*Proof.* Omitted  $\square$

**Theorem.** *If  $A \subset B$  are rings,  $A$  is integrally closed and  $B$  is integral over  $A$  then the going-down theorem holds for the natural inclusion map.*

*Proof.* Let  $P \subset Q$  in  $\text{Spec}(A)$  and  $\mathfrak{q} \in \text{Spec}(B)$  with  $\iota^*(\mathfrak{q}) = Q$ .

Let  $F$  be the normal closure of  $Q(B)$  over  $Q(A)$  and let  $C$  be the integral closure of  $A$  in  $F$ . Since  $C$  is integral over  $A$ ,  $\iota^*: \text{Spec}(C) \rightarrow \text{Spec}(A)$  is surjective, so there is an  $X \in \text{Spec}(C)$  such that  $X \cap A = \iota^*(X) = P$ . Since also  $B$  is integral over  $A$ , there is a  $Y \in \text{Spec}(C)$  such that  $Y \cap B = \mathfrak{q}$ . By the going-up theorem for the extension  $A \subset C$  we may also find  $Z \in \text{Spec}(C)$  such that  $Z \supset X$  and  $Z \cap A = Q$ .

Now  $Z \cap A = Y \cap A = Q$  so by the unproved theorem the is a  $\sigma \in \text{Aut}(F/Q(A))$  such that  $\sigma(Z) = Y$ . Now  $\sigma(Z) \supset \sigma(X)$  and so  $\mathfrak{q} = \sigma(Z) \cap B \supset \sigma(X) \cap B$ . Thus if we take  $\mathfrak{p} = \sigma(X) \cap B$  we have  $\mathfrak{p} \cap A = \sigma(X) \cap A = X \cap A = P$  and we are done.  $\square$

8.3. **Dimension.** We are now ready to discuss the (Krull) dimension of a ring.

**Definition.** Given a ring  $A$  and  $P \in \text{Spec}(A)$  we define the *height* of  $P$  to be

$$\text{ht}(P) = \sup\{n \mid \text{there is a chain in } \text{Spec}(A) \ P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_n = P\}$$

*Examples.* (1) A minimal prime ideal has height zero.

(2) If  $A$  is an integral domain then a minimal non-zero prime has height one.

**Definition.** We define *Krull dimension* of  $A$  by

$$\text{K-dim}(A) := \sup\{\text{ht}(P) \mid P \in \text{Spec}(A)\}.$$

*Remark.* Notice that we always have  $\text{ht}(P) = \text{K-dim}(A_P)$ .

We'll see later that if  $A$  is Noetherian then every prime ideal has finite height but that it is not true that every Noetherian ring has finite Krull dimension.

Geometrically, the height of a prime ideal  $P$  corresponds to the maximal length of a chain of irreducible subvarieties of  $\text{Spec}(A)$  containing  $V(P)$ . Thus we think of  $\text{ht}(P)$  as being the codimension of  $P$  in the largest irreducible component of  $\text{Spec}(A)$  containing  $P$ .

Notice that Example Sheet 2 Q11 says a Noetherian ring has Krull dimension 0 if and only if it is Artinian.

**Lemma.** *If  $A \subset B$  are rings and  $B$  is integral over  $A$  then  $\text{K-dim}(B) = \text{K-dim}(A)$ .*

*Proof.* We've already seen that  $\iota^* : \text{Spec}(B) \rightarrow \text{Spec}(A)$  is strictly order-preserving when  $B$  is an integral extension of  $A$  and so  $\text{K-dim}(A) \geq \text{K-dim } B$ . Conversely, it follows from the Going-up theorem and the surjectivity of  $\iota^*$  for integral extensions that every chain of prime ideals in  $A$  can be lifted to a chain of prime ideals in  $B$ ; so  $\text{K-dim}(B) \geq \text{K-dim}(A)$ .  $\square$