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6.4. Examples of Noetherian rings. So far the only rings we can easily prove
are Noetherian are principal ideal domains, like Z and k[x], or finite. Our goal now
is to develop theorems that enable us to create new Noetherian rings from old.

Proposition. If A is a Noetherian ring and f : A — B makes B an A-algebra so
that B is a finitely generated A-module under the multiplication a.b = f(a)b, then
B is a Noetherian ring.

Proof. Since every B-submodule of B is also an A-submodule and B is a Noetherian
A-module it follows that B satisfies a.c.c. as a B-module and so B is a Noetherian
ring. O

Ezxamples.

(1) Tt can be shown that the ring of integers in any algebraic number field is
a finitely generated Z-module so it follows from the proposition that these
are all Noetherian.

(2) It also follows that any quotient ring of a Noetherian ring is Noetherian.

Proposition. If A is a Noetherian ring and S is a m.c. subset of A, then Ag is
Noetherian.

Proof. Suppose that [ is an ideal in Ag, then I = (INA)Ag. Since A is Noetherian
I N A is a finitely generated A-module. But then any such generating set is a
generating set for I as as Ag-module. Thus all ideals in Ag are finitely generated
and Ag is a Noetherian ring. O

The most important result in this section is undoubtedly the following theorem.

Theorem (Hilbert’s Basis Theorem (1888)). If A is a Noetherian ring then the
polynomial ring Alz] is also Noetherian.

We will see (easily) from this that it follows that any finitely generated algebra
over a Noetherian ring is Noetherian. In particular any finitely generated k-algebra
is Noetherian when k is a field.

Corollary. If A is a Noetherian ring then so is A[x1, ..., %]
Proof. This follows from Hilbert’s basis theorem by induction on n. O

Corollary. If B is a finitely generated A-algebra and A is Noetherian then B is
Noetherian.

Proof. There is a positive integer n such that there is a surjective A-algebra map

from Alz1,...,z,] to B. By the previous corollary the former is Noetherian and
then the latter is a finite (in fact cyclic) module over the former and so also Noe-
therian. O

Proof of Hilbert’s Basis Theorem.
Suppose I is an ideal of A[X] we try to prove that I is finitely generated. First
we let
Jp={a€ A|3f €Ist deg(f —aX") <n}.
So J, is an ideal in A for each n since if deg(f — aX™) < n and deg(g — bX") <n
then deg((Af + pg) — (Aa + pb)X™) < n for each A\, p € A.
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Also J,, C Jp41 for each n > 0 since whenever deg(f — aX™) < n we must have
deg(X f —aX"t1) < n+1. So by the a.c.c. for ideals in A there is an N such that
JN = JInyp forall k > 0.

Now as A is Noetherian there exist a1,...,a, € Jy generating Jy, and then by
definition of Jy there exist fi,..., f. € I such that deg(f; — a; X"¥) < N.

Claim. If f € I then there exists g € I such that

o f=g+ > i_,pifi somep; € AX]
e deg(g) < N.

Proof of Claim. By induction on deg(f). The result is true, with p; = 0 for all ¢, if
deg(f) < N.

Suppose that deg f = k > N. Then there is a € A such that deg(f —aXF¥) < k.
So a € Jy = Jy. Then there are by,...,b, in A such that a = Y a;b;. So
deg(f — S 0; X* N f;) < k. So by the induction hypothesis we may find p; € A[X]
such that deg(f — > (b: XN 4+ p;)f;) < N. O

Now it suffices to prove that IN(A+AX +--- AXN~1) is a finitely generated A-
module. But this is true since A4+ AX +--- AXV~1 is a Noetherian A-module. [

6.5. Spec of a Noetherian ring.

Theorem (The weak Nullstellensatz). Suppose that k is a field and A is a finitely
generated k-algebra which is also a field. Then A is an algebraic extension of k.

Proof. (For uncountable fields k — general case later)

Suppose for contradiction that a € A is transcendental over k, and consider the

set

{1/(a—= X)X € k}.
It suffices to show that this set is linearly independent over k since A has a countable
spanning set over k given by monomials in the generators.

So suppose that Y | p;.1/(a — N;) = 0. with p;, A; in k and the A;s distinct.
Then 3 pi(I[;4:(a — Aj)) = 0 and as a is transcendental over & this must be an
identity of polynomials over k. ie. > pi([[; (A — A;)) = 0 for every A in k. In
particular evaluating at A = A\, we get pr = 0 as required. O

Corollary. If A is a finitely generated k-algbra then
maxSpec(A) = {ker6 | 0: A — k a k-algebra map}.

Proof. If m € maxSpec(A) then A/m is a finitely generated k-algebra and a field
and so by the weak Nullstellensatz there is an (injective) k-algebra map from A/m
to k.

Conversely if : A — k then its image is some finite dimensional k-vector space
which must be a field so the kernel is in maxSpec(A). O

Corollary. If k =k and I is an ideal in k[X1,..., X,]. Then V(I) N maxSpec(A)
corresponds to {x € k™ | f(x) =0 Vf € I} under kerf — (0(X1),...,0(X,)).
Moreover Hilbert’s Basis Theorem says finitely many f in I suffice to describe V(I).

Ezxercise. What can we say if k = R?

Recall that Jac(A) is the intersection of all maximal ideals in A and Jac(A) =
{re Al —zy € A* for all y € A}.
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Theorem (Nullstellensatz). If A is a finitely generated k-algebra then Jac(A) =
N(A).

Proof. We already know that N(A) C Jac(A). So suppose a is not in N(A) and
let I be the ideal in A[x] generated by 1 — axz. By Q2 of example sheet 1, 1 — ax
is not a unit (as a is not nilpotent) and so is contained in a maximal ideal m of
Alx]. Since A[z]/m is a field and a finitely generated k-algebra, it is isomorphic to
a finite algebraic extension of k by the weak Nullstellensatz. Thus the composite
A — Alx] — A[z]/m defines an algebra map from A onto k' < k whose kernel
does not contain a since the image of a is a unit. Since £’ is a field the kernel is a
maximal ideal. It follows that a is not in every maximal ideal, and so a is not in
Jac(A) as required. O

Corollary (Hilbert 1893). If k = k and A is a finitely generated k-algebra then
{closed subsets of maxSpec(A)} « {radical ideals of A}.

Proof. By the Nullstellensatz, if I = v/T then Jac(A/I) =0, so I = Nwev(r ™
The converse is straightforward.

Proposition. Suppose that A is a Noetherian ring and I is an ideal not equal to
A. Then

(1) There exist Pi,..., P, containing I (not necessarily distinct) such that
P ---P,ClI.

(2) The minimal primes over I are those minimal primes in {Py,..., Py} in
(1). In particular there are only finitely many of them.

Proof. Suppose that there is a proper ideal I of A not satisfying (1). By the
Noetherian condition we can choose a maximal such I.

Suppose further that J, K are ideals properly containing I. By the choice of I we
may find P,...,P, and Q1,...,Q,, such that P, ---P, C J and Q1 ---Q,, C K.
But now, P, --- P,Q1--- Q. C JK, and so JK cannot be contained in I by the
choice of I. It follows that I is itself prime, which is absurd.

Suppose now that we have an I and {P;,..., P,} asin (1), and let {X4,..., X, }
be the minimal elements of the latter.

Suppose now, that @ is a prime containing I, we wish to show that () contains

some X ;. But we can find indices ¢y, ..., %, such that
Xil"'Xin CPl"'PnCICQ.
So by primality of @ we are done. O

Corollary. If A is a Noetherian ring it has only finitely many minimal primes.
Moreover N(A) is nilpotent.

Remark. Geometrically this means that if A is Noetherian then Spec(A) is a finite
union of irreducible closed subsets (where irreducible means not a proper union of
two closed subsets).

Ezercise. Prove it!

Proof of Corollary. The first part follows immediately. For the second part let
Py,..., P, be the minimal primes then N(A) = Py N...P,, and so N(A)"* C
(Py--- P,)* C 0 for some k by part (2) of the proposition. O

Remark. The second part can be proved directly without too much difficutly.
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6.6. Support and Associated primes.

Definition. Given an A-module M, we define the support of M, Supp(M), to be
the set of prime ideals P in A such that Mp # 0.

Proposition. Suppose that A is a ring and L, M and N are A-modules.
(i) Supp(M) =0 if and only if M =0
(i) If0 = L - M — N — 0 is a short exact sequence then

Supp(M) = Supp(L) U Supp(N).
(iii) If M is finitely generated then Supp(M) = V(Ann(M)) and so is a closed
subset of Spec(A).

Proof. (i) Just says that being 0 is a local property of modules.
(ii) Since localisation is exact we have for every prime P the sequence

0—Lp—Mp— Np—0

is exact. It follows that Mp is zero if and only if both Lp and Np are zero. In
other words, P ¢ Supp(M) if and only if P ¢ Supp(L) N Supp(N) i. e.

Supp(M) = Supp(N) U Supp(L).

(iii) Suppose first that P € Supp(M), i. e. Mp # 0. Then there is an m € M
such that Ann(m) C P so Ann(M) C P and P € V(Ann(M)).

Suppose now that mq,...,m, are a generating set for M and P € V(Ann(M))
i. e. P 2 () Ann(m;). Since (JAnn(m;) 2O [[Aun(m;), and P is prime it follows
that P D Ann(m;) for some i. Thus sm; # 0 for some s € A\P and Mp # 0 as
required. (I

Exercise. If M is a finitely generated A-module and N is any A-module such that
Supp(M) N Supp(N) = 0 then Hom4 (M, N) = 0.

Related to the support of a module is the set of associated primes:

Definition. If M is an A-module, and P is a prime ideal in A, then we say that
P is an associated prime of M if there is an m € M such that Ann(m) = P. We
write Ass(M) for the set of associated primes of M.

Notice that if Ann(m) = P then A.m is isomorphic to A/P as an A-module. So
a prime P is in Ass(M) precisely if A/P is isomorphic to a submodule of M.

Lemma.
(i) If P is a prime ideal of A then Ass(A/P) = {P}.
(i) If I is a mazimal element of the set {Ann(m)|m € M\0} then I € Ass(M).
In particular I is prime.
(ii) If A is Noetherian and M # 0 then Ass(M) # 0.

Proof. (i) If a+ P € A/P is non-zero then b.(a+ P) = P if and only if ba € P if and
only if b € P since P is prime. So every non-zero element of A/P has annihilator
P and the result follows.

(i) Suppose I is a maximal element of the set {Ann(m)|m € M\0}, say I =
Ann(m). Suppose further that a,b are elements of A and ab is in I. We have
abm = 0. If bm = 0 then b € I. Otherwise bm # 0 and a € Ann(bm) D I. By the
maximality of I it follows that Ann(bm) =TI and a € I. Thus I is prime.

(iii) Since A is Noetherian and {Ann(m)|m € M\0} is non-empty if M # 0, it
must have a maximal element. We are then done by (ii). O
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Proposition. Suppose that A is a Noetherian ring and M is a finitely generated A-
module, then Ass(M) is a subset of Supp(M) and the minimal elements of Supp(M)
are all in Ass(M). In particular Ass(M) = Supp(M).

Proof. If P is in Ass(M) then A/P is isomorphic to a submodule of M and so as
localisation is exact (A/P)p is isomorphic to a submodule of Mp. Since the former
is non-zero the latter is too and so P € Supp(M).

Suppose now that P is a minimal element of Supp(M). We show that P is an
associated prime of M in two steps. First we show that Pp is an associated prime
of Mp as an Ap-module and then lift this result back up to M and A.

By assumption Mp # 0 and so Ass(Mp) # 0. Suppose that @ is a prime in
Ap then *(Q) is a prime in A contained in P. It follows (by minimality of P)
that ML*(Q) = 0. But ML*(Q) = (MP)Q and so Supp(Mp) e {Pp} By the first
part, Ass(Mp) is contained in Supp(Mp) so must also be just {Pp}, and step one
is complete.

So we have some (non-zero) m/s € Mp whose annihilator is Pp. We consider
the element m € M. Certainly m/1 is not zero in Mp so tm is not zero in M for
every t € A\P. We claim that Ann(¢m) = P for some such choice of .

It is already clear from the previous remarks that Ann(¢m) is contained in P for
every choice of t. Suppose that f is in P but not Ann(m), then as f/1.m/s = 0,
there is a ¢t in A\ P such that ftm = tfm = 0. So by careful choice of ¢t we can
ensure any given f € P lives in Ann(tm). We need to get them all in at once.
But A is Noetherian and so P is a finitely generated A-module. If fy,..., f, is a
generating set and ¢1, . . . , t,, are corresponding elements of A\ P such that f;t;m =0
then setting ¢t = [[t; we get Ann(¢tm) = P as required. O
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7. PROJECTIVE MODULES

7.1. Local properties. Recall X is a projective A-module precisely if Hom 4 (X, —)
is exact which occurs if and only if there is an A-module Y such that X @Y is free.

We should think of finitely generated projective A-modules as modules that are
locally free. This is partly due to the following lemma.

Lemma. If A is a local ring with maximal ideal m, then every finitely generated
projective module is free. In particular if X is a finitely generated projective module
then X = A", with n = dim 4/ (X/mX).

In fact Kaplansky (1958) proved this is true without the requirement that X be
finitely generated.

Proof. By Nakayama’s Lemma we may find eq,...,e, € X that generated X such
that their images in X/mX is a basis over k = A/m.

Thus we have a surjective A-linear map ¢: A™ — X such that ¢((a;)) =Y ase;.
Since X is projective, ¢ splits and we get A™ = X @ ker ¢.

Now
A" X ker ¢
mA"” ~ mX = mkerd’
so as dimy, mLX = n we see ;‘EZ? 5 = 0. But ker¢ is a finitely generated A-module
so by Nakayama’s Lemma again we get ker ¢ = 0. (]

This enables us to show that finitely generated projectives are locally free. In
fact we can show more.

Proposition. If X is a finitely generated projective A-module, and P € Spec(A)
then Xp is isomorphic as an Ap-module to A% for some n > 0. Indeed, we may
find an s € A\P such that X, = AY as As-modules. It follows that Xq = Ay for
every Q € D(s) C Spec(4).

Proof. If X @Y = A™ then Xp @ Yp = AL and so Xp is a f.g. projective Ap-
module. Since Ap is local it follows from the lemma that Xp is free. Now if
x;/s; for i = 1,...,n is a free generating set for Xp. Defining f : A™ — X by
fle;) = x; we get an A-module map whose cokernel M is finitely generated and
satisfies Mp = 0. But P is not an element of Supp(M) = V(Ann(M)), so there is
s € A\P such that M, = 0.

Now fs : A" — X, is surjective and X is projective (by the same argument as
before) so there is an Ag-module map g5 : X5 — (As)™ such that fsgs = id, and
so A? =2 X, ® N for some finitely generated As-module N such that Np = 0 (by
Nakayma’s Lemma).

Since N is finitely generated and Np = 0 by the argument above there is t € A\ P
such that N; = 0. Then X,, = A7, as required. O

Definition. Suppose that A is a ring, and X is a f.g. A-module. We can define a
rank function rkx from Spec(A4) to N that sends P € Spec A to the dimension of
Xp/PpXp =X ®4/p Q(A/P) as an Q(A/P)-vector space — the fibre of X at P.

Notice that the proposition we just proved shows that if X is a f.g. projective
module then rkx is a continuous function on Spec(A) (where N has the discrete
topology). In particular, if Spec(A) is connected then rkx is constant.

Exercise. Find a f.g. Z-module without constant rank.



34 COMMUTATIVE ALGEBRA

Definition. We say an A-module X is locally free if for every P in Spec(A) there
is a basic open set D(s) containing P such that X, is a free module.

Ezercise. Show that if M is a finitely presented A-module (i.e. there exists an exact
sequence A™ — A" — M — 0) and S C A is m.c. then

Hom g —mod(M, N)g = Homa g —mod(Ms, Ng)
as Ag-modules.

Remarks.

(1) If A is Noetherian then every finitely generated module is finitely presented.
(2) In general every finitely generated projective module is finitely presented.

Theorem. If A is a Noetherian ring and M is a finitely generated A-module then
the following are equivalent:

(1) M is projective.

(2) M is locally free.

(8) Mp is a free Ap-module for every P in Spec(A).

Proof. (1) implies (2) is above and (2) implies (3) is trivial.

For (3) implies (1): Since M is finitely generated, there is a surjective A-module
map e: A™ — M for some n > 0. We claim that €, : Hom(M, A™) — Hom(M, M)
is surjective.

If the claim holds then we can find f € Hom(M, A™) such that e.(f) = id, i.e.
€ splits and M @ kere & A", and M is projective as required.

To prove the claim we show that e, is locally surjective, that is

(ex)p: Hom(M, A™)p — Hom(M, M)p
is surjective for each P in Spec(A4). Now the lemma above tells us that there are
natural isomorphisms
Hom(M, A™)p =2 Homy, (Mp, A%) and Hom(M, M)p = Hom4, (Mp, Mp)
and so (e.)p naturally induces (ep)+: Homu,(Mp, A%) — Homa, (Mp, Mp) that

we must show is surjective. But we are assuming that Mp is a free Ap-module and
A} — Mp is surjective so this last map is surjective and we’re done. O



