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6.4. Examples of Noetherian rings. So far the only rings we can easily prove
are Noetherian are principal ideal domains, like Z and k[x], or finite. Our goal now
is to develop theorems that enable us to create new Noetherian rings from old.

Proposition. If A is a Noetherian ring and f : A → B makes B an A-algebra so
that B is a finitely generated A-module under the multiplication a.b = f(a)b, then
B is a Noetherian ring.

Proof. Since every B-submodule of B is also an A-submodule and B is a Noetherian
A-module it follows that B satisfies a.c.c. as a B-module and so B is a Noetherian
ring. �

Examples.

(1) It can be shown that the ring of integers in any algebraic number field is
a finitely generated Z-module so it follows from the proposition that these
are all Noetherian.

(2) It also follows that any quotient ring of a Noetherian ring is Noetherian.

Proposition. If A is a Noetherian ring and S is a m.c. subset of A, then AS is
Noetherian.

Proof. Suppose that I is an ideal in AS , then I = (I∩A)AS . Since A is Noetherian
I ∩ A is a finitely generated A-module. But then any such generating set is a
generating set for I as as AS-module. Thus all ideals in AS are finitely generated
and AS is a Noetherian ring. �

The most important result in this section is undoubtedly the following theorem.

Theorem (Hilbert’s Basis Theorem (1888)). If A is a Noetherian ring then the
polynomial ring A[x] is also Noetherian.

We will see (easily) from this that it follows that any finitely generated algebra
over a Noetherian ring is Noetherian. In particular any finitely generated k-algebra
is Noetherian when k is a field.

Corollary. If A is a Noetherian ring then so is A[x1, . . . , xn].

Proof. This follows from Hilbert’s basis theorem by induction on n. �

Corollary. If B is a finitely generated A-algebra and A is Noetherian then B is
Noetherian.

Proof. There is a positive integer n such that there is a surjective A-algebra map
from A[x1, . . . , xn] to B. By the previous corollary the former is Noetherian and
then the latter is a finite (in fact cyclic) module over the former and so also Noe-
therian. �

Proof of Hilbert’s Basis Theorem.
Suppose I is an ideal of A[X ] we try to prove that I is finitely generated. First

we let

Jn = {a ∈ A | ∃f ∈ I st deg(f − aXn) < n}.
So Jn is an ideal in A for each n since if deg(f − aXn) < n and deg(g − bXn) < n
then deg((λf + µg) − (λa + µb)Xn) < n for each λ, µ ∈ A.
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Also Jn ⊂ Jn+1 for each n ≥ 0 since whenever deg(f − aXn) < n we must have
deg(Xf − aXn+1) < n + 1. So by the a.c.c. for ideals in A there is an N such that
JN = JN+k for all k ≥ 0.

Now as A is Noetherian there exist a1, . . . , ar ∈ JN generating JN , and then by
definition of JN there exist f1, . . . , fr ∈ I such that deg(fi − aiX

N) < N .

Claim. If f ∈ I then there exists g ∈ I such that

• f = g +
∑r

i=1 pifi some pi ∈ A[X ]
• deg(g) < N .

Proof of Claim. By induction on deg(f). The result is true, with pi = 0 for all i, if
deg(f) < N .

Suppose that deg f = k ≥ N . Then there is a ∈ A such that deg(f − aXk) < k.
So a ∈ Jk = JN . Then there are b1, . . . , br in A such that a =

∑
aibi. So

deg(f − ∑
biX

k−Nfi) < k. So by the induction hypothesis we may find pi ∈ A[X ]
such that deg(f − ∑

(biX
k−N + pi)fi) < N . �

Now it suffices to prove that I∩(A+AX + · · ·AXN−1) is a finitely generated A-
module. But this is true since A+AX + · · ·AXN−1 is a Noetherian A-module. �

6.5. Spec of a Noetherian ring.

Theorem (The weak Nullstellensatz). Suppose that k is a field and A is a finitely
generated k-algebra which is also a field. Then A is an algebraic extension of k.

Proof. (For uncountable fields k — general case later)
Suppose for contradiction that a ∈ A is transcendental over k, and consider the

set

{1/(a− λ)|λ ∈ k}.
It suffices to show that this set is linearly independent over k since A has a countable
spanning set over k given by monomials in the generators.

So suppose that
∑n

i=1 µi.1/(a − λi) = 0. with µi, λi in k and the λis distinct.
Then

∑
µi(

∏
j 6=i(a − λj)) = 0 and as a is transcendental over k this must be an

identity of polynomials over k. i.e.
∑

µi(
∏

j 6=i(λ − λj)) = 0 for every λ in k. In
particular evaluating at λ = λk we get µk = 0 as required. �

Corollary. If A is a finitely generated k-algbra then

maxSpec(A) = {ker θ | θ : A → k̄ a k-algebra map}.
Proof. If m ∈ maxSpec(A) then A/m is a finitely generated k-algebra and a field
and so by the weak Nullstellensatz there is an (injective) k-algebra map from A/m

to k̄.
Conversely if θ : A → k̄ then its image is some finite dimensional k-vector space

which must be a field so the kernel is in maxSpec(A). �

Corollary. If k = k̄ and I is an ideal in k[X1, . . . , Xn]. Then V (I) ∩maxSpec(A)
corresponds to {x ∈ kn | f(x) = 0 ∀f ∈ I} under ker θ 7→ (θ(X1), . . . , θ(Xn)).
Moreover Hilbert’s Basis Theorem says finitely many f in I suffice to describe V (I).

Exercise. What can we say if k = R?

Recall that Jac(A) is the intersection of all maximal ideals in A and Jac(A) =
{x ∈ A|1 − xy ∈ A× for all y ∈ A}.
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Theorem (Nullstellensatz). If A is a finitely generated k-algebra then Jac(A) =
N(A).

Proof. We already know that N(A) ⊂ Jac(A). So suppose a is not in N(A) and
let I be the ideal in A[x] generated by 1 − ax. By Q2 of example sheet 1, 1 − ax
is not a unit (as a is not nilpotent) and so is contained in a maximal ideal m of
A[x]. Since A[x]/m is a field and a finitely generated k-algebra, it is isomorphic to
a finite algebraic extension of k by the weak Nullstellensatz. Thus the composite
A → A[x] → A[x]/m defines an algebra map from A onto k′ ≤ k̄ whose kernel
does not contain a since the image of a is a unit. Since k′ is a field the kernel is a
maximal ideal. It follows that a is not in every maximal ideal, and so a is not in
Jac(A) as required. �

Corollary (Hilbert 1893). If k = k̄ and A is a finitely generated k-algebra then

{closed subsets of maxSpec(A)} ↔ {radical ideals of A}.
Proof. By the Nullstellensatz, if I =

√
I then Jac(A/I) = 0, so I =

⋂
m∈V (I) m.

The converse is straightforward. �

Proposition. Suppose that A is a Noetherian ring and I is an ideal not equal to
A. Then

(1) There exist P1, . . . , Pn containing I (not necessarily distinct) such that
P1 · · ·Pn ⊂ I.

(2) The minimal primes over I are those minimal primes in {P1, . . . , Pn} in
(1). In particular there are only finitely many of them.

Proof. Suppose that there is a proper ideal I of A not satisfying (1). By the
Noetherian condition we can choose a maximal such I.

Suppose further that J, K are ideals properly containing I. By the choice of I we
may find P1, . . . , Pn and Q1, . . . , Qm such that P1 · · ·Pn ⊂ J and Q1 · · ·Qm ⊂ K.
But now, P1 · · ·PnQ1 · · ·Qm ⊂ JK, and so JK cannot be contained in I by the
choice of I. It follows that I is itself prime, which is absurd.

Suppose now that we have an I and {P1, . . . , Pn} as in (1), and let {X1, . . . , Xm}
be the minimal elements of the latter.

Suppose now, that Q is a prime containing I, we wish to show that Q contains
some Xj. But we can find indices i1, . . . , in such that

Xi1 · · ·Xin
⊂ P1 · · ·Pn ⊂ I ⊂ Q.

So by primality of Q we are done. �

Corollary. If A is a Noetherian ring it has only finitely many minimal primes.
Moreover N(A) is nilpotent.

Remark. Geometrically this means that if A is Noetherian then Spec(A) is a finite
union of irreducible closed subsets (where irreducible means not a proper union of
two closed subsets).

Exercise. Prove it!

Proof of Corollary. The first part follows immediately. For the second part let
P1, . . . , Pn be the minimal primes then N(A) = P1 ∩ . . . Pn, and so N(A)nk ⊂
(P1 · · ·Pn)k ⊂ 0 for some k by part (2) of the proposition. �

Remark. The second part can be proved directly without too much difficutly.
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6.6. Support and Associated primes.

Definition. Given an A-module M , we define the support of M , Supp(M), to be
the set of prime ideals P in A such that MP 6= 0.

Proposition. Suppose that A is a ring and L, M and N are A-modules.

(i) Supp(M) = ∅ if and only if M = 0
(ii) If 0 → L → M → N → 0 is a short exact sequence then

Supp(M) = Supp(L) ∪ Supp(N).

(iii) If M is finitely generated then Supp(M) = V (Ann(M)) and so is a closed
subset of Spec(A).

Proof. (i) Just says that being 0 is a local property of modules.
(ii) Since localisation is exact we have for every prime P the sequence

0 → LP → MP → NP → 0

is exact. It follows that MP is zero if and only if both LP and NP are zero. In
other words, P 6∈ Supp(M) if and only if P 6∈ Supp(L) ∩ Supp(N) i. e.

Supp(M) = Supp(N) ∪ Supp(L).

(iii) Suppose first that P ∈ Supp(M), i. e. MP 6= 0. Then there is an m ∈ M
such that Ann(m) ⊆ P so Ann(M) ⊆ P and P ∈ V (Ann(M)).

Suppose now that m1, . . . , mn are a generating set for M and P ∈ V (Ann(M))
i. e. P ⊇ ⋂

Ann(mi). Since
⋂

Ann(mi) ⊇ ∏
Ann(mi), and P is prime it follows

that P ⊇ Ann(mi) for some i. Thus smi 6= 0 for some s ∈ A\P and MP 6= 0 as
required. �

Exercise. If M is a finitely generated A-module and N is any A-module such that
Supp(M) ∩ Supp(N) = ∅ then HomA(M, N) = 0.

Related to the support of a module is the set of associated primes:

Definition. If M is an A-module, and P is a prime ideal in A, then we say that
P is an associated prime of M if there is an m ∈ M such that Ann(m) = P . We
write Ass(M) for the set of associated primes of M .

Notice that if Ann(m) = P then A.m is isomorphic to A/P as an A-module. So
a prime P is in Ass(M) precisely if A/P is isomorphic to a submodule of M .

Lemma.

(i) If P is a prime ideal of A then Ass(A/P ) = {P}.
(ii) If I is a maximal element of the set {Ann(m)|m ∈ M\0} then I ∈ Ass(M).

In particular I is prime.
(iii) If A is Noetherian and M 6= 0 then Ass(M) 6= ∅.
Proof. (i) If a+P ∈ A/P is non-zero then b.(a+P ) = P if and only if ba ∈ P if and
only if b ∈ P since P is prime. So every non-zero element of A/P has annihilator
P and the result follows.

(ii) Suppose I is a maximal element of the set {Ann(m)|m ∈ M\0}, say I =
Ann(m). Suppose further that a, b are elements of A and ab is in I. We have
abm = 0. If bm = 0 then b ∈ I. Otherwise bm 6= 0 and a ∈ Ann(bm) ⊇ I. By the
maximality of I it follows that Ann(bm) = I and a ∈ I. Thus I is prime.

(iii) Since A is Noetherian and {Ann(m)|m ∈ M\0} is non-empty if M 6= 0, it
must have a maximal element. We are then done by (ii). �
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Proposition. Suppose that A is a Noetherian ring and M is a finitely generated A-
module, then Ass(M) is a subset of Supp(M) and the minimal elements of Supp(M)

are all in Ass(M). In particular Ass(M) = Supp(M).

Proof. If P is in Ass(M) then A/P is isomorphic to a submodule of M and so as
localisation is exact (A/P )P is isomorphic to a submodule of MP . Since the former
is non-zero the latter is too and so P ∈ Supp(M).

Suppose now that P is a minimal element of Supp(M). We show that P is an
associated prime of M in two steps. First we show that PP is an associated prime
of MP as an AP -module and then lift this result back up to M and A.

By assumption MP 6= 0 and so Ass(MP ) 6= ∅. Suppose that Q is a prime in
AP then ι∗(Q) is a prime in A contained in P . It follows (by minimality of P )
that Mι∗(Q) = 0. But Mι∗(Q)

∼= (MP )Q and so Supp(MP ) = {PP }. By the first
part, Ass(MP ) is contained in Supp(MP ) so must also be just {PP }, and step one
is complete.

So we have some (non-zero) m/s ∈ MP whose annihilator is PP . We consider
the element m ∈ M . Certainly m/1 is not zero in MP so tm is not zero in M for
every t ∈ A\P . We claim that Ann(tm) = P for some such choice of t.

It is already clear from the previous remarks that Ann(tm) is contained in P for
every choice of t. Suppose that f is in P but not Ann(m), then as f/1.m/s = 0,
there is a t in A\P such that ftm = tfm = 0. So by careful choice of t we can
ensure any given f ∈ P lives in Ann(tm). We need to get them all in at once.
But A is Noetherian and so P is a finitely generated A-module. If f1, . . . , fn is a
generating set and t1, . . . , tn are corresponding elements of A\P such that fitim = 0
then setting t =

∏
ti we get Ann(tm) = P as required. �
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7. Projective modules

7.1. Local properties. Recall X is a projective A-module precisely if HomA(X,−)
is exact which occurs if and only if there is an A-module Y such that X ⊕Y is free.

We should think of finitely generated projective A-modules as modules that are
locally free. This is partly due to the following lemma.

Lemma. If A is a local ring with maximal ideal m, then every finitely generated
projective module is free. In particular if X is a finitely generated projective module
then X ∼= An, with n = dimA/m

(X/mX).

In fact Kaplansky (1958) proved this is true without the requirement that X be
finitely generated.

Proof. By Nakayama’s Lemma we may find e1, . . . , en ∈ X that generated X such
that their images in X/mX is a basis over k = A/m.

Thus we have a surjective A-linear map φ : An → X such that φ((ai)) =
∑

aiei.
Since X is projective, φ splits and we get An ∼= X ⊕ kerφ.

Now
An

mAn
∼= X

mX
⊕ kerφ

m kerφ
,

so as dimk
X

mX = n we see ker φ
m ker φ = 0. But kerφ is a finitely generated A-module

so by Nakayama’s Lemma again we get kerφ = 0. �

This enables us to show that finitely generated projectives are locally free. In
fact we can show more.

Proposition. If X is a finitely generated projective A-module, and P ∈ Spec(A)
then XP is isomorphic as an AP -module to An

P for some n ≥ 0. Indeed, we may
find an s ∈ A\P such that Xs

∼= An
s as As-modules. It follows that XQ

∼= An
Q for

every Q ∈ D(s) ⊂ Spec(A).

Proof. If X ⊕ Y ∼= Am then XP ⊕ YP = Am
P and so XP is a f.g. projective AP -

module. Since AP is local it follows from the lemma that XP is free. Now if
xi/si for i = 1, . . . , n is a free generating set for XP . Defining f : Am → X by
f(ei) = xi we get an A-module map whose cokernel M is finitely generated and
satisfies MP = 0. But P is not an element of Supp(M) = V (Ann(M)), so there is
s ∈ A\P such that Ms = 0.

Now fs : An
s → Xs is surjective and Xs is projective (by the same argument as

before) so there is an As-module map gs : Xs → (As)
n such that fsgs = id, and

so An
s
∼= Xs ⊕ N for some finitely generated As-module N such that NP = 0 (by

Nakayma’s Lemma).
Since N is finitely generated and NP = 0 by the argument above there is t ∈ A\P

such that Nt = 0. Then Xst
∼= An

st as required. �

Definition. Suppose that A is a ring, and X is a f.g. A-module. We can define a
rank function rkX from Spec(A) to N that sends P ∈ Spec A to the dimension of
XP /PP XP

∼= X ⊗A/P Q(A/P ) as an Q(A/P )-vector space — the fibre of X at P .

Notice that the proposition we just proved shows that if X is a f.g. projective
module then rkX is a continuous function on Spec(A) (where N has the discrete
topology). In particular, if Spec(A) is connected then rkX is constant.

Exercise. Find a f.g. Z-module without constant rank.
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Definition. We say an A-module X is locally free if for every P in Spec(A) there
is a basic open set D(s) containing P such that Xs is a free module.

Exercise. Show that if M is a finitely presented A-module (i.e. there exists an exact
sequence Am → An → M → 0) and S ⊂ A is m.c. then

HomA−mod(M, N)S
∼= HomAS−mod(MS , NS)

as AS-modules.

Remarks.

(1) If A is Noetherian then every finitely generated module is finitely presented.
(2) In general every finitely generated projective module is finitely presented.

Theorem. If A is a Noetherian ring and M is a finitely generated A-module then
the following are equivalent:

(1) M is projective.
(2) M is locally free.
(3) MP is a free AP -module for every P in Spec(A).

Proof. (1) implies (2) is above and (2) implies (3) is trivial.
For (3) implies (1): Since M is finitely generated, there is a surjective A-module

map ǫ : An → M for some n ≥ 0. We claim that ǫ∗ : Hom(M, An) → Hom(M, M)
is surjective.

If the claim holds then we can find f ∈ Hom(M, An) such that ǫ∗(f) = idM , i.e.
ǫ splits and M ⊕ ker ǫ ∼= An, and M is projective as required.

To prove the claim we show that ǫ∗ is locally surjective, that is

(ǫ∗)P : Hom(M, An)P → Hom(M, M)P

is surjective for each P in Spec(A). Now the lemma above tells us that there are
natural isomorphisms

Hom(M, An)P
∼= HomAP

(MP , An
P ) and Hom(M, M)P

∼= HomAP
(MP , MP )

and so (ǫ∗)P naturally induces (ǫP )∗ : HomAP
(MP , An

P ) → HomAP
(MP , MP ) that

we must show is surjective. But we are assuming that MP is a free AP -module and
An

P → MP is surjective so this last map is surjective and we’re done. �


