6.4. **Examples of Noetherian rings.** So far the only rings we can easily prove
are Noetherian are principal ideal domains, like Z and $k[x]$, or finite. Our goal now
is to develop theorems that enable us to create new Noetherian rings from old.

Proposition. If A is a Noetherian ring and $f : A \rightarrow B$ makes B an A-algebra so
that B is a finitely generated A-module under the multiplication $a.b = f(a)b$, then B is a Noetherian ring.

Proof. Since every B-submodule of B is also an A-submodule and B is a Noetherian
A-module it follows that B satisfies a.c.c. as a B-module and so B is a Noetherian ring. □

Examples.

(1) It can be shown that the ring of integers in any algebraic number field is
a finitely generated Z-module so it follows from the proposition that these
are all Noetherian.

(2) It also follows that any quotient ring of a Noetherian ring is Noetherian.

Proposition. If A is a Noetherian ring and S is a m.c. subset of A, then A_S is
Noetherian.

Proof. Suppose that I is an ideal in A_S, then $I = (I \cap A)A_S$. Since A is Noetherian
$I \cap A$ is a finitely generated A-module. But then any such generating set is a
generating set for I as as A_S-module. Thus all ideals in A_S are finitely generated and A_S is a Noetherian ring. □

The most important result in this section is undoubtedly the following theorem.

Theorem (Hilbert’s Basis Theorem (1888)). If A is a Noetherian ring then the
polynomial ring $A[x]$ is also Noetherian.

We will see (easily) from this that it follows that any finitely generated algebra
over a Noetherian ring is Noetherian. In particular any finitely generated k-algebra
is Noetherian when k is a field.

Corollary. If A is a Noetherian ring then so is $A[x_1, \ldots, x_n]$.

Proof. This follows from Hilbert’s basis theorem by induction on n. □

Corollary. If B is a finitely generated A-algebra and A is Noetherian then B is
Noetherian.

Proof. There is a positive integer n such that there is a surjective A-algebra map
from $A[x_1, \ldots, x_n]$ to B. By the previous corollary the former is Noetherian and
then the latter is a finite (in fact cyclic) module over the former and so also Noe-
therian. □

Proof of Hilbert’s Basis Theorem.

Suppose I is an ideal of $A[X]$ we try to prove that I is finitely generated. First
we let

$$J_n = \{ a \in A \mid \exists f \in I \text{ st } \deg(f - aX^n) < n \}.$$

So J_n is an ideal in A for each n since if $\deg(f - aX^n) < n$ and $\deg(g - bX^n) < n$
then $\deg((\lambda f + \mu g) - (\lambda a + \mu b)X^n) < n$ for each $\lambda, \mu \in A$.

Also \(J_n \subset J_{n+1} \) for each \(n \geq 0 \) since whenever \(\deg(f - aX^n) < n \) we must have \(\deg(Xf - aX^{n+1}) < n + 1 \). So by the a.c.c. for ideals in \(A \) there is an \(N \) such that \(J_N = J_{N+k} \) for all \(k \geq 0 \).

Now as \(A \) is Noetherian there exist \(a_1, \ldots, a_r \in J_N \) generating \(J_N \), and then by definition of \(J_N \) there exist \(f_1, \ldots, f_r \in I \) such that \(\deg(f_i - a_iX^N) < N \).

Claim. If \(f \in I \) then there exists \(g \in I \) such that

- \(f = g + \sum_{i=1}^r p_if_i \) some \(p_i \in A[X] \)
- \(\deg(g) < N \).

Proof of Claim. By induction on \(\deg(f) \). The result is true, with \(p_i = 0 \) for all \(i \), if \(\deg(f) < N \).

Suppose that \(\deg(f) = k \geq N \). Then there is \(a \in A \) such that \(\deg(f - aX^k) < k \). So \(a \in J_k = J_N \). Then there are \(b_1, \ldots, b_r \) in \(A \) such that \(a = \sum b_ib_i \). So \(\deg(f - \sum b_iX^{k-N}f_i) < k \). So by the induction hypothesis we may find \(p_i \in A[X] \) such that \(\deg(f - \sum (b_iX^{k-N} + p_i)f_i) < N \).

Now it suffices to prove that \(\operatorname{I} \cap (A + AX + \cdots AX^{N-1}) \) is a finitely generated \(A \)-module. But this is true since \(A + AX + \cdots AX^{N-1} \) is a Noetherian \(A \)-module. □

6.5. Spec of a Noetherian ring.

Theorem (The weak Nullstellensatz). Suppose that \(k \) is a field and \(A \) is a finitely generated \(k \)-algebra which is also a field. Then \(A \) is an algebraic extension of \(k \).

Proof. (For uncountable fields \(k \) — general case later)

Suppose for contradiction that \(a \in A \) is transcendental over \(k \), and consider the set

\[
\{ 1/(a - \lambda) | \lambda \in k \}.
\]

It suffices to show that this set is linearly independent over \(k \) since \(A \) has a countable spanning set over \(k \) given by monomials in the generators.

So suppose that \(\sum_{i=1}^n \mu_i 1/(a - \lambda_i) = 0 \), with \(\mu_i, \lambda_i \) in \(k \) and the \(\lambda_i \)'s distinct. Then \(\sum \mu_i (\prod_{j \neq i} (a - \lambda_j)) = 0 \) and as \(a \) is transcendental over \(k \) this must be an identity of polynomials over \(k \). i.e. \(\sum \mu_i \prod_{j \neq i} (\lambda - \lambda_j) = 0 \) for every \(\lambda \) in \(k \). In particular evaluating at \(\lambda = \lambda_k \) we get \(\mu_k = 0 \) as required. □

Corollary. If \(A \) is a finitely generated \(k \)-algebra then

\[
\operatorname{maxSpec}(A) = \{ \ker \theta \mid \theta : A \to \bar{k} \text{ a } k \text{-algebra map} \}.
\]

Proof. If \(m \in \operatorname{maxSpec}(A) \) then \(A/m \) is a finitely generated \(k \)-algebra and a field and so by the weak Nullstellensatz there is an (injective) \(k \)-algebra map from \(A/m \) to \(k \).

Conversely if \(\theta : A \to \bar{k} \) then its image is some finite dimensional \(k \)-vector space which must be a field so the kernel is in \(\operatorname{maxSpec}(A) \). □

Corollary. If \(k = \bar{k} \) and \(I \) is an ideal in \(k[X_1, \ldots, X_n] \). Then \(V(I) \cap \operatorname{maxSpec}(A) \) corresponds to \(\{ x \in k^n \mid f(x) = 0 \text{ for all } f \in I \} \) under \(\ker \theta \mapsto (\theta(X_1), \ldots, \theta(X_n)) \). Moreover Hilbert’s Basis Theorem says finitely many \(f \) in \(I \) suffice to describe \(V(I) \).

Exercise. What can we say if \(k = \mathbb{R} \)?

Recall that \(\operatorname{Jac}(A) \) is the intersection of all maximal ideals in \(A \) and \(\operatorname{Jac}(A) = \{ x \in A \mid 1 - xy \in A^\times \text{ for all } y \in A \} \).
A maximal ideal. It follows that a is not a unit (as does not contain a finite algebraic extension of k by the weak Nullstellensatz. Thus the composite \(A \to A[x] \to A[x]/m \) defines an algebra map from A onto \(k' \leq k \) whose kernel does not contain a since the image of a is a unit. Since \(k' \) is a field the kernel is a maximal ideal. It follows that a is not in every maximal ideal, and so a is not in \(\text{Jac}(A) \) as required.

Corollary (Hilbert 1893). If \(k = k' \) and A is a finitely generated k-algebra then
\[
\{ \text{closed subsets of } \text{maxSpec}(A) \} \leftrightarrow \{ \text{radical ideals of } A \}.
\]

Proof. By the Nullstellensatz, if \(I = \sqrt{J} \) then \(\text{Jac}(A/I) = 0 \), so \(I = \bigcap_{m \in V(I)} m \).

The converse is straightforward.

Proposition. Suppose that A is a Noetherian ring and I is an ideal not equal to A. Then

1. There exist \(P_1, \ldots, P_n \) containing I (not necessarily distinct) such that \(P_1 \cdots P_n \subseteq I \).

2. The minimal primes over I are those minimal primes in \(\{ P_1, \ldots, P_n \} \) in (1). In particular there are only finitely many of them.

Proof. Suppose that there is a proper ideal I of A not satisfying (1). By the Noetherian condition we can choose a maximal such I.

Suppose further that J, K are ideals properly containing I. By the choice of I we may find \(P_1, \ldots, P_n \) and \(Q_1, \ldots, Q_m \) such that \(P_1 \cdots P_n \subseteq J \) and \(Q_1 \cdots Q_m \subseteq K \). But now, \(P_1 \cdots P_n Q_1 \cdots Q_m \subseteq JK \), and so \(JK \) cannot be contained in I by the choice of I. It follows that I is itself prime, which is absurd.

Suppose now that we have an I and \(\{ P_1, \ldots, P_n \} \) as in (1), and let \(\{ X_1, \ldots, X_m \} \) be the minimal elements of the latter.

Suppose now, that Q is a prime containing I, we wish to show that Q contains some \(X_j \). But we can find indices \(i_1, \ldots, i_n \) such that
\[
X_{i_1} \cdots X_{i_n} \subseteq P_1 \cdots P_n \subseteq I \subseteq Q.
\]
So by primality of Q we are done.

Corollary. If A is a Noetherian ring it has only finitely many minimal primes. Moreover \(N(A) \) is nilpotent.

Remark. Geometrically this means that if A is Noetherian then Spec(A) is a finite union of irreducible closed subsets (where irreducible means not a proper union of two closed subsets).

Exercise. Prove it!

Proof of Corollary. The first part follows immediately. For the second part let \(P_1, \ldots, P_n \) be the minimal primes then \(N(A) = P_1 \cap \ldots P_n \), and so \(N(A)^{nk} \subset (P_1 \cdots P_n)^k \subset 0 \) for some k by part (2) of the proposition.

Remark. The second part can be proved directly without too much difficulty.
6.6. Support and Associated primes.

Definition. Given an A-module M, we define the *support* of M, $\text{Supp}(M)$, to be the set of prime ideals P in A such that $M_P \neq 0$.

Proposition. Suppose that A is a ring and L, M and N are A-modules.

(i) $\text{Supp}(M) = \emptyset$ if and only if $M = 0$

(ii) If $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is a short exact sequence then

$$\text{Supp}(M) = \text{Supp}(L) \cup \text{Supp}(N).$$

(iii) If M is finitely generated then $\text{Supp}(M) = V(\text{Ann}(M))$ and so is a closed subset of $\text{Spec}(A)$.

Proof. (i) Just says that being 0 is a local property of modules.

(ii) Since localisation is exact we have for every prime P the sequence

$$0 \rightarrow L_P \rightarrow M_P \rightarrow N_P \rightarrow 0$$

is exact. It follows that M_P is zero if and only if both L_P and N_P are zero. In other words, $P \notin \text{Supp}(M)$ if and only if $P \notin \text{Supp}(L) \cap \text{Supp}(N)$ i. e.

$$\text{Supp}(M) = \text{Supp}(N) \cup \text{Supp}(L).$$

(iii) Suppose first that $P \in \text{Supp}(M)$, i. e. $M_P \neq 0$. Then there is an $m \in M$ such that $\text{Ann}(m) \subseteq P$ so $\text{Ann}(M) \subseteq P$ and $P \in V(\text{Ann}(M))$.

Suppose now that m_1, \ldots, m_n are a generating set for M and $P \in V(\text{Ann}(M))$ i. e. $P \supseteq \bigcap \text{Ann}(m_i)$. Since $\bigcap \text{Ann}(m_i) \supseteq \prod \text{Ann}(m_i)$, and P is prime it follows that $P \supseteq \text{Ann}(m_i)$ for some i. Thus $sm_i \neq 0$ for some $s \in A \setminus P$ and $M_P \neq 0$ as required.

Exercise. If M is a finitely generated A-module and N is any A-module such that $\text{Supp}(M) \cap \text{Supp}(N) = \emptyset$ then $\text{Hom}_A(M, N) = 0$.

Related to the support of a module is the set of associated primes:

Definition. If M is an A-module, and P is a prime ideal in A, then we say that P is an *associated prime* of M if there is an $m \in M$ such that $\text{Ann}(m) = P$. We write $\text{Ass}(M)$ for the set of associated primes of M.

Notice that if $\text{Ann}(m) = P$ then $A.m$ is isomorphic to A/P as an A-module. So a prime P is in $\text{Ass}(M)$ precisely if A/P is isomorphic to a submodule of M.

Lemma.

(i) If P is a prime ideal of A then $\text{Ass}(A/P) = \{P\}$.

(ii) If I is a maximal element of the set $\{\text{Ann}(m) | m \in M \setminus \emptyset\}$ then $I \in \text{Ass}(M)$.

In particular I is prime.

(iii) If A is Noetherian and $M \neq 0$ then $\text{Ass}(M) \neq \emptyset$.

Proof. (i) If $a + P \in A/P$ is non-zero then $b.(a + P) = P$ if and only if $ba \in P$ if and only if $b \in P$ since P is prime. So every non-zero element of A/P has annihilator P and the result follows.

(ii) Suppose I is a maximal element of the set $\{\text{Ann}(m) | m \in M \setminus \emptyset\}$, say $I = \text{Ann}(m)$. Suppose further that a, b are elements of A and ab is in I. We have $abm = 0$. If $bm = 0$ then $b \in I$. Otherwise $bm \neq 0$ and $a \in \text{Ann}(bm) \supseteq I$. By the maximality of I it follows that $\text{Ann}(bm) = I$ and $a \in I$. Thus I is prime.

(iii) Since A is Noetherian and $\{\text{Ann}(m) | m \in M \setminus \emptyset\}$ is non-empty if $M \neq 0$, it must have a maximal element. We are then done by (ii).
Proposition. Suppose that A is a Noetherian ring and M is a finitely generated A-module, then $\text{Ass}(M)$ is a subset of $\text{Supp}(M)$ and the minimal elements of $\text{Supp}(M)$ are all in $\text{Ass}(M)$. In particular $\text{Ass}(M) = \text{Supp}(M)$.

Proof. If P is in $\text{Ass}(M)$ then A/P is isomorphic to a submodule of M and so as localisation is exact $(A/P)_P$ is isomorphic to a submodule of M_P. Since the former is non-zero the latter is too and so $P \in \text{Supp}(M)$.

Suppose now that P is a minimal element of $\text{Supp}(M)$. We show that P is an associated prime of M in two steps. First we show that P_P is an associated prime of M_P as an A_P-module and then lift this result back up to M and A.

By assumption $M_P \neq 0$ and so $\text{Ass}(M_P) \neq \emptyset$. Suppose that Q is a prime in A_P then $\iota^*(Q)$ is a prime in A contained in P. It follows (by minimality of P) that $M_{\iota^*(Q)} = 0$. But $M_{\iota^*(Q)} \cong (M_P)_Q$ and so $\text{Supp}(M_P) = \{P_P\}$. By the first part, $\text{Ass}(M_P)$ is contained in $\text{Supp}(M_P)$ so must also be just $\{P_P\}$, and step one is complete.

So we have some (non-zero) $m/s \in M_P$ whose annihilator is P_P. We consider the element $m \in M$. Certainly $m/1$ is not zero in M_P so tm is not zero in M for every $t \in A \setminus P$. We claim that $\text{Ann}(tm) = P$ for some such choice of t.

It is already clear from the previous remarks that $\text{Ann}(tm)$ is contained in P for every choice of t. Suppose that f is in P but not $\text{Ann}(m)$, then as $f/1 \cdot m/s = 0$, there is a t in $A \setminus P$ such that $f tm = tfm = 0$. So by careful choice of t we can ensure any given $f \in P$ lives in $\text{Ann}(tm)$. We need to get them all in at once. But A is Noetherian and so P is a finitely generated A-module. If f_1, \ldots, f_n is a generating set and t_1, \ldots, t_n are corresponding elements of $A \setminus P$ such that $f_i t_i m = 0$ then setting $t = \prod t_i$ we get $\text{Ann}(tm) = P$ as required. \hfill \Box
7. Projective modules

7.1. Local properties. Recall X is a projective A-module precisely if $\text{Hom}_A(X, -)$ is exact which occurs if and only if there is an A-module Y such that $X \oplus Y$ is free.

We should think of finitely generated projective A-modules as modules that are locally free. This is partly due to the following lemma.

Lemma. If A is a local ring with maximal ideal \mathfrak{m}, then every finitely generated projective module is free. In particular if X is a finitely generated projective module then $X \cong A^n$, with $n = \dim_{A/\mathfrak{m}}(X/\mathfrak{m}X)$.

In fact Kaplansky (1958) proved this is true without the requirement that X be finitely generated.

Proof. By Nakayama’s Lemma we may find $e_1, \ldots, e_n \in X$ that generated X such that their images in $X/\mathfrak{m}X$ is a basis over $k = A/\mathfrak{m}$.

Thus we have a surjective A-linear map $\phi: A^n \to X$ such that $\phi((a_i)) = \sum a_i e_i$. Since X is projective, ϕ splits and we get $A^n \cong X \oplus \ker \phi$.

Now

$$\frac{A^n}{\mathfrak{m}A^n} \cong \frac{X}{\mathfrak{m}X} \oplus \frac{\ker \phi}{\mathfrak{m} \ker \phi},$$

so as $\dim_{A/\mathfrak{m}}(X/\mathfrak{m}X) = n$ we see $\frac{\ker \phi}{\mathfrak{m} \ker \phi} = 0$. But $\ker \phi$ is a finitely generated A-module so by Nakayama’s Lemma again we get $\ker \phi = 0$. □

This enables us to show that finitely generated projectives are locally free. In fact we can show more.

Proposition. If X is a finitely generated projective A-module, and $P \in \text{Spec}(A)$ then X_P is isomorphic as an A_P-module to A^n_P for some $n \geq 0$. Indeed, we may find an $s \in A \setminus P$ such that $X_s \cong A^n_s$ as A_s-modules. It follows that $X_Q \cong A^n_Q$ for every $Q \in D(s) \subset \text{Spec}(A)$.

Proof. If $X \oplus Y \cong A^n$ then $X_P \oplus Y_P = A^n_P$ and so X_P is a f.g. projective A_P-module. Since A_P is local it follows from the lemma that X_P is free. Now if x_i/s_i for $i = 1, \ldots, n$ is a free generating set for X_P. Defining $f: A^n \to X$ by $f((e_i)) = x_i$ we get an A-module map whose cokernel M is finitely generated and satisfies $M_P = 0$. But P is not an element of $\text{Supp}(M) = V(\text{Ann}(M))$, so there is $s \in A \setminus P$ such that $M_s = 0$.

Now $f_s: A^n_s \to X_s$ is surjective and X_s is projective (by the same argument as before) so there is an A_s-module map $g_s: X_s \to (A_s)^n$ such that $f_s g_s = \text{id}$, and so $A^n_s \cong X_s \oplus N$ for some finitely generated A_s-module N such that $N_P = 0$ (by Nakayama’s Lemma).

Since N is finitely generated and $N_P = 0$ by the argument above there is $t \in A \setminus P$ such that $N_t = 0$. Then $X_{st} \cong A^n_{st}$ as required. □

Definition. Suppose that A is a ring, and X is a f.g. A-module. We can define a rank function rk_X from $\text{Spec}(A)$ to \mathbb{N} that sends $P \in \text{Spec}(A)$ to the dimension of $X_P/\text{Ann}_P X_P$ as an $A(P)$-vector space — the fibre of X at P.

Notice that the proposition we just proved shows that if X is a f.g. projective module then rk_X is a continuous function on $\text{Spec}(A)$ (where \mathbb{N} has the discrete topology). In particular, if $\text{Spec}(A)$ is connected then rk_X is constant.

Exercise. Find a f.g. \mathbb{Z}-module without constant rank.
Definition. We say an A-module X is locally free if for every P in Spec(A) there is a basic open set $D(s)$ containing P such that X_s is a free module.

Exercise. Show that if M is a finitely presented A-module (i.e. there exists an exact sequence $A^n \to A^m \to M \to 0$) and $S \subset A$ is m.c. then
\[\text{Hom}_{A_{mod}}(M, N)_S \cong \text{Hom}_{A_S_{mod}}(M_S, N_S) \]
as A_S-modules.

Remarks.
(1) If A is Noetherian then every finitely generated module is finitely presented.
(2) In general every finitely generated projective module is finitely presented.

Theorem. If A is a Noetherian ring and M is a finitely generated A-module then the following are equivalent:
1. M is projective.
2. M is locally free.
3. M_P is a free A_P-module for every P in Spec(A).

Proof. (1) implies (2) is above and (2) implies (3) is trivial.
For (3) implies (1): Since M is finitely generated, there is a surjective A-module map $\epsilon : A^n \to M$ for some $n \geq 0$. We claim that $\epsilon_* : \text{Hom}(M, A^n) \to \text{Hom}(M, M)$ is surjective.
If the claim holds then we can find $f \in \text{Hom}(M, A^n)$ such that $\epsilon_*(f) = \text{id}_M$, i.e. ϵ splits and $M \oplus \ker \epsilon \cong A^n$, and M is projective as required.
To prove the claim we show that ϵ_* is locally surjective, that is
\[(\epsilon_*)_P : \text{Hom}(M, A^n)_P \to \text{Hom}(M, M)_P\]
is surjective for each P in Spec(A). Now the lemma above tells us that there are natural isomorphisms
\[\text{Hom}(M, A^n)_P \cong \text{Hom}_{A_P}(M_P, A^n_P) \text{ and } \text{Hom}(M, M)_P \cong \text{Hom}_{A_P}(M_P, M_P) \]
and so $(\epsilon_*)_P$ naturally induces $(\epsilon_*)_P : \text{Hom}_{A_P}(M_P, A^n_P) \to \text{Hom}_{A_P}(M_P, M_P)$ that we must show is surjective. But we are assuming that M_P is a free A_P-module and $A^n_P \to M_P$ is surjective so this last map is surjective and we're done. \square