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Abstract. Let kG be the completed group algebra of a uniform pro-p group
G with coefficients in a field k of characteristic p. We study right ideals I in
kG that are invariant under the action of another uniform pro-p group Γ. We
prove that if I is non-zero then an irreducible component of the characteristic
support of kG/I must be contained in a certain finite union of rational linear
subspaces of Spec gr kG. The minimal codimension of these subspaces gives a
lower bound on the homological height of I in terms of the action of a certain
Lie algebra on G/Gp. If we take Γ to be G acting on itself by conjugation,
then Γ-invariant right ideals of kG are precisely the two-sided ideals of kG, and
we obtain a non-trivial lower bound on the homological height of a possible
non-zero two-sided ideal. For example, when G is open in SLn(Zp) this lower
bound equals 2n − 2. This gives a significant improvement of the results of
Ardakov, Wei and Zhang [2] on reflexive ideals in Iwasawa algebras.

1. Introduction

1.1. Prime ideals in Iwasawa algebras. In recent years, several attempts have
been made to understand the structure of prime ideals in non-commutative Iwasawa
algebras. These are the completed group algebras ΩG of compact p-adic analytic
groups G with coefficients in the finite field Fp; we refer the reader to the survey
paper [1] for definitions and more details about these algebras.

Perhaps the first result in this direction was obtained by Venjakob in [15] with
the classification of all prime ideals in ΩG where G is a non-abelian soluble pro-p
group of rank two. After this, the second author showed in [16] that if G is a
Heisenberg pro-p group with centre Z then every non-zero prime ideal in ΩG must
contain the kernel of the map ΩG → ΩG/Z . More significantly in [2] and [3] Wei,
Zhang and the first author showed that there are no reflexive ideals in ΩG if G is a
uniform pro-p group of Chevalley type. The methods of this paper are very much
in the spirit of the latter works.

1.2. Γ-invariant right ideals. Our basic set-up is that we have a uniform pro-p
group G and a group Γ acting on G by group automorphisms. This action will
induce an action of Γ on ΩG and we are interested in studying the Γ-invariant right
ideals in ΩG. When Γ = G and the action is the natural conjugation action then
of course the Γ-invariant right ideals of ΩG are just ordinary two-sided ideals.

As in [2] and [3] the basic strategy is to show that under certain conditions, a
Γ-invariant right ideal is controlled by the subring ΩG2

, where G2 is the second
term of the lower p-series of G. Since G2 is a characteristic subgroup, the action
of Γ on G restricts to an action on G2 and the intersection of our ideal with ΩG2

is still Γ-invariant. We then aim to show inductively that any ideal satisfying our
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conditions is controlled by ΩGn
for every n. In this way we deduce that our original

ideal is 0.
In order to prove a control theorem of this type we associate to each right ideal

I in ΩG a “failure of control module” FI := I/(I ∩ ΩG2
)ΩG. Then I is controlled

by ΩG2
precisely if FI = 0.

1.3. Microlocalisation. Whenever we have a complete filtered ring A whose as-
sociated graded ring B is commutative noetherian, for each multiplicatively closed
subset T of B consisting of homogeneous elements we can define the microlocalisa-
tion of A at T , which is a certain completion of an Ore localisation of A. Heuristi-
cally, this gives rise to a ‘sheaf’ OA of complete filtered non-commutative rings on
Specgr(B) — the set of homogeneous prime ideals in B — viewed as a subspace of
Spec(B) with its usual topology.

Similarly, for each finitely generated A-module M we can define a ‘sheaf’ M
of OA-modules by microlocalisation in an analogous way. As usual we say such a
sheaf is supported on a subset C if each stalk MP = 0 for each P not in C. We
call the minimal such set Ch(M), the characteristic support of M ; see §2.4.

1.4. Main results. Now the associated graded ring of A = ΩG with respect to
its natural filtration may be naturally identified with the symmetric algebra B =
Sym(V ), where V = G/G2. To study FI we consider it as the global sections of the
‘sheaf’ FI ; we show in one of our main results, Theorem 4.5, that if I is Γ-invariant
then FI must be supported on the set

X := {P ∈ Specgr(B) : g.v ⊆ P for some v ∈ V \0}.
Here g is a certain Lie algebra that acts naturally on V , constructed from the action
of Γ on G — see §4.2 for details. Since in this case B is a polynomial algebra and
since V is a finite set, X is contained in the union of finitely many rational (that
is, defined over Fp) linear subspaces of the affine space Spec(B).

This result puts a restriction on the characteristic support of FI : the codimension
of Ch(FI), which coincides with the grade of the module FI , is bounded below by
the minimal dimension of a g-orbit of a non-zero element of V .

Suppose now that in addition I is a prime ideal of A which is not controlled by
ΩG2

. Then FI has the same dimension as A/I by Proposition 2.6 and moreover
Ch(A/I) is geometrically pure by Gabber’s purity theorem. Since Ch(FI) is always
contained in Ch(A/I) by Proposition 2.5, it follows that an irreducible component of
Ch(A/I) must be contained in one of the aforementioned rational linear subspaces.
This gives us a severe restriction on the possible characteristic support of A/I.
We can then deduce in Theorem 4.8 that the grade of A/I, also known as the
homological height of I, is bounded below by

u := min{dim g · v : v ∈ V \0}.
In fact, the conclusion of Theorem 4.8 holds if we only assume that I is non-zero
and Γ-invariant.

1.5. Consequences for Iwasawa algebras. The effect of this for the Iwasawa
algebras of Chevalley type discussed in [3] is that not only are there no non-zero
reflexive prime ideals in ΩG, (that is, ideals of homological height 1), but in fact
non-zero prime ideals of homological height strictly less than u cannot exist: see
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Theorem 5.3. We compute the lower bound u in this case in §5.2; here is a table of
the values it takes for each root system Φ:

Φ An Bn Cn Dn E6 E7 E8 F4 G2

dimG n2 + 2n 2n2 + n 2n2 + n 2n2 − n 78 133 248 52 14
u 2n 4n− 4 2n 4n− 6 22 34 58 16 6

We include the dimensions of the associated Chevalley groups G in this table, for
the convenience of the reader.

1.6. An outline of the paper. This paper should be viewed as an appropriate
generalisation and strengthening of the method introduced in [2] and [3]. In Section
2, we recall basic facts about the Frobenius pairs framework developed in [2], and
discuss the notions of microlocalisation and characteristic support of modules. We
also prove some ‘geometric’ properties of Frobenius pairs in §2.5.

The goal of Section 3 is to establish Theorem 3.5, a control theorem for invariant
ideals; this result should be viewed as a generalisation of the control theorem for
normal elements, [2, Theorem 3.1]. We introduce a new notion of a ‘source of
derivations’ S in §3.2 and an appropriate notion of S-closure JS of a graded ideal
J in §3.4; with these in place, the analogue of the derivation hypothesis of [2, §3.5]
simply becomes D(JS) ⊆ J .

In Section 4, we apply Theorem 3.5 to microlocalisations of Iwasawa algebras
and prove our main result, Theorem 4.5. The key step in the proof is Proposition
4.3, which shows that the ‘derivation hypothesis’ holds for the microlocalisation of
the Iwasawa algebra at any graded prime ideal P not in X . This step relies heavily
on the linear algebra calculations performed in [3, §1]. The geometric properties
of Frobenius pairs established in §2 can now be used to prove the lower bound
Theorem 4.8, essentially in the way sketched above.

We discuss the two obvious applications of our methods in Section 5, and com-
pute the invariant u for uniform pro-p groups of Chevalley type in §5.2.

1.7. Acknowledgements. The first author was supported by an Early Career Fel-
lowship from the Leverhulme Trust. The second author was supported by EPSRC
research grant EP/C527348/1.

2. Microlocalisation, characteristic support and purity

2.1. Frobenius pairs. Throughout, k will denote an arbitrary base field of char-
acteristic p. Let B be a commutative k-algebra. The Frobenius map x 7→ xp is a
ring endomorphism of B and gives a ring isomorphism of B onto its image

B[p] := {bp : b ∈ B}

in B provided that B is reduced.
Let t be a positive integer. Whenever {y1, . . . , yt} is a t-tuple of elements of B

and α = (α1, . . . , αt) is a t-tuple of nonnegative integers, we define

yα = yα1

1 · · · yαt

t .

Let [p− 1] denote the set {0, 1, . . . , p− 1} and let [p− 1]t be the product of t copies
of [p − 1].
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Definition. [2, Definition 2.2] Let A be a complete filtered k-algebra and let A1 be
a subalgebra of A. We always view A1 as a filtered subalgebra of A, equipped with
the subspace filtration FnA1 := FnA∩A1. We say that (A, A1) is a Frobenius pair
if the following axioms are satisfied:

( i ) A1 is closed in A,
( ii ) grA is a commutative noetherian domain, and we write B = grA,
( iii ) the image B1 of grA1 in B satisfies B[p] ⊆ B1, and
( iv ) there exist homogeneous elements y1, . . . , yt ∈ B such that

B =
⊕

α∈[p−1]t

B1y
α.

2.2. Microlocalisation. As in [2], one of our main tools is microlocalisation. We
refer the reader to [2, §4] for the necessary background.

Lemma. Let (A, A1) be a Frobenius pair, let T be a homogeneous multiplicatively
closed set in B and let T1 := T ∩ B1. Then

(a) (QT (A), QT1
(A1)) is also a Frobenius pair, and

(b) QT (A) = QT1
(A).

Proof. For any s ∈ A, we let gr s denote its principal symbol in B. Recall [2, §4.2]
that the microlocalisation QT (A) is the completion of the localisation AS of A at
the Ore set S in A defined as follows:

S = {s ∈ A : gr s ∈ T }.
The microlocalisation QT1

(A1) is defined similarly. Because the proof of part (a)
is very similar to that of [2, Proposition 5.1(a)], we will omit the details. For part
(b), note that by [2, Lemma 2.3] we can find a finite set X that simultaneously
generates A as a (free) A1-module, and also QT (A) as a (free) QT1

(A1)-module:

A = X · A1 and QT (A) = X · QT1
(A1).

Now QT1
(A) = A ⊗A1

QT1
(A1) by definition of the microlocalisation of a module,

so

QT1
(A) = X · QT1

(A1) = QT (A)

as required. �

Corollary. Let M be a finitely generated A-module. Then QT (M) ∼= QT1
(M) as

QT1
(A1)-modules.

Proof. This is a direct consequence of part (b) of the lemma:

QT (M) = M ⊗A QT (A) = M ⊗A A ⊗A1
QT1

(A1) = M ⊗A1
QT1

(A1) = QT1
(M),

and these identifications respect the right QT1
(A1)-module structures. �

2.3. Control of ideals. Quite generally, if A1 is a subring of the ring A, and I is
a right ideal of A, we will write I1 for the right ideal I ∩ A1 of A1, and say that
I is controlled by A1 if and only if I = I1 · A. Controlled ideals are in some sense
“understood”, as they “come from” the smaller ring A1.

Frequently we will be able to prove that the microlocalisation of I is controlled by
the microlocalisation of A1. The next result tells us how to “lift” this information
back from the microlocalisation.
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Lemma. Let (A, A1) be a Frobenius pair, let T be a homogeneous multiplicatively
closed set in B and let I be a right ideal of A. Then QT (I) is controlled by QT1

(A1)
if and only if the “failure of control” module F := I/I1A satisfies (grF )T = 0.

Proof. The ideas in this proof were already present in the proof of [2, Theorem 5.2],
but we include the details for the convenience of the reader.

Write A′ = QT (A), A′
1 = QT1

(A1) and I ′ = QT (I) = I · A′. Note that I ′ can
be identified with a right ideal of A′, by [2, Lemma 4.4(c)]. Since microlocalisation
preserves pullbacks [2, Lemma 4.4(e)], QT1

(I) ∩ QT1
(A1) = QT1

(I ∩ A1), so

(I · A′
1) ∩ A′

1 = (I ∩ A1) · A′
1.

By Corollary 2.2, I ′ = I · A′
1, so

(I ′ ∩ A′
1) · A′ = (I ∩ A1) · A′

1 · A′ = (I ∩ A1)A · A′.

This shows that I ′ is controlled by A′
1 if and only if I · A′ = I1A · A′. Since

microlocalisation is exact in our setting by [2, Proposition 4.3(d)], this is equivalent
to QT (F ) = 0. But grQT (F ) = (grF )T , so the result follows from the fact that
QT (A) is a complete filtered ring. �

2.4. The characteristic support. Let A be a filtered ring whose associated
graded ring B = grA is commutative noetherian. Let Specgr(B) denote the set
of all graded prime ideals of B.

Definition. Let M be a finitely generated A-module. The characteristic support
of M is the following subset of Specgr(B):

Ch(M) := {P ∈ Specgr(B) : Ann(grM) ⊆ P}.
Lemma. Ch(M) is independent of the choice of good filtration on M that defines
the associated graded module grM .

Proof. This is well-known; see, for example, [12, Chapter III, Lemma 4.1.9]. �

Any graded prime ideal P of B gives rise to the homogeneous multiplicatively
closed set TP , which consists of all homogeneous elements of B not in P . We
can then form the localisation BTP

of B and the microlocalisation QTP
(A) of A.

By abuse of notation, we will always write BP := BTP
and AP := QTP

(A) in
this case. Furthermore, if M is a finitely generated A-module, then we will write
MP := QTP

(M) for the microlocalisation of M at TP .

Proposition. For any finitely generated A-module M , we have

Ch(M) = {P ∈ Specgr(B) : MP 6= 0}.
Proof. Let P ∈ Specgr(B) and let N = grM ; then MP = 0 if and only if NP = 0.
Now N is a quotient of a direct sum of copies of B/ Ann(N), and B/ Ann(N) is a
submodule of a direct sum of copies of N , so NP = 0 if and only if (B/ Ann(N))P =
0. However the last condition is easily seen to be equivalent to Ann(N) * P , and
the result follows. �

Corollary. If 0 → L → M → N → 0 is a short exact sequence of finitely generated
A-modules, then Ch(M) = Ch(L) ∪ Ch(N).

Proof. Microlocalisation is exact in our setting: see [2, Proposition 4.3(d)]. �
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2.5. Characteristic support and Frobenius pairs. Let (A, A1) be a Frobenius
pair. The inclusion ι : B1 →֒ B induces a map ι∗ : Specgr(B) → Specgr(B1), given
by ι∗(P ) = P ∩ B1.

Proposition. The map ι∗ is a bijection. Let I be a right ideal of A, and let
I1 = I ∩ A1. Then Ch(A/I) = Ch(A/I1A) = ι−1

∗ (Ch(A1/I1)) .

Proof. Since B is a finitely generated B1-module by definition, B is integral over
B1. Hence ι∗ is surjective. Because bp ∈ B1 for all b ∈ B, we see that ι∗ is injective.
In fact, it is easy to see that the inverse of ι∗ is given explicitly by the formula

ι−1
∗ (p) =

√

pB,

for any p ∈ Specgr(B1).
Let P ∈ Specgr(B) and write P1 = ι∗P . Since B1\P1 = (B\P ) ∩ B1, Corollary

2.2 implies that MP = MP1
for any finitely generated A-module M . We will use

Proposition 2.4 without further mention in what follows.
Since A/I is a quotient of A/I1A, Ch(A/I) ⊆ Ch(A/I1A) by Corollary 2.4. Now

if P1 /∈ Ch(A1/I1), then (A1/I1)P1
= 0, so

(A/I1A)P = (A1/I1) ⊗A1
A ⊗A AP = (A1/I1) ⊗A1

AP = 0

whence P /∈ Ch(A/I1A). This shows that Ch(A/I1A) ⊆ ι−1
∗ Ch(A1/I1).

Finally, if P /∈ Ch(A/I) then (A/I)P = 0 and hence (A/I)P1
= 0. Since A1/I1

is an A1-submodule of A/I, Corollary 2.4 implies that P /∈ ι−1
∗ Ch(A1/I1). Hence

ι−1
∗ Ch(A1/I1) ⊆ Ch(A/I) and the proof is complete. �

2.6. Purity of modules. Let A be an Auslander-Gorenstein ring and let M be
a finitely generated A-module. Recall that M has a grade jA(M) defined by the
formula

jA(M) = min{j : Extj
A(M, A) 6= 0}.

Recall that if 0 → L → M → N → 0 is a short exact sequence, then we have

jA(M) = min{jA(L), jA(N)}.
M is said to be pure if jA(N) = jA(M) for all non-zero submodules N of M ; clearly
any submodule of a pure module is itself pure.

Lemma. Let (A, A1) be a Frobenius pair such that B and B1 are Gorenstein, and
let M be a finitely generated A-module.

(a) A and A1 are also Auslander-Gorenstein.
(b) The grade of M equals the codimension of the characteristic support of M :

jA(M) = jB(gr M) = min{htP : P ∈ Ch(M)}.
(c) jA(M) = jA1

(M |A1
).

(d) M is pure if and only if M |A1
is pure.

Proof. (a) Use [7, Theorem 3.9].
(b) For the first equality, use [8, Remark 5.8]. For the second equality, see [5].
(c) The map ι∗ : Specgr(B) → Specgr(B1) extends to an order preserving bijec-

tion between the usual spectra Spec(B) and Spec(B1); this shows that ht ι∗P = htP
for any P ∈ Specgr(B). Since M is finitely generated, M is a finite extension of
cyclic A-modules; using Corollary 2.4 and Proposition 2.5, we see that

ι∗ Ch(M) = Ch(M |A1
).
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Part (c) now follows from part (b).
(d) (⇐) This is easy, given part (c).
(⇒) Let N be a non-zero A1-submodule of M . Since N ⊗A1

A surjects onto the
non-zero A-submodule N · A of M and since M is pure, we have

jA1
(M) = jA(M) = jA(N · A) > jA(N ⊗A1

A) = jA1
(N) > jA1

(M)

Here we have used the fact that A is a free A1-module [2, Lemma 2.3]. Hence
jA1

(N) = jA1
(M) and M |A1

is pure. �

Proposition. Let (A, A1) be a Frobenius pair such that B and B1 are Gorenstein.
Let I be a right ideal of A, let I1 = I ∩ A1 and suppose that A/I is pure. Then
either I/I1A is zero, or it is pure of the same grade as A/I.

Proof. By part (d) of the lemma, A1/I1 is pure, being an A1-submodule of the pure
A1-module A/I. It will be enough to show that A/I1A ∼= (A1/I1) ⊗A1

A is also
pure, and has the same grade as A/I.

Recall [8, Theorem 2.12] that a finitely generated module M over an Auslander-
Gorenstein ring R is pure if and only if ExtiR(ExtiR(M, R), R) = 0 for all i > jR(M).

Hence Exti
A1

(Exti
A1

(A1/I1, A1), A1) = 0 for all i > jA1
(A1/I1).

Since A is a free right and left A1-module by [2, Lemma 2.3], [2, Proposition 1.2]
implies that jA(A/I1A) = jA1

(A/I1) and also that

ExtiA(Exti
A(A/I1A, A), A) ∼= Exti

A1
(Exti

A1
(A1/I1, A1), A1) ⊗A1

A = 0

for all i > jA(A/I1A). So A/I1A is pure, and our result follows. �

3. A control theorem for S-invariant right ideals

3.1. Inducing derivations on grA. Let A be a filtered ring with associated
graded ring B and let α be a ring endomorphism of A. Suppose that there is
an integer mα > 1 such that

(α − 1)(FnA) ⊆ Fn−mα
A

for all n ∈ Z. This induces additive maps

dα : FnA
Fn−1A → Fn−mαA

Fn−mα−1A

x + Fn−1A 7→ α(x) − x + Fn−mα−1A

for each n ∈ Z, which patch together to give a graded endomorphism dα of the
abelian group B.

Lemma. dα is a graded derivation of B of degree mα.

Proof. Let x ∈ FmA and y ∈ FnA, so that X = x + Fm−1A and Y = y + Fn−1A
are homogeneous elements of B of degree m and n respectively. Then

dα(X · Y ) = α(xy) − xy + Fm+n−mα−1A,
dα(X) · Y = α(x)y − xy + Fm+n−mα−1A, and
X · dα(Y ) = xα(y) − xy + Fm+n−mα−1A.

Because mα > 1, (α(x) − x)(α(y) − y) ∈ Fm+n−2mα
A ⊆ Fm+n−mα−1A. Hence

α(xy) − xy ≡ α(x)y − xy + xα(y) − xy mod Fm+n−mα−1A

and the result follows. �
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3.2. New sources of derivations. We now introduce a new notion of “source of
derivations” for a Frobenius pair, which is slightly different from the one introduced
in [2, §3.3]. We hope that the inconsistency in terminology will not cause any
confusion; it is just a matter of language. After reading this paper, the reader
may get the feeling that the “real” source of our derivations — at least for our
applications — is the Lie algebra g defined below in §4.2.

Definition. A source of derivations for a Frobenius pair (A, A1) is a set a =
{α0, α1, α2, . . .} of endomorphisms of A such that there exist functions θ, θ1 : a → N
satisfying the following conditions:

( i ) (αr − 1)FnA ⊆ Fn−θ(αr)A for all r > 0 and all n ∈ Z
( ii ) (αr − 1)FnA1 ⊆ Fn−θ1(αr)A for all r > 0 and all n ∈ Z,
( iii ) θ1(ar) − θ(αr) → ∞ as r → ∞.

As in [2, §5], we will need to know that sources of derivations are compatible
with microlocalisations. The next result shows that this is indeed the case.

Proposition. Let (A, A1) be a Frobenius pair, let T be a homogeneous multiplica-
tively closed set in B, and let T1 = B1 ∩ T . Then

(a) each source of derivations a of (A, A1) induces a source of derivations aT of
(QT (A), QT1

(A1)),
(b) the derivations of BT induced by aT coincide with the extensions to BT of the

derivations of B induced by a.

Proof. Let α be a ring endomorphism of A such that (α − 1)(FnA) ⊆ Fn−mA for
some integer m > 1, for all n ∈ Z. Let x ∈ A; since deg(α(x) − x) < deg x, we
have grα(x) = grx and in particular deg α(x) = deg x. Hence α(S) ⊆ S, where
S denotes the Ore subset of A determined by T , see §2.2. Thus α extends to an
endomorphism α of the Ore localisation AS .

Now if r ∈ A and s ∈ S, then the formula

α(rs−1) − rs−1 = (α(r) − r)α(s)−1 − rs−1(α(s) − s)α(s)−1

together with the explicit description of the filtration on AS given in [2, Lemma
4.2] shows that

(α − 1)(FnAS) ⊆ Fn−mAS

for all n ∈ Z. Because m > 1, it follows from this that α preserves the filtration on
AS and hence extends to a ring endomorphism α of the completion QT (A) such that
(α − 1)FnQT (A) ⊆ Fn−mQT (A) for all n ∈ Z. Similarly, if (α − 1)FnA1 ⊆ Fn−mA
then (α − 1)FnQT (A1) ⊆ Fn−mQT (A). Part (a) follows, and part (b) is clear. �

3.3. The delta function. Let (A, A1) be a Frobenius pair and n be an integer.
Each filtered part FnA1 is closed in A1 by definition of the filtration topology, and
A1 is closed in A by assumption. Hence FnA1 is closed in A, which can be expressed
as follows:

FnA1 =
⋂

m>0

(FnA1 + Fn−mA) .

We can now define a key invariant of elements of A\A1:

Definition. For any w ∈ A\A1, let n = deg w and define

δ(w) := max{m : w ∈ FnA1 + Fn−mA}.
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Clearly δ(w) > 0. Note that if w ∈ FnA\A1, then w /∈ FnA1 + Fn−mA for some
m > 0 by the above remarks, so the definition makes sense. The number δ(w)
measures how closely the element w can be approximated by elements of A1. It
should be remarked that δ(w) > 0 if and only if grw ∈ B1, since both conditions
are equivalent to w ∈ FnA1 + Fn−1A.

Now suppose that w ∈ A\A1. By the definition of δ := δ(w), we can find
elements x ∈ FnA1 and y ∈ Fn−δA such that w = x + y; if δ = 0 we take x to be
zero. Note that y /∈ Fn−δ−1A by the maximality of δ and hence

Yw := gr y = y + Fn−δ−1A.

In view of our assumption on x, we have Yw = grw when δ = 0.

3.4. S-closures. Let (A, A1) be a Frobenius pair and let S be a fixed set of sources
of derivations of A. If I is a right ideal of A, we say that I is S-invariant if for all
a ∈ S, αr(I) ⊆ I for all r ≫ 0.

Definition. Let (A, A1) be a Frobenius pair, let S be a set of sources of derivations
of A and let J be a graded ideal of B. The S-closure JS of J is defined to be

JS := {Y ∈ B : ∀a ∈ S, dαr
(Y ) ∈ J for all r ≫ 0.}

Because dαr
is a B1-linear derivation of B for large enough r, we see that JS is

a B1-submodule of B containing B1. It is in fact a graded B1-submodule.

Proposition. Let I be an S-invariant right ideal of A and write J := gr I. Then
for any w ∈ I\A1, Yw ∈ JS .

Proof. Let us write w = x + y as in the previous subsection and let a ∈ S. We
can find an integer r0 > 1 such that θ1(αr) − θ(αr) > δ := δ(w) for all r > r0.
Therefore

αr(x) − x ∈ Fn−θ1(αr)A ⊆ Fn−δ−θ(αr)−1A and

αr(y) − y ∈ Fn−δ−θ(αr)A,

for all r > r0. Hence

αr(w) − w ∈ Fn−δ−θ(αr)A, and

αr(w) − w ≡ αr(y) − y mod Fn−δ−θ(αr)−1A

for all r > r0. We can rewrite the above as follows:

αr(w) − w + Fn−δ−θ(αr)−1A = αr(y) − y + Fn−δ−θ(αr)−1A = dαr
(Yw)

for r > r0. Since w ∈ I and I is S-invariant, dαr
(Yw) must lie in the ideal J = gr I

of B for r ≫ 0, and hence Yw ∈ JS as required. �

Let D denote the set of all B1-linear derivations of B.

Corollary. Suppose that D(JS) ⊆ J . Then J is controlled by B1: J = (J ∩B1)B.

Proof. By [2, Proposition 2.4(d)], it is enough to show that D(J) ⊆ J . So let X ∈ J
be a homogeneous element. If X ∈ B1 then D(X) = 0 ∈ J , so assume X /∈ B1.
Choose w ∈ I such that X = grw; then δ(w) = 0 by definition and X = Yw. Hence
X ∈ JS by the Proposition and hence D(X) ⊆ J by the assumption on J . The
result follows. �
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3.5. The control theorem. We can now state and prove our first main result, a
control theorem for S-invariant ideals. It should be viewed as a generalization of
the control theorem for normal elements [2, Theorem 3.1].

Theorem. Let (A, A1) be a Frobenius pair, let S be a set of sources of derivations,
let I be a S-invariant right ideal of A and let J := gr I. If D(JS) ⊆ J then I is
controlled by A1:

I = (I ∩ A1) · A.

Proof. We will first show that J∩B1 ⊆ gr(I∩A1). Let X ∈ J∩B1 be homogeneous
of degree n say, and choose w ∈ I such that grw = X . If w ∈ A1 then X = grw ∈
gr(I ∩ A1) as required, so assume that w /∈ A1. Write w = x + y as in §3.3; by
Proposition 3.4, Y := Yw = gr y ∈ JS , so D(Y ) ⊆ J by assumption on J .

Since J is controlled by B1 by Corollary 3.4, applying [2, Proposition 2.4(c)] to
the image of Y in B/J shows that Y ∈ J + B1.

Write δ = δ(w), so that deg y = n− δ. Note that δ > 0 because X ∈ B1. We can
find some s ∈ I ∩ Fn−δA, z ∈ Fn−δA1 and ǫ ∈ Fn−δ−1A such that y = s + z + ǫ.
Then w′ := w − s ∈ I and grw′ = grw = X because s ∈ Fn−δA and δ > 0.
Moreover, w′ = x + z + ǫ ∈ FnA1 + Fn−δ−1A, so that δ(w′) > δ(w).

Iterating the above argument, we can construct a sequence w1, w2, w3, . . . of
elements of I having the following properties:

• grwi = X ,
• wi /∈ A1,
• wi+1 ≡ wi mod Fn−δ(wi)A, and
• δ(wi+1) > δ(wi)

for all i > 1. Note that we may always assume that wi /∈ A1, because if any wi

does happen to lie in A1 then X = grwi ∈ gr(I ∩ A1) and we’re done.
This sequence converges to an element u ∈ A such that gru = X . Since the

filtration on A is complete and since B = grA is noetherian, I is closed in the
filtration topology by [12, Chapter II, Theorem 2.1.2(6)] so u ∈ I. Given an integer
m > 0, δ(wi) > m and u − wi ∈ Fn−mA for sufficiently large i, so

u = wi + (u − wi) ∈ (FnA1 + Fn−δ(wi)A) + Fn−mA ⊆ FnA1 + Fn−mA

for all m > 0. Because A1 is closed in A, u ∈ A1 and therefore X = gru ∈ gr(I∩A1).
Thus J ∩B1 ⊆ gr(I ∩A1) as claimed. Because gr(I ∩A1) is obviously contained

in J ∩ B1, we have the equality J ∩ B1 = gr(I ∩ A1). Now

gr((I ∩ A1)A) = gr(I ∩ A1) · grA = (J ∩ B1) · B = J = gr I

and therefore I = (I ∩ A1)A by [12, Chapter II, Lemma 1.2.9]. �

4. Iwasawa algebras

4.1. Uniform Γ-actions. Let p be an odd prime and let Γ and G be uniform pro-p
groups. We assume that Γ acts on G by group automorphisms and that the action
is uniform:

γ · g ≡ g mod Gp

for all γ ∈ Γ and g ∈ G. Let τ : Γ → Aut(G) be the associated group homo-
morphism; note that τ is automatically continuous by [10, Corollary 1.21(i)]. Let
LG denote the Zp-Lie algebra of G — this is a free Zp-module of rank d = dimG.
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Any automorphism of G gives rise to an automorphism of LG: this gives rise to a
natural injection

ι : Aut(G) →֒ GL(LG).

Clearly Γ acts uniformly on G if and only if the image of ιτ is contained in the first
congruence subgroup Γ1(GL(LG)) := ker(GL(LG) → GL(LG/pLG)) of GL(LG).
Since Γ1(GL(LG)) has finite index in GL(LG), we see that if Γ is any pro-p group
of finite rank acting on G by group automorphisms, then Γ always has a uniform
pro-p subgroup Γ1 of finite index that acts uniformly. Of course this last fact is
also implied by the finiteness of the group G/Gp.

4.2. Some Lie theory. The category of uniform pro-p groups is isomorphic to the
category of powerful Lie algebras by [10, Theorem 9.10], so the homomorphism ιτ
gives rise to a Lie algebra homomorphism

σ = log ◦ιτ ◦ exp : LΓ → p EndZp
(LG)

since p EndZp
(LG) is the Zp-Lie algebra of Γ1(GL(LG)). In other words, LG is

naturally a LΓ-module, acting by derivations and moreover

x · LG ⊆ pLG for all x ∈ LΓ.

Let NΓ = {x ∈ QpLΓ : x ·LG ⊆ LG} be the inverse image of EndZp
(LG) under the

homomorphism

σ : QpLΓ → EndQp
(QpLG).

Note that 1
pLΓ ⊆ NΓ. NΓ also contains kerσ and NΓ/ kerσ is a finitely generated

Zp-module. Hence

g := NΓ/pNΓ

is a finite dimensional Fp-Lie algebra. Define

V := LG/pLG,

an Fp-vector space of dimension d. Letting − : LG ։ V and − : NΓ ։ g denote
the natural surjections, V becomes a g-module via the rule

x · y = x · y
for all x ∈ NΓ and y ∈ LG. Let ρ : g → End(V ) be the associated homomorphism.

4.3. The derivation hypothesis. As explained in [3, §1.3], every endomorphism
ϕ of V extends to a derivation of Sym(V ) and for each r > 0 we also have the
deformed derivations ϕ[pr] of Sym(V ), defined by the rule

ϕ[pr ](v) = ϕ(v)pr

for all v ∈ V.

Let B = Sym(V ⊗ k) and let P be a graded prime ideal of B. Let D = Derk(B)
denote the space of all k-linear derivations of B; in fact, D is also the space of all
B1-linear derivations of B if we set B1 = kB[p]. Also, D is canonically isomorphic
to B ⊗Fp

V ∗ and Derk(BP ) is canonically isomorphic to BP ⊗Fp
V ∗ = DP (see §2.4

for the notation). The derivations ϕ[pr ] extend to BP , so we can also think of them
as lying in DP .

We can view V as a g-module via ρ; in this way, V ∗ is also naturally a g-module.
The next result gives a sufficient condition that ensures that a local analogue of the
derivation hypothesis of [2, §3.5] holds.
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Proposition. Let P be a graded prime ideal of B which does not contain g.v for
any v ∈ V \0. Let J be a graded ideal of BP and let Y ∈ BP be such that for all
x ∈ g, we have

ρ(x)[p
r ](Y ) ∈ J for all r ≫ 0.

Then DP (Y ) ⊆ J .

Proof. Fix x ∈ g and f ∈ V ∗. By [3, Proposition 1.4], some B-linear combination
of the derivations ρ(x)[p

r ] equals U(x · f), where U is some product of elements u,
each lying in x.V \ ker f . If f(P ∩ V ) = 0 then every such u lies outside of P and is
hence a unit in BP . Let W = (P ∩ V )⊥ be the annihilator of P ∩ V in V ∗; then

(x · f)(Y ) ∈ J for all x ∈ g and all f ∈ W.

Now if g · W < V ∗ then there exists v ∈ V \0 such that (g · W )(v) = 0. But then
W (g.v) = 0, which forces g.v ⊆ P ∩V and hence contradicts our assumption on P .

Hence g·W = V ∗; however DP is generated by V ∗ as a BP -module, so DP (Y ) ⊆ J
as required. �

Note that for “most” P , the intersection P ∩V will be zero and then P can only
contain g.v if v lies in the space of g-invariants V g of V . Since V g can be arranged
to be zero in many interesting cases, this means that the condition on P imposed
above is not very strong.

4.4. Derivations for Iwasawa algebras. Let A = kG and A1 = kGp be the
completed group algebras of G and Gp, with coefficients in our ground field k.
As usual, we equip A with the m-adic filtration, where m := (G − 1)kG is the
augmentation ideal of kG:

FnA :=

{

m−n if n 6 0
A otherwise.

It is not hard to see that this is the same filtration as the one considered in [2, §6.6].
Now by [2, Proposition 6.6], (A, A1) is a Frobenius pair, and by [2, Lemma 6.2(d)
and Proposition 6.4], there is a canonical isomorphism

Sym(V ⊗Fp
k)

∼=−→ grA.

Compare the following result with [3, Proposition 3.3].

Proposition. Let x ∈ g be non-zero, and choose a lift x̃ of x in NΓ\pNΓ. Let
m > 1 be such that pmx̃ ∈ LΓ. Let α = τ(exp(pmx̃)) ∈ Aut(G) and view α as an
algebra endomorphism of A = kG. Then

(a) (α − 1)FnA ⊆ Fn−pm+1A, for all n ∈ Z,
(b) (α − 1)FnA1 ⊆ Fn−pm+1+pA for all n ∈ Z, and

(c) dα = ρ(x)[p
m ] as derivations of grA.

Proof. Let C be the procyclic subgroup of Γ generated by γ := exp(pmx̃) ∈ Γ. Let
H be the semidirect product of G and C with γ acting on G by the automorphism
α. So inside this new group H , we have the relation

γgγ−1 = γ · g
for all g ∈ G. The group H is uniform and LH is the semidirect product of LG and
LC = pmx̃Zp, with pmx̃ acting via the derivation σ(pmx̃) : LG → LG:

LH = LG ⋊ LC .
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Because LC is abelian and x̃ · LG ⊆ LG, [pmx̃, LH ] ⊆ pmLH . Hence by [2, Propo-
sition 6.7], the following relations hold in kH for all n ∈ Z:

[γ, FnkH ] ⊆ Fn−pm+1kH
[γ, FnkHp] ⊆ Fn−pm+1+pkH.

Now (α − 1)(b) = γbγ−1 − b = [γ, b]γ−1 for all b ∈ kG and

FnkH ∩ kG = FnkG

for all n ∈ Z. Parts (a) and (b) follow.
Finally, part (c) follows from [2, Theorem 6.8]: one only needs to note that dα

coincides with the restriction to gr kG of the derivation {γ,−}pm−1 of gr kH . �

4.5. The support of the “failure of control” module. We can now put the
main pieces together and prove a refined version of [2, Theorem 5.2]. The theorem
below places a severe restriction on the characteristic support of the failure of
control module of any Γ-invariant right ideal of kG; see §2.4 for the notation.

Theorem. Let I be a Γ-invariant right ideal of kG and let F = I/(I ∩ kGp)kG be
the failure of control module. Then for any P ∈ Ch(F ) there exists v ∈ V \0 such
that g.v ⊆ P .

Proof. Suppose for a contradiction that P does not contain any subspace of V of
the form g.v for v ∈ V \0. Let P1 = ι∗P ; by Lemma 2.2, (AP , (A1)P1

) is a Frobenius
pair and we plan to apply the Control Theorem, Theorem 3.5 to it.

Let x ∈ g and choose a lift x̃ ∈ NΓ for x. There exists mx > 1 such that
pmxx̃ ∈ LΓ; then γx := exp(pmx x̃) lies in Γ, so

a(x) = {τ(γx), τ(γx)p, τ(γx)p2

, . . .}
is a source of derivations of (A, A1) by Proposition 4.4(a) and (b). We’re only
interested in the derivations of B induced by a(x); by Proposition 4.4(c) these
derivations do not depend on the choice of x̃, being precisely the ρ(x)[p

r ] for r > mx.
Let S := {a(x) : x ∈ g}; then SP := {a(x)TP

: x ∈ g} is a set of sources of
derivations of (AP , (A1)P1

) by Proposition 3.2(a).
Since I is Γ-invariant, I is clearly S-invariant in the sense of §3.4, and the

definition of a(x)TP
shows that the microlocalised right ideal IP of AP is SP -

invariant.
Let J = gr IP . In view of Proposition 4.4(c) and Proposition 3.2(b), if Y ∈ BP

lies in the SP -closure JSP of J , then for all x ∈ g,

ρ(x)[p
r ](Y ) ∈ J for all r ≫ 0.

It now follows from Proposition 4.3 that DP (Y ) must be contained in J , and hence
all the conditions of Theorem 3.5 are satisfied. We can therefore deduce from The-
orem 3.5 that IP is controlled by (A1)P1

. Now Lemma 2.3 implies that (gr F )P = 0
and hence P /∈ Ch(F ), a contradiction. �

4.6. Another control theorem. Recall the definition of purity from §2.6.

Theorem. Let I be a Γ-invariant right ideal of kG and suppose that kG/I is pure.
Suppose that no minimal prime P above gr I contains g.v for any v ∈ V \0. Then
I is controlled by kGp.
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Proof. Let F = I/I1A be the failure of control module, and let X denote the set of
all graded prime ideals of B that contain some g.v for v ∈ V \0. By Corollary 2.4,
Proposition 2.5 and Theorem 4.5,

Ch(F ) ⊆ Ch(A/I1A) ∩ X = Ch(A/I) ∩ X .

Since A/I is pure, Gabber’s Purity of the Characteristic Variety theorem [8, Corol-
lary 5.21] implies that every prime in min Ch(A/I) has the same height. Because
none of these primes lie in X by assumption, it now follows from Lemma 2.6(b)
that j(F ) > j(A/I). Therefore F = 0 by Proposition 2.6, as required. �

4.7. Consequences for Ch(A/I) when A/I is pure. The group Γ acts naturally
on Gp, so LΓ acts on LGp = pLG. It is easy to see that the normaliser NΓ for this
action is the same as before, meaning that g is unchanged. Now g also acts on
V1 := LGp/LGp2 = pLG/p2LG. Clearly the map x 7→ px induces an isomorphism
of g-modules between V and V1; if we view V and V1 as being embedded into B
and B1 respectively, then this isomorphism is given by v 7→ vp for any v ∈ V .

Lemma. Let X1 = {p ∈ Specgr(B1) : p ⊇ g · v1 for some v1 ∈ V1\0}. Then

X1 = ι∗(X ).

Proof. This is immediate, using the fact that ι∗(P ) = P ∩ B1 for P ∈ Specgr(B),

and that ι−1
∗ (p) =

√
pB for p ∈ Specgr(B1). �

Proposition. Let I be a proper, non-zero Γ-invariant right ideal of kG such that
kG/I is pure. Then there exists a minimal prime P above gr I and v ∈ V \0 such
that g · v ⊆ P .

Proof. Suppose for a contradiction that min Ch(A/I) ∩ X = ∅; we will show that
I = 0. By Theorem 4.6, I is controlled by A1: I = I1A. Since ι∗(Ch(A/I)) =
Ch(A1/I1) by Proposition 2.5 and since ι∗(X ) = X1 by the lemma, we see that

min Ch(A1/I1) ∩ X1 = ∅;
moreover A1/I1 is pure by Lemma 2.6(c). Thus I1 satisfies the same conditions
as I. We can now apply the above argument repeatedly and deduce that I is
controlled by kGpn

for all n > 0. Since I is proper and since kGpn

is scalar
local, I = (I ∩ kGpn

)kG ⊆ (Gpn − 1)kG for all n > 0. The intersection of these
augmentation ideals is zero, so I = 0. This is the required contradiction. �

Corollary. Let I be a proper, non-zero Γ-invariant right ideal of kG such that
kG/I is pure. Then

j(kG/I) > u := min{dim g · v : v ∈ V \0}.

Proof. By the theorem, we can find P ∈ min Ch(A/I) such that P ∈ X . Then P
contains (g · v)B, which is clearly a prime ideal of height dim g · v. Hence htP >

dim g · v > u. Since every prime in min Ch(A/I) has the same height by Gabber’s
purity theorem, we can now use Lemma 2.6(b) to deduce that j(A/I) = htP > u
as required. �

In fact, the assumption that kG/I is pure is unnecessary:
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4.8. Theorem. Let I be a proper, non-zero Γ-invariant right ideal of kG. Then
there exists a minimal prime ideal P above gr I and v ∈ V \0 such that g · v ⊆ P .
It follows that j(kG/I) > min{dim g · v : v ∈ V \0}.

Proof. Let I/I be the largest submodule of A/I of grade strictly bigger than j(A/I).
We claim that the right ideal I is still Γ-invariant. For any γ ∈ Γ, we saw in the
proof of Proposition 3.2 that gr γ(x) = grx for any x ∈ A. This means that
grγ(I) = gr I, so

jA(γ(I)/I) = jB(gr γ(I)/ gr I) = jB(gr I/ gr I) = jA(I/I) > jA(A/I)

by Lemma 2.6(b). Since γ(I) contains γ(I) = I, it follows that γ(I) ⊆ I. Hence I
is Γ-invariant as claimed, it is still proper and non-zero, but now A/I is also pure.

Let P ∈ min Ch(A/I); then P ∈ Ch(A/I) by Corollary 2.4. If Q ⊆ P also lies in
Ch(A/I), then htQ > j(A/I) = j(A/I) = htP by Lemma 2.6(b), forcing Q = P .
Hence

min Ch(A/I) ⊆ min Ch(A/I).

Therefore min Ch(A/I) ∩ X 6= ∅ by Proposition 4.7, and j(A/I) = j(A/I) > u by
Corollary 4.7. �

5. Applications

5.1. Linear actions. One obvious example of a situation where our results are
applicable is the case of a uniform pro-p group Γ acting linearly on some free
abelian pro-p group G of finite rank n. Because G is abelian, Γ automatically acts
by group automorphisms, and we only have to assume that the image of the action
is contained in the first congruence subgroup of Aut(G) ∼= GLn(Zp) to ensure the
action is uniform.

Theorem. Suppose that the image of the action of Γ is open in GLn(Zp). Then
the only Γ-invariant prime ideals of kG are the zero ideal and the augmentation
ideal.

Proof. Without loss of generality, we may assume that the image of Γ is equal to
a congruence subgroup of GLn(Zp). Then it is easy to see that the normaliser
Lie algebra NΓ defined in §4.2 is the full linear Lie algebra gln(Zp). Hence g =
NΓ/pNΓ = gln(Fp) and V = G/Gp = Fn

p is the natural g-module. It is now clear
that min{dim g · v : v ∈ V \0} = n, so Theorem 4.8 implies that a non-zero Γ-
invariant prime ideal I of kG must satisfy j(kG/I) = n. This forces I to be the
augmentation ideal of kG since kG is local, and the result follows. �

An obvious modification of the above proof shows that the result is also true
if we only assume that the image of Γ is an open subgroup of SLn(Zp). These
results provide some very weak evidence towards the following conjecture, which is
inspired by Roseblade’s theorem [13, Theorem D]:

Conjecture. Let I be a Γ-invariant prime ideal of kG which is faithful, that is
(1 + I) ∩ G = 1. Then I is controlled by the subgroup of Γ-fixed points of G, GΓ:

I = (I ∩ kGΓ)kG.

A more conceptual proof of Roseblade’s theorem can be found in [6, §1.3].
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5.2. Calculations with Chevalley Lie algebras. Let Φ be an indecomposable
root system. We fix a set of fundamental roots Π and the corresponding set of
positive roots Φ+ of Φ. Let ρ = 1

2

∑

s∈Φ+ s and let θ be the highest root of Φ+.
Recall that the root system Φ is by definition a finite subset of some real Euclidean
space, so the inner product (2ρ, θ) makes sense.

Let gk = Φ(k) be the Chevalley Lie algebra over our field k of characteristic p.
Recall [9, §4] that by definition, gk has a basis consisting of the root vectors es

(s ∈ Φ) , and the fundamental co-roots hr, (r ∈ Π). Let bk denote the (positive)
Borel subalgebra of gk, spanned by all of the co-roots and the es where s ∈ Φ+.

Recall [3, §0.3] that we call p a nice prime for Φ if p > 5 and if p ∤ n + 1 when
Φ is the root system An. We would like to thank Alexander Premet for providing
the proof of the following result.

Proposition. Suppose that p is a nice prime for Φ. Let

uk := min{dimk[gk, x] : x ∈ gk\0}.
Then uk = (2ρ, θ).

Proof. We first assume that the field k is algebraically closed. Let G denote the
Chevalley group over k associated to Φ. This is a connected, adjoint, simple alge-
braic group over k, whose Lie algebra equals gk. Hence G acts naturally on gk by
Lie algebra automorphisms. For each n > 0, let X(n) = {x ∈ gk : dim[gk, x] 6 n}.
Then clearly

uk = min{n : X(n) 6= {0}}.
Now X(uk) is a closed subset of gk in the Zariski topology, which is moreover
conical, G-stable and contains at least one line. Let B be the Borel subgroup of
G whose Lie algebra equals bk. By Borel’s fixed point theorem [4, Chapter III,
Theorem 10.4], X(uk) contains a B-stable line 〈x〉 for some nonzero x ∈ gk. By our
choice of B, x is then a highest weight vector for the G-module gk, so x is also a
highest weight vector for the gk-module gk.

Our assumption on p implies that gk is a simple Lie algebra — see [14, p. 187].
Hence this gk-module is irreducible. It now follows (essentially from the PBW
theorem) that x must be a non-zero scalar multiple of eθ, where θ is the highest
root of Φ+. Following [17], we call S := {β ∈ Φ+ : θ − β ∈ Φ} the set of special
roots. Since p > 5 by assumption, Chevalley’s basis theorem [9, Theorem 4.2.1]
implies that [er, es] 6= 0 whenever r, s and r + s ∈ Φ. We can therefore compute

[gk, eθ] = 〈eθ, hθ〉 ⊕ 〈eθ−β : β ∈ S〉,
whence uk = dimk[gk, eθ] = |S| + 2. It is shown in the proof of [17, Lemma 3] that
|S| + 2 = (2ρ, θ), so uk = (2ρ, θ) when k is algebraically closed.

Returning to the general case, let k denote an algebraic closure of k. The com-
putation of [gk, eθ] performed above does not require k = k, so

(2ρ, θ) = dimk[gk, eθ] > uk > uk = (2ρ, θ)

and the proposition follows. �

5.3. Iwasawa algebras of Chevalley type. Here is our main result.

Theorem. Let p be a nice prime for Φ, let G = exp(ptΦ(Zp)) be the uniform pro-p
group of Chevalley type for some t > 1, and let I be a non-zero two-sided ideal of
kG. Then

j(kG/I) > (2ρ, θ).



Γ-INVARIANT IDEALS IN IWASAWA ALGEBRAS 17

Proof. Γ = G acts on G by conjugation, and this action is uniform in the sense of
§4.1 because G is uniform. Clearly I is a Γ-invariant right ideal of kG. Following the
proof of [3, Theorem 3.4], we see that NΓ = Φ(Zp) and that g = Φ(Fp). Moreover,
x 7→ ptx induces a g-module isomorphism between the adjoint g-module g and the
g-module V = G/Gp.

We can now use Theorem 4.8 to deduce that j(kG/I) is bounded below by
min{dim[g, x] : x ∈ g\0}. But this number equals (2ρ, θ) by Proposition 5.2. �

It can be shown [11, Exercise 6.2] that (2ρ, θ) = 2ĥ − 2, where ĥ is the dual
Coxeter number of Φ that arises in the study of affine Lie algebras. A list of values
of this invariant can be found in [11, §6.1]; we used this list to construct the table
given in §1.5.
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