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Abstract. Let F be a finite extension of Qp, let ΩF be Drinfeld’s upper

half-plane over F and let G0 the subgroup of GL2(F ) consisting of elements
whose determinant has norm 1. By working locally on ΩF , we construct and

classify the torsion G0-equivariant line bundles with integrable connection on

Ω in terms of the smooth linear characters of the units of the maximal order
of the quaternion algebra over F .

Contents

1. Introduction 1
1.1. Background 1
1.2. The main result 3
1.3. Motivation 3
1.4. An overview of some related works 4
1.5. Acknowledgements 4
1.6. Conventions and Notation 4
2. Background from algebra 5
2.1. Measures on profinite sets 5
2.2. Some stabilisers in G0 and their linear characters 8
2.3. Quaternions 11
2.4. Equivariant sheaves and amalgamated products 13
3. Topics in rigid analytic geometry 17
3.1. Line bundles with flat connection on smooth rigid spaces 17
3.2. Equivariant line bundles with flat connections 22
3.3. Cocycles and equivariant line bundles on affinoids 29
4. Applications to Drinfeld’s upper half plane 34
4.1. Subdomains of the rigid analytic affine line 34
4.2. Drinfeld’s upper half-plane 38
4.3. Units, measures and flat connections on Ω 43
4.4. Proof of Theorem A 48
References 54

1. Introduction

1.1. Background. Let p be a prime number, Qp the field of p-adic numbers and F
a finite extension of Qp with ring of integers OF and uniformiser πF . Let ΩF denote
the the Drinfeld upper half-plane: it is a rigid F -analytic space whose underlying
set is the set of Gal(F/F )-orbits in P1(F )\P1(F ). In [11], Drinfeld defined a tower

of G := GL2(F )-equivariant étale rigid F̆ -analytic coverings of Ω := ΩF ×F F̆ ,

where F̆ is the completion of the maximal unramified extension of F .
1
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We consider a slight modification of Drinfeld’s construction, due to Rapoport-
Zink [25]. They constructed a tower of coverings

· · · → Mn →Mn−1 → · · · →M1 →M0

of rigid F̆ -analytic spaces. Their base spaceM0 can be viewed as being the disjoint
union of countably many copies of Ω (cf [25, Theorem 3.72]): there is a non-
canonical isomorphism M0

∼= Ω× Z. The tower comes equipped with an action of
G, so that the mapsMn →Mn−1 are all G-equivariant. The G-action on the base
space is given by

g · (z, n) = (g · z, n+ vπF (det g)).

Here the G-action on Ω is the usual one by Möbius transformations. Thus each
copy of Ω is stabilised by the subgroup G0 of G consisting of matrices g in G such
that vπF (det g) = 0. In this way we may viewM0 as being isomorphic to G×G0 Ω.

Let D be the quaternion division algebra over F with valuation ring OD and let
Π denote a generator of the unique maximal ideal in OD. The mapsMn →Mn−1

in the tower are all finite étale and Galois with

Gal(Mn/M0) ∼= O×D/(1 + ΠnOD).

Moreover, the actions of G and Gal(Mn/M0) on Mn commute.
Scholze–Weinstein have proved in [29, Theorem 7.3.1] that if C denotes a com-

plete and algebraically closed extension of F̆ and Ω̃ is a finite étale G-equivariant
cover of the base-change Ω ×F̆ C, then there is an integer m > 0 such that

Mm ×F̆ C→ Ω×F̆ C factors through Ω̃.
One way to better understand these finite étale equivariant covers is through

the study of equivariant vector bundles with flat connections on the base space:
the two theories are essentially equivalent. Here we briefly sketch how to obtain
equivariant vector bundles with flat connection from the Drinfeld tower. Suppose
that ρ is a smooth geometrically irreducible representation of O×D whose character

is defined over some finite extension K of F̆ . There is some m > 0 such that ρ
factors through O×D/(1 + ΠmOD) and, for all n > m, OMn,K

has a ρ-isotypical
component Vρ independent of the choice of n. Then the pushforward of Vρ down
to M0,K is a G-equivariant vector bundle over M0,K of rank (dim ρ)2, equipped
with an integrable connection.

In this paper we only consider the smooth K-linear representations of O×D of

degree 1, that is, the torsion characters θ : O×D → K×. Then the pushforward of Vθ
is a G-equivariant line bundle on M0,K with an integrable connection. For exam-
ple, when 1 is the trivial representation, the corresponding line bundle is just the
structure sheaf OM0 with its natural G-action and natural integrable connection.
The set Hom(O×D,K×)tors of torsion characters O×D → K× forms a group under
pointwise multiplication of characters; given a continuous action1 of a topological
group H on a smooth rigid K-analytic space X, we denote by PicConH(X) the
group of isomorphism classes of H-equivariant line bundles with an integrable con-
nection on X, where the group structure comes from the tensor product of these
line bundles. In this way, the Drinfeld tower gives us a group homomorphism

(1) Hom(O×D,K
×)tors −→ PicConG(M0,K)tors.

1see §3.2 for the precise definitions
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1.2. The main result. In this paper we will consider, for each complete valued

field extension K of F , the subgroup PicConG
0

(Ω)tors of PicConG
0

(Ω) consisting of
the isomorphism classes of the G0-equivariant line bundles with integrable connec-
tion on the rigid K-analytic space Ω := ΩF ×F K that have finite order under ⊗.
This group is naturally isomorphic to PicConG(G×G0

Ω)tors via an induction map,

and therefore also, non-canonically, to PicConG(M0,K)tors whenever K contains

F̆ . Our main result is then

Theorem A. Suppose that K contains the quadratic unramified extension L of
F . Then there is an isomorphism of abelian groups

PicConG
0

(Ω)tors

∼=−→ Hom(O×D,K
×)tors.

We note that Theorem A cannot be true without the condition that K contains
L in the statement, because PicConG

0

(Ω)[p′] is cyclic of order q2− 1 for any choice
of field extension K, but K× contains no such subgroup unless K contains L and
so Hom(O×D,K×) cannot either. We also note here in passing that in fact all line
bundles on Ω are known to be trivial — see, e.g. [14, Théorème A].

Our isomorphism depends on a choice of a point z ∈ ΩF (L) and an F -algebra

embedding ι : L ↪→ D. However, there is a natural G-action on PicConG
0

(Ω)tors

and a natural conjugation D×-action on Hom(O×D,K×)tors: the first action factors

through G/G0F× and the second action factors through D×/O×DF×, both cyclic
groups of order 2. The isomorphisms in Theorem A are compatible with respect to
these actions, provided we identify G/G0F× with D×/O×DF× in the only possible
way. Quotienting out by these actions on both sides, we obtain a bijection

PicConG
0

(Ω)tors/G
∼=−→ Hom(O×D,K

×)tors/D
×

which no longer depends on any choices. We expect, but do not check it in this
paper, that when K = F̆ , the isomorphism in Theorem A is in fact inverse to (1) for
some choice of identification ofM0 with G×G0 Ω, depending on our other choices.

1.3. Motivation. We do not use the result of Scholze–Weinstein [29], nor even
the existence of the Drinfeld tower, to prove Theorem A. Instead, we give an ex-

plicit construction of the elements PicConG
0

(Ω)tors as finite order G0-equivariant
line bundles with connection on Ω and prove directly that there are no others.
More precisely: in this paper we give an elementary construction 2 of finite order
GL2(OF )-equivariant line bundles with connection on the K-affinoid subdomain Ω0

of Ω that is the inverse image of the vertex fixed by GL2(OF ) in the Bruhat-Tits
tree under the reduction map, and show that each of these line bundles extends
uniquely to a G0-equivariant line bundle with connection on all of Ω. We have
provided full arguments for some results that already appear in the literature in
order to stress the elementary nature of our work.

In our forthcoming work [1], we will use this elementary construction to better
understand the structure of the strong duals of the global sections L θ(Ω)′s of these
equivariant line bundles as locally F -analytic representations of G. If j : Ω → P1

K

denotes the open inclusion, then the results of this paper are used to show that j∗L θ

is a coadmissible G-equivariant D-module on P1
K in the sense of [2]. It is a formal

consequence that L θ(Ω)′s is an admissible F -locally analytic K-representation of

2elementary in the sense of not depending on the duality of Rapoport-Zink spaces, nor on the

theory of perfectoid spaces
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G, which is a consequence of a result of Patel, Schmidt and Strauch [22, Theorem
7.2.1(iv)]. However we are able to prove stronger results about the structure of these
representations: we will show that for each θ ∈ Hom(O×D,K×)tors, L θ(Ω)′ is an
admissible locally F -analytic K-representation of G0 that is topologically irreducible
when θ is not fixed by the D×-action on Hom(O×D,K×)tors mentioned above, and
that has a codimension 1-submodule that is topologically irreducible otherwise.

1.4. An overview of some related works. Because of the central position of
the theory of Drinfeld coverings and Rapoport-Zink spaces in the local Langlands
program [13], it is difficult to make a comprehensive literature review. In his work
[33], Teitelbaum found explicit local equations for the first Drinfeld covering of Ω:
this yields explicit torsion line bundles with connection on Ω0 together with a (non-
explicit) GL2(OF )-equivariant structure. However neither Teitelbaum, nor Lue Pan
in his closely-related work [21], consider the flat connections on these line bundles,
nor do they make an attempt to classify the appropriate equivariant structures in
an elementary manner.

We acknowledge our intellectual debt to the Introduction of [10], where Dospinescu
and Le Bras explain the importance of the equivariant vector bundles on Ω in the
context of locally analytic representations of GL2(F ), and in particular in the p-adic
local Langlands program. We mention here in passing that the constructions in our
paper enable us to define the first Drinfeld covering of Ω directly over F rather than
over F̆ without appealing to the theory of Weil descent. We also take the oppor-
tunity to mention here the monumental works of Colmez, Dospinescu and Nizio l
[8], [9] that use Scholze’s pro-étale methods and build upon [10] to show, amongst
other things, that the p-adic étale cohomology of the Drinfeld tower realises the
p-adic local Langlands correspondence, at least in the case when F = Qp.

Finally, we mention that Junger in his recent preprint [15] has classified equi-

variant line bundles on Deligne’s formal model Ω̂ of ΩF . There are some formal
similarities in our methods (for example his Proposition 2.10 plays a similar role to
our Proposition 3.2.14), however we cannot deduce his results from ours, nor vice
versa. We expect that our results here can be naturally extended to analogues of
Ω in higher dimensions.

1.5. Acknowledgements. We thank Aurel Page for pointing the paper of Riehm
[26] on MathOverflow. We also thank James Taylor for his comments. The second
author thanks Brasenose College, Oxford for its hospitality.

1.6. Conventions and Notation. F will denote a finite extension of Qp with
ring of integers OF , uniformiser πF and residue field kF of order q. K will denote
a field containing F that is complete with respect to a non-archimedean norm | · |
such that |p| = 1/p. We will write:

• K◦ := {a ∈ K : |a| 6 1} for the valuation ring of K,
• K◦◦ := {a ∈ K : |a| < 1} for the maximal ideal of K◦,
• K for a fixed algebraic closure of K, and
• C for the completion of K.

Let X be a rigid K-analytic variety. When Y is a subset X, we will say that Y is
an affinoid subdomain of X to mean that Y is an admissible open subspace of X,
itself isomorphic to an affinoid K-variety. When X itself happens to be a K-affinoid

https://mathoverflow.net/questions/433274/abelianization-of-unit-quaternions-over-a-p-adic-field
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variety, this agrees by [4, Corollary 8.2.1/4] with the standard definition found at
[4, Definition 7.2.2/2]. We will write

• | · |X to denote the (power-multiplicative) supremum seminorm on X,
• O(X)◦ := {f ∈ O(X) : |f |X 6 1},
• O(X)◦◦ := {f ∈ O(X) : |f |X < 1},
• O(X)×× := 1 +O(X)××, the subgroup of small units in O(X)×, and
• O(X)××r := {1 + f : |f |X 6 r} 6 O(X)×× for each real number r ∈ (0, 1).

Pic(X) will denote the Picard group of X consisting of the isomorphism classes of
line bundles on X with the group operation given by tensor product.

When K ′ is a complete field extension of K, we will write XK′ := X ×K K ′ for
the base change of X to K ′, and

X(K ′) = {φ : SpK ′ → X : φ is a morphism of rigid K-analytic varieties}

will denote the set of K ′-valued points of X.
Let A be an abelian group and let d be a non-zero integer. We will write

• A[d] = {a ∈ A | da = 0} to denote the d-torsion subgroup of A,
• A[p′] :=

⋃
(d,p)=1A[d] to denote the prime-to-p torsion subgroup of A,

• A[p∞] :=
⋃∞
n=1A[pn] to denote the p-power torsion subgroup of A.

Let a group G act on a set X. We will write

• Gx := {g ∈ G : gx = x} for the stabilizer of a point x ∈ X, and
• XG := {x ∈ X : gx = x for all g ∈ G} for the set of elements fixed by G.

When we discuss cochains, cocycles and coboundaries we will work with the
continuous cochain cohomology of Tate, [32]. That is if G is a topological group
and A is a topological abelian group equipped with a continuous action of G then:

• Cn(G,A) := {f : Gn → A : f is continuous} is the set of continuous A-
valued n-cochains,

• Zn(G,A) is the set of continuous A-valued n-cocycles,
• Bn(G,A) is the set of continuous A-valued n-coboundaries,
• Hn(G,A) is the nth continuous cohomology group Zn(G,A)/Bn(G,A),
• δG : C0(G,A) = A→ C1(G,A) is the map given by δG(a)(g) = g · a− a.

Note that whenever θ : A→ B is a G-equivariant map of topological abelian groups
with continuous G-action, we have δGθ = θδG.

In the particular case whereG acts trivially onA, we will usually write Hom(G,A)
instead of Z1(G,A) or H1(G,A) to denote the group of continuous homomorphisms
from G to A. For any continuous group homomorphism ϕ : G→ H, we denote by

ϕ∗ : Hom(H,A)→ Hom(G,A)

the map given by pre-composition by ϕ.

2. Background from algebra

2.1. Measures on profinite sets. We begin by adapting some definitions from
[12, Definitions 2.7.10].

Definition 2.1.1. Let Z be a profinite set and let a be an abelian group.

(a) An a-valued measure on Z is a function ν from the set of clopen subsets
of Z to a, satisfying ν(U) = ν(V ) + ν(U\V ) whenever V ⊆ U are clopen
subsets of Z.
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(b) M(Z, a) denotes the abelian group of all a-valued measures on Z under
pointwise operations.

(c) M0(Z, a) := {ν ∈M(Z, a) : ν(Z) = 0} is the subgroup of a-valued measures
on Z with total value zero.

Examples 2.1.2.

(1) If Z is any profinite set and a is a unital ring then for each z ∈ Z we can
define a measure δz by

δz(U) =

®
1 if z ∈ U
0 otherwise.

(2) If Z happens to be finite we can define a ‘counting measure’ in M(Z,Z) via

ΣZ(U) = |U | for all U ⊂ Z.

Indeed ΣZ =
∑
z∈Z δz.

Let C(Z,Z) be the set of continuous Z-valued functions on Z, where we give Z
the discrete topology. Of course every such function is locally constant.

Proposition 2.1.3. Let Z be a profinite set and let a be an abelian group.

(a) There is a natural additive isomorphism M(Z, a)→ HomZ(C(Z,Z), a).
(b) Let (Zi)i∈I be a filtered inverse system of finite sets. Then every isomor-

phism Z ∼= lim←−Zi of profinite sets induces an isomorphisms of abelian

groups M(Z, a) ∼= lim←−M(Zi, a) and M0(Z, a) ∼= lim←−M0(Zi, a).

(c) The functor a 7→M(Z, a) is exact.

Proof. (a) Let ν ∈ M(Z, a) and let f : Z → Z be locally constant. Because Z is
profinite and hence compact, we can choose an open partition {U1, · · · , Um} of Z
such that f|Ui is constant for each i. Choose zi ∈ Ui for each i = 1, · · · ,m and

define 〈ν, f〉 :=
m∑
i=1

f(zi)ν(Ui) ∈ a. Then 〈ν, f〉 does not depend on the choice of

open partition or the choice of the zi’s, and ν 7→ (f 7→ 〈ν, f〉) defines an additive
map M(Z, a)→ HomZ(C(Z,Z), a).

Let 1U denote the characteristic function of the clopen subset U of Z. Given
an additive map g : C(Z,Z) → a, setting ν(U) := g(1U ) ∈ a for each clopen U
defines an element ν ∈M(Z, a) such that 〈ν, f〉 = g(f) for all f ∈ C(Z,Z) because
the characteristic functions 1U generate C(Z,Z) as an abelian group. The function
g 7→ ν is then an inverse to M(Z, a)→ HomZ(C(Z,Z), a).

(b) The isomorphism Z ∼= lim←−Zi induces an isomorphism of abelian groups

C(Z,Z) ∼= lim
−→

C(Zi,Z). The functor HomZ(−, a) converts colimits into limits; now

apply part (a) to get M(Z, a) ∼= lim←−M(Zi, a). Since taking limits commutes with

taking kernels the other part follows immediately.
(c) By a theorem of Nöbeling — see [28, Theorem 5.4] — C(Z,Z) is a free abelian

group. Hence HomZ(C(Z,Z),−) is exact; now apply part (a). �

Definition 2.1.4. For every abelian group a the map Z 7→M(Z, a) from profinite
sets to abelian groups extends to a functor from the category of profinite sets and
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continuous functions to the category of abelian groups sending a continuous function
f : Z1 → Z2 to the group homomorphism

f∗ : M(Z1, a)→M(Z2, a); f∗(ν)(U) = ν(f−1(U)).

In particular an action of group G on a profinite set Z by homeomorphisms
induces an action on M(Z, a) by automorphisms of abelian groups via g ·ν = g∗(ν).

Remark 2.1.5. If ν ∈ M0(Z1, a) in the setting of Definition 2.1.4 then f∗(ν) ∈
M0(Z2, a) since f∗(ν)(Z2) = ν(f−1(Z2)) = ν(Z1) = 0 so Z 7→M0(Z, a) also defines
a functor.

The following result will be useful in what follows.

Lemma 2.1.6. Let Z be a profinite set and let d be a non-zero integer. Then the

sequence 0→M0(Z,Z)
d−→M0(Z,Z)→M0(Z,Z/dZ)→ 0 is exact.

Proof. Consider the multiplication-by-d map on the short exact sequence of abelian
groups 0→M0(Z,Z)→M(Z,Z)→ Z→ 0. This gives a 3× 3 diagram of abelian
groups, whose rows are exact, whose second column is exact by Proposition 2.1.3(c)
and whose third column is exact for trivial reasons. Hence the first column is also
exact by the Nine Lemma. �

Recall our conventions concerning continuous group cohomology from §1.6.

Lemma 2.1.7. Let G be a profinite group with a continuous transitive action on
a finite set X. Then

(a) M(X,Z)G = Z · ΣX ;
(b) M0(X,Z)G = 0;
(c) H1(G,M(X,Z)) = 0.

Proof. (a) It is easy to compute that M(X,Z)G = Z ·ΣX where ΣX is the counting
measure from Example 2.1.2(2).

(b) Use M0(X,Z)G = ker
(
M(X,Z)G → Z; ν 7→ ν(X)

)
and nΣX(X) = n|X|.

(c) Choose an arbitrary point x ∈ X. Since X is finite, M(X,Z) is isomorphic to

the (co)induced module IndGxG Z in the sense of [20, Chapter I, §6], where Z denotes
the trivial Gx-module. Then by Shapiro’s Lemma, [20, Proposition 1.6.4], we have

H1(G,M(X,Z)) ∼= H1(Gx,Z).

Since the action of Gx on Z is trivial, Gx is profinite and Z is a discrete torsion-
free group we deduce that H1(Gx,Z) = Hom(Gx,Z) = 0. �

Proposition 2.1.8. Let G be a profinite group acting continuously and transitively
on two non-empty finite sets X,Y , and let π : X → Y be a G-equivariant function.
Let d > 1 be an integer and let h := gcd(d, |X|). Then

(a) M(X,Z/dZ)G is cyclic of order d, generated by the image of ΣX ,
(b) M0(X,Z/dZ)G is cyclic of order h, generated by the image of d

hΣX , and

(c) π∗ (ΣX) = |X|
|Y |ΣY .

Proof. (a) The short exact sequence

0→M(X,Z)
d→M(X,Z)→M(X,Z/dZ)→ 0

induces a long exact sequence of cohomology

0→M(X,Z)G
d→M(X,Z)G →M(X,Z/dZ)G→H1(G,M(X,Z))
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whose final term is 0 by Lemma 2.1.7(c). Since M(X,Z)G = Z · ΣX by Lemma
2.1.7(a) the result follows.

(b) Note that M0(X,Z/dZ)G = {ν ∈M(X,Z/dZ)G : ν(X) = dZ}. By part (a),
every such ν is the image of nΣX for some n. But nΣX(X) = n|X| so

M0(X,Z/dZ)G = {nΣX ∈M(X,Z/dZ) : d divides n|X|}

giving the result.
(c) Whenever U ⊆ Y , we have π∗(ΣX)(U) = ΣX(π−1(U)) =

∣∣π−1(U)
∣∣. Since G

acts transitively on X and Y , all the fibres have order |X||Y | and so∣∣π−1(U)
∣∣ =
|X|
|Y |
|U |

as required. �

2.2. Some stabilisers in G0 and their linear characters.

Notation 2.2.1.

(a) G0 := {g ∈ GL2(F ) : vπF (det g) = 1}.
(b) The Iwahori subgroup I of GL2(OF ) is

I :=

ßÅ
a b
c d

ã
∈ GL2(OF ) : c ≡ 0 modπFOF

™
.

(c) We write w :=

Å
0 1
πF 0

ã
∈ GL2(F ).

(d) We write A := GL2(OF ) and B := wA = wAw−1.

We recall from [31, §§II.1.2-3] that if BT is the Bruhat–Tits tree associated with
PGL2(F ), then A,B and I arise as stabilisers in G0 under the natural G0-action
on BT as follows: there is a vertex s of BT such that (s ws) is an edge of BT , and

A = G0
s, B = G0

ws, and I = G0
(s ws).

In particular, we have I = A ∩ B. The following classical result will be crucial to
our arguments later on in §4.4.

Theorem 2.2.2. G0 is the amalgamated product of its open subgroups A and B
over their intersection I:

G0 = A ∗
I
B.

Proof. This is [31, Theorem II.3]. �

Recall that F× is the direct product of its subgroups µp′(F ), O××F and 〈πF 〉:

F× ∼= µp′(F )×O××F × 〈πF 〉.

We write a 7→ â to denote the homomorphism that is the projection F× → µp′(F )
with kernel O××F × 〈πF 〉. We will use the same notation ·̂ to denote the analogous
projection L× → µp′(L) for other finite extensions L/Qp.

Lemma 2.2.3.

(a) Hom(A,K×)[p′] =

ß”det
k

: k ∈ Z/(q − 1)Z
™

.
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(b) Every element of Hom(I,K×)[p′] is of the formÅ
a b
πF c d

ã
7→ ân1 d̂n2

for some n1, n2 ∈ Z/(q − 1)Z.

(c) (Hom(I,K×)[p′])
〈w〉

=

ß”det
k

: k ∈ Z/(q − 1)Z
™

.

Proof. (a) For any θ ∈ Hom(A,K×)[p′], every pro-p subgroup of A is contained
in ker θ. Since SL2(OF ) is generated by its pro-p subgroups it follows that θ
factors through det : A→ O×F . Since O××F is also pro-p we see that any element of

Hom(O×F ,K×)[p′] factors through “−. It remains to observe that Hom(µp′(F ),K×)
consists of maps of the form a 7→ ak for some k ∈ Z/(q − 1)Z, because µp′(F ) is
cyclic of order q − 1.

(b) Once again, if θ ∈ Hom(I,K×)[p′] then any pro-p subgroup of I is contained

in ker θ. The kernel of the map I → µp′(F )× µp′(F ) sending

Å
a b
πF c d

ã
to (â, ĉ) is

pro-p. Now the result follows as in (a).
(c) By part (b), every χ ∈ Hom(I,K×)[p′] is of the formÅ

a b
πF c d

ã
7→ ân1 d̂n2

for some n1, n2 ∈ Z/(q − 1)Z. Now

(w · χ)

ÅÅ
a b
πF c d

ãã
= χ

ÅÅ
d c
πF b a

ãã
= ân2 d̂n1 .

Thus if χ = w · χ then n1 = n2 and χ = ”det
n1

. �

Remark 2.2.4. It follows from the proof of Lemma 2.2.3 that any p′-quotient of
A,B or I has exponent dividing q − 1.

We will now recall the structure of the stabilisers in GL2(F ) of points in P1(L) for
quadratic extensions L of F , under the GL2(F )-action by Möbius transformations.

Lemma 2.2.5. Suppose that F (z) is a quadratic extension of F . Let

N, tr : F (z)→ F

be the norm and trace maps respectively.

(a) The stabiliser GL2(F )z of z in GL2(F ) is

GL2(F )z =

ßÅ
a −cN(z)
c a− c tr(z)

ã ∣∣∣∣(a, c) ∈ F 2\{(0, 0)}
™
.

(b) There is a commutative diagram of groups

GL2(F )z
jz //

det %%

F (z)×

N

��
F×

whose horizontal arrow

jz :

Å
a −cN(z)
c a− c tr(z)

ã
7→ a− cz
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is an isomorphism of topological abelian groups.
(c) jz(G

0
z) = O×F (z) and jz(SL2(F )z) = kerN ∩ O×F (z).

(d) Let σ ∈ Gal(F (z)/F ) be the unique element of order two. Then

σ · g = det(g)g−1 for all g ∈ GL2(F )z

defines an continuous action of Gal(F (z)/F ) on GL2(F )z such that
(i) jz is Gal(F (z)/F )-equivariant,
(ii) G0

z, SL2(F )z and the Sylow pro-p-subgroup Pz of SL2(F )z are all
Gal(F (z)/F )-stable.

Proof. (a) We can compute that az+b
cz+d = z if and only if cz2 + (d − a)z − b = 0.

Moreover the minimal polynomial of z is t2 − tr(z)t+N(z). So

Å
a b
c d

ã
∈ GL2(F )

fixes z if and only if (d− a) = −c tr(z) and b = −cN(z) as claimed.
(b) Since

det

Å
a −cN(z)
c a− c tr(z)

ã
= a2 − ac tr(z) + c2N(z) = N(a− cz)

the given diagram commutes. For any (a1, c1), (a2, c2) ∈ F 2\{(0, 0}, we haveÅ
a1 −c1N(z)
c1 a1 − c1 tr(z)

ãÅ
a2 −c2N(z)
c2 a2 − c2 tr(z)

ã
=

Ñ
a1a2 − c1c2N(z) ∗

c1a2 + a1c2 − c1c2 tr(z) ∗

é
∈ GL2(F )z

and

(a1 − c1z)(a2 − c2z) = (a1a2 − (a1c2 + c1a2)z + c1c2z
2)

= (a1a2 − c1c2N(z))− (c1a2 + a1c2 − c1c2 tr(z))z ∈ F (z)×.

This implies that jz is a group isomorphism.
(c) Since G0

z = ker (vπF ◦ det : GL2(F )z → Z), part (b) implies that

jz(G
0
z) = ker

(
vπF ◦N : F (z)× → Z

)
= O×F (z).

Similarly since SL2(F )z = ker (det : GL2(F )z → F×), we see that jz(SL2(F )z) =
ker (N : F (z)× → F×), which is contained in O×F (z).

(d) We have N(λ) = λσ(λ) for any λ ∈ F (z)×. Now it follows from (b) that

j−1
z (σ(λ)) = det(j−1

z (λ))j−1
z (λ)−1 for any λ ∈ F (z)×

and we can define the claimed action by transport of structure. Since SL2(F )z is
σ-stable and Pz is a characteristic subgroup of SL2(F )z, the rest follows. �

Corollary 2.2.6. Suppose that F (z) is a quadratic extension of F . Then

G0
z · SL2(F ) = G0.

Proof. Let g ∈ G0 so that det(g) ∈ O×F . The norm map N : O×F (z) → O
×
F is

surjective by [30, Chapter V, Corollary to Proposition 3], so we can find x ∈ O×F (z)

such that N(x) = det(g). Using Lemma 2.2.5(c), we can choose h ∈ G0
z such that

jz(h) = x. Then Lemma 2.2.5(b) implies that det(h) = N(jz(h)) = N(x) = det(g),
so g = h · h−1g ∈ G0

z · SL2(F ) as required. �
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Remark 2.2.7. Note that, with the notation of Lemma 2.2.5, GL2(F )z = GL2(F )σ·z
but jz 6= jσ·z. However j∗z does induce a canonical bijection

Hom(G0
z,K

×)/Gal(F (z)/F )→ Hom(O×F (z),K
×)/Gal(F (z)/F ).

When F (z) a quadratic extension of F , we define a continuous homomorphism“jz : G0
z → F (z)× by setting“jz(g) :=’jz(g) for all g ∈ G0

z.

Lemma 2.2.8. Suppose that F (z) is a quadratic extension of F . Then

Hom(G0
z,K(z)×)[p′] = Hom(G0

z, µp′(F (z))) =
¨“jz∂

is a cyclic group. Its order is q2 − 1 if F (z)/F is unramified, and q − 1 otherwise.

Proof. Since jz : G0
z → O×F (z) is an isomorphism of topological groups by Lemma

2.2.5(c), it suffices to show that every element of Hom(O×F (z),K(z)×)[p′] is of the

form a 7→ âk for some k ∈ Z. Since the kernel of ·̂ : O×F (z) → µp′(F (z)) is pro-p,

any θ ∈ Hom(O×F (z),K(z)×)[p′] factors through ·̂. Since µp′(F (z)) is cyclic of order

q2−1 if F (z)/F is unramified and cyclic of order q−1 if F (z) is ramified the result
is now straightforward. �

2.3. Quaternions. We use [24, §1.4] and [23] as basic references for this material.
By [23, Proposition 12.5b, Theorem 17.10] there is a central division algebra D
over F of dimension 4 which is unique up to isomorphism. The norm on F extends
uniquely to a norm | · |D on the division algebra by [23, Proposition 17.6].

Notation 2.3.1. Let OD := {d ∈ OD : |d|D 6 1} be the maximal order in D,
PD := {d ∈ OD : |d|D < 1} its unique maximal ideal and let kD := OD/PD. We
will write ωD : O×D → k×D to denote the reduction map modulo PD on multiplicative
groups. Let L denote the unramified quadratic field extension of F ; the reduction
map ωL : O×L → k×L on multiplicative groups is defined similarly.

We recall the Noether–Skolem Theorem.

Theorem 2.3.2 (Noether–Skolem). Suppose that B is a central simple algebra over
F and that A is a simple subalgebra of B. If χ : A→ B is an algebra homomorphism
then there is b ∈ B× such that χ(x) = bxb−1 for all x ∈ A.

Proof. See [23, Noether–Skolem Theorem 12.6]. �

Corollary 2.3.3. D× acts transitively on the set of F -algebra homomorphisms
ι : L→ D via conjugation:

(d · ι)(x) = d ι(x) d−1 for all d ∈ D×, x ∈ L.

Recall the reduced norm map Nrd: D× → F× from [23, Chapter 16].

Proposition 2.3.4. The derived subgroup of O×D is the intersection of

ker
Ä
Nrd |O×D : O×D → O

×
F

ä
and ker

(
ωD : O×D → k×D

)
.

Proof. Since O×F and k×D are both abelian groups, the derived subgroup must be
contained in the intersection given in the statement. By a result of Riehm [26], the
two subgroups are in fact equal — see the remark following [24, Theorem 1.9]. �
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Definition 2.3.5. Let P 1
L denote the following subgroup of O×L :

P 1
L := kerNL/F ∩ ker(ωL : O×L → k×L ).

Let % : O×D � (O×D)ab denote the canonical projection.

Proposition 2.3.6. The F -algebra homomorphism ι : F ↪→ L induces an isomor-
phism of profinite abelian groups

% ◦ ι : O×L /P
1
L

∼=−→ (O×D)ab.

Proof. The projection % appears in the following diagram:

O×L
ι //

NL/F×ωL
��

O×D
% // //

Nrd×ωD
��

(O×D)ab

q
ss

O×F × k
×
L id×ι

// O×F × k
×
D

We have Nrd ◦ι = NL/F by [23, Proposition 16.2(b)]. The inclusion ι : L ↪→ D

induces ring homomorphisms ι : OL ↪→ OD and ι : kL ↪→ kD
3, and we have

ωD ◦ ι = ι ◦ ωL . We can now see that the square on the left is commutative. Since
O×F × k

×
D is abelian, Nrd×ωD factors through %, giving the diagonal arrow q and

making the entire diagram commutative.
Proposition 2.3.4 tells us that ker % = ker(Nrd×ωD), so the map q is injective.

Since ι is injective, chasing the diagram shows that

ker(% ◦ ι) = ker(q ◦ % ◦ ι) = ker((Nrd×ωD) ◦ ι) = ker(NL/F × ωL) = P 1
L.

Hence % ◦ ι : O×L → (O×D)ab descends to give an injective group homomorphism

% ◦ ι : O×L /P
1
L ↪→ (O×D)ab.

Since both O×L /P 1
L and (O×D)ab are abelian groups that are virtually pro-p, to show

that % ◦ ι is surjective, it suffices to check this on the Sylow pro-p subgroups of both
groups, and on the subgroups of elements of order coprime to p.

The Sylow pro-p subgroup S of (O×D)ab appears in the commutative triangle

1 + πFOL

NL/F×1 **

%◦ι // S

q

��
(1 + πFOF )× 1

where the diagonal arrow is surjective by [30, Chapter V, Proposition 3(a)]. Since
q is injective, we see that % ◦ ι : 1 + πFOL → S is surjective as well.

Finally, kerωD = 1 + PD is a pro-p subgroup of O×D, so % : O×D � (O×D)ab

induces a surjective homomorphism k×D � (O×D)ab[p′]. Since ι : kL → kD is an

isomorphism, this implies that % ◦ i : O×L [p′]→ (O×D)ab[p′] is surjective as well. �

Corollary 2.3.7. Let ι : L ↪→ D be an F -algebra homomorphism.

(a) There is an isomorphism of abelian groups

% ◦ ι∗ : Hom(O×D,K
×)

∼=−→ Hom(O×L /P
1
L,K

×).

3In fact, ι is an isomorphism
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(b) This induces a bijection

% ◦ ι∗ : Hom(O×D,K
×)/D×

∼=−→ Hom(O×L /P
1
L,K

×)/Gal(L/F ).

(c) The bijection % ◦ ι∗ does not depend on the choice of ι.

Proof. (a) This follows immediately from Proposition 2.3.6.
(b) Let Gal(L/F ) = 〈σ〉; then, by [23, Theorem 17.10, Proposition 15.1a], we

can find an element Π ∈ D such that Π2 = πF and

Π ι(a) Π−1 = ι(σ(a)) for all a ∈ L.
Since O×D is normal in D×, there is a natural conjugation action of D× on (O×D)ab

which evidently factors through D×/F×O×D, a group of order 2 generated by the

image of Π. Then the above formula shows that this action ofD×/F×O×D on (O×D)ab

corresponds under the isomorphism % ◦ ι to the natural Gal(L/F )-action onO×L /P 1
L.

Hence, the isomorphism in part (a) is equivariant with respect to the D×/F×O×D-

action on Hom(O×D,K×) and the Gal(L/F )-action on Hom(O×L /P 1
L,K

×), when we

identify Gal(L/F ) with D×/F×O×D via σ 7→ Π.
(c) Let ι′ : L ↪→ D be another F -algebra homomorphism. Then by Corollary

2.3.3 we can find d ∈ D× such that ι′(x) = d ι(x) d−1 for all x ∈ L.
Let cd : O×D → O

×
D and cd : (O×D)ab → (O×D)ab denote the conjugations by d, so

that ι′ = cd◦ι and cd◦% = %◦cd. Then cd◦%◦ι = %◦cd◦ι = %◦ι′, so cd◦% ◦ ι = % ◦ ι′.
Hence % ◦ ι′∗ = % ◦ ι∗ ◦ cd∗ and we can now see that % ◦ ι′∗ = % ◦ ι∗. �

2.4. Equivariant sheaves and amalgamated products. We begin by recalling
some material from [2, §2.3]. Let X be a set equipped with a Grothendieck topology
in the sense of [4, Definition 9.1.1/1]. Note that we do not assume at the outset
that there is a final object in the category of admissible open subsets of X, as X is
not itself required to be admissible open in the G-topology.

Let Homeo(X) be the group of continuous bijections from X to itself. We say
that a group G acts on X if there is given a group homomorphism ρ : G →
Homeo(X). If this action is understood, we write gU to denote the image of an
admissible open subset U of X under the action of g ∈ G. For every g ∈ G,
there is an auto-equivalence ρ(g)∗ of the category of sheaves on X, with inverse
ρ(g)∗ = ρ(g−1)∗. To simplify the notation, we will simply denote these auto-
equivalences by g∗ and g∗, respectively. Thus

(g∗F)(U) = F(g−1U) and (g∗F)(U) = F(gU)

for all admissible open subsets U of X and all g ∈ G.

Definition 2.4.1. Let G act on X, and let F be a presheaf of R-modules on X,
where R is a commutative base ring.

(a) An R-linear equivariant structure on F is a set {gF : g ∈ G}, where

gF : F → g∗F
is a morphism of presheaves of R-modules for each g ∈ G, such that

(2) (gh)F = h∗(gF ) ◦ hF for all g, h ∈ G, and 1F = 1F .

(b) An R-linear G-equivariant presheaf is a pair (F , {gF}g∈G), where F is
a presheaf of R-modules on X, and {gF}g∈G is an R-linear equivariant
structure on F .
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(c) A morphism of R-linear G-equivariant presheaves

ϕ : (F , {gF})→ (F ′, {gF
′
})

is a morphism of presheaves of R-modules ϕ : F → F ′ such that

g∗(ϕ) ◦ gF = gF
′
◦ ϕ for all g ∈ G.

We will frequently use this abuse of notation, and simply write ϕ(x) to mean
ϕ(U)(x) if x is a section of F over the admissible open subset U of X. Note that
with this abuse of notation, the cocycle condition (2) becomes simply

(3) gF (hF (x)) = (gh)F (x) for all x ∈ F , g, h ∈ G.
When the base ring R and the R-linear equivariant structure on a sheaf F of R-
modules is understood, we will simply say that F is a G-equivariant sheaf, and omit
the equivariant structure from the notation.

Definition 2.4.2. Let F be a presheaf of R-modules on X.

(a) An automorphism of F over X is a pair (α, β), where α ∈ Homeo(X) and
β : F → α∗F is an R-linear isomorphism of presheaves on X.

(b) Define Aut(F/X) to be the set of all automorphisms of F over X.
(c) Given (α1, β1), (α2, β2) ∈ Aut(F/X), define

(α1, β1)�(α2, β2) := (α1α2, α
∗
2(β1) ◦ β2).

This is again an element of Aut(F/X).

Lemma 2.4.3. Let F be a presheaf of R-modules on X. Then the binary operation
� turns Aut(F/X) into a group.

Proof. The identity element is (1X , 1F ). Let (αi, βi), i = 1, 2, 3 be three elements of
Aut(F/X). Checking that the operation � is associative boils down to the formula

α∗3(α∗2(β1) ◦ β2) ◦ β3 = (α2α3)∗(β1) ◦ α∗3(β2) ◦ β3,

which is readily verified. The inverse of (α, β) ∈ Aut(F/X) is (α−1, α∗(β)−1). �

By Definition 2.4.2(c), the first projection map pr1 : Aut(F/X)→ Homeo(X) is
a group homomorphism.

Definition 2.4.4. Let G be a group acting on X via ρ : G→ Homeo(X), and let
F be a presheaf of R-modules on X. Form the fibre product

Aut(F/X/G) := G ×
Homeo(X)

Aut(F/X)

with respect to the group homomorphisms

ρ : G→ Homeo(X) and pr1 : Aut(F/X)→ Homeo(X).

By definition, the elements of Aut(F/X/G) have the form (g, (ρ(g), β)) for some

g ∈ G and some R-linear isomorphism β : F
∼=−→ g∗F ; evidently, such an element

is completely determined by the pair (g, β). In order to simplify the notation, we
will abuse notation and write

Aut(F/X/G) =
{

(g, β) : g ∈ G, β : F
∼=−→ g∗F R− linear

}
,

where the product is given by the formula

(4) (g1, β1)�(g2, β2) = (g1g2, g
∗
2(β1) ◦ β2).
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Definition 2.4.5. Let G be a group acting on X via ρ : G→ Homeo(X), and let
F be a presheaf of R-modules on X. Define

S(G,F) := {σ ∈ Hom(G,Aut(F/X/G)) : pr1 ◦σ = 1G}
to be the set of sections of the first projection pr1 : Aut(F/X/G)→ G.

We make these definitions in order to formulate the following

Lemma 2.4.6. Let G be a group acting on X via ρ : G → Homeo(X), and let F
be a presheaf of R-modules on X. Then the rule

{gF}g∈G 7→
[
g 7→ (g, gF ) ∈ Aut(F/X/G)

]
defines a bijection between the set all R-linear G-equivariant structures on F and
S(G,F).

Proof. Let {gF}g∈G be an R-linear G-equivariant structure on X. Define the map
σ : G → Aut(F/X/G) by setting σ(g) = (g, gF ) for all g ∈ G. Using the cocycle
condition (2), we compute that for all g, h ∈ G we have

σ(gh) = (gh, h∗(gF ) ◦ hF ) = (g, gF )�(h, hF ) = σ(g)�σ(h).

Since σ(1) = (1, 1F ) = (1, 1F ), we see that σ is a group homomorphism such that
pr1 ◦σ = 1G, that is, σ ∈ S(G,F).

Conversely, for each σ ∈ S(G,F), the set {pr2(σ(g))}g∈G forms an R-linear
G-equivariant structure on F by reversing the above argument. �

Next, we recall the following definitions from [2]:

Definition 2.4.7. Let G act on X, and let A be a sheaf of R-algebras on X.

(a) We say that A is a G-equivariant sheaf of R-algebras if there is given an R-
linear G-equivariant structure {gA : g ∈ G} such that each gA : A → g∗A
is a morphism of sheaves of R-algebras.

(b) Let A be a G-equivariant sheaf of R-algebras on X. A G-A-module is
an R-linear G-equivariant sheaf M on X, such that M is a sheaf of left
A-modules and gM(a ·m) = gA(a) · gM(m) for all g ∈ G, a ∈ A,m ∈M.

We want to study all possible G-A-module structures on a given A-module M.

Definition 2.4.8. Let G act on X, let A be a G-equivariant sheaf of R-algebras
on X and let M be an A-module. We define

AutA(M/X/G) :=

ß
(g, β) ∈ Aut(M/X/G) :

β(a ·m) = (g · a) · β(m) for all a ∈ A,m ∈M

™
.

Lemma 2.4.9. With the hypotheses of Definition 2.4.8, AutA(M/X/G) is a sub-
group of Aut(M/X/G).

Proof. It is clear that (1, 1F ) lies in AutA(M/X/G). Let (g1, β1) and (g2, β2) be
two elements of AutA(M/X/G), so that

(5) βi(a ·m) = (gi · a) · βi(m) for all a ∈ A,m ∈M, i = 1, 2.

Let (g3, β3) := (g1, β)�(g2, β2) so that g3 = g1g2 and β3 = g∗2(β1) ◦ β2. On local
sections, β3 is simply the composition β1β2. For any a ∈ A and m ∈ M, we use
the fact that A is a G-equivariant sheaf together with (5) to compute

β3(a ·m) = β1(β2(a ·m)) = β1((g2 · a) · β2(m)) = (g1 · (g2 · a)) · β1(β2(m))
= ((g1g2) · a) · (β1β2(m)) = (g3 · a) · β3(m).
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So, (g3, β3) ∈ AutA(M/X/G) and AutA(M/X/G) is closed under composition.
To show that AutA(M/X/G) is stable under inversion in Aut(M/X/G), let

(g, β) ∈ AutA(M/X/G). Then for b := g−1 · a ∈ A and w := β−1(v) ∈M we have
β(b · w) = (g · b) · β(w) = a · v. Applying β−1 to this equation gives β−1(a · v) =
b · w = (g−1 · a) · β−1(v), so (g, β)−1 = (g−1, g∗(β

−1)) ∈ AutA(M/X/G). �

Definition 2.4.10. With the hypotheses of Definition 2.4.8, define

SA(G,M) := {σ ∈ Hom(G,AutA(M/X/G)) : pr1 ◦σ = 1G}

to be the set of sections of the first projection pr1 : AutA(M/X/G)→ G.

We can now give the generalisation of Lemma 2.4.6 to the case of A-modules:
the proof is completely straightforward and is therefore omitted.

Proposition 2.4.11. Assume the hypotheses of Definition 2.4.8. Then

{gM}g∈G 7→
[
g 7→ (g, gM) ∈ AutA(M/X/G))

]
defines a bijection between the set all G-A-module structures on M extending the
given A-module structure on M, and SA(G,M).

Next, we briefly study the functorialities of AutA(M/X/G) and SA(G,M).

Lemma 2.4.12. Assume the hypotheses of Definition 2.4.8, and let H be a sub-
group of G.

(a) AutA(M/X/H) is a subgroup of AutA(M/X/G).

(b) Restriction of functions induces a map ResGH : SA(G,M)→ SA(H,M).

(c) For any subgroup J of H, we have ResGJ = ResHJ ◦ResGH .

Proof. (a) An element of AutA(M/X/H) is a pair (h, β) where h ∈ H and β :M→
h∗M is an R-linear isomorphism of sheaves such that β(a ·m) = (h · a) · β(m) for
all a ∈ A and m ∈M. Evidently such a pair is also an element of AutA(M/X/G).

(b) Given a group homomorphism σ : G → AutA(M/X/G) such that pr1 ◦σ =
1G, the restriction σ|H : H → AutA(M/X/G) takes values in AutA(M/X/H). It
is still a group homomorphism, and pr1 ◦σ|H = (pr1 ◦σ)|H = (1G)H = 1H . Hence

σ 7→ σ|H defines the required function ResGH : SA(G,M)→ SA(H,M).
(c) This is clear from the definitions. �

We now come to the application of the above formalism. Suppose that the group
G is equal to an amalgamated product

G = A ∗
C
B

of its subgroups A and B, along their common subgroup C. Using Lemma 2.4.12,
we see that sending σ ∈ SA(G,M) to the pair (ResGA(σ),ResGB(σ)) defines a function

(6) SA(G,M) −→ SA(A,M) ×
SA(C,M)

SA(B,M).

Theorem 2.4.13. Let G be a group acting on X, let A be a G-equivariant sheaf
of R-algebras on X and letM be an A-module. Suppose further that G is equal to
the amalgamated product G = A ∗

C
B of its subgroups A and B along their common

subgroup C. Then the map (6) is a bijection.
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Proof. Using Lemma 2.4.12(a), we have the commutative diagram of groups and
group homomorphisms

AutA(M/X/A)

))
AutA(M/X/C)

55

))

AutA(M/X/G).

AutA(M/X/B)

55

Let σ1, σ2 ∈ SA(G,M) be such that ResGA(σ1) = ResGA(σ2) and ResGB(σ1) =

ResGB(σ2). Using the above diagram, we may regard σ1 and σ2 having the same
codomain AutA(M/X/G). Then (σ1)|A = (σ2)|A and (σ1)|B = (σ2)|B . Since A
and B generate G as a group, it follows that σ1 = σ2.

Suppose now that (τ, ψ) is an element of the fibre product on the right hand side
of (6). Then τ : A→ AutA(M/X/G) and ψ : B → AutA(M/X/G) have the same
restriction to C. By the universal property of amalgamated products — see [31,
equation (∗), § 1.1] — τ and ψ extend to a unique group homomorphism σ : G →
AutA(M/X/G) such that σ|A = τ and σ|B = ψ. Then (pr1 ◦σ)|A = pr1 ◦(σ|A) =
pr1 ◦τ = 1A and (pr1 ◦σ)|B = pr1 ◦(σ|B) = pr1 ◦ψ = 1B because τ ∈ SA(M/X/A)
and ψ ∈ SA(M/X/B). Since A and B generate G as a group, and the group
homomorphism pr1 ◦σ : G → G fixes both A and B pointwise, we conclude that

pr1 ◦σ = 1G. So, σ ∈ SA(M/X/G), ResGA(σ) = τ and ResGB(σ) = ψ. �

To spell out the meaning of Theorem 2.4.13 together with Proposition 2.4.11:
the data of a G-A-module structure on M is equivalent to the data of an A-A-
module structure and a B-A-module structures whose restrictions to a C-A-module
structure agree.

3. Topics in rigid analytic geometry

3.1. Line bundles with flat connection on smooth rigid spaces. Let X be
a smooth rigid K-analytic space. By a line bundle with flat connection we mean a
D-module L on X which is invertible as an O-module.

If L and M are two line bundles with flat connection on X, then so are L ⊗OM
and L ⊗−1 := HomO(L ,O): the tangent sheaf TX acts via the Leibniz rule on
L ⊗O M , and on L ⊗−1 via the rule

(v · f)(`) = v · f(`)− f(v · `) for all v ∈ TX , f ∈ L ⊗−1, v ∈ L .

Definition 3.1.1.

(a) PicCon(X) denotes the abelian group of isomorphism classes of line bundles
with flat connection on X under the operation −⊗O-.

(b) Con(X) := ker(PicCon(X) → Pic(X)) denotes the group of isomorphism
classes of line bundles with flat connection on X that are trivial after for-
getting the connection.

We now show that when X is connected, L is a simple DX -module for any
[L ] ∈ PicCon(X). We start with the case where X is K-affinoid.
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Lemma 3.1.2. Suppose that X is a connected K-affinoid variety such that TX is a
free OX -module. Then for every [L ] ∈ Con(X), L (X) is a simple D(X)-module.

Proof. Suppose that n = dimX. Following the formalism of [19, §1] we see that
O(X) satisfies the conditions found in §1.1.2 of loc. cit. Let ∂1, . . . , ∂n denote a
free generating set for T (X) as a O(X)-module so we may consider

D(X) = O(X)[∂1, . . . , ∂n]

as a filtered K-algebra with associated graded ring

grD(X) ∼= O(X)[T1, . . . , Tn]

withO(X) in degree 0 and T1, . . . , Tn in degree 1, the principal symbols of ∂1, . . . , ∂n
respectively.

The filtration of L (X) whose 0th filtered part is L (X) and whose −1st filtered
part is 0 is a good filtration, so that

gr L (X) ∼= O(X)[T1, . . . , Tn]/(T1, . . . , Tn).

Since X is also connected, O(X) is an integral domain by the proof of [3, Propo-
sition 4.2]. Thus any non-zero proper D(X)-module quotient of L (X) must have
dimension < n. However, by [19, Théorème 1.1.4, Corollaire 1.2.3], no such D(X)-
module can exist and so L (X) is a simple D(X)-module as claimed. �

Proposition 3.1.3. Suppose X is connected. Then every L ∈ PicCon(X) is
simple as a D-module.

Proof. Suppose that [L ] ∈ PicCon(X). Since L is a line bundle, there is an
admissible cover U of X consisting of K-affinioid subdomains such that the line
bundle L |U is trivial for all U ∈ U . By passing to a refinement, we may also
assume that for each U ∈ U , U is connected and that T |U is a free OU -module.

Suppose that M is a subobject of L as a DX -module and consider

V1 := {U ∈ U :M(U) = L (U)} and V2 = {U ∈ U :M(U) = 0}.
Then U is the disjoint union of V1 and V2 by Lemma 3.1.2. Now if U ∈ V1 and
V ∈ V2 with U ∩ V 6= ∅, then

L(U ∩ V ) ∼= O(U ∩ V )⊗O(U)M(U) ∼=M(U ∩ V ) ∼= O(U ∩ V )⊗O(V )M(V ) = 0,

a contradiction. Since X is connected if follows that U = V1 or U = V2. Hence
M = L or M = 0 as required. �

The following result enables us to characterise the trivial line bundle with trivial
connection in terms of its horizontal sections, at least when X is quasi-Stein and
geometrically connected.

Proposition 3.1.4. Suppose that X is quasi-Stein and geometrically connected
and [L ] ∈ PicCon(X). Then L (X)T (X)=0 = K if and only if L is the trivial line
bundle with trivial flat connection.

Proof. First we show that if O is equipped with the trivial connection then

O(X)T (X)=0 = K.

Since X is smooth over K, by [5, Proposition 2.7] we can find an affinoid
subdomain U of X which admits an étale map g to a polydisc SpK〈t1, . . . , tn〉.
By recentering the disc, we can find a point x ∈ U such that g(x) is the origin
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t1 = · · · = tn = 0 in this polydisc. Consider the completion ’OX,x of the local ring

OX,x at x. Since X is connected, the restriction map O(X) →’OX,x is injective.

This completed local ring’OX,x is isomorphic to a power-series ringK(x)[[t1, . . . , tn]]
where K(x) is the residue field of OX,x at x. Since X is quasi-Stein, the local vector
fields TX,x =

⊕n
i=1OX,x∂ti are generated as an OX,x-module by T (X), and then

O(X)T (X)=0 ⊂ ’OX,xTX,x=0 ∼= K(x)[[t1, . . . , tn]]∂t1=···=∂tn=0 = K(x).

Note that O(X)T (X)=0 is a K-subalgebra of O(X). Since dimK K(x) < ∞, the
K-subalgebra O(X)T (X)=0 of K(x) is a finite field extension of K, L say. If L
was a proper field extension of K then base changing X to L would yield non-
trivial idempotents in L ⊗ L ⊂ O(X) ⊗ L = O(XL) and show that XL is not
connected. Since X was assumed to be geometrically connected, we conclude that
L = O(X)T (X)=0 is in fact equal to K.

For the converse we choose 0 6= v ∈ L(X)T (X)=0, which is possible by assump-
tion. We may use v to construct a morphism of DX -modules ϕ : O → L ; f 7→ fv.
Since v 6= 0, ϕ 6= 0. Since O and L are both simple by Proposition 3.1.3 it follows
that ϕ is an isomorphism as required. �

It follows that an isomorphism between two line bundles with flat connection is
unique up to scalars. More precisely we have the following result.

Corollary 3.1.5. Suppose that X is quasi-Stein and geometrically connected. Let
ϕ1, ϕ2 : L1 → L2 be two isomorphisms between two line bundles with flat connec-
tion on X. Then there is a scalar λ ∈ K× such that ϕ2 = λϕ1.

Proof. By tensoring ϕ1 and ϕ2 by L ⊗−1
2 we may assume that L2 = O. But then

ϕ1 ◦ ϕ−1
2 : O → O is a D-linear isomorphism, so by (8) is given by multiplication

by a non-zero element of O(X)T (X)=0. Now apply Proposition 3.1.4. �

Corollary 3.1.6. Suppose that X is quasi-Stein and that (Xn)n>0 is an increasing
admissible cover of X by geometrically connected affinoid subdomains. Then the
family of restriction maps PicCon(X)→ PicCon(Xn) induce a natural isomorphism

PicCon(X)
∼=−→ lim←−PicCon(Xn).

Proof. Suppose for a contradiction that X is not geometrically connected. Then
XC has two non-empty families of non-empty admissible open subsets U and V
such that U ∪ V is an admissible cover of XC and⋃

U∈U
U ∩

⋃
V ∈V

V = ∅.

Since (Xn,C)n>0 is an admissible cover of X that is ordered by inclusion, we can
find n > 0, U ∈ U and V ∈ V such that Xn,C∩U and Xn,C∩V are both non-empty.
But then {U ∩Xn,C : U ∈ U} and {V ∩Xn,C : V ∈ V} together form an admissible
cover of Xn,C that disconnects it, giving the required contradiction.

Now suppose that [L ] ∈ PicCon(X) is such that [L |Xn ] = 0 ∈ PicCon(Xn) for
all n > 0. Then L T =0 is a subsheaf of L with L (Xn)T=0 = K for all n > 0 by
Proposition 3.1.4. Moreover the restriction maps L (Xn+1)T =0 → L (Xn)T=0 are
all injective, and thus isomorphisms, since the restriction maps O(Xn+1)→ O(Xn)
are all injective. Thus by the sheaf condition on L T=0, L (X)T =0 = K. Thus
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by Proposition 3.1.4 again we can deduce that [L ] = 0 ∈ PicCon(X) i.e. the
homomorphism in the statement is injective.

To see that the homomorphism is also surjective we consider a family of line
bundles with connection [Ln]n>0 ∈

∏
n>0 PicCon(Xn) such that

[Ln|Xm ] = [Lm] in PicCon(Xm) whenever n > m.

Choose isomorphisms of D-modules ϕm : Lm+1|Xm
∼=−→ Lm for all m > 0. Then

whenever n > m we can define an isomorphism of sheaves ϕn,m : Ln|Xm → Lm by

ϕn,m := ϕn−1|Xm ◦ · · · ◦ ϕm|Xm .
It is then easy to verify that the construction in [12, §4.4] gives a sheaf L of D-

modules on X together with isomorphisms of D-modules L |Xn
∼=−→ Ln. Then L

is a line bundle on X, since each L (Xn) is free of rank 1 over O(Xn). The family
[Ln] ∈ lim←−PicCon(Xn) is then the required image of [L ]. �

The following result will also be useful.

Corollary 3.1.7. Suppose that X is quasi-Stein and geometrically connected, and
that d is a positive integer. Then O(X)×/K× has no d-torsion.

Proof. Suppose that f ∈ O(X)× with fd ∈ K×. Then for every ∂ ∈ T (X) we see
that 0 = ∂(fd) = dfd−1∂(f). Since dfd−1 ∈ O(X)× it follows that ∂(f) = 0. Thus
by Proposition 3.1.4, f ∈ K×. �

Lemma 3.1.8. Suppose that a group G acts on X. Then G acts naturally on
PicCon(X) by abelian group automorphisms via

g · [L ] = [g∗L ]

where g∗L is a D-module via the ring isomorphsim (g−1)D : D
∼=−→ g∗D.

Moreover Con(X) is a G-stable subgroup of PicCon(X).

Proof. We can check that g · ([L ][M ]) = (g · [L ])(g · [M ]) for any [L ], [M ] ∈
PicCon(X), because g∗(L ⊗O M ) is naturally isomorphic to (g∗L ) ⊗g∗O (g∗M )
as a g∗D-module.

Since g∗L is trivial as a line bundle whenever L is trivial as a line bundle the
last part is immediate. �

Remark 3.1.9. We note more generally, in the context of Lemma 3.1.8, that if
U is an admissible open subspace of X, each g ∈ G induces a group isomorphism
PicCon(U) → PicCon(g · U); [L ] 7→ [g∗L ] where again g∗L is a DgU -module via
the ring isomorphism (g−1)D : DgU → g∗DU . Moreover these restrict to isomor-
phisms Con(U)→ Con(g · U).

We will now construct some connections on the trivial line bundle by using units.

Lemma 3.1.10. Suppose that d is a positive integer and u ∈ O(X)×. Then there
is a unique element [Lu,d] of Con(X) such that Lu,d has a free generator v as a

O-module with ∂(v) = 1
d
∂(u)
u v for all ∂ ∈ T .

Proof. Suppose that L = Ov is a line bundle with a flat connection satisfying

∂(v) =
1

d

∂(u)

u
v
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for all ∂ ∈ T . For all f ∈ O and ∂ ∈ T , necessarily

∂(fv) =

Å
∂(f) +

1

d

∂(u)

u
f

ã
v

so as D is generated by O and T there is at most one element of Con(X) with the
property given in the statement. To prove the existence of such a line bundle with
flat connection it suffices to show that for all ∂1, ∂2 ∈ T

(∂1∂2 − ∂2∂1)(v) = [∂1∂2](v)

where [−−] denotes the Lie bracket on T .
But

∂1∂2(v) = ∂1

Å
1

d

∂2(u)

u
v

ã
=

1

d
∂1

Å
∂2(u)

u

ã
v +

1

d

∂2(u)

u

1

d

∂1(u)

u
v

=
1

d

u∂1∂2(u)− ∂2(u)∂1(u)

u2
v +

1

d

∂2(u)

u

1

d

∂1(u)

u
v

and so

(∂1∂2 − ∂2∂1)(v) =
1

d

[∂1∂2](u)

u
v

as required. �

Proposition 3.1.11. Let d be a non-zero integer and let X be a geometrically
connected, smooth, quasi-Stein rigid K-analytic space. There is a homomorphism
of abelian groups O(X)× → Con(X) given by u 7→ [Lu,d]. The kernel of this
homomorphism is K×O(X)×d and its image is Con(X)[d].

Proof. Suppose that u1, u2 ∈ O(X)×. Then if, for i = 1, 2, vi generates Lui,d with

∂(vi) = 1
d
∂(ui)
ui

, v1 ⊗ v2 is a generator of Lu1,d ⊗Lu2,d and

∂(v1 ⊗ v2) = ∂(v1)⊗ v2 + v1 ⊗ ∂(v2)

=
1

d

Å
∂(u1)

u1
+
∂(u2)

u2

ã
(v1 ⊗ v2)

=
1

d

∂(u1u2)

u1u2
(v1 ⊗ v2)

for all ∂ ∈ T . Thus u 7→ [Lu,d] does define a homomorphism.
Note that u ∈ O(X)× is in the kernel of the homomorphism if and only if

[Lu,d] = [O.v] = [O] in Con(X). That is u is in the kernel if and only if there is
w ∈ O(X)× such that ∂(wv) = 0 for all ∂ ∈ T (X). But

∂(wv) =

Å
∂(w)

w
+

1

d

∂(u)

u

ã
wv.

Now
∂(uwd)

uwd
=
∂(u)

u
+ d

∂(w)

w
so ∂(wv) = 0 if and only if ∂(uwd) = 0. Thus by Proposition 3.1.4 the kernel is

precisely K×O(X)×d as claimed. Moreover [L ⊗du,d ] = [Lud,d] = [O] so each [Lu,d]
is indeed d-torsion.

Given [L ] ∈ Con(X)[d], we use the hypothesis that L is trivial as a line bundle
to pick a generator v ∈ L (X) as an O(X)-module, and we choose a D-linear
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isomorphism ψ : L ⊗d
∼=−→ O using the fact that d · [L ] = 0 in Con(X). We claim

that if ψ(v⊗d) = u then ∂(v) = 1
d
∂(u)
u for all ∂ ∈ T and so [L ] = [Lu,d]. For

this we compute that ∂(v⊗d) = ∂(u)
u v⊗d for all ∂ ∈ T . But if ∂(v) = av then

∂(v⊗d) = dav⊗d so a = 1
d
∂(u)
u as claimed. �

Definition 3.1.12. If X is a geometrically connected, smooth, quasi-Stein rigid
K-analytic space then we define

θd : Con(X)[d]→ O(X)×/K×O(X)×d

to be the inverse of the isomorphism induced by the homomorphism in Proposition
3.1.11.

The proof of surjectivity in Proposition 3.1.11 shows that θd ([Ov]) is determined
by the image of v⊗d under a D-linear isomorphism ψ : (Ov)⊗d → O, via

(7) θd([Ov]) = ψ(v⊗d)K×O(X)×d.

Proposition 3.1.13. Let d be a non-zero integer and let X be a geometrically
connected, smooth, quasi-Stein rigid K-analytic space and let G be a group acting
on X. Then θd is a G-equivariant isomorphism

θd : Con(X)[d]→ O(X)×/K×O(X)×d.

Proof. Let g ∈ G, [L ] ∈ Con(X)[d] and fix a D-linear isomorphism ψ : L ⊗d
∼=−→ O.

The map gO : O → g∗O is a D-linear isomorphism, so gO ◦ψ : L ⊗d → g∗O is also a
D-linear isomorphism. After identifying g∗(L ⊗d) with (g∗L )⊗d and g∗(g

∗O) with
O, we obtain a g∗D-linear isomorphism

ψ′ := g∗(g
O ◦ ψ) : (g∗L )⊗d

∼=−→ O.
Recall Lemma 3.1.8 that g · [L ] = [g∗L ], where D acts on g∗L via the ring

isomorphism (g−1)D : D
∼=−→ g∗D. So ψ′ becomes an D-linear isomorphism in this

way, and we can use it to compute θd([g∗L ]) as follows: let v ∈ L (X) be such that
L (X) = O(X)v; then by definition of ψ′ we have ψ′(v⊗d) = g · ψ(v⊗d), so

θd(g · [L ]) = θd([g∗L ]) = ψ′(v⊗d)K×O(X)×d = g ·ψ(v⊗d)K×O(X)×d = g ·θd([L ])

as required. �

Remark 3.1.14. Proposition 3.1.13 can be viewed as saying that

[g∗Lu,d] = [Lg·u,d] ∈ Con(X)[d].

More generally if U is an admissible open subset of X and u ∈ O(U)× then

[g∗Lu,d] = [Lg·u,d] ∈ Con(g · U).

3.2. Equivariant line bundles with flat connections. We now turn to a discus-
sion of equivariant line bundles with flat connection. In this section we will assume
that G is a topological group acting continuously on a smooth rigid K-analytic
space X in the sense of [2, Definition 3.1.8]. We first consider G-equivariant line
bundles. Our next definition, Definition 3.2.3 below, will require some preparation.

Lemma 3.2.1. Let M be a coherent O-module on X. Suppose that {gM}g∈G is
a G-equivariant structure on M . Then for every affinoid subdomain U of X and
g ∈ G, the structure map

gM : M (U)→M (gU)
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is continuous with respect to canonical K-Banach topologies on the domain and
codomain.

Proof. Let U be an affinoid subdomain of X. By Kiehl’s Theorem — see, e.g. [12,
Theorem 4.5.2] — M (U) is a finitely generated module over the affinoid algebra
O(U) because M|U is a coherent OU -module. Recalling from [27, Proposition
2.1] that every finitely generated module M over an affinoid algebra A carries
a canonical K-Banach-space topology, we see that M (U) carries a canonical K-
Banach space topology. Fixing g ∈ G, we can regard M (gU) as an O(U)-module
via a twisted action, by defining a ∗ v := (g · a)v for all a ∈ O(U) and v ∈M (gU).
Then M (gU) is still a finitely generated O(U)-module, and the structure map
gM (U) : M (U) → M (gU) is now a O(U)-linear homomorphism between two
finitely generated O(U)-modules. It is therefore automatically continuous by [12,
Corollary 1.2.4]. �

Lemma 3.2.2. Let M be a coherent OX -module. Suppose that {gM}g∈G is a
G-equivariant structure on M and that L is a finite field extension of K. Then for
every z ∈ X(L) there is a natural group homomorphism

φz,M : Gz → AutL(M (z))

where M (z) := L⊗OX,z Mz denotes the fibre of M at z.

Proof. Let g ∈ Gz. The G-equivariant structure on O gives us a local K-algebra
automorphism gOz : OX,z → OX,z, whereas the G-equivariant structure on M gives
a K-linear automorphism gM

z : Mz → Mz, satisfying gM
z (a.m) = gOz (a) · gM

z (a)
for all a ∈ OX,z and m ∈Mz. It is now straightforward to check that setting

g · (λ⊗m) := λ⊗ gM
z (a) for all g ∈ Gz, λ ∈ L,m ∈Mz

gives a well-defined L-linear action of Gz on L⊗OX,z Mz. �

Suppose that M is any K-Banach space. Then the K-algebra of bounded K-
linear endomorphisms B(M) is also a K-Banach algebra through the operator norm

||T || := sup
v∈V \{0}

|Tv|
|v| , so its unit group B(M)× becomes a topological group — using

the geometric series, one can check that the inversion map on B(M)× is continuous.
If M⊂M is the unit ball in M , then the congruence subgroups of B(M)×

Γn(M) := {γ ∈ B(M)× : (γ − 1)(M) ⊆ πnFM}
form a fundamental system of open neighbourhoods of the identity in B(M)×.

Since any isomorphism of K-Banach spaces M
∼=−→ N induces an isomorphism of

topological groups B(M)×
∼=−→ B(N)× via ‘conjugation’, we see that the topology

on B(M)× only depends on the topology on M and not on any particular choice of
K-Banach norm on M .

Let M be a coherent OX -module and let {gM}g∈G be a G-equivariant structure
on M . For each affinoid subdomain U of X and each g ∈ GU , the maps gM (U) :
M (U)→M (U) induce, by Lemma 3.2.1 a homomorphism

GU → B(M (U))×.

Definition 3.2.3. A G-equivariant line bundle on X is a G-equivariant OX -module
L on X such that

(a) L is invertible as an OX -module, and
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(b) the action map GU → B(L (U))× is continuous for every affinoid subdo-
main U of X.

Lemma 3.2.4. OX with its usual equivariant structure is a G-equivariant line
bundle on X.

Proof. Let U be an affinoid subdomain of X. Consider the sup norm | · |U on
O(U) whose unit ball in A := O(U)◦. For each n > 0, the congruence sub-
group Γn(O(U)◦) of B(O(U))× contains the group GπnF (A) appearing on [2, p. 19].
Through the Raynaud generic fibre functor rig, GπnF (A) can be identified with a
subgroup of the group of K-linear automorphisms AutK(U,OU ) of the G-ringed
topological space (U,OU ). These subgroups of AutK(U,OU ) form a filter base for a
certain topology on AutK(U,OU ) — see [2, Theorem 3.1.5] — and the action map
GU → AutK(U,OU ) is continuous with respect to this topology by [2, Definition
3.1.8], because G is assumed to act continuously on X. It follows that the action
map GU → B(O(U))× is continuous as required. �

A morphism between two G-equivariant line bundles L and M is a morphism
of G-equivariant O-modules in the sense of [2, Definition 2.3.1(c)]. Given any such
morphism ϕ : L →M and an affinoid subdomain U of X, the map ϕ(U) : L (U)→
M (U) is then an O(U)-linear homomorphism between two finitely generated O(U)-
modules, and is therefore automatically continuous.

Definition 3.2.5. We let PicG(X) denote the set of isomorphism classes of G-
equivariant line bundles on X.

Lemma 3.2.6. Let L and M be G-equivariant line bundles on X. Then so are
L ⊗O M and L ⊗−1 = HomO(L ,O).

Proof. We can easily verify that the usual formula for tensor product and contra-
gredient representations satisfies Definition 3.2.3. �

With respect to these operations PicG(X) is an abelian group with unit given
by the structure {gO} on L = OX .

Proposition 3.2.7. Suppose that L is a finite extension of K and z ∈ X(L). There

is a natural group homomorphism φz : PicG(X)→ Hom(Gz, L
×) given by

φz([L ]) = φz,L .

Proof. We note that if L is a line bundle on X with a G-equivariant structure then
L (z) is a one-dimensional vector space over the residue field of the local ring OX,z,
and so, by Lemma 3.2.2, φz,L can be viewed as a homomorphism Gz → L×.

Next we show that φz,L is continuous. To this end we choose an affinoid sub-
domain U of X such that z : Sp(L) → X factors through U . Since Gz ∩GU is an
open subgroup of Gz it suffices to show that φz,L |GU∩Gz is continuous. Since the
natural map B(L (U))× → L× is continuous this follows from Definition 3.2.3(b).

It remains to show that φz is a group homomorphism. This is immediate, because
whenever L1 and L2 are elements of PicG(X), there is a canonical isomorphism

(L1 ⊗O L2)(z)→ L1(z)⊗L L2(z)

which is compatible with the G-actions. �

This discussion leads us on to the following definition.
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Definition 3.2.8. A G-equivariant line bundle with flat connection on X is a
G-equivariant DX -module L , such that when L is viewed as a G-equivariant OX -
module by restriction, it is a G-equivariant line bundle on X.

It follows easily from Lemma 3.2.4 that OX equipped with the trivial connection
and its usual equivariant structure is a G-equivariant line bundle with connection.

We can also typically put otherG-equivariant structures on the trivial line bundle
with trivial connection by considering Hom(G,K×), the abelian group of continuous
group homomorphisms from G to K×.

Definition 3.2.9. Given χ ∈ Hom(G,K×) we define a new G-equivariant structure
on O equipped with the trivial connection: for each affinoid subdomain U of X and
for each g ∈ G we define K-linear continuous maps

gOχ(U) : O(U) −→ O(gU)

by f 7→ χ(g)gO(f).

This family {gOχ} then defines a G-equivariant line bundle with connection on
X in the sense of Definition 3.2.8 that we will denote by Oχ. Note that condition
(b) in Definition 3.2.8 follows from the assumption that χ : G→ K× is continuous.

Lemma 3.2.10. Let L and M be G-equivariant line bundles with flat connection.
Then so are L ⊗O M and L ⊗−1 = HomO(L ,O).

Proof. We saw at the start of §3.1 that L ⊗O M and L ⊗−1 are D-modules on
X. The usual formula for the tensor product and contragredient representations
allow us to see that they also carry standard G-equivariant D-module structures
and Lemma 3.2.6 shows that this makes them G-equivariant line bundles. �

Definition 3.2.11. We denote the set of isomorphism classes of G-equivariant line
bundles with flat connection on X by PicConG(X).

In view of Lemma 3.2.10, the operations −⊗O− and (−)⊗−1 endow PicConG(X)
with the structure of an abelian group. The unit element in this group is given by
the isomorphism class of OX equipped with the trivial connection together with its
usual G-equivariant structure.

Definition 3.2.12. We define ConG(X) by

ConG(X) := ker(PicConG(X)→ Pic(X)),

the group of isomorphism classes of G-equivariant line bundles with flat connection
on X that are trivial after forgetting the connection and the G-action.

We record that Con is functorial in a natural way.

Proposition 3.2.13. Let U be a geometrically connected admissible open subset
of X, and suppose that H is a closed subgroup of GU . Then for each g ∈ G,

(a) the map [L ] 7→ [g∗L ] induces a natural isomorphism

g : PicConH(U)
∼=−→ PicCon

gH(gU);
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(b) for L a finite extension ofK and z ∈ U(L), the following diagram commutes:

PicConH(U)
φz //

g

��

Hom(Hz, L
×)

PicCon
gH(gU)

φg·z

// Hom(gHz, L
×).

c∗g

OO

Proof. (a) We’ve already seen in Remark 3.1.9 that L 7→ g∗L induces an isomor-
phism PicCon(U)→ PicCon(gU).

It remains to see how the H-equivariant structure on L ∈ PicConH(U) induces
an gH-equivariant structure on g∗L : for each h ∈ H we have an isomorphism
hL : L → h∗L . This induces an isomorphism

(ghg−1)g∗L : g∗L → (ghg−1)∗g∗L = g∗h
∗L

given by (ghg−1)g∗L = g∗(h
L ). It is easy to verify that this induces the desired

isomorphism PicConH(U)→ PicCon
gH(gU).

(b) Fix [L ] ∈ PicConH(U) and consider the stalk (g∗L )g·z of g∗L at g ·z ∈ gU .
There is a natural bijection between the affinoid subdomains of gU containing g · z,
and the affinoid subdomains of U containing z, given by V 7→ g−1V . This gives a
K-linear isomorphism τg : Lz → (g∗L )g·z which is appropriately equivariant with
respect to the Hz-action on Lz and the Hg·z = gHz-action on (g∗L )g·z:

τg(h ·m) = cg(h) · τg(m) for all h ∈ Hz,m ∈ Lz.

Now let h ∈ Hz. Using Lemma 3.2.2, we see that the scalar φz([L ])(h) ∈ L× is
completely determined by the following equation inside L (z):

1⊗ h ·m = φz([L ])(h)⊗m for all m ∈ Lz.

Since cg(h) = ghg−1 lies in Hg·z, we have a similar equation inside (g∗L )(g · z):

1⊗ cg(h) ·m = φg·z([g∗L ])(cg(h))⊗m for all m ∈ (g∗L )g·z.

Note that the map τg satisfies τg(a ·m) = gOz (a) · τg(m) for all a ∈ OX,z,m ∈ Lz.
Therefore 1 ⊗ τg : L ⊗K Lz → L ⊗K (g∗L )g·z descends to a well-defined L-linear
map L (z)→ (g∗L )(g · z). Applying this map to the first equation and comparing
the result with the second shows that

φz([L ])(h) = φg·z([g∗L ])(cg(h)) = (c∗g ◦ φg·z ◦ g)([L ])(h) for all h ∈ Hz.

This implies the commutativity of the diagram in the statement. �

Forgetting the G-equivariant structure gives us a functor ω from the category of
G-equivariant line bundles with flat connection on X and isomorphisms between
them to the category of line bundles with flat connection on X and isomorphisms
between them. Moreover ω induces a group homomorphism

ω : PicConG(X) −→ PicCon(X).

Proposition 3.2.14. Suppose that X is quasi-Stein and geometrically connected.
There is an exact sequence of abelian groups

0→ Hom(G,K×)→ PicConG(X)
ω→ PicCon(X)G

with the first non-trivial map given by χ 7→ Oχ.
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Proof. It is easy to verify that χ 7→ Oχ defines a group homomorphism from

Hom(G,K×) to PicConG(X). Moreover we observe that for any G-equivariant
line bundle with flat connection L , the space of global horizontal sections4 of L

(8) HomD(O,L ) = L (X)T (X)=0

is a K-linear G-representation: if g ∈ G and T (X) ·v = 0 for some v ∈ L (X), then
∂ · (g · v) = g · ((g−1 · ∂) · v) = 0 for all ∂ ∈ T (X) so that g · v ∈ L (X)T (X)=0 again.

Suppose that χ ∈ Hom(G,K×) is such that Oχ is isomorphic to O as a G-
equivariant line bundle with flat connection. Considering the global horizontal
sections, we obtain an isomorphism of continuous G-representations

O(X)T (X)=0 ∼= Oχ(X)T (X)=0.

By Lemma 3.1.4, both of these K-vector spaces are 1-dimensional and spanned by
1 ∈ O(X). However the G-action on the first is trivial, whereas the G-action on
the second is through the character χ. Hence χ is the trivial character, and the
map Hom(G,K×)→ PicConG(X) is injective.

If L is G-equivariant, then (g−1)L : L → g∗L is a D-linear isomorphism for all
g ∈ G which means that the class [L ] in PicCon(X) is fixed by this G-action i.e. the

image of the map PicConG(X)→ PicCon(X) is indeed contained in PicCon(X)G.
Finally suppose that L is a G-equivariant line bundle with flat connection on

X which becomes trivial after forgetting the G-structure. Then we can find a

D-linear isomorphism ϕ : O
∼=−→ L . Applying the functor of global horizontal

sections together with Lemma 3.1.4, we deduce that the K-linear G-representation
L (X)T (X)=0 is in fact one-dimensional. Let v := ϕ(X)(1) ∈ L (X)T (X)=0; since
1 ∈ O(X) generates O as an O-module, we see that v ∈ L (X) generates L as an
O-module: L = O · v. Let χ ∈ Hom(G,K×) describe the G-action on v, so that
g · v = χ(g)v for all g ∈ G. This gives us a character χ : G → K× and we will
show that χ is continuous. To see this, choose a non-empty affinoid subdomain U
of X and let A be an affine formal model in O(U), so that A · v|U is the unit ball
in L (U) = O(U) · v|U with respect to some K-Banach norm defining the canonical
topology on L (U). By Definition 3.2.8(b), for any n > 0 we can find an open
subgroup Hn of GU such that h · v|U ≡ v|U modπnFA · v|U for all h ∈ Hn. Hence

χ(h) ≡ 1 modπnFK
◦ for all h ∈ Hn, and χ : G→ K× is therefore continuous.

With χ ∈ Hom(G,K×) in hand, consider the G-equivariant line bundle with
connection L ⊗OOχ−1 , and the D-linear isomorphism ϕχ : O → L ⊗OOχ−1 given
by ϕχ(f) := ϕ(f) ⊗ 1. We claim that ϕχ is G-equivariant; given this claim, it
follows immediately that L ∼= Oχ as a G-equivariant D-module, and then [L ] ∈
PicConG(X) lies in the image of Hom(G,K×) as required.

To establish the claim, we first check that ϕχ(X) : O(X) → (L ⊗Oχ−1)(X) is
G-equivariant: for g ∈ G and f ∈ O(X) we have

g · ϕχ(X)(f) = g · (fv ⊗ 1) = (g · f)(g · v)⊗ χ−1(g) = (g · f)v ⊗ 1 = ϕχ(X)(g · f).

By replacing L by L ⊗ Oχ−1 , it now remains to show that if ϕ : O → L is
a D-linear isomorphism such that ϕ(X) : O(X) → L (X) is G-equivariant, then
ϕ is also G-equivariant. To this end, fix g ∈ G, and consider the morphisms
g∗(ϕ) ◦ gO : O → g∗L and gL ◦ ϕ : O → g∗L . By precomposing the g∗O-module
structure on g∗L with the ring isomorphism gO : O → g∗O we may regard g∗L to

4Recall that HomO(O,F) = F(X) for any O-module F and any ringed space (X,O)
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be an O-module. Then it is coherent, and the two maps are O-linear. Since they
have the same global sections by our computation above and since X is quasi-Stein,
we conclude using [27, Corollary 3.3] that the two maps are equal. This means that
ϕ is G-equivariant. �

In order to understand PicConG
0

(Ω) the following result will prove to be useful.

Proposition 3.2.15. Suppose that X is quasi-Stein and geometrically connected
and G is equal to an amalgamated product A ∗C B of its open subgroups A and B
along their common subgroup C. Then the homomorphism

(pA, pB) : PicConG(X)→ PicConA(X) ×
PicConC(X)

PicConB(X)

induced by restriction of equivariant structures is an isomorphism.

Proof. Suppose that [L ] ∈ PicConG(X) lies in the kernel of (pA, pB). Then

ω([L ]) = [O] ∈ PicCon(X).

By Proposition 3.2.14, [L ] = [Oχ] for some χ ∈ Hom(G,K×). However, also by
Proposition 3.2.14, χ|A and χ|B are both trivial and so, as G is generated by A and

B, χ is trivial. Thus [L ] = [O] ∈ PicConG(X) and (pA, pB) is injective.

Suppose now that [LA] ∈ PicConA(X), [LB ] ∈ PicConB(X) and that there is an

isomorphism θ : LA|C
∼=−→ LB |C of C-equivariant line bundles with flat connection

obtained by restriction of equivariant structures from A and B to C. We transport
the B-equivariant structure on LB along θ to LA. In this way, the D-module
L := ω(LA) can be equipped with A-equivariant and B-equivariant structures
whose restrictions to C agree.

By Proposition 2.4.11, for every subgroup H of G there is a bijection between the
set of all H −D-module structures on L extending the given D-module structure
on L , and the set SD(H,L ). This bijection is given by

{gL }g∈H 7→ [g 7→ (g, gL ) ∈ AutD(L /X/H)].

On the other hand, by Theorem 2.4.13 restriction induces a bijection

SD(G,L )
∼=−→ SD(A,L )×SD(C,L ) SD(B,L ).

It follows that there exists a G−D-module LG = (L , {gL }g∈G) whose restriction
to A is LA, and whose restriction to B is the transport of LB to LA along θ. Since
A and B are open in G, the action map GU → B(L (U))× is continuous for every
affinoid subdomain U of X, because the restrictions of this map to both AU and
BU are continuous. This shows that [LG] ∈ PicConG(X). By construction, we
have pA([LG]) = [LA] and pB([LG]) = [LB ]. Hence (pA, pB) is surjective. �

Lemma 3.2.16. If X is a geometrically connected quasi-Stein space with an ad-
missible cover by an increasing chain (Xn) of G-stable affinoid subdomains then the

restriction maps PicConG(X)→ PicConG(Xn) induce an isomorphism of groups

PicConG(X) ∼= lim←−PicConG(Xn).

Proof. Certainly the restriction maps induce a group homomorphism

α : PicConG(X)→ lim←−PicConG(Xn).
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By Corollary 3.1.6, if [L ] ∈ kerα then ω([L ]) = [OX ] ∈ PicCon(X). Thus
[L ] = [OχX ] for some continuous character χ : G → K× by Lemma 3.2.14. But
then [L |Xn ] = [OχXn ] for any n > 0 and so χ is the trivial character since α([L ])
is trivial. Thus α is injective.

Let ([Ln]) ∈
∏

PicConG(Xn) be a compatible family of isomorphism classes of
equivariant line bundles with connection under restriction so that for each n we can
find an isomorphism

θn+1,n : Ln+1|Xn → Ln

of G-equivariant line bundles with connection on Xn.
Thus each l > m, we can define θm,l : Ll|Xm → Lm to be the composite of the

restrictions of θl,l−1, θl−1,l−2, . . . , θm+1,m to Xm. Now (Ll, θm,l) forms gluing data
for the cover (Xm)m>n of X. The resulting sheaf L is an G-equivariant line bundle
with connection on X with α([L ]) = ([Ln]) and so α is surjective. �

3.3. Cocycles and equivariant line bundles on affinoids. In this technical
subsection, we will explain how isomorphism classes of G-equivariant structures on
the trivial line bundle over a K-affinoid variety X can be classified through the
language of continuous 1-cocycles of G acting on O(X)×. This material will be
crucial to the proof of one of the main results in §4.4, namely Theorem 4.4.1.

We assume throughout §3.3 that X is a smooth and geometrically connected
K-affinoid space, with a topological group G acting continuously on it.

Lemma 3.3.1.

(a) The set of G-equivariant structures on a trivial line bundle L = O · v
is in natural bijection with Z1(G,O(X)×) under a function that sends
{gL : g ∈ G} to the function α : G→ O(X)× determined by the rule

gL (v) = α(g)v for all g ∈ G.

(b) The bijection in (a) induces an isomorphism

θGX : ker
Ä
PicG(X)→ Pic(X)

ä ∼=−→ H1(G,O(X)×).

Proof. (a) Suppose that for each g ∈ G, we have a morphism of sheaves of K-vector
spaces gL : L → g∗L such that

gL (fv) = gO(f)gL (v) for all g ∈ G, f ∈ O.

This data is completely determined by the function α : G→ O(X) given by

gL (v) = α(g)v for all g ∈ G.

We first claim that {gL : g ∈ G} is a G-equivariant structure on L if and only
only α is a 1-cocycle with values in the group O(X)×.

We see that for all g, h ∈ G

h∗(gL )hL (v) = h∗(gL )(α(h)v) = (g · α(h))α(g)v and(9)

(gh)L (v) = α(gh)v.(10)

Now if {gL : g ∈ G} defines a G-equivariant structure on L then α(1) = 1 and
h∗(gL )hL (v) = (gh)L (v). Thus by (9) and (10) α(gh) = (g · α(h))α(g) for all
g, h ∈ G and in particular

1 = α(gg−1) = (g · α(g−1))α(g)
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for all g ∈ G. Thus α is a 1-cocycle with values in O(X)×. Conversely, if α is a
1-cocycle then by (9) and (10) again, for all g, h ∈ G,

(gh)L (v) = h∗(gL )hL (v) and so

(gh)L = h∗(gL )hL .

Moreover α(12) = α(1)2 and so, since X is connected, α(1) = 1 and 1L = idL .
It remains to observe that α is continuous if and only if for every affinoid subdo-

main U of X, the action map GU → B(L (U))× is continuous. This holds because

g · (fv) = gO(f)α(g)v for all g ∈ GU , f ∈ O(U)

and because G acts continuously on X.
(b) Suppose now that L1 = O · v1 and L2 = O · v2 are two G-equivariant line

bundles corresponding to 1-cocycles α1 and α2 respectively.
Let ϕ : L1 → L2 be an isomorphism of the underlying line bundles. Then

ϕ(v1) = fv2 for some f ∈ O(X)×, so for all g ∈ G we have

ϕ(gL1(v1)) = ϕ(α1(g)v1) = α1(g)fv2

whereas

gL2(ϕ(v1)) = gL2(fv2) = gO(f)α2(g)v2.

Hence ϕ defines an isomorphism of G-equivariant line bundles if and only if

α2(g) =
gO(f)

f
α1(g) for all g ∈ G.

Thus the map in (a) induces a bijection

θGX : ker
Ä
PicG(X)→ Pic(X)

ä
→ H1(G,O(X)×)

which is a group homomorphism because g · (v1 ⊗ v2) = α1(g)v1 ⊗ α2(g)v2 =
(α1α2)(g)(v1 ⊗ v2) for all g ∈ G. �

Recall the map φz from Proposition 3.2.7; by abuse of notation, we will also
denote its pre-composition with the forgetful map ConG(X)→ PicG(X) by φz.

Proposition 3.3.2. Suppose that L is a finite field extension of K.

(a) The isomorphism from Lemma 3.3.1(b) induces a homomorphism

φGX : ConG(X)→ H1(G,O(X)×)

by pre-composition with the forgetful map

ConG(X)→ ker(PicG(X)→ Pic(X)).

(b) For every z ∈ X(L) and every [L ] ∈ ConG(X), we have

z ◦ (resGGz φ
G
X([L ])) = φz([L ]).

(c) For every z ∈ X(L) and every χ ∈ Hom(G,K×), we have

φz([Oχ]) = χ|Gz .
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(d) Let Y ⊆ X be a G-stable affinoid subdomain, with z ∈ Y (L) ⊆ X(L).
Then the following diagram is commutative:

ConG(X)

φz

))
(−)|Y

��
ConG(Y )

φz

// Hom(Gz, L
×).

Proof. (a) Since the forgetful map ConG(X)→ ker(PicG(X)→ Pic(X)) is a group
homomorphism, the function φGX that is the composite of this forgetful map with
θGX is also a homomorphism.

(b) Suppose that φGX([L ]) = [α] ∈ H1(G,O(X)×) so that we can write L = O·v
with g · v = α(g)v for all g ∈ G. Then working inside L⊗O(X) L (X) we have

φz(g)(1⊗ v) = g · (1⊗ v) = 1⊗ α(g)v = (z ◦ α)(g)⊗ v for all g ∈ Gz.

(c) This follows from Lemma 3.3.1(a) and Definition 3.2.9.

(d) If [L ] = [OX · v] ∈ ConG(X), then [L |Y ] = [OY · v] ∈ ConG(Y ) and
gL |Y (v) = gL (v) for all g ∈ G. Now use Lemma 3.3.1 together with part (a). �

Definition 3.3.3. Recall from §1.6 the map δG : O(X)× → Z1(G,O(X)×), given
by δG(u)(g) = g · u/u. For each u ∈ O(X)× and d, e > 1, we define

ZG,Xu,d,e :=
{
α ∈ Z1(G,O(X)×) : αde = δG(ue)

}
.

This special set of 1-cocycles will be useful for our explicit construction of torsion
equivariant line bundles with flat connection.

Recall from Lemma 3.1.10 the line bundle with connection Lu,d: it is the free
OX -module on the 1-element set {v}, and the action of T (X) is determined by

(11) ∂(v) =
1

d

∂(u)

u
v for all ∂ ∈ T (X).

Lemma 3.3.4. Let u ∈ O(X)× and let d, e > 1.

(a) For each α ∈ ZG,Xu,d,e, there is a (de)-torsion G-equivariant line bundle with
connection L α

u,d on X such that

ω([L α
u,d]) = Lu,d and φGX([L α

u,d]) = [α] ∈ H1(G,O(X)×).

(b) If u,w ∈ O(X)×, α ∈ ZG,Xu,d,e and β ∈ ZG,Xw,d,e, then αβ ∈ ZG,Xuw,d,e and

L α
u,d ⊗L β

w,d
∼= L αβ

uw,d.

(c) For each α ∈ ZG,Xu,d,e, the following are equivalent:

(i) [L α
u,d] = [O] in ConG(X)[de],

(ii) there is f ∈ O(X)× such that u/fd ∈ K× and α = δG(f).
(d) The map α 7→ [L α

u,d] defines a bijection

ZG,Xu,d,e

∼=−→
¶

[L ] ∈ ConG(X)[de] : ω([L ]) = [Lu,d]
©
.

Proof. (a) We equip Lu,d with the G − OX -module structure associated to α by
Lemma 3.3.1. In particular the action map GU → B(L (U))× is continuous for
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every affinoid subdomain U of X. We check that this is in fact a G−DX -module.
Using αde = δG(ue), we compute

∂(α(g))

α(g)
=

1

d

Å
∂(g · u)

g · u
− ∂(u)

u

ã
for each ∂ ∈ TX , g ∈ G.

Using this together with (11) we compute

(g · ∂)(g · v) = (g · ∂)(α(g))v + α(g)(g · ∂)(v)

=
1

d

Å
(g · ∂)(g · u)

g · u
− (g · ∂)u

u

ã
α(g)v + α(g)

1

d

(g · ∂)(u)

u
v

=
1

d

g · (∂(u))

g · u
g · v

= g · (∂(v)).

Thus we obtain a G-equivariant line bundle with connection on X that we denote

L α
u,d. It is evident that ω

Ä
[L α

u,d]
ä

= [Lu,d].

Using (11), we see that v⊗de 7→ ue defines an isomorphism ψ : L ⊗deu,d

∼=−→ OX of

line bundles with flat connection. To establish that L α
u,d is (de)-torsion, it suffices

to show this isomorphism is G-linear. Since for all g ∈ G we have

g · (v⊗de) = αde(g)v⊗de and g · (ue) = δG(ue)(g)ue;

we have αde = δG(u)e and the G-linearity follows.
(b) Since αde = δG(ue) and βde = δG(we) and δG : O(X)× → Z1(G,O(X)×) is

a group homomorphism, we see that (αβ)e = δG((uw)e). Hence αβ ∈ ZG,Xuw,d,e.

Using Proposition 3.1.11, we see that [Lu,d ⊗ Lv,d] = [Luv,d] in Con(X)[d].
Using the definition of the G-equivariant structure on L α

u,d in part (a) and the

definition of the product in ConG(X) given in the proof of Lemma 3.2.10, we also

see that [L α
u,d ⊗L β

w,d] = [L αβ
uw,d] in ConG(X).

(c) For any f ∈ O(X)×, there is an isomorphism O
∼=−→ L

δG(f)

fd,d
of G-equivariant

line bundles with connection on X, sending 1 to f−1v. This gives the equality

[L
δG(f)

fd,d
] = [O] in ConG(X). Using part (b), we then also have

(12) [L α
u,d] = [L α

u,d] · [O] = [L α
u,d] · [L

δG(f)

fd,d
]−1 = [L

α/δG(f)

u/fd,d
].

Suppose now that u = λfd for some λ ∈ K× and some f ∈ O(X)× such that

α = δG(f). Using (12), we then have [L α
u,d] = [L 1

λ,d] = [O] in ConG(X).

Conversely, suppose that [L α
u,d] = [O] in ConG(X). Then ω([L α

u,d]) = [Lu,d] =

[O] in Con(X)G, so using Proposition 3.1.11 we can find f ∈ O(X)× and λ ∈ K×

such that u = λfd. Then (12) implies that [O] = [L α
u,d] = [L

α/δG(f)
λ,d ] in ConG(X).

Hence G must fix the basis vector v of L
α/δG(f)
λ,d (X)T (X)=0, so α = δG(f).

(d) Suppose that [L ] ∈ ConG(X)[de] is such that ω([L ]) = [Lu,d]. Consider
the function α : G→ O(X)× defined by g · v = α(g)v. Then α ∈ Z1(G,O(X)×) by
Lemma 3.3.1.

Since (de) · [L ] = 0 in ConG(X), there is an isomorphism of G-equivariant line

bundles with flat connection ϕ : L ⊗de
∼=−→ OX . On the other hand we also have

the isomorphism ψ : L ⊗deu,d

∼=−→ OX of line bundles with flat connection constructed
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in the proof of part (a) above. Since ω([L ]) = Lu,d, Corollary 3.1.5 implies that
ϕ = λψ for some λ ∈ K×, and then ϕ(v⊗de) = λue. Since ϕ is G-linear, we have

g · λue = g · ϕ(v⊗de) = ϕ(g · v⊗de) = α(g)deλue for all g ∈ G,

so αde = δG(ue). Hence α ∈ ZG,Xu,d,e and [L ] = [L α
u,d] in ConG(X).

Finally, suppose that α, β ∈ ZG,Xu,d,e are such that [Lαu,d] = [Lβu,d]. Then [Lα/β1,d,e] =

[O] by part (b), so α/β = δG(f) for some f ∈ O(X)× such that 1/fd ∈ K×. It
follows, by Corollary 3.1.7, that f ∈ K×. Then δG(f) = 1 so α = β as required. �

Notation 3.3.5. We will write T (X) to denote the discrete abelian group

T (X) := O(X)×/O(X)××

and πT (X) to denote the natural projection map πT (X) : O(X)× → T (X).

Since O(X)×× is open in O(X)×, πT (X) is continuous. We also observe that
T (−) defines a functor from affinoid varieties to abelian groups. Our next result

gives conditions on the data u, d, e, α that determine when [L α
u,d,e] ∈ ConG(X) is

in fact the trivial element, in the case where d, e are both coprime to p.

Proposition 3.3.6. Let d, e > 1 be integers coprime to p. Then for every u ∈
O(X)× and α ∈ ZG,Xu,d,e, the following are equivalent:

(i) there exists v ∈ O(X)× such that u/vd ∈ K× and α = δG(v),
(ii) there exists v ∈ O(X)× and λ ∈ K× such that

πT (X)(λv
d) = πT (X)(u) and πT (X) ◦ α = πT (X) ◦ δG(v).

(iii) [L α
u,d,e] = [O] ∈ ConG(X).

Proof. The equivalence of (i) and (iii) is a special case of Lemma 3.3.4(c).
The implication (i)⇒(ii) is immediate since we can take λ = u/vd.
Suppose that v ∈ O(X)× and λ ∈ K× such that πTX (λvd) = πT (X)(u) and

πT (X) ◦α = πT (X) ◦ δG(v). Since kerπT (X) = O(X)××, using Lemma 4.3.2, we can

find ε ∈ O(X)×× such that εd = λvd/u. Setting v′ := v/ε′, we have

u/v′d ∈ K× and πT (X) ◦ δG(v′) = πT (X) ◦ δG(v) = πT (X) ◦ α.

To deduce that (i) holds it remains to prove that α = δG(v′). Since u/v′d ∈ K×,

we have δG(u) = δG(v′)d. Because α ∈ ZG,Xu,d,e, α
de = δG(ue) = δG(v′de) shows that

α/δG(v′) takes values in µde(K). However α/δG(v′) also takes values in kerπT (X) =

O(X)××. We’re now done because O(X)×× ∩ µde(K) is trivial. �

Proposition 3.3.7. Assume the hypotheses of Proposition 3.3.6 hold. Suppose
also that G is compact and that the exponent of every finite abelian p′-quotient of
G divides e.

For every β ∈ Z1(G,O(X)×) and u ∈ O(X)× such that πT (X) ◦
(
β−dδG(u)

)
takes values in K×/K×× there is a unique α ∈ ZG,Xu,d,e such that

πT (X) ◦ α = πT (X) ◦ β ∈ Z1(G,T (X)).

Proof. Let η be the 1-cocycle η := δG(u)β−d. The assumption on η implies that
πT (X)◦η ∈ Z1(G,K×/K××). Since G is compact and K×/K×× is a discrete group

with trivial G-action, πT (X) ◦ η ∈ Hom(G,K×/K××) has finite image and so takes

values in the torsion subgroup of K×/K××.
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Since K×/K×× has no p-torsion, πT (X) ◦ η factors through a finite abelian p′-
quotient of G and thus (πT (X) ◦ η)e = 1 by our assumption on G. That is ηe takes

values in O(X)××. By Lemma 4.3.2(a), ηe has a deth root γ in Z1(G,O(X)××):
γde = ηe.

Now δG(u)e = (ηβd)e = (γj)de, so α := γβ satisfies αde = δG(u)e. Moreover
πT (X) ◦ α = πT (X) ◦ β as required.

Suppose now that α′ ∈ ZG,Xu,d,e satisfies πT (X) ◦α′ = πT (X) ◦ β = πT (X) ◦α. Then

α/α′ takes values in O(X)×× but also (α/α′)de = 1. Then α′ = α since p - de. �

4. Applications to Drinfeld’s upper half plane

4.1. Subdomains of the rigid analytic affine line. We will write A := AK :=
A1,an
K to denote the rigid K-analytic affine line, equipped with a fixed choice of local

coordinate x ∈ O(A). We write P1 to denote the rigid K-analytic projective line.

Definition 4.1.1. A K-cheese is an affinoid subdomain of A of the form

CK(α, s) := SpK

≠
x− α0

s0
,

s1

x− α1
, · · · , sg

x− αg

∑
for some α := (α0, . . . , αg) ∈ Kg+1 and s := (s0, . . . , sg) ∈ (K×)g+1, which satisfy

• |si| 6 |s0| for all i = 1, . . . , g,
• |αi − α0| 6 |s0| for all i = 1, . . . , g, and
• |αi − αj | > max{|si|, |sj |} whenever 1 6 i < j 6 g.

When there is no risk of confusion, we will simplify the notation to C(α, s).
We call the open discs

D∞ := {z ∈ P1(C) : |z − α0| > |s0|} and

Di := {z ∈ P1(C) : |z − αi| < |si|} for i = 1, . . . , g

the holes of C(α, s) and we write

h(C(α, s)) := {D1, . . . , Dg, D∞}

to denote the set of holes of C(α, s).

Of course the C-points of C(α, s) are obtained by removing the g+ 1 holes from
P1(C). The conditions on the parameters α and s are there to ensure that the holes
are pairwise disjoint. We also require that α and s are defined over K.

Remark 4.1.2.

(a) Given two open discs D1, D2 in P1(C) with D1∩D2 6= ∅, it must necessarily
be the case that either D1 ⊆ D2, or D2 ⊆ D1.

(b) The union and the intersection of two cheeses C1, C2 are also cheeses, unless
C1 ∩ C2 = ∅.

Lemma 4.1.3. Suppose that X and Y are K-cheeses and ϕ : P1 → P1 is a K-
analytic automorphism such that ϕ(Y ) ⊆ X. Then there is a unique function

ϕXY : h(X)→ h(Y )

such that for every D ∈ h(X), ϕXY (D) is the largest hole of Y containing ϕ−1(D).
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Proof. By [17, p. 33], the automorphism ϕ is necessarily a Möbius transformation.
Hence ϕ, as well as ϕ−1, maps open discs in P1(C) to open discs in P1(C).

Let D ∈ h(X). Then ϕ−1(D)∩Y (C) ⊆ ϕ−1(D∩X(C)) = ∅. Thus the open disc
ϕ−1(D) is contained in the union of the holes of Y . Remark 4.1.2(a) then implies
that ϕ−1(D) is contained in a unique hole ϕXY (D) of Y . �

Notation 4.1.4. Suppose that X,Y are K-cheeses with Y ⊆ X. We will denote
the function idXY : h(X)→ h(Y ) associated with the identity map id : P1 → P1 by
ιXY : h(X)→ h(Y ).

The following lemma will be useful later.

Lemma 4.1.5. Suppose that X and Y are K-cheeses with non-empty intersection.
Then there is a natural bijection

ιX∪YX × ιX∪YY : h(X ∪ Y ) −→ h(X) ×
h(X∩Y )

h(Y )

given by D 7→ (ιX∪YX (D), ιX∪YY (D)).

Proof. Note that the map in the statement of the Lemma is well-defined because

ιXX∩Y ◦ ιX∪YX = ιX∪YX∩Y = ιYX∩Y ◦ ιX∪YY .

De Morgan’s laws imply that h(X∪Y ) is precisely the set of non-empty intersections
A∩B with A ∈ h(X) and B ∈ h(Y ). Let D ∈ h(X∪Y ); hence there exist A ∈ h(X)
and B ∈ h(Y ) with D = A ∩ B. But then ιX∪YX (D) = A and ιX∪YY (D) = B, so
D = A or D = B by Remark 4.1.2(a). Hence ιX∪YX × ιX∪YY is injective.

We now show that ιX∪YX × ιX∪YY is surjective. Suppose that A ∈ h(X) and
B ∈ h(Y ) are such that ιXX∩Y (A) = ιYX∩Y (B) =: E. This means that A and B are
contained in the same hole E of X ∩Y . Since E is a hole of X ∩Y , by de Morgan’s
laws again we see that E is the union of the holes of X contained in E together
with the holes of Y contained in E. But no open disc in P1(C) is a finite union
of proper open subdiscs; hence E ∈ h(X) ∪ h(Y ). It follows that either E = A or
E = B. Since E contains both A and B, it follows that either A ⊆ B or B ⊆ A.
Hence D := A ∩B is non-empty and is therefore a hole of X ∪ Y as we saw above.
It is now clear that

(A,B) =
(
ιX∪YX (D), ιX∪YY (D)

)
lies in the image of ιX∪YX × ιX∪YY . �

We are interested in these cheeses because every connected affinoid subdomain of
the affine line A is a K-cheese whenever K is algebraically closed by [18, Corollary
2.4.7]. We will prove Theorem 4.1.8 below which carries out a Galois descent of
this statement down to our base field K which may fail to be algebraically closed.

Lemma 4.1.6. Let GK := Gal(K/K) and let A be a K-affinoid algebra. Then the

natural map A→ (A“⊗C)GK is an isomorphism of K-Banach algebras.

Proof. Since A is a quotient of a Tate algebra, A is of countable type as a K-
Banach space: it has a dense K-linear subspace of countable dimension. Assume
first that dimK A = ∞. By [12, Proposition 1.2.1(3)], we can find a K-Banach
space isomorphism ϕ : A → c0(K); this means that ϕ is a bounded K-linear map
which has a bounded K-linear inverse. Now consider the commutative diagram
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A //

ϕ

��

(A“⊗C)GK

ϕ“⊗1
��

c0(K) // (c0(K)“⊗C)GK .

The arrow in the bottom row is an isomorphism because

(c0(K)“⊗C)GK = c0(C)GK = c0(CGK ) = c0(K)

by the Ax-Sen-Tate theorem — see, for example, [7, Proposition 2.1.2]; the proof
given there works for any complete non-Archimedean field of characteristic zero.
The case dimK A <∞ is handled in a similar manner. �

Definition 4.1.7. When X is an affinoid subdomain of A and K ′ is a finite exten-
sion of K we say that X is split over K ′ if XK′ is a finite union of pairwise disjoint
cheeses.

We will write
√
|K|× to denote the divisible subgroup of R× generated by |K×|;

this is the same as |K×|.

Theorem 4.1.8. Let X be an affinoid subdomain of the affine line A. Then there
is a finite extension K ′ of K such that X splits over K ′.

Proof. Recall that X is geometrically connected if the base change XC is connected.
Suppose first that X is geometrically connected. Then XC, being connected, is a
cheese CC(α, s) by [18, Corollary 2.4.7]. Since K is dense in C, we can choose the
centres α0, α1, . . . , αg to be first in K, and then find a large enough finite extension

K ′ of K such that αi ∈ K ′ for all i. Since |K×| = |C×| =
√
|K×|, we may enlarge

K ′ if necessary and arrange that si ∈ K ′ for all i as well. Let Z := CK′(α, s) be
the same cheese but defined over K ′. Choose a large enough closed disc D defined
over K ′ which contains both X ′ := XK′ and Z, and fix a coordinate y on D. Then
there is an isomorphism of C-affinoid varieties X ′ ×K′ C ∼= Z ×K′ C compatible
with the inclusions X ′ ↪→ D and Z ↪→ D. Now consider the induced C-algebra
isomorphism

ψ : O(X ′)“⊗K′C = O(X ′ ×K′ C)
∼=−→ O(Z ×K′ C) = O(Z)“⊗K′C.

Because X ′ is an affinoid subdomain of D, the C-algebra O(X ′)“⊗K′C contains a
dense C-subalgebra generated by rational functions in y with coefficients in K ′, and
ψ must send these rational functions to GK′ -invariants in the target. Hence ψ re-
spects the natural GK′ := Gal(K/K ′)-actions on both sides. Taking GK′ -invariants
and applying Lemma 4.1.6 we deduce a O(D)-algebra isomorphism O(X ′) ∼= O(Z),
so that X ′ = Z is a cheese.

Returning to the general case, it will now be enough to show that there is some
finite extension K ′′ of K such that every connected component of XK′′ is geo-
metrically connected. To see this, consider again XC, and let {e1, . . . , en} be the
primitive idempotents of O(XC). Since GK acts continuously on O(XC) the sta-
biliser Hi in GK of each ei is closed. On the other hand, GK preserves {e1, . . . , en}
so each Hi has finite index in GK . Hence each Hi is also open in GK . We can there-
fore find a finite extension K ′′ of K such that GK′′ fixes each ei pointwise. Then
ei ∈ O(XC)GK′′ = (O(X)“⊗C)GK′′ = O(X)“⊗K ′′ = O(XK′′) again by Lemma 4.1.6.
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It follows that every connected component of XK′′ is geometrically connected as
required. �

Proposition 4.1.9. Let C = CK(α; s) be a K-rational cheese and ξ = ξ0 a coor-
dinate on A1 such that D∞ = {z ∈ P1(C) : |ξ(z)| > 1}.

For i = 1, . . . , g let ξi = ci
ξ−ξ(αi) with ci ∈ K× such that |ξi| = 1. Then the set

{1, ξji : j > 1, 0 6 i 6 g} is an orthonormal Schauder basis for the K-Banach space
O(C), in the sense of [4, §2.7.2].

Proof. This is a straightforward rephrasing of [18, Proposition 2.4.8(a)]. �

Proposition 4.1.10. Let X = C(α, s) be a cheese. Then the map

Zg −→ O(X)×

K× · O(X)××

defined by

(n1, . . . , ng) 7→ (x− α1)n1 · · · (x− αg)ng ·K× · O(X)××

is an isomorphism of abelian groups.

Proof. This is [18, Proposition 2.4.8(b)]. �

Proposition 4.1.11. For every cheese X, Pic(X) = 0.

Proof. This follows from [12, Proposition 8.2.3(1)] and [34, Corollary 3.8]. �

Recall5 that X is said to be quasi-Stein if there is an admissible affinoid cov-
ering (Xn)∞n=0 of X with X0 ⊆ X1 ⊆ X2 ⊆ · · · such that for each n > 0, the
restriction map O(Xn+1)→ O(Xn) has dense image. If X is quasi-Stein, then the
global sections functor Γ(X,−) gives a fully faithful embedding from the category
of coherent O-modules on X into the category O(X)-modules; the essential image
is the category of coadmissible O(X)-modules in the sense of [27].

Proposition 4.1.12. Suppose thatX is an admissible subdomain of A and {Xn}∞n=0

is an admissible cover of X by cheeses such that Xn ⊂ Xn+1 for all n and each

map ιXnXn+1
: h(Xn+1) → h(Xn) is surjective. Then X is geometrically connected,

smooth and quasi-Stein.

Proof. Since XC has an admissible cover by the cheeses Xn,C, X is geometrically
connected and smooth.

By [12, Exercise 2.6.2] all the maps O(Xn+1) → O(Xn) have dense image and
so X is quasi-Stein. One argument to complete the exercise is as follows. For any
cheese C := C(α, s) the sub-K-algebra of rational functions

Orat(C) := K[x, (x− α1)−1, . . . , (x− αd)−1]

is dense in O(C), by Proposition 4.1.9. Moreover, the condition h(Xn+1)→ h(Xn)
is surjective guarantees that the centres of the holes in Xn can all be chosen to not
lie in Xn+1 so that Orat(Xn) ⊂ O(Xn+1). �

5see [16, Definition 2.3]
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4.2. Drinfeld’s upper half-plane. In this section we study ΩF the Drinfeld upper
half plane, which is a rigid F -analytic space whose underlying set consists of the
Gal(F/F )-orbits in ΩF (F ) = P1(F )\P1(F ).

It is straightforward to see that for any finite extension L of F , ΩF (L) can
be identified with L\F and we will often silently make this identification. The
rigid space ΩF comes naturally equipped with an action of GL2(F ) by Möbius
transformations: Å

a b
c d

ã
· z =

az + b

cz + d

and the same formula induces an action on each set ΩF (L).
We recall from [6, §I.1.2] the GL2(F )-equivariant reduction map λ : ΩF (C) →

|BT | from ΩF (C) = P1(C)\P1(F ) to the geometric realisation |BT | of the Bruhat-
Tits tree BT associated with PGL2(F ). Since λ ◦ σ = λ for any σ ∈ Gal(F/F ),
this map factors through the rigid F -analytic space ΩF , giving us a map

λ : ΩF → |BT |.
Any point in ΩF is the Gal(F/F )-orbit [z] of some z ∈ ΩF (F ); then we have
λ([z]) = λ(z). We abuse notation and also call λ : ΩF → |BT | the reduction map.

Lemma 4.2.1. Let z ∈ ΩF (F ). Then GL2(F )z 6 GL2(F )[z] 6 GL2(F )λ([z]).

Proof. This is a consequence of the GL2(F )-equivariance of z 7→ [z] and λ. �

Proposition 4.2.2. Suppose that T is a finite subtree of BT . Then λ−1(|T |) is
an F -cheese contained in ΩF .

Proof. Since the union of two non-disjoint F -cheeses is an F -cheese and T is con-
nected, by an induction on the number of edges of T , it suffices to prove the result
when T is a single vertex or has two vertices connected by an edge. Both of these
cases can be deduced from the discussion in [6, §I.2.3]. �

Definition 4.2.3. For every finite subtree T of BT , we define

CT := λ−1(|T |)×F K.

Note that CT is a K-cheese contained in Ω := ΩF ×F K, by Proposition 4.2.2.

Definition 4.2.4. Suppose T is a finite subtree of BT .

(a) The neighbourhood of T is the subset N(T ) of the set of edges of BT with
precisely one vertex in T :

N(T ) := {(ss′) ∈ E(BT ) : s ∈ T , s′ 6∈ T }.
(b) For e ∈ N(T ) we write sT (e) to denote the vertex of e in T and tT (e) to

denote the vertex of e not in T ;

sT ((ss′)) := s and tT ((ss′)) := s′ for s ∈ T , s′ 6∈ T

Lemma 4.2.5. Let T ′ ⊆ T be finite subtrees of BT and let e ∈ N(T ). Then
there is a unique f ∈ N(T ′) such that the unique path in BT from tT (e) to tT ′(f)
contains no vertices of T ′.

Proof. Let w be any vertex of T ′. Since BT is a tree it contains a unique path from
tT (e) to w. Since w is a vertex of T ′ and tT (e) is not, there is precisely one edge
f in this path contained in N(T ′). We can then truncate the path to a path from
tT (e) to tT ′(f) that contains no vertices of T ′.
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If f ′ is an element of N(T )\{f} then the unique path from tT ′(f) to tT ′(f
′)

must pass through a vertex of T ′ so there is no path from tT (e) to tT ′(f
′) that

contains no vertices of T ′. �

Definition 4.2.6. If T ′ ⊆ T are finite subtrees of BT , then

ιTT ′ : N(T )→ N(T ′)
is the map that sends e ∈ N(T ) to f ∈ N(T ′) given by Lemma 4.2.5.

Example 4.2.7. Suppose that S is a subtree of BT consisting of two vertices s and
s′ and the single edge (ss′), and {s} is the subtree of S with s as its only vertex.
Then there exist 2q edges e1, . . . , eq, f1, . . . , fq ∈ E(BT ) such that:

(a) N(S) = {e1, . . . , eq, f1, . . . , fq},
(b) sS(ei) = s and sS(fi) = s′ for each i = 1, . . . , q,
(c) N({s}) = {e1, . . . , eq, (ss

′)}, and
(d) ιS{s}(ei) = ei and ιS{s}(fi) = (ss′) for each i = 1, . . . , q.

Lemma 4.2.8. Suppose that T1 ⊆ T2 ⊆ T3 are finite subtrees of BT .

(a) ιT3T1 = ιT2T1 ◦ ι
T3
T2 .

(b) If e ∈ N(T2) and sT2(e) ∈ V (T1), then ιT2T1(e) = e.

(c) If e ∈ N(T2) and sT2(e) 6∈ V (T1), then ιT2T1(e) ∈ E(T2)\E(T1).

Proof. (a) If e ∈ N(T3) then the path P in BT from tT3(e) to tT1
Ä
ιT3T1(e)

ä
that

contains no vertices of T1 can be decomposed as a union of two subpaths with a
single vertex in common (and possibly no edges): one of these subpaths goes from
tT3(e) to the last vertex s in P that does not lie in T2 and the other goes from s to

tT1
Ä
ιT3T1(e)

ä
. Then these paths show that ιT2T3(e) is the unique element f of N(T2)

such that tT2(f) = s and ιT2T1(f) is ιT3T1(e) as required.
(b) Since T1 ⊆ T2, the condition sT2(e) ∈ T1 gives that e ∈ N(T1) and the path

from tT2(e) to tT1(e) = tT2(e) has no edges and so contains no vertices of T1.

(c) First N(T1) ∩ E(T1) = ∅ so ιT2T1(e) 6∈ E(T1). Since s1 := sT2(e) ∈ T2 and

s2 := sT1
Ä
ιT2T1(e)

ä
∈ T1 ⊆ T2, the unique path in BT from s1 to s2 lies in T2. The

condition s1 6∈ T1 ensures this path contains at least one edge f :=
Ä
tT1
Ä
ιT2T1(e)

ä
s2

ä
.

Moreover f ∈ N(T1). Adding the edge (tT2(e)s1) to the start of the path and

removing f from its end gives the path that shows that ιT2T1(e) = f . �

Lemma 4.2.9. Suppose that S and T are finite subtrees of BT such that

E(S) = {(ss′)} and V (S) ∩ V (T ) = {s}.
There is a natural bijection

ιS∪TS × ιS∪TT : N(S ∪ T )→ N(S) ×
N(S∩T )

N(T )

given by e 7→ (ιS∪TS (e), ιS∪TT (e)).

Proof. The map ξ := ιS∪TS × ιS∪TT in the statement is well-defined, because

ιSS∩T ◦ ιS∪TS = ιS∪TS∩T = ιTS∩T ◦ ιS∪TT
by Lemma 4.2.8(a).

Next we show that ξ is injective. To this end, suppose that e1, e2 are two elements
of N(S ∪ T ) such that ξ(e1) = ξ(e2). Let vi = sS∪T (ei) for i = 1, 2. Suppose first
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that both of v1, v2 lie in S. In this case, ιS∪TS (e1) = e1 and ιS∪TS (e2) = e2, by
Lemma 4.2.8(b), and we deduce by looking at the first component of ξ(e1) = ξ(e2)
that e1 = e2. The case where both v1, v2 lie in T is entirely similar. Suppose for
a contradiction that e1 6= e2. Then without loss of generality, we can now assume
that v1 lies in V (T )\V (S) and v2 lies in V (S)\V (T ). Since S is a single leaf with
V (S) ∩ V (T ) = {s}, this forces v2 = s′. Therefore since ιS∪TS (e2) = e2 by Lemma
4.2.8(b), the only vertex of ιS∪TS (e2) in S is s′. On the other hand, because v1 /∈
V (S), ιS∪TS (e1) ∈ E(T ) by Lemma 4.2.8(c). This contradicts ιS∪TS (e2) = ιS∪TS (e1)
because s′ /∈ V (T ).

Finally we show that ξ is surjective. Suppose that (e, f) ∈ N(S) ×
N(S∩T )

N(T ).

We first consider the case where sT (f) 6= s, so that tT (f) 6∈ S ∪ T . It follows
that f ∈ N(S ∪ T ) and we claim ξ(f) = (e, f). That ιS∪TT (f) = f follows from
Lemma 4.2.8(b) because sT (f) ∈ T . Consider the following element g of N(S ∩T ):

g := ιSS∩T (e) = ιTS∩T (f).

Since sT (f) 6∈ S ∩ T , g ∈ E(T ) by Lemma 4.2.8(c). In particular g 6= (ss′). Since
g = ιSS∩T (e), this implies that g = e by Example 4.2.7(d). Now sS∪T (f) 6∈ S so
h := ιS∪TS (f) ∈ E(T )\E(S) by Lemma 4.2.8(c) again. Hence ιSS∩T (h) = h by
Example 4.2.7(d). Using Lemma 4.2.8(a) several times, we now see that

ιS∪TS (f) = h = ιSS∩T (h) = ιSS∩T ι
S∪T
S (f) = ιS∪TS∩T (f) = ιTS∩T ι

S∪T
T (f) = g.

Hence ιS∪TS (f) = g = e as required.
Next we consider the case where sT (f) = s so that, by Lemma 4.2.8(b), ιTS∩T (f) =

f , and hence f = ιTS∩T (f) = ιSS∩T (e). This splits into two subcases.
Suppose first that f = (ss′). Then ιSS∩T (e) = f = (ss′) implies by Example

4.2.7(d) that sS(e) = s′. Therefore tS(e) /∈ V (T ) which means that e ∈ N(S ∪ T ).
Then ιS∪TS (e) = e by Lemma 4.2.8(b) and ιS∪TT (e) = (ss′) = f by Lemma 4.2.8(c),
so ξ(e) = (e, f) as required.

Finally, suppose that f 6= (ss′). Then tT (f) /∈ V (S), so f ∈ N(S ∪ T ). Then
ιSS∩T (e) = f 6= (ss′) implies that e = ιSS∩T (e) = f by Example 4.2.7(d). Hence
ιS∪TT (f) = f and ιS∪TS (f) = ιS∪TS (e) = e, and so ξ(f) = (e, f) as required. �

Proposition 4.2.10. Let T be a finite subtree of BT . Then there is a G0
T -

equivariant bijection

hT : N(T )→ h (CT )

such that following diagram is commutative for every substree T ′ of T :

(13) N(T )
ιTT ′ //

hT

��

N(T ′)

hT ′

��
h(CT )

ι
CT
CT ′

// h(CT ′).

Proof. Suppose S and T are disjoint finite subtrees of BT . It follows from Propo-
sition 4.2.2 that CS and CT are disjoint K-cheeses, so CS is contained in a unique
hole of CT . In particular, if e ∈ N(T ), then C{tT (e)} and CT are disjoint K-cheeses,
so C{tT (e)} is contained in a unique hole hT (e) of CT .
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Since λ is G0-equivariant, if g ∈ G0
T then tT (g · e) = gtT (e) and so

λ−1(tT (ge)) = gλ−1(tT (e)) and hT (ge) = ghT (e).

Thus e 7→ hT (e) defines a G0
T -equivariant function.

Suppose that T ′ ⊆ T is a subtree and that ιTT ′(e) = f . Then the path from
tT (e) to tT ′(f) in BT is a tree, S say, that is disjoint from T ′. Then C{tT (e)} and
C{tT ′ (f)} and CS are all contained in the same hole, D say, of CT ′ . It follows that

hT ′ ◦ ιTT ′(e) = D = ιCTC′T
◦ hT (e) and that the diagram (13) is commutative.

To show that hT is always a bijection, we induct on the number of edges of T . If
T consists of a single vertex (no edges), or a single edge, then the result is a simple
consequence of [6, I.2.3]. In the general case, we decompose T as S ∪ T ′ where S
is a single leaf of T and T ′ is T with S removed. Using the diagram (13) twice, we
obtain the following commutative diagram:

N(T )
ιTS×ι

T
T ′ //

hT

��

N(S) ×
N(S∩T ′)

N(T ′)

hS×hT ′

��
h(CT )

ι
CT
CS
×ιCTCT ′

// h(CS) ×
h(CS∩T ′ )

h(CT ′).

Now, the horizontal arrows in this diagram are bijections by Lemma 4.2.9 and
Lemma 4.1.5 respectively. Since hS×hT ′ is a bijection by the induction hypothesis,
it follows that hT is a bijection as well. �

Remark 4.2.11. We note that the bijectivity of hT in Proposition 4.2.10 is more
conceptually clear than our proof suggests. If D is in h(CT ) then λ(D ∩ ΩF ) is
a connected component XD of |BT |\|T |. There is precisely one edge eD in N(T )
such that the interior of |eD| is contained in XD. Then the inverse of hT sends
D to eD. However it is not straightforward to make this argument rigorous in the
context of this paper.

Definition 4.2.12. Let s0 be the vertex of BT fixed by GL2(OF ) and let n > 0.

(a) Tn ⊂ BT is the subtree whose vertices have distance at most n from s0.
(b) Ωn is the cheese Ωn := CTn .

Remark 4.2.13. SinceG0
Tn = G0

s0 = GL2(OF ) for all n > 0, Ωn isGL2(OF )-stable
for all n > 0.

Remark 4.2.14. For any family {Tj}j∈J of finite subtrees of BT such that
⋃
j∈J |Tj | =

|BT |, the family of cheeses {CTj}j∈J forms an admissible cover of Ω.

Lemma 4.2.15. Let n > 0.

(a) GL2(OF ) acts transitively on h(Ωn).

(b) The fibres of the maps ι
Ωn+1

Ωn
: h(Ωn+1)→ h(Ωn) all have size q.

Proof. (a) By Proposition 4.2.10 and Remark 4.2.13, it suffices to prove thatGL2(OF )
acts transitively on N(Tn) for each n > 0. But N(Tn) consists of all edges between
vertices of distance n from s0 and vertices of distance n + 1 from s0. This holds
because GL2(OF ) acts transitively on the set of vertices of distance n+ 1 from s0.

(b) Note that |h(Ωn)| = |N(Tn)| = (q + 1)qn since BT is a (q + 1)-regular tree.

The fibres of ι
Ωn+1

Ωn
: h(Ωn+1)→ h(Ωn) all have the same size, by part (a). �
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We introduce some other admissible covers of Ω by K-cheeses, for later use.

Recall that w =

Å
0 1
πF 0

ã
∈ GL2(F ) and w · s0 is a vertex of BT adjacent to s0.

Definition 4.2.16. Let n > 0.

(a) Let e0 be the unique edge of BT with vertices s0 and w · s0.
(b) Let Sn be the subtree of BT consisting of vertices a distance at most n

from either s0 or ws0.
(c) Let Ψn be the cheese Ψn := CSn .

Lemma 4.2.17. For each n > 1,

(a) Ψn = Ωn ∪ wΩn, and
(b) Ψn−1 = Ωn ∩ wΩn.

Proof. Let n > 1. It is clear that Sn = Tn ∪wTn. We claim that Sn−1 = Tn ∩wTn.
For the forward inclusion, because w2 acts trivially on BT , it is enough to show that
Tn−1 ⊆ wTn. Let d be the distance function on V (BT ) and let x ∈ V (Tn−1). Then
d(x, s0) 6 n− 1, so d(x,ws0) 6 d(x, s0) + d(s0, ws0) 6 (n− 1) + 1 = n and hence
x ∈ V (wTn). For the reverse inclusion, it is enough to show that Tn ∩wTn ⊆ Tn−1.
Suppose that x ∈ V (Tn ∩ wTn) so that d(x, s0) 6 n and d(x,ws0) 6 n. By
considering the unique path in BT passing through x, s0 and ws0, we see that we
must have either d(x, s0) 6 n− 1 or d(x,ws0) 6 n− 1, and hence x ∈ V (Tn−1).

Both parts now follow easily. �

Remark 4.2.18. Since, for each n > 0, G0
Sn = G0

e0 = I is the Iwahori subgroup
from Notation 2.2.1(b), each cheese Ψn = CSn is I-stable.

Lemma 4.2.19. Suppose that n > 0.

(a) h(Ψn) has precisely two I-orbits, each of size qn+1.

(b) The map ι
Ψn+1

Ψn
: h(Ψn+1)→ h(Ψn) is surjective, with all fibres of size q.

Proof. (a) By Proposition 4.2.10 it suffices to show that N(Sn) has precisely two
I-orbits each of size q + 1. But N(Sn) consists of those edges of Sn+1 that are not
edges of Sn. These fall into those that connect vertices of distance n and n + 1
from s0 (and distance n+ 1 and n+ 2 from w · s0) and those that connect vertices
of distance n and n+ 1 from w · s0 (and distance n+ 1 and n+ 2 from s0). These
two sets of edges in N(Sn) are its I-orbits.

(b) Using Proposition 4.2.10 again, it suffices to prove the same thing about the
fibres of the I-equivariant function N(Sn+1) → N(Sn). This is straightforward to
verify since BT is q + 1-regular. �

Lemma 4.2.20. The following collections of affinoid subdomains form admissible
covers of Ω:

(a) {Ωn}n>0;
(b) {wΩn}n>0;
(c) {Ψn}n>0.

Proof. Each part is an easy consequence of Remark 4.2.14. �

Proposition 4.2.21. Ω is a smooth, geometrically connected, quasi-Stein rigid
K-analytic space.
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Proof. We’ve seen that the chain Ω0 ⊆ Ω1 ⊆ · · · is an admissible cover of Ω by an
increasing union of cheeses. Moreover the maps h(Ωn+1)→ h(Ωn) are all surjective
by Lemma 4.2.15. Thus Ω is a smooth, geometrically connected, quasi-Stein rigid
K-analytic space by Proposition 4.1.12. �

4.3. Units, measures and flat connections on Ω. Recall, for ϕ ∈ Aut(P1) and
cheeses X and Y with ϕ(Y ) ⊆ X, the map ϕXY : h(X) → h(Y ) from Lemma 4.1.3
together with the notation D∞ to denote the element of h(X) containing the point
∞ ∈ P1(C).

Proposition 4.3.1. Let X = C(α, s) and Y be cheeses and ϕ ∈ Aut(P1) with
ϕ(Y ) ⊆ X. Then there is commutative diagram

1 // K× · O(X)×× //

��

O(X)×
µX //

��

M0(h(X),Z) //

ϕXY,∗
��

0

1 // K× · O(Y )×× // O(Y )×
µY
// M0(h(Y ),Z) // 0

whose rows are short exact sequences of abelian groups and whose non-labelled
vertical arrows are induced by the composite of the restriction O(X) → O(ϕ(Y ))
and ϕ] : O(ϕ(Y ))→ O(Y ).

The map µX is characterised by µX(x − α) = δD − δD∞ for D ∈ h(X) and
α ∈ D(K).

Proof. For each i = 1, . . . , g := gX , let Di ∈ h(X) be the open disc containing αi.
Given u ∈ O(X)×, use Proposition 4.1.10 to find integers n1, . . . , ng such that

u ≡ (x− α1)n1 · · · (x− αg)ng mod K× · O(X)××

and define the measure µX(u) ∈M0(h(X),Z) by

µX(u) :=

g∑
i=1

ni(δDi − δD∞).

The top row is then exact by Proposition 4.1.10. We note that µX does not depend
on the choice of the centres α1, . . . , αg of the holes of the cheese X.

Since Y is also a cheese the bottom row is also exact. The commutativity of the
left-hand square is clear.

To see the right-hand square commutes it suffices by the argument just given to
show that for all i = 1, · · · , g, we have

ϕXY,∗µX(x− αi) = µY (ϕ](x− αi)).

Now, ϕXY,∗µX(x−αi) = δϕXY (Di)− δϕXY (D∞), and ϕ](x−αi) is a rational function

with divisor (ϕ−1(αi)) − (ϕ−1(∞)). So, since ϕXY (Di) ∈ h(Y ) contains ϕ−1(αi) ∈
ϕ−1(Di) and ϕXY (D∞) ∈ h(Y ) contains ϕ−1(∞) ∈ ϕ−1(D∞), we see that

µY (ϕ](x− αi)) = δϕXY (Di) − δϕXY (D∞) = ϕXY,∗µX(x− αi). �

Because of Proposition 3.1.13, we are interested in the groups O(X)×

K× ⊗
Z

1
dZ
Z for

positive integers d. After a preparatory Lemma, we will explain in Corollary 4.3.3
below how Proposition 4.3.1 helps us to calculate these groups.

Lemma 4.3.2. Let $ := p−
1
p−1 ∈ R>0 and X be a reduced K-affinoid variety.
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(a) If d is an integer such that p - d, then the dth power map

(−)d : O(X)×× → O(X)××

is an isomorphism of topological groups.
(b) If r ∈ (0, $/p) then every element of O(X)××r has a pth root in O(X)××.

Proof. (a) If a ∈ O(X)◦◦ then the binomial expansion

(1 + a)1/d =
∞∑
n=0

Ç
1/d

n

å
an

converges to an element of O(X)×× because |a| < 1 and because
(

1/d
n

)
∈ Zp ⊂ K◦

for all n > 0 as a consequence of the assumption that p - d. That the map

a 7→
∞∑
n=0

(
1/d
n

)
an is continuous is evident.

(b) Similary if |a| 6 r < $/p, the binomial expansion

(1 + a)1/p =
∞∑
n=0

Ç
1/p

n

å
an

converges to an element of O×× since

vp

Ç
pn
Ç

1/p

n

åå
= −vp(n!) > − n

p− 1

so that for n > 1 ∣∣∣∣∣
Ç

1/p

n

å
an

∣∣∣∣∣
X

6 (pr/$)
n

and pr/$ < 1. Thus
∞∑
n=0

(
1/p
n

)
an is the required pth root of 1 + a. �

Corollary 4.3.3. Let X be a cheese and let d be an integer.

(a) The map µX induces a surjective homomorphism

µX,d :
O(X)×

K×O(X)×d
�M0 (h(X),Z/dZ) .

(b) If G→ Aut(P1)X is a group homomorphism, then µX,d is G-equivariant.
(c) If p - d then µX,d is an isomorphism.

Proof. (a) Proposition 4.3.1 gives us an exact sequence of abelian groups

1→ O(X)××/K×× → O(X)×/K×
µX−→M0(h(X),Z)→ 0.

Tensoring this sequence with Z/dZ gives an exact sequence

(14)
O(X)××

K××
⊗
Z
Z/dZ→ O(X)×

K×
⊗
Z
Z/dZ µX⊗1−→ M0(h(X),Z)⊗

Z
Z/dZ→ 0.

The second term is O(X)×/K×O(X)×d and the third term is M0(h(X),Z/dZ) by
Lemma 2.1.6.

(b) This part follows easily from Proposition 4.3.1.
(c) Since p - d, the first term in (14) vanishes by Lemma 4.3.2, �
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Corollary 4.3.4. Let X be a cheese, d is an integer such that p - d and suppose
that G→ Aut(P1)X is a group homomorphism. Then

µX,d ◦ θd : Con(X)G[d]→M0 (h(X),Z/dZ)
G

is an isomorphism.

Proof. This follows immediately from Proposition 3.1.13 and Corollary 4.3.3. �

We will now use Corollary 4.3.4 to investigate how the group ConG(X)[d] changes
when we vary X and G. More precisely, we have the following

Proposition 4.3.5. Let Y ⊆ X be cheeses such that ιXY : h(X)→ h(Y ) is surjec-
tive and let d > 1 be an integer such that p - d.

(a) Suppose that
(i) each fibre of ιXY : h(X)→ h(Y ) has size coprime to d, and
(ii) the G-orbits in h(X) are unions of these fibres.

Then the following restriction map is injective:

Con(X)[d]G ↪→ Con(Y )[d].

(b) Suppose that additionally to the assumptions in (a),
(iii) H is a closed subgroup of GY , and
(iv) the restriction map Hom(G,µd(K))→ Hom(H,µd(K)) is injective.
Then the following restriction map is injective:

ConG(X)[d] ↪→ ConH(Y )[d].

(c) Suppose that additionally to the assumptions in (b),
(v) ιXY : h(X) → h(Y ) induces a bijection between the G-orbits in h(X)

and the H-orbits in h(Y ),
(vi) the map Hom(G,µd(K))→ Hom(H,µd(K)) is surjective, and

(vii) ω : ConG(X)[d]→ Con(X)[d]G is surjective.
Then the following restriction map is an isomorphism:

ConG(X)[d]
∼=−→ ConH(Y )[d].

Proof. (a) By Corollary 4.3.4 there is a commutative diagram

Con(X)[d]G
µX,d◦θd
∼=

//

��

M0 (h(X),Z/dZ)
G

ιXY,∗

��
Con(Y )[d]

µY,d◦θd

∼= // M0 (h(Y ),Z/dZ)

(15)

whose left-vertical arrow is restriction and whose horizontal arrows are isomor-
phisms. Thus it suffices to prove that ιXY,∗ : M0 (h(X),Z/dZ)

G →M0 (h(Y ),Z/dZ)

is injective. Suppose that ν is in the kernel. Then for D ∈ h(Y ),

0 = ιXY,∗ν({D}) = ν((ιXY )−1{D}).

Since ιXY is surjective by assumption, we may choose some D′ ∈ h(X) such that
ιXY (D′) = D. Because ν is G-invariant, assumption (ii) implies that

ν
(
(ιXY )−1{D}

)
= |(ιXY )−1(D)| · ν({D′}).

Then assumption (i) gives ν({D′}) = 0, so ν = 0 as required.
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(b) Using Lemma 3.2.14 together with Proposition 4.1.11 and (iii), we have the
commutative diagram

0 // Hom(G,µd(K))

��

// ConG(X)[d] //

��

Con(X)[d]G

��
0 // Hom(H,µd(K)) // ConH(Y )[d] // Con(Y )[d]H

(16)

with exact rows, whose vertical arrows are given by restriction. Using (iv), part (a)
and the Four Lemma, we see that the middle arrow is injective.

(c) Assumption (v) implies that the right vertical map in (15) has image equal to

M0 (h(Y ),Z/dZ)
H

, so the right vertical arrow in (16) is an isomorphism. Using this
together with (vii) gives that both of the rightmost horizontal arrows in diagram
(16) are surjective. We can now use (vi) and the Five Lemma to finish the proof. �

The following technical Lemma is needed for the important Corollary 4.3.9 below.
Recall the K-cheeses CT from Definition 4.2.3.

Lemma 4.3.6. Suppose that T ′ ⊆ T are finite subtrees of BT with N(T ′) ⊆ T .
Then for every n > 1 and f ∈ K×O(CT )××|πF |n , we have f |CT ′ ∈ K

×O(CT ′)
××
|πF |n+1 .

Proof. We claim first that for each a ∈ F and n ∈ {±1},
(17) |(x− a)n|CT ′ 6 |πF | |(x− a)n|CT .

By a change of coordinate induced by an element of GL2(F ) we may reduce the
proof of this claim to proving |πF |−1 6 |x|CT in the particular case |x|CT ′ = 1.
Now if |x|CT ′ = 1, then s0 ∈ T ′ and so, by hypothesis,

T1 ⊆ T ′ ∪N(T ′) ⊆ T .
Then because Ω1 = CT1 , we have |x|CT > |x|Ω1

> |πF |−1 which proves the claim.
Now suppose that f ∈ K×O(CT )××|πF |n so that f = λ(1+h) for some λ ∈ K× and

h ∈ πnFO(CT )◦. We have to show that 1 + h ∈ K×O(CT ′)
××
|πF |n+1 . By Proposition

4.1.9, we can write

1 + h = (1 + λ0) +

g∑
i=0

∑
j>1

λijξ
j
i

with λ0, λij ∈ πnFOK and ξ0, . . . , ξg each of the form c(x− a) or c
x−a with a, c ∈ F

and c 6= 0 and |ξi|CT = 1. Since (1+λ0) ∈ K××, by considering (1+λ0)−1(1+h) we
may further assume that λ0 = 0 and then it suffices to prove that |h|CT ′ 6 |π

n+1
F |.

Now by (17), for all suitable i, j we have

|ξji |CT ′ = |ξi|jCT ′ 6 |πF |
j 6 |πF |

so the result follows by the ultrametric inequality. �

Recall the K-cheeses Ωn from Definition 4.2.12.

Corollary 4.3.7. Suppose that n,m > 0. Then for all f ∈ K×O(Ωn+m)××,

f |Ωn ∈ K×O(Ωn)××|πF |m .

Proof. Since N(Tn+k) ⊆ Tn+k+1 for all n, k > 0, this follows from Lemma 4.3.6 by
a straightforward induction on m. �
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Proposition 4.3.8. Write A := GL2(OF ).

(a) For all n > 0, the restriction map

Con(Ωn+1)A[p′]→ Con(Ωn)A[p′]

is an isomorphism. These groups are cyclic of order q + 1.
(b) There is m > 1 such that the restriction maps

Con(Ωm+n)A[p]→ Con(Ωn)A[p]

are zero for all n > 0.

Proof. (a) Suppose d is an integer coprime to p and that d is a multiple of (q+1) =
|h(Ω0)|. Then by Corollary 4.3.4 and Proposition 4.3.1, for each n > 1, there is a
commutative diagram

Con(Ωn)A[d] //

��

M0(h(Ωn),Z/dZ)A

��
Con(Ωn−1)A[d] // M0(h(Ωn−1),Z/dZ)A

whose horizontal maps are isomorphisms. Since A acts transitively on each h(Ωn),
by Lemma 4.2.15(a), we see by Proposition 2.1.8(b) that M0(h(Ωn),Z/dZ)A is
cyclic of order gcd(d, |h(Ωn)|) = q + 1 and generated by the image of d

q+1Σh(Ωn).

Moreover by Lemma 4.2.15(b) together with Proposition 2.1.8(c), the right-hand
vertical map sends the image of d

q+1Σh(Ωn) in M0(h(Ωn),Z/dZ)A to the image of
qd
q+1Σh(Ωn−1) in M0(h(Ωn−1),Z/dZ)A. Since q is coprime to d, it follows that the

map is an isomorphism. Part (a) now follows easily.
(b) We take m > 1 such that |πm−1

F | < $ and let N = n+m. Suppose that

[L ] ∈ Con(ΩN )A[p].

We will show that [L |Ωn ] = [O] ∈ Con(Ωn). By Proposition 3.1.13 there is u ∈
O(ΩN )× such that

θp([L ]) = uK×O(ΩN )×p ∈
Å O(ΩN )×

K×O(ΩN )×p

ãA
.

It suffices to show that u|Ωn ∈ K×O(Ωn)×p. Now µΩN ,p(u) ∈ M0(h(ΩN ),Z/pZ)A

by Corollary 4.3.3(b), and by Proposition 2.1.8(b,c) and Lemma 4.2.15(b), the
natural map induced by the inclusion ΩN ⊂ ΩN−1

M0(h(ΩN ),Z/pZ)A →M0(h(ΩN−1),Z/pZ)

is zero. It follows, using Proposition 4.3.1, that there is v ∈ O(Ω×N−1) such that

µΩN−1

(
u|ΩN−1

vp
)

= 0. Writing

w := u|ΩN−1
vp,

to prove u|Ωn ∈ K×O(Ωn)×p it suffices to show that w|Ωn ∈ K×O(Ωn)×p. Since
µΩN−1

(w) = 0, Proposition 4.3.1 now implies that w ∈ K×O(Ωn+m−1)××.
Now by Corollary 4.3.7,

w|Ωn ∈ K×O(Ωn)××|πF |m−1 .

Our assumption that |πm−1
F | < $ now allows us to deduce from Lemma 4.3.2(b)

that w|Ωn ∈ K×O(Ωn)×p as required. �
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We can now compute PicCon(Ω)
GL2(OF )
tors .

Corollary 4.3.9. The group PicCon(Ω)
GL2(OF )
tors is cyclic of order q + 1.

Proof. By Proposition 4.2.21, Corollary 3.1.6, and Proposition 4.1.11 we have

PicCon(Ω) ∼= lim←−Con(Ωn).

Since each Ωn is A := GL2(OF )-stable by Remark 4.2.13, and the functors taking
A-invariants and taking the d-torsion subgroup each commute with limits it follows
that for each d > 1 we have

PicCon(Ω)A[d] ∼= lim←−Con(Ωn)A[d].

By Proposition 4.3.8(b), lim←−Con(Ωn)A[p] = 0. So PicCon(Ω)A has no p-torsion.

By Proposition 4.3.8(a), we can see that for each d that is a multiple of q + 1,
lim←−Con(Ωn)A[d] is cyclic of order q + 1. The result follows. �

4.4. Proof of Theorem A. We now return to the setting of §3.3, and start working
towards our proof of Theorem A. Recall the cheeses Ωn from Definition 4.2.12(b)
and the map φz from Proposition 3.2.7.

ΩF,n will denote the version of Ωn obtained when K = F .

Theorem 4.4.1. Let L be an unramified quadratic extension of F . Then for every
z ∈ ΩF,0(L) and every n > 0, the map

φz : ConGL2(OF )(Ωn)[p′]→ Hom(GL2(OF )z,K(z)×)[p′]

is an isomorphism.

Proof. Note that because z ∈ ΩF,0(L), we may view it as a point of ΩF,0(K(z)) =
Ω0(K(z)) ⊆ Ωn(K(z)). Hence the map φz from Proposition 3.2.7 makes sense in
this setting. Write A := GL2(OF ). By Proposition 3.2.14 together with the left
exactness of the endofunctor (−)[p′] on abelian groups, there is an exact sequence

0→ Hom(A,K×)[p′]→ ConA(Ωn)[p′]→ Con(Ωn)A[p′].

The group Con(Ωn)A[p′] is cyclic of order q + 1 by Proposition 4.3.8(a), whereas
Hom(A,K×)[p′] is cyclic of order q − 1 by Lemma 2.2.3(a). Thus,∣∣∣ConA(Ωn)[p′]

∣∣∣ 6 q2 − 1.

Since z ∈ OF,0(L) ⊆ ΩF (F ) by assumption, we can apply Lemma 4.2.1 to see that
Az = G0

z. Also, z ∈ ΩF,0(L) ⊆ ΩF (L) = L\F implies that F (z) = L is a quadratic
extension of F , so Lemma 2.2.8 can be applied to deduce that Hom(Az,K(z)×)[p′]
is cyclic of order q2 − 1. Now it suffices to show that the image of φz contains
a generator of this cyclic group. To this end we will construct an element [L ]

of ConA(Ωn)[p′] such that, in the notation of Lemma 2.2.8, φz([L ]) = “jzqn . To
do this, we will first construct a suitable unit u ∈ O(Ωn)×, then an appropriate

1-cocycle α ∈ ZA,Ωnu,q+1,q−1 and then the required equivariant line bundle L is given

by an application of Lemma 3.3.4(a).
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Consider the function j : A→ O(Ωn)× given by

j

ÅÅ
a b
c d

ãã
= a− cx.

We compute that

j

ÅÅ
a1 b1
c1 d1

ããÅ
a1 b1
c1 d1

ã
· j
ÅÅ

a2 b2
c2 d2

ãã
= (a1 − c1x)

Å
a2 − c2

d1x− b1
a1 − c1x

ã
= (a1a2 + b1c2)− (c1a2 + c2d2)x

= j

ÅÅ
a1 b1
c1 d1

ãÅ
a2 b2
c2 d2

ãã
and see that j ∈ Z1(A,O(Ωn)×). The reason for considering this 1-cocycle j is that

µΩn(j(g)) = δgD∞ − δD∞ for all g ∈ A, and z ◦ j|Az ≡ “jz mod L××.

Now we define ν := |h(Ωn)|δD∞ − ΣΩn ∈ M0(h(Ωn),Z). Applying Proposition
4.3.1, we find u ∈ O(Ωn)× such that µΩn(u) = ν. Then we calculate that

δA(ν)(g) = g · ν − ν = |h(Ωn)|(δgD∞ − δD∞) for all g ∈ A.

Therefore inside Z1(A,M0(h(Ωn),Z)) we have the equality

µΩn ◦ j|h(Ωn)| = δA(ν) = µΩn ◦ δA(u).

Since |h(Ωn)| = qn(q + 1), this means that j−q
n(q+1)δA(u) takes values in kerµΩn .

Now Proposition 4.3.1 tells us that kerµΩn = K× · O(Ωn)××. So we may rephrase
this as saying that

πT (Ωn) ◦ (j−q
n(q+1)δG(u))

takes values in K×/K××. Since Ωn is geometrically connected, A is compact and
every finite abelian p′-quotient of A has exponent dividing q− 1, by Remark 2.2.4,
we may apply Proposition 3.3.7 with (d, e, u, β) = (q + 1, q − 1, u, jq

n

) to deduce

that there exists an α ∈ ZA,Ωnu,q+1,q−1 such that

(18) πT (Ωn) ◦ α = πT (Ωn) ◦ jq
n

.

By Lemma 3.3.4(a), there is a (q2 − 1)-torsion A-equivariant line bundle with con-
nection L α

u,q+1 on Ωn, such that φAΩn([L α
u,q+1]) = [α] inside H1(A,O(Ωn)×).

To see what φz does to this [L α
u,q+1], we apply Proposition 3.3.2(b) to find that

φz([L
α
u,q+1]) = z ◦ (resAAz φ

A
Ωn([L α

u,q+1])) = z ◦ α|Az .

Applying the functor T (−) from Notation 3.3.5 to the morphism of affinoid varieties
z : SpL ↪→ Ωn and using equation (18), we see that

z ◦ α|Az ≡ z ◦ jq
n

|Az modK(z)××.

But z ◦ j
ÅÅ

a −cN(z)
c a− c tr(z)

ãã
= a− cz, so as z ◦α|Az takes values in µq2−1(K(z)×),

we conclude that inside Hom(Az,K(z)×)[p′] we have

φz([L
α
u,q+1]) = z ◦ α|Az = “jzqn

as claimed earlier. This is a generator because qn is coprime to q2 − 1. �
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Using our next Lemma, we will be able to use Theorem 4.4.1 to shed light on

our main group of interest, namely PicConG
0

(Ω)tors. See Corollary 4.4.5 below for

a description of the p′-torsion part of PicConG0(Ω).

Lemma 4.4.2. Let A = GL2(OF ) and B = w GL2(OF ).

(a) PicConA(Ω) ∼= lim←−ConA(Ωn).

(b) PicConG
0

(Ω) ∼= PicConA(Ω) ×
PicConI(Ω)

PicConB(Ω).

Proof. We note by Proposition 4.2.21 and Lemma 4.2.20(a), Ω is a smooth, geomet-
rically connected, quasi-Stein space with admissible cover {Ωn}. Thus (a) follows
from Lemma 3.2.16 together with Remark 4.2.13 and Proposition 4.1.11.

(b) This follows from Proposition 3.2.15 and Theorem 2.2.2. �

Recall the K-cheeses Ψn from Definition 4.2.16. Since Pic(Ψn) = 0 by Proposi-

tion 4.1.11, there are restriction maps PicConI(Ω)→ ConI(Ψn) for all n > 0.

Corollary 4.4.3. The restriction map PicConI(Ω)[p′]→ ConI(Ψ0)[p′] is injective.

Proof. By Lemma 3.2.16 and Lemma 4.2.20(c), it suffices to show that the re-

striction map ConI(Ψn+1)[p′] → ConI(Ψn)[p′] is injective for all n > 1. Fixing

n > 1, this is equivalent to ConI(Ψn+1)[d]→ ConI(Ψn)[d] being injective for each
d coprime to p. We will prove this using Proposition 4.3.5(b).

Condition (i) of Proposition 4.3.5 follows from Lemma 4.2.19(c). Condition (ii)
holds since the induced map on I-orbits h(Ψn+1)/I → h(Ψn)/I is surjective and
hence injective by Lemma 4.2.19(c),(a). Conditions (iii) and (iv) are trivial since

in this case G = H = I. Thus ConI(Ψn)[d]→ ConI(Ψn−1)[d] is injective. �

Proposition 4.4.4. For every [L ] ∈ PicConGL2(OF )(Ω)[p′] there is an integer k
such that the restriction L |I satisfies

[L |I ] · w[L |I ] = [O
d̂et

k ] in PicConI(Ω).

Proof. We restrict L |I further to Ψ0, forming [L |I,Ψ0 ] ∈ ConI(Ψ0)[p′]. By Corol-

lary 4.4.3, it suffices to show that inside in ConI(Ψ0) we have

[L |I,Ψ0 ] · w[L |I,Ψ0 ] = [O
d̂et

k ] for some k ∈ Z
(q − 1)Z

.

We consider the exact sequence coming from Lemma 3.2.14

(19) 1→ Hom(I,K×)[p′]→ ConI(Ψ0)[p′]
ω→ Con(Ψ0)I [p′].

Note that ω([L ]) ∈ PicConGL2(OF )(Ω)tors is killed by q + 1 by Corollary 4.3.9.
Therefore the image ω([L |I,Ψ0 ]) of this class in Con(Ψ0)I is also killed by q + 1.

Since w normalises I and Ψ0 is 〈w, I〉-stable, Corollary 4.3.3 and Proposition
3.1.13 gives us an isomorphism of groups with 〈w〉-action

µΨ0,q+1 ◦ θq+1 : Con(Ψ0)I [q + 1]
∼=−→M0

Å
h(Ψ0),

Z
(q + 1)Z

ãI
.

Next, h(Ψ0) has two I-orbits O1 and O2 of size q by Lemma 4.2.19(a). Hence

M0

Ä
h(Ψ0), Z

(q+1)Z

äI
is generated by the image of ΣO1

−ΣO2
. Since w swaps the two
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orbits, it acts on M0

Ä
h(Ψ0), Z

(q+1)Z

äI
by negation. Hence w acts on Con(Ψ0)I [q+1]

by inversion, so that

ω ([L |I,Ψ0
] · w[L |I,Ψ0

]) = ω ([L |I,Ψ0
]) · wω ([L |I,Ψ0

]) = [O]

is the trivial element of Con(Ψ0)I [q+1]. The exact sequence (19) above now implies
that [L |I,Ψ0 ] · w[L |I,Ψ0 ] = [Oχ] for some χ ∈ Hom(I, µp′(K)).

Finally, since w2 ∈ Z(GL2(F )) acts trivially on Ψ0 and Hom(I, µp′(K)),

w · ([L |I,Ψ0 ] · w[L |I,Ψ0 ]) = [L |I,Ψ0 ] · w[L |I,Ψ0 ].

Hence [Owχ] = w · [Oχ] = [Oχ], which implies that

χ ∈ Hom(I, µp′(K))〈w〉.

Now Lemma 2.2.3(c) completes the proof. �

Corollary 4.4.5. The following restriction map is an isomorphism of groups:

PicConG
0

(Ω)[p′]→ PicConGL2(OF )(Ω)[p′].

Proof. Let A := GL2(OF ) and B = wA. The commutative diagram

PicConG
0

(Ω) //

��

PicConA(Ω)

��
PicConB(Ω) // PicConI(Ω)

maps given by restriction is a pullback square by Lemma 4.4.2(b). Since taking
p′-torsion preserves limits in the category of abelian groups it follows that

PicConG
0

(Ω)[p′]
p1 //

p2

��

PicConA(Ω)[p′]

q2

��
PicConB(Ω)[p′]

q1
// PicConI(Ω)[p′]

is also a pullback square and so the diagram

PicConG
0

(Ω)[p′]
p1 //

p2

��

PicConA(Ω)[p′]

q2

��
PicConB(Ω)[p′]

q1
// im q1 + im q2

is a pullback square as well. Since pullbacks preserve isomorphisms, it suffices to
see that in the last diagram, we have im q2 ⊆ im q1 and that q1 is injective. We
consider the commutative diagram

1 // Hom(A,K×)[p′] //

��

PicConA(Ω)[p′]

q2

��

// PicCon(Ω)A[p′]

��
1 // Hom(I,K×)[p′] // PicConI(Ω)[p′] // PicCon(Ω)I [p′]

whose rows are exact by Proposition 3.2.14. The left vertical map is injective
by Lemma 2.2.3(a,b) and the right vertical map is an inclusion map. Now the
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injectivity of q2 follows from the Snake Lemma. Therefore q1 is also injective,
because q2(w[L ]) = wq1([L ]) for every [L ] ∈ PicConB(Ω).

Finally, by Proposition 4.4.4, q2([L ]) = q1(w[L ]−1 ⊗O
d̂et

k) for some integer k.

Hence the image of q2 is contained in the image of q1. �

Remark 4.4.6. One may wonder if it might be possible to strengthen the state-
ment of Corollary 4.4.5 to give a similar description of all torsion elements in
PicConG0(Ω). However when q = 2, the restriction map

PicConG
0

(Ω)tors → PicConGL2(OF )(Ω)tors

is not an isomorphism in general, because the homomorphism from the abelianiza-
tion of GL2(OF ) to the abelianization of G0 induced by inclusion has a kernel of
order 2 and so particular the restriction map

Hom(G0,K×)tors → Hom(GL2(OF ),K×)tors

then may not be surjective.

Next we pass to the limit as n → ∞ to deduce the consequences of Theorem

4.4.1 for the p′-torsion part of our main group of interest, namely PicConG
0

(Ω).
First we recall the Sylow pro-p subgroup Pz of SL2(F )z from Lemma 2.2.5.

Lemma 4.4.7. Suppose that K contains the quadratic unramified extension L of
F and let z ∈ ΩF,0(L). Then the homomorphism

φz[p
′] : PicConG

0

(Ω)[p′] −→ Hom(G0
z,K

×)[p′]

is an isomorphism. Moreover, every p′-torsion character χ : G0
z → K× kills Pz.

Proof. By Lemma 4.4.2(a) and Corollary 4.4.5, restriction maps induce an isomor-
phism

PicConG
0

(Ω)[p′]
∼=−→ lim←−ConGL2(OF )(Ωn)[p′].

Using Proposition 3.3.2(d) together with Theorem 4.4.1, we deduce that map φz[p
′]

in the statement of the Lemma is an isomorphism.
The last statement holds because Pz is a (normal) pro-p subgroup of G0

z. �

With the last result in hand, it is natural to wonder about the p-torsion part

of PicConG
0

(Ω). The following description of this group does not require the full
force the methods employed in the proof of Theorem 4.4.1.

Lemma 4.4.8. Suppose that K contains the quadratic unramified extension L of
F and let z ∈ ΩF (L). The homomorphism

φz[p
∞] : PicConG

0

(Ω)[p∞] −→ Hom(G0
z,K

×)[p∞]

is injective with image Hom(G0
z/Pz,K

×)[p∞].

Proof. Since K ⊇ L and z ∈ ΩF (L) by assumption, we see that z ∈ Ω(K). Hence

the map φz : PicG
0

(Ω)→ Hom(G0
z,K

×) exists by Proposition 3.2.7.
Now consider the following triangle:

Hom(G0,K×)[p∞] //

res
))

PicConG
0

(Ω)[p∞]

φz [p∞]uu
Hom(G0

z,K
×)[p∞]
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Here, the horizontal map sends the character χ to [Oχ], and the diagonal arrow
res on the left is restriction of characters. The triangle is commutative by Lemma
3.3.2(c), and the horizontal arrow is an isomorphism by Proposition 3.2.14 and
Corollary 4.3.9. Hence it suffices to show that res is injective, and that its image is
Hom(G0

z/Pz,K
×)[p∞].

Note that SL2(F ) is a perfect subgroup of G0 and K× is abelian. Hence
χ|SL2(F ) = 1 for any character χ : G0 → K×. In particular, res(χ) vanishes

on the subgroup Pz of SL2(F ). Now if χ : G0 → K× is a character such that
res(χ) = χ|G0

z
= 1, then Corollary 2.2.6 immediately implies that χ = 1. Therefore

res is injective as required. �

Proposition 4.4.9. Suppose that K contains the quadratic unramified extension
L of F . Then for all g ∈ GL2(F ) and z ∈ ΩF (L), there is a commutative diagram

PicConG
0

(Ω)tors
φz //

g

��

Hom(G0
z/Pz,K

×)tors

PicConG
0

(Ω)tors
φg·z

// Hom(G0
g·z/Pg·z,K

×)tors

c∗g

OO

whose arrows are all isomorphisms of abelian groups.

Proof. The diagram commutes by Proposition 3.2.13(b), and its vertical arrows are
isomorphisms with inverses g−1 and c∗g−1 respectively. By Lemma 4.4.7 and Lemma

4.4.8, the top horizontal arrow is an isomorphism in the case when z ∈ ΩF,0(L). But
since L is quadratic over F , GL2(F ) acts transitively on ΩF (L) = L\F , so we may
choose g ∈ GL2(F ) such that g · z ∈ ΩF,0(L) and then φg·z is an isomorphism. The
commutativity of the diagram now ensures that φz is always an isomorphism. �

We can finally give our proof of Theorem A.

Theorem 4.4.10. Suppose that K contains the quadratic unramified extension L
of F . Then there is an isomorphism of abelian groups

PicConG
0

(Ω)tors → Hom(O×D,K
×)tors

that descends to a natural bijection

PicConG
0

(Ω)tors/G→ Hom(O×D,K
×)tors/D

×.

Proof. Choose z ∈ ΩF (L) as well as an F -algebra homomorphism ι : L ↪→ D. By
Lemma 2.2.5(d,b,c), jz(Pz) is the Sylow pro-p subgroup of kerNL/F ∩O×L . In view

of Definition 2.3.5, we see that jz(Pz) = P 1
L. Now Proposition 4.4.9 together with

Lemma 2.2.5(b) shows that

jz ◦ φz : PicConG
0

(Ω)tors → Hom(O×L /P
1
L,K

×)tors

is an isomorphism. We can now post-compose jz ◦ φz with the inverse of the
isomorphism % ◦ ι∗ from Corollary 2.3.7(a) to obtain the required isomorphism

(% ◦ ι∗)−1 ◦ jz ◦ φz : PicConG
0

(Ω)tors

∼=−→ Hom(O×D,K
×)tors.

Although this does depend on the choice of z ∈ Ω(L) as well as the choice of the F -
algebra embedding ι : L ↪→ D, using Proposition 4.4.9, Remark 2.2.7 and Corollary
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2.3.7(c) we see that it descends to a well-defined bijection

PicConG
0

(Ω)tors/G
∼=−→ Hom(O×D,K

×)tors/D
×

which does not depend on any of the choices. �
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