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D-MODULES ON RIGID ANALYTIC SPACES II:
KASHIWARA’S EQUIVALENCE

KONSTANTIN ARDAKOV AND SIMON WADSLEY

ABsTRACT. Let X be a smooth rigid analytic space. We prove that the cate-
gory of co-admissible ﬁx—modules supported on a closed smooth subvariety Y
of X is naturally equivalent to the category of co-admissible ﬁy—modules, and
use this result to construct a large family of pairwise non-isomorphic simple
co-admissible 5X—modules.
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1. INTRODUCTION

1.1. Background. The classical theory of D-modules arose as an algebraic method
for the study of partial diffential equations. It has had significant applications
a range of different subfields of mathematics. Classically one studies differential
equations defined on a smooth manifold or on a smooth algebraic variety by defining
the sheaf of differential operators D on the space X in question. Then one associates
to a system of partial differential equations a coherent sheaf of D-modules M on
X. The solutions of the system of equations can then be studied by considering the
sheaf Homp (M, Q) — sometimes O is replaced by some larger sheaf of ‘functions’
that D operates on.

In [I] we introduced a sheaf of rings D on each smooth rigid analytic space X
that should be viewed as an analogue of the sheaves D in the classical setting. One
substantive difference that we should highlight is that D does not only consist of the
algebraic differential operators on X, i.e. those of finite order. This is a deliberate
feature of our construction: it is closer in spirit to rigid analytic geometry and will
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also faciliate the representation-theoretic applications that we have in mind. We
also defined a category of so called co-admissible D-modules and showed that it
shares many of the features of the classical category of coherent D-modules.

1.2. Main results. An early fundamental result in the classical theory of D-
modules due to Kashiwara says that if Y — X is a closed embedding of smooth
algebraic varieties then there is a natural equivalence of categories between the
category of (coherent) D-modules on X that are supported on Y and the category
of (coherent) D-modules on Y. In this paper we prove a version of this as follows.

Theorem A. Let X be a smooth rigid analytic variety over a complete discretely
valued field K of characteristic zero. Let Y be a smooth closed analytic subset of
X. There is a natural equivalence of categories

cAo—admissible ~ ) co—admissible Dx—modules
Dy —modules - supported on'Y '

As in our previous paper [I], we work in a more general framework than that
described above: for each Lie algebroid .Z on a reduced rigid analytic space X we

have a sheaf of rings % (£) that we call the sheaf of completed enveloping algebras.

When X is smooth and .¥ = Tx, % (L) = Dx. The formulation of Theorem [A]
in that general setting can be found in Subsection [[.Il As far as we are aware the
analogue of Theorem [Tl for Lie algebroids on varieties or manifolds is not in the
literature although it is surely known to experts.

Our next result forms a link between co-admissible ﬁx—modules and the more
classical theory of p-adic differential equations.

Theorem B. Let X be a smooth rigid analytic space. Then the forgetful functor
Ox — coherent N { Ox — coherent }
co—admissible Dx —modules Dx—modules
is an equivalence of categories.

This is proved in greater generality in Subsection [Z.3l Using Theorems [A] and
[Bl we can construct a large family of pairwise non-isomorphic simple objects in the
category of co-admissible D x-modules.

Theorem C. Let X be a smooth rigid analytic variety.

(a) 14+ Oy is a simple co-admissible Dx -module whenever 1 : Y — X is the inclusion
of a smooth, connected, closed subvariety Y .
b) If /' :' Y — X is another such inclusion and 14+ Oy =2/ Oy as co-admissible
+ +

Dy -modules, then Y =Y.
This follows from a more general statement, namely Theorem [4] below.

1.3. Conventions. Throughout the paper K will denote a complete discrete val-
uation field with valuation ring R. We fix a non-zero non-unit 7 € R. Throughout
Sections M Bl and [0l we work with right modules unless explicitly stated otherwise.

2. REVIEW OF THE BASIC THEORY OF D-MODULES

In this section we review some of the notation and other material from [1] that
we will use in the remainder of the paper.
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2.1. Lie-Rinehart algebras and lattices. Suppose that R is a commutative ring
and that A is a commutative R-algebra. Recall that a (R, A)-Lie algebra is a pair
(L, p) where

e [ is a R-Lie algebra and an A-module, and
e p: L — Derg(A) is an A-linear R-Lie algebra homomorphism

such that [z, ay] = a[z,y] + p(z)(a)y for all x,y € L and a € A.

An (R, A)-Lie algebra L is said to be coherent if L is coherent as an A-module
and L is said to be smooth if it is both coherent and projective as an A-module.

Recall that a Tate algebra is the subalgebra K (x1,...,x,) of K[[z1,...,2,]] con-
sisting of those power series ) cnn AaZ® with the property that lim, oo Ao = 0.
It is a commutative Noetherian Banach algebra equipped with the Gauss norm
given by | > enn Aa®| = supgenn |Aal- The unit ball of K(x1,...,z,) with re-
spect to the Gauss norm is the algebra R{x1,...,z,) consisting of power series in
K{xy,...,2,) with all coefficients lying in R.

A K -affinoid algebra is any homomorphic image of a Tate algebra, and an admis-
sible R-algebra is any homomorphic image of R{x1, ..., x,) which has no R-torsion.
We say that an admissible R-algebra A is an affine formal model in the K-affinoid
algebra A if A is a subalgebra of A which spans it as a K-vector space.

Definition (Il Definition 6.1]). Let A be an affine formal model in a reduced
K-affinoid algebra A, let L be a coherent (K, A)-Lie algebra and suppose that £ is
an A-submodule of L.

(a) L is an A-lattice in L if it is finitely generated as an A-module and KL = L.
(b) L is an A-Lie lattice if in addition it is a sub-(R, .A)-Lie algebra of L.

2.2. Completions of enveloping algebras of Lie—Rinehart algebras. Given
a (R, A)-Lie algebra L there is an associative R-algebra U(L) called the enveloping
algebra of L with the property that to give an A-module M the structure of a left
U(L)-module is equivalent to giving M the structure of a left module for the R-Lie
algebra L such that fora € A, x € L and m € M

(1) (ax)m = a(zm), and x(am) = ax(m)+ p(z)(a)m.

Similarly, to give a left A-module M the structure of a right U(L)-module is
equivalent to giving M the structure of a right module for the R-Lie algebra L such
that fora € A,z € Land me M

(2) m(azx) = a(mz) — p(x)(a)m and (am)z = a(mz) — p(x)(a)m.
Let A be an affine formal model in a reduced K-affinoid algebra A.

Notation. If £ is an (R, A)-Lie algebra we write U (L) to denote the m-adic com-
pletion of U(L) and we write U(L)k to denote the Noetherian K-Banach algebra
K erU(L).

Definition ([I, Definition 6.2]). Let L be a coherent (K, A)-Lie algebra. The
Fréchet completion of U(L) is

U(L) = mU(m L)k

for any choice of A-Lie lattice £ in L.
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—

As explained in [I} §6.2], U(L) is a K-Fréchet-algebra that does not depend on
the choice of affine formal model A nor on the choice of A-Lie lattice £. A key

—

property of U(L) used in our work is that it is frequently a Fréchet-Stein algebra
in the sense of [I1].

Theorem ([T Theorem 6.4]). Let A be a reduced K-affinoid algebra and let L be
a coherent (K, A)-Lie algebra. Suppose L has a smooth A-Lie lattice L for some

affine formal model A in A. Then U(L) is a two-sided Fréchet-Stein algebra.
2.3. The functor ®.

Definition ([I, Definition 7.3]). If U and V are both left Fréchet—Stein algebras a
Fréchet space then P is a U-co-admissible (U, V')-bimodule if P is a co-admissible
left U-module equipped with a continuous homomorphism V°P — Endy (P) with
respect to a natural Fréchet structure on Endy (P) defined in [Tl §7.2].

The reason that U-coadmissible (U, V)-bimodules are useful is that they enable
us to base-change coadmissible left V-modules to co-admissible left U-modules.

Lemma ([T, Lemma 7.3|). Suppose that P is a U-co-admissible (U, V')-bimodule.
Then for every co-admissible V -module M, there is a co-admissible U-module

P&y M
and a V -balanced U-linear map
1: Px M — PoyM

satisfying the following universal property: if f: P x M — N is a V-balanced U -
linear map with N a co-admissible U-module then there is a unique U-linear map
g: PRy M — N such that go = f. Moreover, P&y M is determined by its universal
property up to canonical isomorphism.

The base-change functor defined by the Lemma turns out to be associative:
Poyv(QewM) = (PRyQ)@wM

holds for appropriate choices of U,V,W, P,@Q and M. By considering opposite
algebras we see that there are also right module versions all of these statements.

2.4. Localisation on affinoid spaces. Suppose that X is a reduced K -affinoid
variety, A is an affine formal model in O(X), £ is a smooth (R, A)-Lie algebra, and
L=K®grL.

Definition ([IL Definition 8.1]). For each affinoid subdomain Y of X, define

U(IL)Y) =U(OF)@ox) L)

This defines a presheaf of rings on the weak G-topology X,, on X, and in fact
we have the following

Theorem ([I, Theorem 8.1]). % (L) extends to a sheaf of rings on Xig.

This sheaf of rings can be used to define a localisation functor

co—admissible sheaves of
Loc: ¢ —— -9 —
U(L) —modules % (L) — modules
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whose values on every affinoid subdomain Y of X are given by

Loc(M)(Y) = % (L)(Y) B M.

U(L)

Theorem ([T, Theorem 8.2]). Loc defines a full exact embedding of abelian cate-
gories from the category of co-admissible ﬁ(L\)—modules to the category of sheaves
of @;(T)-modules with vanishing higher Cech cohomology groups.
2.5. Lie algebroids. Suppose that X is any rigid K-analytic space. We recall the
notion of a Lie algebroid on X.
Definition ([IL Definition 9.1]). A Lie algebroid on X is a pair (p,.Z) such that

e 7 is a locally free sheaf of O-modules of finite rank on X,g,
e 7 has the structure of a sheaf of K-Lie algebras, and
e p: Z — T is an O-linear map of sheaves of Lie algebras such that

[z, ay] = a[z,y] + p(x)(a)y
whenever U is an admissible open subset of X, z,y € Z(U) and a € O(U).

Definition ([I, Definition 9.3]). Let .£ be a Lie algebroid on the reduced rigid
K-analytic space X, and let Y be an affinoid subdomain of X. We say that Z(Y)
admits a smooth Lie lattice if there is an affine formal model A in O(Y) and
a smooth A-Lie lattice £ in Z(Y). We let X,,(¢) denote the set of affinoid
subdomains Y of X such that £(Y) admits a smooth Lie lattice.

By [1l Lemma 9.3] X,,(-%¢) forms a basis for the G-topology on X. It enables us
to define a ‘Fréchet-completion’ of the sheaf % (.Z’) on X via the following Theorem.

Theorem ([I, Theorem 9.3|). Let X be a reduced rigid K -analytic space. There
is a natural functor % (—) from Lie algebroids on X to sheaves of K -algebras on

—_— —_
Xiig such that there is a canonical isomorphism % (L)|y = % (ZL(Y)) for every
Y e X,,(%).

—

Definition ([I} Definition 9.3]). We call the sheaf % (.¢) defined by the Theorem
the Fréchet completion of % (%). If X is smooth, ¥ = T and p = 17, we call

D= (T) the Fréchet completion of D.
2.6. Co-admissible sheaves of modules. Suppose that .Z is a Lie algebroid on
a reduced K-analytic space X. The following defines the notion of co-admissible

U (Z)-modules that is central to this paper.

—

Definition. A sheaf of % (.£)-modules .# on X,ig is co-admissible if there is an
admissible covering {U; | ¢ € I} of X by affinoids in X,,(.%) such that for each
—_—

iel, . #(U;) is a coadmissble % (£ (U;))-module and .|y, = Loc(.# (U;)).

Co-admissible % (.£)-modules behave well on affinoids in the following sense.

Theorem ([I, §9.5]). Suppose that £ is a Lie algebroid on a reduced K -affinoid
variety X such that £(X) admits a smooth Lie lattice. Then Loc and I'(X, —) are
mutually inverse equivalences of abelian categories
co—admissible | co—admissible sheaves of
U(L)(X) —modules | U (£L)—modules on X .
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3. SIDE-SWITCHING OPERATIONS

In this section we explain that, as in the classical theory of D-modules, there is
an equivalence of categories between the categories of (co-admissible) left % (.£)-

modules and of (co-admissible) right % (.£)-modules for any Lie algebroid .Z on a
rigid analytic space X.

3.1. Comparison of left and right modules for Lie—Rinehart algebras.
Suppose that R is a commutative ring and that A is a commutative R-algebra and
(L, p) is an (R, A)-Lie algebra.

We recall some well-known constructions; see, for example, |7, §2]. Let M and
N be two left U(L)-modules, and fix m € M, n € N,z € L. Analogously to Oda’s
rule for D-modules, using §ZII([0) we can make M ®4 N into a left U(L)-module
via the formula

(3) x(m®@n) = (zm) @n+m (zn)
and Hom 4 (M, N) into a left U(L)-module via the formula
(4) (@f)(m) = xf(m) — f(zm).

Similarly, given two right U(L)-modules M and N we may make Hom (M, N)
into a left U(L)-module via the formula

(5) (@f)(m) = f(mz) — f(m)z.
Finally, given a left U(L)-module M and a right U(L)-module N we may make
N ®4 M into a right U(L)-module via the formula

(6) n@m)x=nx@m—nam
and Hom 4 (M, N) into a right U(L)-module via the formula
(7) (fz)(m) = f(m)x + f(am).

In the last three cases, the given right L-action extends to a right U(L)-module
structure using §2I[2)) and the natural left A-module structures on Hom4 (M, N)
and N ®4 M.

Proposition. Suppose that P is a right U(L)-module that is projective of constant
rank 1 as an A-module. Then there are mutually inverse equivalences of categories
from left U(L)-modules to right U(L)-modules given by P ®4 — and Hom4 (P, —).

Proof. Using formula (@) above, one can check that the natural functor P ® 4 —
on A-modules does indeed induce a functor from left U(L)-modules to right U(L)
modules. Formula (&) shows that Homa (P, —) gives a functor in the opposite
direction. Moreover the usual natural morphisms of A-modules

M — Homu(P,P®4 M) and P®4Homyu(P,N)— N

are morphisms of U(L)-modules when M is a left U(L)-module and N is a right
U(L)-module. The assumption on P implies that they are all isomorphisms. (I

We note that if L is a projective A-module of constant rank d, then by [7, Propo-
sition 2.8] the Lie derivative induces the structure of a right U(L)-module on the
left A-module HomA(/\dL, A). Since the A-module HomA(/\dL, A) is projective
of constant rank 1, by the Proposition this condition on L suffices for there to be
an equivalence of categories between left U(L)-modules and right U(L)-modules.
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Examples.

(a) Suppose that X is a smooth irreducible affine variety of dimension d over a
field k of characteristic zero and A = O(X). The A-module of derivations
L = Dery(A) is projective of constant rank d, and U(L) = D(X) is the usual
ring of global differential operators on X. Then HomA(/\dL, A) is the usual
dualising module (X ), and in this case the Proposition gives the standard
equivalence between left and right D(X)-modules.

(b) Returning to full generality, let L be a projective A-module and let U = U(L)
so that grU = Sym(L) by Rinehart’s Theorem [10, Theorem 3.1]. Suppose
that P is a right U-module with a single free generator e as an A-module and
that I is an ideal in A. Then there is an isomorphism

U/IU = P, UJUI

of right U-modules given by a + IU — (e ® 1)ca. This can be seen by giving
both sides their natural filtrations and observing that the induced morphism
between associated graded modules is the isomorphism of symmetric algebras
Sym(L/IL) — Sym(L/IL) given by multiplication by (—1)¢ in degree i.

3.2. An involution on P ®4 U(L). Suppose that P is a projective module of
constant rank 1 with the structure of a right U(L)-module. Then there are two
natural ways to view P ®4 U(L) as a right U(L)-module: one of these comes from
the left action of U(L) on itself and formula (@) above; the other, which we’ll denote
by o, comes from the right action of U(L) on itself. We’ll write P® 4 U (L) to denote
the left A-module P® 4 U(L) equipped with the o-action of U(L) on the right. The
following lemma can be viewed as saying that there is an automorphism a of the
A-module P ® 4 U(L) that exchanges these two structures.

Lemma. Let a: PR U(L) - P4 U(L) be defined by a(p@u) = (p@ 1)u. Then
(a) a(tou) =at)u for allt €e P4 U(L) and v € U(L),

(b) a((p@u)v) = (p@v)u for allp € P and u,v € U(L), and

(c) a? =id.

Proof. (a) We may assume that ¢t = p ® v for some p € P and v € U(L). Then
a((pev)ou)=a(p@vu) = (p® 1)vu = a(p ® v)u.

(b) There is a natural exhaustive positive filtration Fy on U(L) such that Fy = A
and F,, = L-F,,_1+F,,_1 for all n > 1. Proceed by induction on the filtration degree
nofveU(L) Whenn=0,ve Aand a((p@u)v) =alpr®u) =(pve l)u =
(p ® v)u as claimed. Suppose now that v = zw for some z € L and w € U(L) of
degree strictly less than n; since the statement is linear in v this case suffices. Then

a((p@u)v) = a(((p @ wr)w) = a(pr @ u - p © zu)w)
which by the inductive hypothesis is equal to
(pr @ w)u = (p® w)(zu) = (pr @ w — (pRw)r)u = (p @ 2w)u = (p ® V)u.
(c) From part (b) we have a?(p®@u) = a((p® 1)u) = (p@u)l = p @ u. O
It follows immediately that « is invertible and that

a(tu) =a(t)ou forall te PR, U(L) and weU(L).
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3.3. Comparison of left and right U (L) x-modules. Suppose now that 4 is an
affine formal model in a reduced K-affinoid algebra A and L is a smooth (R, .A)-
Lie algebra of constant rank d. Let Qp := HornA(/\d L, A). This is a projective
A-module of constant rank 1 with the structure of a right U(L)-module by the
discussion in Subsection Bl above.

Lemma. If M is a w-adically complete A-module then Q@ 4M and Hom 4(Qz, M)
are also w-adically complete.

Proof. L is a direct summand of some free A-module A". Then Q, ® 4 M and
Hom 4 (22, M) may be viewed as direct summands of M". Since finite direct sums
and direct summands of m-adically complete modules are m-adically complete, the
result follows. O

Proposition. There is an equivalence of categories between the category of m-

—

adically complete left U(L)-modules and the category of m-adically complete right

U(L)-modules given by Q@ 4—. Moreover this functor restricts to an equivalence of

—

categories between finitely generated left U(L)-modules and finitely generated right
U(L)-modules.

Proof. Tt follows from the lemma that the equivalence of categories Q, ® 4 — from
left U(L)-modules to right U(L)-modules given by Proposition Bl restricts to an
equivalence of categories between m-adically complete left U(L)-modules and -
adically complete right U(£)-modules.

—

We will show that restriction along U(L) — U(L) defines equivalences of cat-

o —

egories from the category of m-adically complete left (respectively, right) U(L)-
modules and w-adically complete left (respectively, right) U(L)-modules. Certainly
the restriction functors are faithful so we must show that they are also full and
essentially surjective on objects. Suppose that f: M — N is a U(L)-linear map

between m-adically complete U(L)-modules. We must show that f is also U(L)-
linear. But f induces U(L)/7™U(L)-linear morphisms f,: M /71" M — N/7"N
for each n > 0 and we may identify f with lim f,,: M — A which is U(L)-linear as
required. Similarly, if M is any m-adically complete U (L)-module, then M /7" M
is naturally a U(L)/7n"U(L)-module for each n > 0 and so M = lglj\/l/w"./\/l is a

o —

naturally a U(£)-module as required.
We now see that Qs ® 4 — is an equivalence of categories between m-adically

—

complete left U(L)-modules and m-adically complete right U/(E)—modules. Now,

—

every finitely generated U(L)-module is m-adically complete, and Q, ® 4 — pre-
serves inclusions between finitely generated modules. So if M is i&)etherian left
U(L)-module, then an ascending chain of finitely generated right U (L£)-submodules
of Qr ®4 M corresponds to an ascending chain of left submodules of M, which

—

terminates. So Qg ® 4 M is a Noetherian right U(L£)-module. O

Let Qp := K ®x Q. For any A-module M, the natural A-module isomorphism

Q@4 (K@Or M) 2K Qg (2 @4 M)
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induces a left ﬁ(lﬁ)\;(—module structure on Q, ® 4 (K ®@r M) whenever M is a left

U(L)-module. Similary, the natural A-module isomorphism

HOInA(QL,K OR M) = K Q®r HomA(QﬂvM)

induces a right U(L)g-module structure on Homy (Qr, K @& M) whenever M is

a right U(£)-module. These constructions are functorial in M.

Theorem. The functors Qp,®4— and Homa (2, —) are a mutually inverse pair of
equivalences of categories between finitely generated left U (L) ik -modules and finitely

generated right U (L) x -modules.

Proof. Suppose that M is a finitely generated left E(E)\K—module. Then can find

o —

a finitely generated U (L)-submodule M C M such that K @ g M = M. Therefore

O @4 M=2KQr (2 ®4 M) is a finitely generated right U(L)x-module by the
Proposition. The same argument shows that Hom 4 (€21, —) sends finitely generated

right U (L) g-modules to finitely generated left U(L) x-modules.

The functor Q7 ® 4 — is left adjoint to Hom4(€21,, —) on A-modules, and the unit
and counit morphisms for this adjunction are isomorphisms on all modules of the
form M ®E£(\by the Proposition. So the restrictions of these functors to finitely

generated U(L)g-modules are mutually inverse equivalences. ([l

3.4. Comparison of left and right co-admissible U(L)-modules. Suppose
now that A is a reduced affinoid K-algebra and L is a smooth (K, A)-Lie algebra of
constant rank d. Suppose that L admits a smooth A-Lie lattice £ for some affine

—

formal model A in A, and recall the Fréchet—Stein algebra U(L) from [1, Theorem
6.4]. As in Subsection B3} let Q7 denote Homa(A® L, A).

Recall the isomorphism a: Qp ®4 U(L) = Qp, @4 U(L) from Lemma that
switches the two natural right U(L)-module structures on Q, ®4 U(L).

Lemma. There is a commutative diagram

QL RAUTML)x —= QL ®aU(L)K

| |

QLoaU(rL)k —= QL 0aU(L)K

of right U(mL)x-modules with horizontal arrows given by inclusions and vertical
arrows continuous extensions of c.

Proof. By Lemma [3.2] there is an isomorphism « : Qg @4 U(L) — Qz @4 U(L)
of right U(£)-modules. We may m-adically complete this map and then invert 7 in
order to obtain ax, the unique continuous extension of o to an isomorphism

&}: Qr a4 U(E)K — QL 0a U(E)K.

The result follows immediately. (I
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Theorem. The pair O, @4 — and Homyu (Qp, —) define mutually inverse equiva-

p——

lences of categories between co-admissible left U(L)-modules and co-admissible right
U(L)-modules.

Proof. Let £ be a smooth A-Lie lattice in L, and write U,, = U(n"L) k. Suppose
that (M,) is a family of finitely generated left U,-modules and let Ny := Qf, ® 4 M,.
By Theorem B3] (N,) is a family of finitely generated right Us,-modules. We will
verify that (N,) is coherent if and only if (M,) is coherent, that is, that there
are isomorphisms Ny, 1 ®u, ., Up = N, for each n > 0 if and only if there are
isomorphisms U, ®y,_, Mpy1 = M, for each n > 0.

For each finitely generated left U,,41-module @, define a right U,-linear map

HQ: (QL XA Q) ®Un+1 Un —Qp®a (Un ®Un+1 Q)

by setting 0o ((w®m) @ r) = (w® 1 ® m)r. Then 6 is a natural transformation
between two right exact functors, and it follows from the lemma that 0y, ., as an
isomorphism. Hence 6 is an isomorphism for all @) by the Five Lemma. Thus
Npy1®u,,, Un = QL ®4 (Un v,y Mpy1). So Ny = Ny @y, ., Uy if and only
it M, 2 Uy, ®@u,ypy Mpq1.

It now follows from TheoremB.3that (M,) — (NN,) is an equivalence of categories
between coherent sheaves of left Us-modules and coherent sheaves of right U,-
modules. Finally, since 2 is a direct summand of a free A-module, for every

co-admissible left U-module M there are canonical isomorphisms
QL @aM =004 (ImU, @y M) =1imQp, @4 (Un @u M)

of left A-modules. Using the composition of these isomorphisms we can define a
right U-module structure on €2y, ® 4 M. Similarly, the canonical isomorphisms

Homy (Qr, N) 2 Homy (Qr, N @y U,) =2 U, @y Hom4(Q, N)
induce a left U-module structure on Hom4(€2r, N) for every co-admissible right
U-module N. The result now follows from [I1, Corollary 3.3]. O

—

3.5. Comparison of left and right co-admissible % (. )-modules. Suppose
now that X is a reduced rigid analytic space and that .Z is a Lie algebroid on X
with constant rank d. Then we have at our disposal the invertible sheaf
d
Ny = }[omo(/\Z,O).

Lemma. Suppose that Z C'Y are open affinoid subvarieties of X such that £ (Y)
admits a smooth Lie lattice L for some affine formal model A in O(Y) and B is
an L-stable affine formal model in O(Z). Then there is a commutative diagram of

U(L) k-modules

Qe(Y) @ ULk —=Qx(Z) @ UBR4L)K
oY) 0(2)

| |

Qe(Y) © ULk —=Qx(Z) @ UB®4L)K
oY) 0(2)

whose vertical maps are isomorphisms.
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Proof. We construct the vertical arrows by following the proof of Lemma B4l The
horizontal arrows are given by [II, §3.3]. It is straightforward to use Lemma to
verify that the diagram commutes. (I
Proposition. Suppose thatY is an open affinoid subvariety of X such that Z(Y)
admits a smooth Lie lattice and M is a co-admissible left U(ZL(Y))-module. Then
there is an isomorphism of right % |y, -modules

Loc (Qz2(Y) ®or) M) = Qgyy, @o, Loc(M)
50 Qgy, ®oy Loc(M) is a co-admissible right % |y,,-module. Similarly, for every
co-admissible right U(Z(Y))-module N, there is an isomorphism of left |y, -
modules

Loc (Homoy) (e (Y), N)) = #omo, (Qg|y,,,Loc(N))

50 Homo,, (g, Loc(N)) is a co-admissible left U |y, -module.
Proof. Let Z be an affinoid subdomain of Y. Consider A an affine formal model in

O(Y) such that Z(Y") admits a smooth A-Lie lattice £. By rescaling £ if necessary
and applying [I, Lemma 7.5(b)|, we may assume that O(Z) admits an L-stable

affine formal model B. Write U,, := U(n"L)k and V,, := U(B ®4 7" L)k so that
% (Y)=1lmU, and % (Z) = Jim V;,. For each finitely generated left Up-module @,
define a right V,,-linear map

17Q: (Q2(Y) ®ow) Q) ®u, Va — Q2 (Z2) @02y (Vi ®v,, Q)

by setting 7 ((w @ m) ® v) = (w|z ®(1®m))v. Then 7 is a natural transformation
between two right exact functors, and using the lemma we see that 7y, is an
isomorphism. Hence 7 is an isomorphism for all @ by the Five Lemma.

Now there is a natural isomorphism

<Q>§f(Y) ® M) R UZ)=0y(Z) ® (%(Z) ® M)
o(Y) % (Y) 0(z)
of right % (Z)-modules, and the isomorphism
Loc (Qz2(Y) ®or) M) = Qgyy, @o, Loc(M)

follows. Thus Q ¢y, ®o, Loc(M) is a co-admissible right %/-module. The second
part of the Proposition has a similar proof. (I

We are now ready to prove the main Theorem in this section.
Theorem. There is a mutually inverse pair of equivalences of categories Qo Qo —
and Homo , (g, —) between co-admissible left m—modules and co-admissible
right @(\,?)—modules.

Proof. The statement is local so by [T, Lemma 9.3] we may reduce to the case where
X is affinoid and Z(X) admits a smooth Lie lattice. This case follows from the
Proposition and Theorem [3.4] O

Unless explicitly stated otherwise, until the end of Section [6] the term
"module" will mean right module.

4. KASHIWARA’S EQUIVALENCE FOR U (L) x

From now on, we assume that the characteristic of our ground field K is zero.
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4.1. Centralisers in L. Suppose that ¢: A — B is an injective homomorphism
of commutative R-algebras, (L, p) is a (R,A)-Lie algebra, and o: L — Derg(B) is
an A-linear Lie algebra homomorphism such that
o(x)op=ypop(x) forall zelL.

For every subset F' of B, we define

CL(F)={yeL|oly)-f=0 forall feF}
to be the centraliser of F in L. Tt is straightforward to verify that Cp(F') is always
a (R,A)-Lie subalgebra of L.

Lemma. Suppose that fi1,...,f- € B are such that L - f; C A for each 1 <i <r
and there exist x1,...x, € L with x; - f; = 6;5. Then

L= <G_?sz> ®CL{f1,---5 [r})-

In particular, if L is smooth then Cr({f1,..., fr}) is smooth.

Proof. Write C = Cr({f1,..., fr}). fu=>"i_, a;x; € C for some a; € A then for
each j we can compute 0 = u- f; = >°i_; a;(z; - f;) = a;. Hence u = >"i_; ajz; =0
and the sum Y ;_; Az; + C is direct. On the other hand, if v € L then

(W= (u-fi)w:) - fi=wu-fj = (u-fi)(wi- f;) =0.
i=1 1=1
Hence u="1_ (u- fi)x; + (u— > (u- fi)x;) € Yoiq Az; + C. O
4.2. The submodules M[F] and Mg, (F). Until the end of Section [ we fix an

affine formal model A in a reduced affinoid algebra A and a smooth (R, .A)-Lie
algebra L.

Definition. Let M be a finitely generated U(L)x-module and F C A.
(a) M[F]:=={me M :mf=0VfeF}.
(b) Map(F) :=={m e M : lim mi =0Vvfe F}.

n—oo :

—

Let C = Cz(F). Because the elements of F' are central in U(C)k, we see that
MIF) C Map(F) are U(C) g-submodules of M. We will soon see that if £L-F C A
then Mgyp(F) is even a U(L) g-submodule of M.

—

Proposition. The functor (—)[F] from U(L)k-modules to U(C)k /(F)-modules is

right adjoint to — ®@ UL)k.

Proof. Suppose that M is a U(C)k/(F)-module and N is a U(L) g-module. By the
universal property of ® there is a natural isomorphism

Since MF = 0 and F is central in U(C) g, any U(C) g-linear map from M to N will

have image in N[F]. Thus there is also a natural isomorphism

Hom (M, N) = Hom (M, N[F)).

U(C)k U(C)k

Putting these two isomorphisms together we obtain the result. O
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—

@ sends finitely generated U(C)gx-modules to

It is cl that (—
is clear that ( )®U(C)K

finitely generated U(L)x-modules. We'll see that if FF = {f1,..., f.} is a finite
subset of A such that £ - (fi,..., fr) = A" then (—)[F] also sends finitely gener-
ated modules to finitely generated modules. Moreover we’ll show that under this
hypothesis the unit of the adjunction restricted to finitely generated modules is an
isomorphism and the counit is isomorphic to the inclusion My, (F) — M.

If M is any R-module, we’ll write My, := M ®x k for its reduction modulo 7
in what follows.

4.3. Proposition. Let C be a sub-(R, .A)-Lie algebra of £, and suppose that C has

—

an A-module complement in £. Then U(L)k is a faithfully flat U(C)x-module.

Proof. The assumptions on C and L force C to be a projective A-module. Now,

— -

with respect to the m-adic filtrations on U(L) and U(C) respectively,

—

grU(L) g 2 k[t,t @, U(Ly) and grU(C)x = kt,t™ ] @5 U(C).

These algebras carry a natural positive filtration with ¢ and Ay in degree zero,
and L, Cx in degree one. Since L and Cj are smooth, the respective associated
graded rings are k[t,t '] ®; Sym(Lx) and k[t, ¢~ 1] ®; Sym(Ck) by |10, Theorem 3.1]|.
The map U(C)x — U(L)k induces the natural inclusion k[t,t '] @5 Sym(Cy) —
k[t,t71] ®) Sym(Ly) which is faithfully flat, because Cy has an Ag-module comple-
ment in Ly by assumption. We can now apply [9, Chapter II, Proposition 1.2.2]
twice. (]

Corollary. Let F = {f1,...,fr} C A be such that L - (f1,...,fr) = A", and let
C=Cr(F). Then U(L)k is a faithfully flat U(C) x-module.

Proof. This follows from Lemma 1] and the Proposition. O

4.4. Construction of a lattice that is stable under divided powers. For the

remainder of this section we’ll write U = U(L)g and U = U(L). Suppose that
f € Aissuch that £+ f C A and that M is a finitely generated U-module. Let
N = Mgp(f) - U. Since U is Noetherian, N is also a finitely generated U-module
and we may fix a finite generating set {v1,...,vs} C Mgy (f) for N as a U-module.
We say that a U-submodule of N is a U-lattice in N if it is finitely generated over
U and generates N as a K-vector space. Thus in particular,

S

MO = Z ij/l

j=1
is a U-lattice in N.

Lemma. There exists an integer t such that
a1\ A1 om \ Bm
(B ()
oq! Q!

foralla,8 € N" and all j =1,...,s.
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Proof. Since each v; lies in Mgy (f) by assumption, v; f"/n! — 0 as n — oo for
each j. So each of these sequences is bounded in N and is therefore contained in
7'My for some ¢ > 0. Let n = 37", «;5;. Then

U,(f“l)ﬁ,,(fam)ﬁm: W uft
T\ ay! am! o !Pr -, Bm pl 0

is a multinomial coefficient and is therefore an integer. (I

because o

n:
T

Proposition. There is at least one U-lattice M in May(f)-U which is stable under
the action of all of the divided powers f*/i!.

Proof. Let N = Mgap(f) - U and let B be the subalgebra of A generated by A and
{f%/i!':i > 0}. Since L - f C A by assumption, an easy induction on i shows that
yf—, = J_—;;,(yf) € Bforally € £ and all ¢ > 0. So, as also £ - A C B we see
that £-B C B. Thus the action of £ on A lifts to B, so we can form the (R, B)-Lie
algebra B ® 4 £ by [I, Lemma 2.2]. Now T :=U(B®a L) = B4 U(L) by [1}
Proposition 2.3], so T' is generated as a U(L)-module by all possible monomials

<ﬁ)ﬁl (f“_"‘)ﬂ €B, ofcN".

oq! Q!

Since My is a U(L)-submodule of N, by the Lemma we can find an integer ¢ such
that

v;TCn 'My forall j=1,...,s.

Let M be the closure of % _; v;7" in N. Since U is the m-adic completion of the
subalgebra U(L) of T, M is a U-submodule of N containing vy, ...,vs. Thus

Mo C M gﬂ'it./\/lo

because 77t My is closed in N. Since 7'My is a finitely generated module over
the Noetherian ring U, M is finitely generated over Y. Therefore it is a U-lattice
in N which is stable under all divided powers f¢/i! by construction. O

4.5. Proposition. Suppose that F' C A is such that £- F C A, and M is a finitely
generated U-module. Then My, (F) is a U-submodule of M.

Proof. Because Mqp(F) = NpepMap(f), we may assume that F = {f}. Using
Proposition 4.4} choose a U-lattice M in Mqp(f)-U stable under all f?/i! and write
Map(f) = Map(f) N M. Certainly Map(f) is an A-submodule of M.

Suppose that € £, m € Mgp(f) and n > 0. Then

fn fn fn—l
(ma:)m =m_ +m(x - f) R
Since m € Map(f), and - f € A and = € £ preserve the lattice M of M, we see
that ma € Map(f). Thus we may view Map(f) as a U(L)-submodule of M.

Next we show that Map(f) is m-adically closed. Suppose that m,, is a sequence
in Map(f) converging m-adically to m € M. Then for all r > 0 there is ng such
that m — my,, € 7" M and there is ny > ng such that my,, f"/n! € 7" M for all
n > ny. Thus mf"/n! € 7" M for all n > n; because M is stable under all f?/i!.
So m € Mgp(f) as required.

It follows that Ma,(f) is a U-module, so Mq,(f) is a U-module as required. [
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4.6. Reduction mod 7. Suppose now in addition to £ - f C A that there is an
element = € £ such that = - f = 1. This is equivalent to assuming that £ - f = A.

Let M be a finitely generated U-module, and write C := C(f) and V := U(C).
Lemma. Let M be a U-lattice in May(f) stable under all divided powers in f, and
let T denote the image of x € L in L.

(a) Uy, is a free left Vi,-module with basis {7 : j > 0}.

(b) The natural map M|fli @y, U — My, is injective.

Proof. (a) By Lemma 1l £ = Ax & C. Therefore £, = ALT @ Cj, so the powers
of Z in the symmetric algebra Sym(L;) form a homogeneous basis for Sym(Ly) as
a graded left Sym(Cy)-module. Since Uy, = U(Ly) and V, = U(Cy), we can apply
[10, Theorem 3.1].

(b) Let £ € M|[f]r ®y, U map to zero in My. By part (a), we can write &
uniquely in the form § = Y% (7 ® zJ for some g; € M[f]. Now

n n fn
qu:vj €M, so qux]—' €M
= = n!
because the lattice 7. M is stable under f™/n! by construction. Now

g7’ f = gj[27, f] + g fa? = jgja?™!  for each j
because [z, f] =z - f =1 and g; f = 0. Therefore

quxj% = Z (i)qjxj_" = q, € tM N M[f].
§=0

Jj=0

But 7 M N M(f] = n M[f] because M is w-torsion-free, so g, = 0. Continuing like

this, we see that g; = 0 for all j < n, so £ =0. O
4.7. The counit €,/ is an injection. We continue to write V := U(C) and also

write V := U(C) k.

Proposition. Let f € A be such that L - f = A and let M be a finitely generated
U-module. Then the natural map

ev: MiflovU — M
of U-modules is injective. In particular M[f] is finitely generated as a V-module.

Proof. Using Proposition L5l we see that the image M[f]- U of €)s is contained in
the U-module My, (f). Thus we may view epr as a map M[f] @y U — Map(f).
Using Proposition [4.4] choose a U-lattice M in Ma,(f) which is stable under all
divided powers in f. Let N1 C Ny C --- be an ascending chain of Vg-submodules
of M[f]k. Since My is a finitely generated module over the Noetherian ring Uy,
its chain N1U C Noldy C --- of submodules must stabilize. It now follows from
Lemma [£6|(b) that the chain

N1 @y, U € No @y, U, € -

of submodules of M|[f]r ®y, Ui also terminates. But Uy is a faithfully flat left
Vi-module by Lemma [.6)a), so the original chain N; C Ny C - - - stops. Therefore
M| Sk = M[f]/mM]f] is a finitely generated Vi-module.
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The m-adic filtration on M is separated by Nakayama’s Lemma, because it is a
finitely generated module over the m-adically complete Noetherian algebra i. So
the m-adic filtration on M|f] is also separated, and hence M|f] is finitely generated
over V by [9] Chapter I, Theorem 5.7]. So M[f] = M[f].K is finitely generated
over V = V.

The multiplication map V ®y U — U is bijective, so there is an isomorphism of
U-modules

MlflevU = M[flov (VeyU) = M[f]ov U.
Now U is a flat V-module by Lemma [£6((a) and [I1, Proposition 1.2], which implies
that M[f] ®y U embeds into M[f] @y U = M[f] @y U. We saw above that M|f]
is finitely generated over V, so M[f] ®y U is a U-lattice in M[f] @y U. Now

(M[f] @y Uk = M[flr v, Uy

embeds into My, by Lemma [6(b). This means that the associated graded of ejs
(with respect to the m-adic filtrations on M[f] @y U and Mg, (f) determined by
the U-lattices M[f] ®y U and M respectively) is injective. Therefore € is also
injective by [9, Chapter I, Theorem 4.2.4(5)].

That M|f] is finitely generated follows from the facts that U and V are Noe-
therian and that U is a faithfully flat left V-module by Corollary 4.3l O

Corollary. Let F = {f1,...,fr} C A be such that L - (f1,...,fr) = A" and let
C:=Cr(F). Then for any finitely generated U-module M, the natural map
MI[F] ®[ﬁ)\K U—-M

is an injection and M[F| is finitely generated as a U(C)x-module.

Proof. We proceed by induction on r, the case r = 1 being given by the Proposition.

Let V := U(Cc(fr)x and W := U(C)g. Since L - f, = A, the Proposition
implies that M|f,] is finitely generated as a V-module and M[f,] @y U — M
is injective. However, Cz(f,) is a smooth (R, .A)-Lie algebra by Lemma F1] and
Ce(fr) - (f1soy fro1) = A1 because L - (f1,...,fr) = A", so the induction
hypothesis implies that M[F] = M[f.][{f1,.-., fr—1}] is finitely generated as a
W-module and M[F] ®w V — M|f,] is injective.

Since U is a flat V-module by Corollary 3, (M [F]@w V) @y U — M|[f,]@v U
is also injective, and the result follows by the associativity of tensor product. [

It follows immediately from the Corollary that the adjoint pair of functors in
Proposition restricts to an adjoint pair of functors between finitely gener-
ated U(L)x-modules and finitely generated U(Cr(F))k/(F)-modules, whenever
L-(fi,...,fr)=A".

4.8. Constructing maps from My,(f) to M[f]. Suppose again that f € A and
x € L are such that x - f = 1. For each j > 0 and v € My, (f), the infinite series

o)=Y vl (;") (—2)"

n=j

converges to an element of M because vf"/n! — 0 and because (?)(—x)"‘j eu
for all n > j. Thus we have defined an infinite collection of functions

ej: Map(f) = M, j=0.
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Lemma. (a) e; is continuous.

(b) e;(Map(f)) € M[f].
(c) If v € Map(f) then ej(v) — 0 as j — oo.

Proof. (a) By Proposition .4 we can find a U-lattice M in M which is stable under
the action of all f?/i!. We may view M as the unit ball with respect to a Banach
norm on M. Then Mg,(f) N M is the unit ball in the closed subspace Ma,(f).
We see by examining the definition of e; that e;(M N Mg, (f)) C M and so e; is

continuous. . )
(b) Suppose v € Mgy (f). We can rewrite e;j(v) as e;j(v) = Y 52, U’M where

v' = wvfl/jl. Now
f(==2)*

i

_ fitl(—a)t  fi(—a)itt
i (t—1)!
so the expression for e;(v)f telescopes to give zero:
(fiJrl(_I)i 3 fi(_x)ifl) 0
il (i — 1) '
(c) This is clear from the defining formula for e;(v), because v% —0asn— oo
and because (’;) 2"~ preserves the U-lattice M for all n and j. O

f

for i>1

ej()f =v'f+>
=1

Corollary. Let G C A be such that - G = 0. Then
ej Map({f}UG)) C M[flap(G) for all j = 0.

Proof. Part (b) of the Lemma gives the inclusion e; (Map({f} UG)) C M|[f]. Let
v € Map({f} UG) and g € G. Then since g commutes with x and f inside U,

ej(v)g— =e; (v%) —0

as n — oo by part (a) of the Lemma. O

4.9. The counit €); has image Mg, (F). In this Subsection, we will show that
Map(F) is generated as a U-module by M[F]. The heart of the proof of this
statement is contained in the following technical

Lemma. Let f € A and x € L be such that x - f = 1. Suppose that G C A is such
that ¢ - G =0 and let F = {f}UG. Then

Map(F) € M[flap(G) - U
for every finitely generated U-module M .

—

Proof. Let C = C(f) and V = U(C)k, and define
N = M[flap(G) -V € MIJ].

Since V is Noetherian and M|f] is finitely generated over V by Proposition .7, we
can find a finite generating set ws, ..., wn, in M[f]dap(G) for N.

Define e;: Map(f) — M as in Subsection L8 Given v € Mqp(F'), every e;(v)
lies in M| flap(G) by Corollary 4.8 so we can choose v;; € V such that

ej(v) =Y wiwvy; forall j>0.
Jj=1
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Because €;(v) — 0 as j — oo by Lemma [L.§|c) and because the topology on N

can be defined by the V-lattice Z;nzl w;V, we may assume that lim v;; = 0 for
j‘)OO

each i. Therefore the series E;’;O v;;27 converges to an element z; € U for each
t=1,...,m. Now

m m o0 oo
E Wiz = E E WV’ = E ej(v)z! =
i=1 j=0

= -yl o
s0 Mgp(F) is contained in M| J:];z(G) .U as required. O

Theorem. Let F' = {fi1,..., fr} C A and suppose that L-(f1,..., fr) =A". Then
MIF)-U = Mgp(F)
for every finitely generated U-module M.

Proof. The forward inclusion follows from Proposition To prove the reverse
inclusion we proceed by induction on r, the base case » = 1 being given by the
Lemma with G = 0.

Suppose that r > 1, write f := f, and G := {f1,..., fr—1}. By the assumption
on L we can find € £ such that - f =1 and - G = 0. Then

Map(F) € M[flap(G) - U
by the Lemma. Let C = Cg(f); then C - (f1,...,fr—1) = A""! because L -
(fi,---, fr) = A", and C is a smooth (R, .A)-Lie algebra by Lemma L1l More-

o

over M([f] is a finitely generated V := U(C) x-module by Corollary BT, so
M|flap(G) € M[f]IG] -V
by the induction hypothesis. Therefore
Map[F] € M[flap(G) - U C (M[f)[G]- V) -U = M[F]-U
because M[f][G] = M[F]. O

The following elementary result will be useful on more than one occasion; we
could not locate a reference to it in the literature.

4.10. Proposition. Let S : C — D be left adjoint to T': D — C. Suppose that

(a) the counit morphism € : ST — 1p is an isomorphism, and
(b) S reflects isomorphisms.

Then S and T are mutually inverse equivalences of categories.
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Proof. Let n: 1¢ — TS be the unit morphism. It will be sufficient to show that
ny : N — TSN is an isomorphism for any N € C. Now egy o S(nn) = lsn
by a counit-unit equation and egsy is an isomorphism by (a), so S(ny) is also an
isomorphism. Hence 7y is an isomorphism by (b). O

4.11. Kashiwara’s equivalence for m Here is the main result of Section [

Theorem. Let F = {f1,..., fr} be a subset of A such that L - (f1,...,fr) = A"
and write C = C(F). The functors

N—N®

o UL)k and M +— MIF)

are mutually inverse equivalences of categories between the category of finitely gen-

—

erated U(C) g /(F)-modules and the category of finitely generated U(L)x-modules
M such that M = Map(F).

—

Proof. Write V. = U(C)g and let S = (—)[F] denote the functor from finitely
generated U-modules to finitely generated V/(F)-modules given by Corollary E.1],
and let T := — @y U denote its left adjoint. If N is a finitely generated V/(F)-
module then (T'N)ap(F) D STN D N ® 1. Now (T'N)qp(F) is a U-submodule of
TN by Proposition 5 and it contains N ® 1 which generates TN = N @y U as a
U-module, so TN = (T'N)ap(F).

If M is a finitely generated U-module such that M = Mg, (F'), then the counit
morphism €p;: TSM — M is an isomorphism by Corollary .7 and Theorem
Since U is a faithfully flat left V-module by Corollary 3] the functor S reflects
isomorphisms. The result now follows from Proposition O

—

5. KASHIWARA’S EQUIVALENCE FOR U(L)

5.1. Normalisers in L. Suppose that I is an ideal in a commutative R-algebra A
and L is a (R, A)-Lie algebra.

Definition. The normaliser of I in L, N, (I) :={xz € L | p(z)(I) C I}.
We will use the abbreviation N := Np(I) in this subsection.

Lemma.

(a) N is an (R, A)-Lie subalgebra of L.

(b) IL is an (R, A)-Lie ideal in N.

(¢) N/IL is naturally an (R, A/I)-Lie algebra.

(d) U(L)/IU(L) is naturally a U(N/IL) — U(L)-bimodule.

Proof. (a) It suffices to show that N is an A-linear submodule of L and a sub-R-Lie
algebra. Both facts are immediate from the definitions.

(b) Clearly IL is A-submodule of N. Suppose n € N, a € I and € L. Then
[n, az] = aln,z] + p(n)(a)x € IL, so [L,IL] C IL.

(c) Certainly N/IL is naturally an A/I-module and an R-Lie algebra. Let the
anchor map py/rr,: N/IL — Derr(A/I) be given by

pn/p(xz+IL)(a+1) = p(x)(a) + 1

which is well-defined by the definition of N. The verification that this satisfies the
conditions for an anchor map is routine.
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(d) Consider the natural left-action of N on U(L) given by restricting the action
of L. Ifne N,a €I and u € U(L), then we can compute

n(au) = p(n)(a)u + a(nu) € IU(L)
by considering the definition of N. Thus the image of U(N) in U(L) is contained
in the idealizer subring of IU(L). Since IL acts trivially on U(L)/IU(L), using
the universal property of enveloping algebras we see that the left-action of U(N)

on U(L) descends to a left-action of U(N/IL) on U(L)/IU(L) that commutes with
the natural right-action of U(L). (]

5.2. Standard bases. Suppose that I is an ideal in a commutative R-algebra A
and L is a (R, A)-Lie algebra.

Definition. We say that a subset {z1,...,z4} of L is an I-standard basis if

(a) {x1,...,24} is an A-module basis for L,
(b) there is a generating set {f1,..., fr} for I with r < d such that
(C) a:lszdw foralllgzgdandlgjgr

Under the assumption that L has an I-standard basis, we can explicitly compute
the normaliser Ny (I) as follows.

Proposition. Suppose that {x1,...,2q} is an I-standard basis for L with corre-
sponding generating set F = {f1,..., fr} for I. Then

(a) C:=CL(F)=Axp11 ®--- & Axg,

(b)) N=N,()=Ix1 &Iz, ®C,

(¢) N/IL = (A/DTrrs © - @ (A/ D)7,

(d) N/JIL=C/IC as (R, A/I)-Lie algebras.

Proof. This is routine. (|

Until the end of Section [B, we assume that :

e [ is a radical ideal in the reduced affinoid K-algebra A,
e {x1,...,x,} is an I-standard basis for the (K, A)-Lie algebra L.

We also fix an affine formal model A in A. Because (n"x;) - (f;/7") = 6;; for all
i,j, we see that {n"x1,..., 7" x4} is again an I-standard basis for L for any integer
n. So by replacing {z1,...,2z4} by a m-power multiple if necessary and applying [I,
Lemma 6.1(c)], we will assume that

L:=Az1 + ...+ Axg
is a free A-Lie lattice in L. We also fix a generating set F := {f1,..., f..} for I such
that €Ty * fj = 51’3’ for all ’L,j

5.3. The transfer-bimodule. With the notation established above, we have a
closed embedding of affinoid varieties

Y :=Sp(A/I) — X := Sp(A)
defined by the ideal I. We call the (K, A/I)-Lie algebra

_ V(@)
Ly := I
the pullback of L to Y. Since L and Ly are free modules of finite rank by Proposition

—

B2 it follows from Theorem that U(L) and U(Ly) are Fréchet-Stein algebras.
We will use this basic fact without further mention in what follows.
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—

Definition. The transfer-bimodule U(L)y _, v is defined by

—

U(L)y_,x = A/I©4U(L) = U(L)/TU(L).

—_— —

Proposition. U(L), _, y is a U(L)-co-admissible (U(Ly ), U(L))-bimodule.

—

Proof. U(L)y,_, y is finitely presented as a right U(L)-module, so it is co-admissible
by |11, Corollary 3.4]. Let Z:=IN A and N := Né(ﬁz). Then N is an (R, A/T)-
Lie algebra by Lemma [5.1(c). Now U(L)/ZU(L) is a U(N) — U(L)-bimodule by
Lemma [5.I(d), so U(L)k /IU(L)k is a U(N )k — U(L) g-bimodule.

Since £ is a flat R-module, multiplication by 7" induces an isomorphism

Ne(T) = Npng(T)

L IxL)

Hence U(m"L) i /IU (7" L) is a U(n"N) g — U(7" L) g-bimodule and the homo-
morphism U (7" N) g — Endﬁ (U L)k /IU (7" L) i )°P is continuous.
L) K
Finally, Nz (Z)NIL =ZL because LNIL =ZL as L is a free A-module. Hence
N embeds naturally into Ny (I)/IL = Ly and its image is an 4/Z-Lie lattice in

—

Ly. Hence U(Ly) = lim U(7"N)k by Definition 2.2 and therefore

U(L)y_,x 2 imU(xm L) /TU (7" L) i

— —

is a U(L)-co-admissible (U(Ly ), U(L))-bimodule by [Il, Definition 7.3]. O

5.4. The functors ;. and .%. By Proposition[5.3} the bimodule U(L),_, y satisfies
the conditions for the right-module version of Lemma [Z3] Thus

N ® U(L)y_x
U(Ly)

is a co-admissible U(L)-module whenever N is a co-admissible U(Ly )-module.

—

Definition. Let M be a co-admissible U(L)-module and let N be a co-admissible

—

U(Ly)-module.
(a) The pushforward of N to X is the co-admissible U(L)-module

1 wWN:=N ® U(L)y_ -
U(Ly)

—

(b) The pullback of M to Y is the U(Ly)-module
u = —
M = Hom—, (U@)yx:M).

—

Note the right action of U(Ly) on (M comes from its left action on U(L)y _, y

given in Proposition 53l That ¢! defines a functor from U(L)-modules to U(Ly)-
modules is clear, and the universal property of @ shows that L4 is also a functor.
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5.5. Vectors where S C A acts topologically nilpotently. Before we can prove

the main theorem of Section [Bl we will need some more definitions.

Definition. Let M be a co-admissible U-module and let S be a subset of A. Define
Moo(S) := {m € M | ms® = 0as k — oo for all s € S}.

We say that S acts topologically nilpotently on m € M precisely when m € M (S).
We say that S acts locally topologically nilpotently on M if M = My (S).

We begin our study of M (S) by doing some analysis. We will write

—

U:=U(L) and U, :=U@"L)x forany n>0.

If M is a co-admissible U-module, then M,, will always mean the finitely generated
U,-module M ®y U,.

Lemma. Let M be a co-admissible U-module. Then

(a) Moo(f) C Mo(af) for any f € A and a € A, and
(b) Moo (K f) N Moo(Kg) C Moo(K(f +g)) for any f,g € A.

Proof. Note that M is the inverse limit of the K-Banach spaces M,,, so a sequence
in M converges to an element z of M if and only if the image of this sequence in
each M, converges to the image of z in M,,. Fix n > 0 and a U,-lattice M,, in M,,.
(a) Since a € A preserves M,,, mf* — 0 in M, forces mfFa* — 0 in M,,.
(b) Suppose that m € Mo (K f) N M (Kg); it will be enough to show that
m(f +g)* = 0ask — oo in M,. Choose r > 0 such that 7" f and 7"¢g both lie in
A. Now since m € Moo (f/7") N Moo (g/7"),

m(f/7")* =0 and m(g/7")* =0 as k— oo
in M, so for every s > 0 there exists an integer 7" > 0 such that
m(f/x")* € n°M,, and m(g/n")* € n°M, whenever k>T.

Now suppose that ¢,j > 0 are such that ¢ + j > 27. Then either ¢ < j in which
case j > T and

mflg =m(g/n") (x" )70 € T M,,
or ¢ > j in which case ¢ > T and
mflg =m(f/x") (x"g)) 7" € 7M.,

because (7" f)* and (7"g)’ preserve m* M, by construction. Therefore for all s > 0
there exists T' > 0 such that

- (E

m(f+9)F= > mfzgj<.> € M,
i+i=Fk !

whenever k > 2T, and hence m(f + g)* — 0 in M,, as k — oo as required. O

It is interesting to note here that the fact that f and g commute is crucial, since

. 1
for example the sum of the two non-commuting square-zero elements <8 0) and

((1) 8) in the matrix ring M>(K) is a unit.
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Corollary. Let M be a co-admissible U-module. Then
Moo (W) = Moo (AW)
for any K -vector subspace W of A.

Proof. Note that AW = AKW = AW, and that the inclusion M. (AW) C
Mo (W) is trivial. Let m € My (W) and suppose that wi,...,w; € W and
a,...,ax € A. Then m € My (Kw;) for each ¢ and hence m € My (Ka;w;)
for each i by part (a) of the Lemma. Hence m € Mo, (K - Y i_; a;w;) by part (b)
of the Lemma, so m € My (w) for all w € AW. O

5.6. Proposition. Let M be a co-admissible U-module. Then
Moo (KS) = @(Mn)dp(s/ﬂ'n)
for any subset S of A.

Proof. Let m,, denote the image of m € M in M, and recall from Subsection
that m,, lies in N, := (M,,)ap(S/7™) if and only if

lim m,(s/7")*/k!=0 forall se€S.
k—o0
Since the map M, — M, is continuous, (NN,,) forms an inverse system.

Choose an integer r > 0 such that 7"%/k! — 0 as k — oco. Now if m €
My (KS) and s € S then klim m(s/7"*t")k — 0, so
—00

(S/ﬂ'n)k L s k er 7

= lim m(w"‘”) T =0
in M. Thus m, € N, for each n > 0 because the map M — M, is continu-
ous. Conversely, suppose that m,, € N, for all n. Let s € S and fix n,t > 0.
Now My, 4+(s/7" )% /k! — 0 in M, by assumption and the map M, ; — M, is
continuous, so

lim m
k—o0 k! k—o0

n+t\k
lim my,(s/7")* = lim mnm ™kl =0 forall n>0.
k—o0 k—o0 k!
Hence klim m(s/mt)¥ — 0in M for all t > 0 and m € M (KS). O
—00

Corollary. My (I) is a co-admissible U-module whenever M is a co-admissible

U-module.

Proof. Recall from Subsection B.21that F = {f1,..., f.} generates the ideal I of A.
Note that for any n > 0, 7" L is again a free A-Lie lattice in L such that

(Wnﬁ) . (f_:l7 7f_:1) — AT,
T T
s0 (Mp)ap(F/7™) is a closed U,-submodule of M,, = M ®y U,, by Proposition 5l
By Corollary and Proposition [5.6],
Mo(I) = Moo(A-KF) = My (KF) = Li&l(Mn)dp(F/w").

Hence M (I) is a closed U-submodule of M. Now apply [I1, Lemma 3.6]. O
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5.7. The module M[F] is co-admissible. It follows from Lemma 2] that C :=
Cr(F) is a smooth A-Lie lattice in C' := Cr(F), so the Banach algebras V,, :=

U(n"C)k give a presentation @Vn of V := U(C) as a Fréchet-Stein algebra by
Theorem There is a natural continuous map of Fréchet-Stein algebras

V=UC)—U=U(L).
Theorem. Let M be a co-admissible U-module. Then M[F] is a co-admissible
V-module.

Proof. By Corollary 5.6, M. (I) is a co-admissible U-submodule of M. Since
MIF] = M (I)[F]

we may assume that M = M (I). Let M,, := M ®y U,, and F,, := F/7", and
note that M, [F,] = M,[F] for all n > 0. Now the image of M generates M,, as a
U,-module, and this image is contained in N,, := (M, )ap(F),) by Proposition
since M = Mo (AF). Tt follows from Proposition that N,, = M,,, and therefore
the counit morphism

€n : My|Fy] @y, U, — M,

is an isomorphism for all n > 0 by Theorem 111
The U, 41-linear map M, 11 — M, induces a V,,11-linear map M, +1[F,+1] —
M, [F,] and therefore a V,,-linear map

Pn - Mn+1[Fn+1] ®Vn+1 Vn — Mn[Fn]

which features in the following commutative diagram:

(Mn-i-l[Fn-‘rl] ® Vn)®Unj>(Mn+l[Fn+l] ® Un-i-l) ® Un

Vot1 Vo Vot1 Un41

l€n+1®1

Pn®1 Mn-‘rl & Un

Un+1

lan

M,

€n

My[F,] ®@ Uy
Vn

The map «,, is an isomorphism because M is a co-admissible U-module, so ¢, ® 1
is also an isomorphism since €, and €,41 are isomorphisms. But U, is a faithfully
flat V;,-module by Corollary [43] so ¢, is also an isomorphism. Since each M,,[F},]
is a finitely generated V;,-module by Corollary 1, (M,[F,]). is a coherent sheaf
for Vs, so lim M, [F,] is a co-admissible V-module.

Finally, since M,[F,] = M,[F], the sequence of V,,-modules

0 — My[F,] — M, = M
is exact, where 1, (m) = (mf1,...,mf,) for all m € M,,. Hence the sequence
0 = Lim My [F,] — M -2 M7

of V-modules is also exact, where ¢(m) = (mf1,...,mf,) for all m € M. Hence
M[F] 2 lim M, [F,] is a co-admissible V-module as required. O
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Corollary. Let M be a co-admissible U-module such that M = Mo (I). Then the
natural map B, : M[F] ®y V,, — M,[F] is an isomorphism of V,,-modules for all
n = 0.

Proof. The maps 3,, assemble to give a morphism 5 : (M[F] @y Vp)n = (Mp[F])n
in Coh(V,), and I'(B) : M[F] — lgan[F] is an isomorphism by the proof of the
Theorem. Therefore § is an isomorphism in Coh(Vy) by [11, Corollary 3.3]. O

—

5.8. The algebra U(Ly). We are now close to the proof of Theorem 5.9

Lemma. There is a natural isomorphism of Fréchet-Stein algebras V/FV = U(Ly).

Proof. Let C = C,(F), let ¢1,...,gs generate the ideal TN A in A and let B :=
A/T N A. The exact sequence C° — C — B®4 C — 0 of A-modules induces a
complex of U(C)-modules

UC) -UC)—»UBo4C)—0.

Note that C :=C @r K = Cr(F) is a free (K, A)-Lie algebra by Proposition (.2]
so U(A/JTA®4 C) =2 A/TA®4 U(C) by [1, Proposition 2.3]. Hence this complex
becomes exact after inverting 7. Since U(C) is Noetherian, its cohomology modules
are killed by a power of 7, so |2, §3.2.3(ii)] implies that the complex

—_— S —_—

U(C)K —>U(C)K—>U(B®AC)K—>O

is exact. Recalling that V,, = U(7"C)k, we see similarly that

V-V, =UBRamC)k — 0

is exact for any n > 0. Now C/IC = Ly by Proposition and the image D of
B®4Cin C/IC is a B-Lie lattice, so that

U(Ly) = limU(7" D)k
by Definition Since Y77, ;A =1 = F A, we see that

U(r"D)x 2 U(B @A 1C)x = Vi /FV,,
by [I, Lemma 2.6]. Since T is exact on Coh(V4), the sequence
ViV > @VH/FV,L -0

—

is exact, and hence U(Ly) 2 @U(W”D)K = ]'gan/FVn > V/FV. O
Here is the main result of Section

5.9. Theorem. Let I be an ideal in the reduced affinoid K-algebra A, and let L
be a (K, A)-Lie algebra which admits an [-standard basis.

(a) The functor % preserves co-admissibility.

—

(b) The restriction of ¢ to co-admissible U(L)-modules is right adjoint to ¢ .
(¢) These functors induce an equivalence of categories between the category of co-

—

admissible U(Ly )-modules and the category of co-admissible U (L)-modules M
such that I acts locally topologically nilpotently on M.
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Proof. (a) Using the notation from Subsection 57, we have
U(Ly)y_,y = U/IU = U/FU.
Hence for any U-module M, the rule § — 6(1 + FU) gives a natural bijection
M = Homy (U/FU, M) —» M[F]

which sends the U(Ly)-module structure on (! M to the V/EFV-module structure

—

on M[F] under the identification of U(Ly ) with V/FV given by Lemma[5.8 Hence

—

"M is a co-admissible U(Ly )-module by Theorem [5.71
(b) For any co-admissible U-module M and co-admissible V/FV-module N, the
restriction map

Homy(N ® U/FU,M)— Homy(N ® U/FU,M)
V/FV V/FV

is a bijection by the universal property of ®, leading to natural isomorphisms
Homy (¢4 N, M) = Homy, gy (N, Homy (U/FU, M)) = Homy,py (N, M),

(¢) Let M be a co-admissible U-module such that I acts locally topologically
nilpotently on M and let n > 0. Then M = My (I) by definition, and M [I]®y V,, =
M, [I] by Corollary 5.7 Therefore the natural map

M[I] Qv U, = (M[I] Ky Vn) v, U, = Mn[I] v, U, — M,

is an isomorphism by Theorem LTIl Since M[I] ®@v U, = M[I] @y py Un/FU,,
passing to the limit shows that the counit of the adjunction

14 "M = M[I] ® U/FU — M
V/FV

is an isomorphism. Next, let N be a co-admissible V/FV-module and let N,, =
N ®vy V,. Then

«wN=N ® U/FU=1lm|N, ® U,/FU,|>~lmN, ® U, = NQU,
- V/FV/ L( Vo /FV, / ) L Vn Vv

so we may apply Corollary and Proposition to obtain
(t+N)oo(I) = (14 N)(KF) = I&D(Nn ‘6}) Un)ap(Fn)-

Hence (¢4 N)oo(I) = ¢+ N by Theorem LTIl so I acts locally topologically nilpo-

tently on ¢4 N. Finally, Corollary E3land the right-module version of [I, Proposition

7.5(c)] show that U is a faithfully c-flat right V-module. Since ¢4 N 2 N®U for any
v

co-admissible V/FV-module N, ¢, reflects isomorphisms. Now apply Proposition
4. 10 O

—

6. KASHIWARA’S EQUIVALENCE FOR % (%)

Throughout this section, we assume that ¢: Y — X is a closed embedding of
reduced rigid K-analytic spaces defined by the radical, coherent Ox-ideal 7.
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6.1. Restriction of Zx to Y. See Appendix A below for a discussion of the
pushforward functor ¢, from abelian sheaves on Y to abelian sheaves on X, and the
pullback functor :~! in the opposite direction. We define the conormal sheaf on Y

Ny x =0 HT/T?)
and the normal sheaf on'Y
NY/X = HomOY (N;/Xa OY)
is its dual. Taking the dual of the second fundamental exact sequence [4, Proposi-
tion 1.2] gives an exact sequence of coherent sheaves on Y
0—Ty = JTx EA Ny/x.

For any Lie algebroid .Zx on X, there is a commutative diagram of coherent sheaves
on Y with exact rows

0—>fy—>L*ZX

-l

0 TY L*TX Ny/x

0

where .y := ker(§ o t*p : 1*Lx — Ny x). We can compute the local sections of
these sheaves as follows.

Lemma. Let U be an open affinoid subvariety of X. Write I = Z(U), L = %x(U)
and V.=U NY. Then there are natural isomorphisms of Oy (V')-modules

(a) N;/X(V) =~ J/I%, and

(b) Ly (V)= NL(I)/IL.

Proof. (a) Since Z/Z? is supported on Y, it is naturally isomorphic to L*N;/X by
Theorem [AT] so D(UNY, Ny, ) = T(U,Z/Z?). Since U is affinoid and 0 — 7% —
T — I/I? — 0 is an exact sequence of coherent sheaves on X, Kiehl’s Theorem
[3, Theorem 9.4.3/3] implies that I'(U,Z/Z?%) = Z(U)/Z?(U). Similarly, the natural
map (Z ®p Z)(U) — Z?(U) is surjective, so the image of Z2(U) in I equals I°.

(b) Let A = O(U) so that Oy(V) = A/I. In view of part (a), there is a
commutative diagram of A/I-modules

(B0 p)(V)

L*XX(V) Ny/X(V)
L/IL ——Hom(I /I, A/I)

where the bottom map o« : L/IL — Hom4(I/1?, A/I) is given by
alc+IL)Y(f+1I)=px)(f)+I forall xe€L and fe€A.
Thus the kernel of (6 o t*p)(V) is isomorphic to keraw = N (I)/IL as claimed. O

Corollary. If %y is locally free, then £y is a Lie algebroid on'Y .
Proof. This follows from Lemma [51ic) and Lemma [BETi(b). O

From now on, X is reduced and .¥ = Zx is a Lie algebroid on X.
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6.2. The existence of local standard bases. Our next result is a rigid analytic
version of [6l Theorem A.5.3], which follows from the well-known fact from alge-
braic geometry that a smooth subvariety of a smooth variety is locally a complete
intersection. First, a preliminary

Proposition. Let A be an affinoid K-algebra with an ideal I such that I? # I.
Let L be a (K, A)-Lie algebra which is free as an A-module of rank d. Suppose
that I/1? and Np(I)/IL are free as A/I-modules, and that the map L/IL —
Hom,;(I/1%,A/1) is surjective. Then there exists g € A such that A(1/g) ®a L
has an A{1/g) @4 I-standard basis, and I - A{g) = A{g).

Proof. Since L/IL is a free A/I-module of rank d and the sequence
0— Np(I)/IL— L/IL — HomA/I(I/I2,A/I) —0

is exact by assumption, the ranks of N (I)/IL and Hom,;(I/1?, A/I) as free A/I-
modules add up to d. Choose an A/I-module basis {fi + I?,..., f. + I1?} for I/I?
then we can find y1,...,yq € L such that y;- f; € ;; +1 whenever 1 <1,j < r, and
such that the images of y,41,...,yq € Np(I) in Np(I)/IL form an A/I-module
basis for Np(I)/IL. Now I/>7i_, Af; is killed by some element a € 1+ I by
Nakayama’s Lemma. By construction, the image of {y1,...,yq} in L/IL generates
L/IL as an A/I-module, so L/ 3%, Ay; is killed by some element b € 1+ I, again
by Nakayama’s Lemma. Finally, the determinant ¢ of the matrix M := (y; - f;)rxr
lies in 1 + I because M is congruent to the identity matrix modulo I.

Let g := abc/m € K and let B := A(1/g). Since a € B>, the images of f1,..., f-
in B generate I - B. Let y; :=1®y; € B®a L; since b € B*, the set {y],...,y;}
in B®a L generates B ®4 L as a B-module. Since ¢ € B*, the matrix M has an
inverse with entries in B. Define

X ::ZMﬁély;@EB@AL for i=1,...,7
k=1

Then x; - f; = Y7 MYy, - fj = (M~'M);; = &;; for any 1 < 4,57 < 7 by
construction. Now, define

T =y — Z(y; ~fo)x; for i>r.
=1

Then x; - f; = 0 for all ¢ > r and all j < r. Clearly {z1,...,z4} still generates
B® 4 L as a B-module; but B®4 L is a free B-module of rank d by assumption, and
this forces {x1,...,x4} to be a B-module basis. Thus {z1,...,24} is the required
I - B-standard basis for B ®4 L.

Finally, since a,b,c € 1+ I we see that 1 — abc € I. Hence I - A{g) contains
1 —abc = 1 — g which is invertible in A(g), so I - A{g) = A(g). O

Theorem. Suppose that 0 o t*p : 1*L — Ny/X s surjective, and that Ny/x 18
locally free. Then there is an admissible affinoid covering {X;} of X such that for
all j, either £(X;) has an Z(X;)-standard basis or Z(X;)? = Z(X;).

Proof. Since the problem is local on X and since & is locally free, we may assume
that X is affinoid and that Z(X) is a free O(X)-module of rank d say. Now by
assumption, we have a short exact sequence of Oy-modules

O—>Zy—u*$9°—ﬁ>pj\fy/x—>0
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with the second and third term locally free. Hence N5 /X and %y are both locally
free. Therefore there is a Zariski covering {D(hi),...,D(hm)} of Y such that
L(D(h;), Ny, x) and T'(D(h;), Zy) are free O(D(h;))-modules of finite rank for
all j = 1,...,m. Choose a preimage g; € O(X) for h; € O(Y); then Z(X) +
>t O(X)g; = O(X) so we can find go € Z(X) such that {D(go),- .., D(gm)}
is a Zariski covering of X. By [3, Corollary 9.1.4/7], this covering has a finite
affinoid refinement X. For every U € X, N;E/X(U NY) and L (UNY) are free
O(U NY)-modules of finite rank by construction.

Let U € X be such that Z(U) # Z(U)?. Since t*£ — Ny, x is a surjective mor-
phism between two coherent sheaves, Kiehl’s Theorem [3], Theorem 9.4.3/3] implies
that (U NY,.*.Z) — T(U NY, Ny, x) is surjective. Hence .Z(U)/Z(U)ZL(U) —
Homo vy z0)(Z(U)/Z(U)?,0U)/Z(U)) is surjective by Lemma [6I(a) so by the
Proposition there is an admissible covering {Uy, Uz} of U where £ (U;) has an
Z(Uy)-standard basis, and Uz NY is empty. Since Z(Us) = O(Us) = Z(Us)?,

{U:U e Xyu{lUy:UecXyu{Ue X Z(U)=Z(U)?*}
is an admissible affinoid covering of X with the required properties. O

6.3. The basis B. We will henceforth assume that
o fou p:1*Z — Ny x is surjective,
° Ny/X is locally free,
e s the set of affinoid subdomains U of X such that Z(U) has a smooth Lie
lattice and moreover it has an Z(U)-standard basis whenever Z(U) # Z(U)?.

Note that B is closed under passing to smaller affinoid subdomains, and that under
the first two assumptions Theorem [6.2]implies that X has an admissible covering by
objects in B. Note also that the Oy-module %y is then locally free and is therefore
a Lie algebroid on Y by Corollary Regarding the condition Z(U) = Z(U)? in
the definition, we remind the reader of the following elementary

Lemma. Let X be a connected affinoid variety. Then O(X) contains no non-trivial
idempotent ideals.

Proof. Since O(X) is Noetherian, if I is an idempotent ideal in O(X) then it is
finitely generated and Nakayama’s Lemma implies that I(1 —e) = 0 for some
e € I. But then e(1 —e) = 0 so e is an idempotent in I. Since X is connected by

assumption, e = 0 or e = 1. In the first case, I = I(1 —0) = 0 and in the second
case, 1 € I so I = O(X). O

Thus if U is a connected affinoid subdomain of X then Z(U) = Z(U)? if and only
ifeither UCY or UNY = 0.

6.4. The pushforward functor ;. We have at our disposal the sheaves Z :=
—_—— —_— —_—
U(L)on X and W =U(Ly)onY. fU € Bthen #(UNY)=U(L (UNY))
by Theorem and

~ New) (ZU))

- IU)Z(U)

by Lemmal[6.1l Hence PropositionB.3limplies that % is a % (U)-co-admissible
# (UNY)— % (U)-bimodule. For every co-admissible #'-module .4 on Y, we can

fy(U N Y)
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therefore form the co-admissible % (U)-module

(t+:A)U) := A (UNY) W(;ém/) %

by the right-module version of Lemma 2.3l Because of the functorial nature of this
construction, this defines a presheaf ¢4 on B.

Lemma. Let A be a co-admissible W -module on Y .

(a) For every V. .C U in B, there is a natural isomorphism of % (V')-modules
(e NU) B #(V) = (s M)V).
(U

(b) Ly N is a sheaf on B.

Proof. Since A" is co-admissible, by the right-module version of [Il Theorem 9.4]
there is a natural isomorphism

HUNY) & #VNY)— 4/ (VNY)
w(UNY)

of #(V NY)-modules. The associativity of ® given by the right-module version of
[I, Proposition 7.4] induces an isomorphism

— w(V) & = %(V)
o2 (0 Bt o or 2 ()

Since T is coherent and ® is right exact, there is an isomorphism of left # (U NY)-
modules () 2

e @ Ty
Substituting this expression for % (V))/Z(V)% (V) into the previous isomorphism
and applying [I, Proposition 7.4] again gives part (a). Now (¢4..4")|y,, is isomorphic
to Loc((t447)(U)) for every U € B by part (a), which is a sheaf on U, by Theorem
24 and part (b) follows. O

Definition. Let .4 be a co-admissible #-module on Y. We call the canonical
extension of ¢y A4 to a sheaf 114" on X,z given by [IL Theorem 9.1] the push-
forward of A along ¢.

Proposition. ¢y is a functor from co-admissible # -modules on'Y to co-admissible

U -modules on X.

Proof. The functorial nature of ¢y is clear, and ¢4/ is a co-admissible %-module
by [, Theorem 9.4] and part (a) of the Lemma. O

6.5. The pullback functor 5. Let U € B and let L = Z(U). Recall from
Subsection 53] the pullback Ly of L to Y. Then A (UNY) = Ly by Lemma [6.1]
0

—

W(WU)=U(L) and (#)U)=#UNY)=U(Ly).
For any sheaf of %-modules .# on X,i,, # (U) is a % (U)-module and
(La)(U) = 4 (U)[Z(U)]

is a (. #)(U)-module as we saw in Subsection (41 This construction defines a
presheaf Li/// of v # -modules on B.
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Lemma. J}.# is a sheaf of L« W -modules on B.

Proof. Let {U;} be an admissible affinoid covering of U € B, and let {W;;x}r be
an admissible affinoid covering of U; N U; for each 4, j. Since .# is a sheaf on X,jg,
the sequence

0—.4U) = [[aW) =[] #Win)
is exact, by [I, Definition 9.1]. Therefore
0~ .U — [ [ = [[.2Wi)l1)

is also exact, where I := Z(U). But I generates Z(V') as an O(V)-module for all
V € U, because Z is coherent. Therefore

0— A U)ZW)] = [[#U)ZW:)] = [[ A (Wisi) Z(Wisn)]
is exact and hence Li/// is a sheaf on B. O
By [I, Theorem 9.1], Li.// extends to a sheaf Li,/// of v, #'-modules on X,5.

Definition. Let .# be a %-module on X. The pull-back of 4 along v is
Fol =),
This is a sheaf of #-modules on Y.

Since ¢, # is supported on Y, (l.# is also supported on Y, so Theorem [A.]
implies that there is a natural isomorphism

o

() — .

In particular, we see that (:2.2)(UNY) = (L4)U) = .#(U)[Z(U)] for every
open affinoid subvariety U of X.

6.6. Locally topologically nilpotent actions. In this Subsection, we explain
what it means for a local section of O to act locally topologically nilpotently on
local sections of co-admissible % (£)-modules in geometric terms.

We suppose that X is affinoid, A is an affine formal model in O(X), L is a
smooth (R,.A)-Lie algebra and that ¢ € O(X) is a non-zero element such that

L-g C A. Recall the sheaf S := % (L) k on the L-admissible G-topology X,,(£) on

X from [1} §3.3]. The rational subdomain X (1/g) is L-accessible by [I, Definition
4.5] and is therefore L£-admissible by [I, Proposition 4.5].

Proposition. Let M be a finitely generated S(X)-module, and let M, be a gen-
erating set for M as an S(X)-module. Then the following are equivalent:
(a) M ®s(x)S8(X(1/g)) =0,
(b) M(t)(1 —gt) = M(t),
(c) klim vg* =0 for all v € M.
— 00

Proof. Let L5 := A(t) ®4 L. In [1l Proposition 4.2] we constructed an (R, A(t))-Lie
algebra structure (L3,02). By [1l Proposition 4.3(c)], there is an isomorphism of

left U(L3)x-modules

U(L2)k

S(X(1/g)) = =P
U(L2)xc (1~ gt)
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(a) & (b). Letting N := M ®s(x) U(L2)k, we see that M ®gx) S(X(1/g)) =
N/N(1 — gt) by the above. Now N 2 M (t) as an A(t)-module by [I, Lemma 4.4].

(b) = (c). Fix an element v € M. Since M(t)(1 — gt) = M(t), there is an
element $°9° t'm; € M(t) such that

Ztimi (1= gt) =w.
i=0

Then, comparing coefficients in t?, we see that mg = v and m; = m;_1g for each
i > 1. Thus my = vg® for each k > 0. Since Y 52, t'm; € M(t) we must have
vgh = 0 as k — oo.

(¢) = (b) By assumption, > 52 t'g’v lies in M (t) and

Ztigiv (1 —gt) =,
=0

sov € M(t)(1—gt) for any v € M. It follows from [I, Proposition 4.3(c)] that the

element 1 — gt is normal in U(L2) k. Hence M (t)(1 — gt) is an U(L2) x-submodule
of M(t) which contains a generating set for M. Since M generates M (t) as an

_—

U(L2) k-module, we see that M (t)(1 — gt) = M (t). g

Corollary. Suppose that X is affinoid, g € O(X) is non-zero and £ (X) has a

smooth (R, A)-Lie lattice. The following are equivalent for a co-admissible % (X£)-
module A on X :

(o) A(X(1/g)) =0,
(b) g acts locally topologically nilpotently on A (X).

Proof. By [I, Lemma 7.6(a)] there is a smooth (R, .A4)-Lie lattice £ in Z(X) such

—

that £-g C A. Let X' = X(1/g), and write U := % (£)(X) and U’ := % (L) (X').
Let M = .#(X) and M’ = .#(X') so that M’ = M®y U’ by [I, Theorem 9.4]. Let

Sp be the sheaf U(m" L)k on Xu(n"L) and note that X’ lies in X4 (7"L) for all
n > 0. Write U,, = S,,(X) and U], = S,,(X’); then

U=limU, and U'=lmUy,

give presentations of the Fréchet-Stein algebras U and U’. In the language of
11l §3], (M ®u U}), is a coherent sheaf for U’ whose module of global sections
]'glM ®u U}, is isomorphic to M’ by the definition of M®yU'. Now

M' @y U, 2 M@y U], forall n>0.

by [11], Corollary 3.1], so M’ = 0 if and only if M ®y U} =0 for all n > 0.

Now M ®y U, is a finitely generated U,-module since M is a co-admissible
U-module, and the image of M in M ®y U, is a U,-generating set. Hence for
any n > 0, (M ®u Uy,) ®u, U, = 0 if and only if g acts locally topologically
nilpotently on the image of M in M ®y U,, by the Proposition. Since the topology
on M = lim M ®y U, is the inverse limit topology, this is in turn equivalent to g
acting locally topologically nilpotently on M. O
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6.7. Support and M., (I). Armed with Corollary [6.6] we can now explain the
geometric meaning of the submodule M (I) that featured in Theorem (.9
Theorem. Suppose that X is affinoid and that £ (X) has an Z(X)-standard basis.

e

The following are equivalent for a co-admissible % (£)-module M on X :

(a) A is supported on'Y,
(b) A (X) = M (X)oo(Z(X)).

Proof. Write A = O(X), M = .#(X) and choose a generating set f1,..., f, for
I =7(X). The complement of ¥ in X is an admissible open subset which admits
a Zariski covering
X\Y =D(f1)U---UD(f).
It follows from [3, Corollary 9.1.4/7] that this covering is admissible, so .# is
supported on Y if and only if it is supported on the closed analytic subset V(f;)
foralli=1,...,r. Now
D(fi) = |J x(="/ 1)
n=0
is an admissible covering of the Zariski open subset D(f;) of X, so .# is sup-
ported on Y if and only if its restriction to X (7™/f;) is zero for all n > 0 and all
t=1,...,r. Since . is co-admissible, by [I, Theorem 9.4] this is equivalent to
A (X (m™/f:)) = 0 for all n > 0 and all 4, which is in turn equivalent to f;/7"
acting locally topologically nilpotently on M for all n > 0 and all ¢ by Corollary
This is the same as M = Mo (K f;) for alli =1,...,r. But

Moo (I) = Moo (Af1) N N Moo (Afy)
by Lemma[B5(b), and M (K f;) = Moo (Af:) by Corollary 50l So M = Mo (K f;)
for all 7 if and only if M = M (I). O
6.8. The algebra 7. Suppose that X is affinoid and .#(X) has an Z(X)-standard
basis. Choose a generating set F' = {f1,..., f.} for Z(X) satisfying Definition

Recall that the centraliser C'(x)(F) of F'in Z(X) is a free (K, O(X))-Lie algebra
by Proposition

Proposition. Let C = Cy(x)(F') and ¥ := % (C). Then there is an isomorphism
VIFYV =W

of sheaves of K -algebras on X.

Proof. Let U be an affinoid subdomain of X and let V= U NY. By Theorem 2.5,
e
there is an isomorphism # (V) = U(% (V)), and
New) (Z(U))
H (V)2 ——
YW= Tz
by Lemmal6.1l Since .Z is a coherent O-module, Proposition 5.2l implies that there

is a natural isomorphism

O(U) ®o(x) Cox)(F) — Cow)(F),

L ———
so there is a natural isomorphism #(U) = U(C»y)(F)). Now Lemma 5.8 implies
that the sequence of ¥ (U)-modules

YU -YU)-#{UNY)—0
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where the first arrow sends (vq,...,v,) to Y i_; fivi, is exact. The result now
follows from [1, Theorem 9.1]. O

6.9. Theorem. Suppose that X is affinoid and that .Z(X) has an Z(X)-standard
basis. Let .# be a co-admissible % -module supported on Y and let X’ be an
affinoid subdomain of X. Then the natural map

—

AMX)TE) T H (') — MK
is an isomorphism, where Y/ =Y N X',

Proof. By Proposition [6.8 it is enough to show that

—_

o MXIZ(X)] & V(X') — M (X)I(X")]
(X)

is an isomorphism. Write M = #(X), M' = #(X'), U = %(X), U = % (X'),
V=7(X),V =v(X'),  =IZ(X) and I' = Z(X’). Note that with this notation
M’ = M®yU’ by [1, Theorem 9.4, because .# is co-admissible. Now there is a
natural commutative diagram

MRV U’ M'[I&U’
14 v’ v’

ul Eng/
M[IQU)U’ M (I
( []V )U (')
EMgll
Mo (DU’ MU’ _ M’
U U =

Since .# is supported on Y by assumption, Theorem [6.7 implies that
M =My (I) and M’ = M. (I').

Hence the unmarked arrows in the above diagram are equalities. Also, eps and €y
are isomorphisms by Theorem [5.9], so the diagram shows that a®1 is an isomor-
phism. But U’ is a faithfully c-flat V/-module by Corollary[4.3land the right-module
version of [I, Proposition 7.4(c)], so « is an isomorphism as required. O

We conjecture that this result also holds when the condition that . is supported
on Y is removed, but are unable to prove this at present.

—

6.10. Kashiwara’s Theorem for right % (.¢) modules. We can now state and
prove our version of Kashiwara’s equivalence for right modules.

Theorem. Let X be a reduced rigid analytic variety and let £x be a Lie algebroid
on X. Let v:Y — X be the inclusion of a closed, reduced analytic subvariety such
that @ o v*p : 1*.L — Ny/X 1s surjective, and such that Ny/X is locally free.

(a) If A is a co-admissible right % (Lx)-module supported on'Y , then " is a

—

co-admissible right % (Ly)-module.

(b) The restriction of 1" to co-admissible right % (£x)-modules supported on'Y is
right adjoint to v .
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(c) These functors induce an equivalence of abelian categories
{ co—admissible right } - { co—admissible right }

U (L) —modules U (Lx)—modules supported on'Y

Proof. Let T be the radical coherent ideal of Ox consisting of functions vanishing
on Y, and let B be the set of open affinoid subvarieties U of X such that either
Z(U) = Z(U)? or Z(U) has an Z(U)-standard basis. By Theorem [6.2] B is a basis
for the strong G-topology on X.

(a) Pick an admissible covering {U,} of X with each U; € B. By passing to
a finite refinement of each U;, we may assume that each U; is connected. Then
{U; N Y} is an admissible affinoid covering of Y, so it is enough to show that
(Lh%)hjj ny is a co-admissible /|y, ny-module for each j. If 1; denotes the inclusion
U; NY < Uj, then it follows from Theorem [A] and [I, Theorem 9.1] that

()| yoy = (M |u,)-
We may thus assume that X € B and that X is connected; Lemma [6.3] then implies
that either Y = 0, or Y = X or Z(X) has an Z(X)-standard basis. When Y
is empty, Z(X) = O(X) the definition of (*.# shows that /!.# = 0, which is co-
admissible. When Y = X, the Lie algebroid %y is equal to Zx, # = % and
*M = M is co-admissible. Suppose that .Z(X) has an Z(X)-standard basis. Now
(b)) (X) = #(X)[Z(X)] is a co-admissible # (X )-module by Theorem [F.9(a),
and Theorem [6.9] implies that the natural map
ts Loc (M (X)[Z(X)]) — bt
of v, % -modules is an isomorphism. Now Theorem [A 1] implies that

Loc (4 (X)[Z(X)]) — 2

is an isomorphism, so (%.# is a co-admissible #-module by [I, Definition 8.3|.

(b) Let A be a co-admissible #-module on Y and let .# be a co-admissible
% -module on X which is supported on Y. By [I, Theorem 9.1] there is a natural
isomorphism

Homy, (14 N, M) — Home |, ((t44)|5, A |5),
and by [1, Theorem 9.1] and Theorem [A]] there is a natural isomorphism
Homy (A, 5tt) — Hom,, |5 ((taH ) |5, (5| 8).
For any morphism « : (14.4)|g = #|p of % |p-modules and any U € B, let
pU): A (UNY) = A U)ZU)]
be given by B(U)(z) = a(U)(z®1). This is a map of # (U NY)-modules. Since o

is a morphism of % |z-modules, the diagram

—_ g, Ot(U)
NUNY) ®& 40 M (U
( )W(UmY)Z(UW(U) —> j )

|

NVAY) ® V) 4V
( )W(Vm,)z(v)k(\/) a(V) V)
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commutes, so the diagram

vUny) LY sz

| l

NV OY) —m A (V)Z(V)

also commutes because
BU) @)y = aU)(@@1)|y = a(V)((@®1)|v) = (V) (z|v@1) = B(V)(z|v).

Thus 8 : (tu/)|s — (2#)|s is a morphism of (1, % )|p-modules, and applying
Theorem [5.9(b) we obtain a bi-functorial injection

O(AN, M) : Homay |y (144 )5, #|5) = Hom, |y (x4, (1 )| 5)
by setting ® (A", A4 )(«) := B. Since a % (U)-linear morphism
- 2w
wwo)Z(U)% (U)

is determined by its restriction to the image of /(U NY), ®(A, .#) is actually a
bijection. Putting everything together gives an adjunction

N (UNY) )

Homa, (14 N, M) — Homy (N, 54).

(c¢) Note that the definition of ¢1.4" for a co-admissible #-module .4 on Y
shows that ¢, .4 is supported on Y. By part (b) we have an adjunction (4, )
between the categories of interest. Let .# be a co-admissible % -module supported
on Y and consider the local sections of the co-unit morphism

ea(U): (tplP ) U) — .4(U)

for some connected U € B. If UNY is empty then .Z(U) = 0 since .# is supported
onY. f UNY = U then (1;15.4)(U) = #(U) and € 4(U) is the identity map.
By Lemma [6.3] we can therefore assume that Z(U) has an Z(U)-standard basis.
Then Z(U) acts locally topologically nilpotently on .# (U) by Theorem because
M|y is supported on U NY. Hence €_4(U) is an isomorphism by Theorem [B.9(c)
for all U € B and hence €_4 is an isomorphism. A similar argument shows that ¢
reflects isomorphisms. So ¢4 and ¢! are mutually inverse equivalences of categories
by Proposition O

7. MAIN RESULTS

—

7.1. Kashiwara’s Theorem for left 7/ () modules. In the setting of Theorem
[6.10, recall from Section Bl the invertible sheaves

rk fx rk fy
ng = ﬂomox( /\ fx,@x) and ng = ﬂomoy( /\ Zy,@y)
that implement the side-switching operations on X and Y respectively. We obtain
L ———
Kashiwara’s equivalence for left % (£x)-modules by combining the equivalence

for right % (%x )-modules given by Theorem B.10 together with appropriate side-
switching operations.
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Theorem. Let X be a reduced rigid analytic variety and let £x be a Lie algebroid
on X. Let1:Y — X be the inclusion of a closed, reduced analytic subset such that
Qo p: 1" YL — Ny/X is surjective, and such that Ny/X is locally free. Then the
functors vy and & given by

iy N = Homo, Qo 14 (e oy A))  and
B = Homo, (e, 7 (e, Roy A))
are mutually inverse equivalences of abelian categories
co—admissible le ft - co—admissible le ft
{ m —modules } - { ﬁ.f){\)—modules supported on'Y } '

Proof. This follows immediately from Theorems and [6.10, once it is observed
that the side-switching functors preserve the support condition: Q¢, ®o, 4 and
Homo  (Qgy , M) are supported on Y whenever .# is supported on Y. O

Just like in the classical case — see, for example, [6, Definition 1.3.3] — it is

possible to realise the push-forward functor ¢4 for left @/(KX)—modules as tensoring

o —

on the left with an appropriate bimodule % (.£) s, y, but we do not give these
details here.

Theorem[Alfrom the Introduction follows immediately from Theorem [7.1]because
if X and Y are both smooth then the second fundamental sequence is exact by [4]
Proposition 2.5], so the normal bundle Ny/X is locally free and 6 : .*T — Ny/X is
surjective.

—

7.2. A special class of U(L)-modules. From now on, all modules will be left
modules, unless explicitly stated otherwise.

Lemma. Let A be an admissible R-algebra and let L be a coherent (R,A)-Lie
algebra. Suppose that the U(L)-module M is finitely generated as an A-module.

S

Then the natural map M — U(L) @y gy M is an isomorphism.

Proof. The algebra A is m-adically complete, so the finitely generated .4-module
M is also m-adically complete by [2 §3.2.3(v)]: the canonical map M — M is

an isomorphism. But this map factorises as M — U(L) @y gy M — M and the
second map is an isomorphism by [2, §3.2.3(iii)] because M is a finitely generated
module over the Noetherian ring U(L). The result follows. O

Proposition. Let A be a reduced affinoid K-algebra and let L be a (K, A)-Lie
algebra which admits a smooth Lie lattice. Suppose that the U(L)-module M is
finitely generated as an A-module. Then

—

(a) M is a co-admissible U(L)-module, and

ot —

(b) the natural map M — U(L) @y )y M is a U(L)-linear isomorphism.

Proof. (a) Let £ be a smooth A-Lie lattice in L for some affine formal model A
in A. Let S be a finite generating set for M as an A-module and let X be a
finite generating set for £ as an A-module. Then M := AS generates M as a

K-vector space and XS is finite, so 7t XS C M for some integer t. Fix n > t;
then (7"L)M C M so M is a U(n"L)-module which is finitely generated as an

A-module. Hence M — U(7"L) @y (zncy M is an isomorphism by the Lemma.
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But U(L) 2 K @r U(r"L) and M = K ®gr M so M — U(nm"L)x @y M is
an isomorphism whenever n > t. In particular, by transport of structure M is

naturally a U,, := U(7"L) k-module whenever n > t.
Now, consider the commutative diagram of U := U(L)-modules

M U, ®u M

| |

Un QU 41 M—-U, Ut (Uﬂ-i'l KU M)

The horizontal arrows are isomorphisms whenever n > t by the above, and the
vertical arrow on the right is an isomorphism by the associativity of tensor product.
Hence U,, ®u,, ., M — M is a bijection with inverse m — 1 ® m whenever n > t.
So (M) is a coherent sheaf for U, and M = lim M is a co-admissible U-module.
(b) If N is a finitely generated U-module then (U, ®y N) is a coherent sheaf for
U,, and it follows from [II, Theorem B] that the functor N — Jm Uy, @u N is right
exact on finitely generated U-modules. There is a natural map 7y : U Qu N —
im U,, ®y N which is an isomorphism when N = U. So ny is always an isomorphism
by the Five Lemma. Now consider the natural commutative triangle of U-modules:

M—)l'&nUn@)UM

\ T"M
ﬁ@UM.

The horizontal map is an isomorphism by the discussion in the proof of part (a),
and M is a finitely generated U-module, so 7y is an isomorphism. Hence « is an
isomorphism. Let [ : U Qu M — M be the action map; then B oa=1p 80 fBis
also an isomorphism. So « is U-linear because its inverse B is U-linear. (Il

7.3. O-coherent co-admissible % (.Z)-modules. It turns out that all O-coherent

co-admissible % (.Z)-modules are algebraic in the following precise sense.

Theorem. Let £ be a Lie algebroid on the reduced rigid analytic space X. Then
the forgetful functor

O — coherent { O — coherent }
co—admissible % (£) —modules U(ZL)—modules

is an equivalence of categories.

Proof. The forgetful functor is faithful, so it will be enough to show that is (a)
essentially surjective on objects and (b) full.

(a) Suppose that .# is an O-coherent U (.#)-module and that Z C Y are affinoid
subdomains of X such that .Z(Y) admits a smooth Lie lattice.

Let % := % (%), U :=U(L(Y)), U :=U(ZL(Z)), A:=0Y), A := 0(2),
M :=.#(Y) and M’ := #(Z), so that % (Y) = U and %(Z) = U'. Then M is a
U-module which is finitely generated as an A-module, and M’ = A’ ® 4 M because
M is O-coherent. Because U’ =2 A’ ® 4 U, the functors U’ @y — and A’ ® 4 — are
isomorphic on finitely presented U-modules by the Five Lemma. Hence the natural
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map U’ @y M — M’ is an isomorphism. Now M is a co-admissible U-module and
M’ is a co-admissible U’-module by Proposition [[.2(a), and the maps

MsUey M and M —U @y M

are isomorphisms by Proposition [T.2(b). Hence there are isomorphisms

ﬁ@M%ﬁ@(ﬁ@M) =T oMU ® (U’®M) =~ M’
= T U U U U

because ® is right exact by [I, Proposition 7.5(a)] and because M is a finitely
presented U-module. Therefore .# is a co-admissible %/-module as required.

(b) We have to show that every U(.Z)-linear morphism between two O-coherent
U(%)-modules is % -linear. This is a local problem, so we may assume that X is
affinoid and L := #(X) admits a smooth Lie lattice. Now if f: M — N is a
U := U(L)-linear map between two finitely generated O(X)-modules, then there is
a commutative diagram of U-modules

f

M — N

| |

It follows that f is U-linear because the vertical arrows are U-linear isomorphisms
by Proposition [2(b) and the bottom arrow is U-linear. O

Corollary. With the notation of the Theorem, a co-admissible % (£)-submodule

of an O-coherent co-admissible % (£)-module is O-coherent.

Proof. This is a local problem, so we may assume that X is a reduced affinoid
variety and that .Z(X) admits a smooth Lie lattice. Let .# be the co-admissible

U = U (ZL)-submodule; then M := .#(X) is an O(X)-submodule of a finitely
generated O(X)-module by assumption and is therefore itself finitely generated
over O(X) because O(X) is Noetherian.

Consider the coherent O-module M associated to M. Since M is an & (X)-
module and .Z(U) = O(U) ®ox) £ (X) for every affinoid subdomain U of X,
we see that M is naturally an O-coherent U(%)-module. So M = ¥ as U(Z)-
modules for some O-coherent co-admissible % -module .4~ by the Theorem. In
particular, M = M(X) >~ A (X) as U(ZL(X))-modules. Because the restriction
functor is full, M = 4 (X) also as % (X)-modules by the Theorem. Therefore

M =2 Loc(M) = Loc(AN (X)) 2N

as % -modules by [I, Theorem 9.5]. It follows that .Z = A4 = M as O-modules,
so . is O-coherent as required. O

7.4. Construction of simple @(fx)-modules. We finish this paper by pre-
senting a representation-theoretic application of our Kashiwara equivalence. Given
an affinoid K-algebra A, let X = Sp(A) and let Ay := Ox , be the stalk of the
structure sheaf Ox at the point x € X defined by a maximal ideal m of A. Thus A,
is the direct limit the affinoid algebras O(Y') running over all affinoid subdomains
Y of X containing x.
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Lemma. Let A be an affinoid K-algebra and let m be a maximal ideal of A such
that Aw is a regular local ring. Let L be a (K, A)-Lie algebra which admits an
m-standard basis. Then Ly = An ®4 L is naturally a (K, Aw)-Lie algebra and the
U(Lw)-module Ay is simple.

Proof. We first note that for each affinoid subdomain Y of Sp(A4), O(Y) ® 4 L has
a canonical (K, O(Y))-Lie algebra structure determined by the (K, A)-Lie algebra
structure on L by [I, Corollary 2.4]. By considering the affinoid neighbourhoods of
x and using [Il Lemma 2.2] we can thus deduce that Ly, is a (K, Ay )-Lie algebra.

Let {x1,...,24} be the m-standard basis for L and let f1,..., f. be the corre-
sponding generating set for m. Since Ay is a regular local ring by assumption, the
associated graded ring gr,, A of A with respect to the m-adic filtration is isomorphic
to the polynomial ring F[yi,...,y,] where F = A/m and y; = f; +m?. The deriva-
tions p(z;) of A send m™ to m"~! for all n > 1 and induce the F-linear derivations
0/0y; on gr,, A. Since A/m is a field of characteristic zero, it is well-known that
Fly1,...,yr] has no non-trivial ideals stable under all these derivations. Now if J
is a U(Ly)-submodule of Ay, then gr,. J is an ideal of gr(An,) = gr,,, A stable under
all 9/9y;. So gr,, J is either zero or all of gr Ay, and the result follows because the
muy-adic filtration on A, is Zariskian. O

Proposition. Let Y be a smooth, connected rigid analytic variety and let £y be
a Lie algebroid on Y with surjective anchor map py : %Ly — Ty. Then Oy is a

—

simple co-admissible % (Ly)-module.

Proof. We suppose that Y is not a single point as the statement is trivially true in
this case. Since Oy is an Oy-coherent %y -module, it is a co-admissible % (%y )-

—

module by Theorem[T3l Let J be a co-admissible % (% )-submodule of Oy. Then
J is a coherent ideal of Oy by Corollary [[3], and J is stable under p(%) = Ty.
We will show that Supp(7) N Supp(Oy/J) is empty. Because J is coherent, these
supports are closed analytic subspaces of Y, so the connectedness of Y will then
imply that one of them is empty and thus either 7 =0 or J = Oy.

Suppose for a contradiction that y € Supp(J) N Supp(Oy /J). Choose a con-
nected affinoid subdomain U of Y containing y and let m be the ideal of functions
in O(U) vanishing at y. If m = m? then m = 0 by Lemma so U = {y}. The
connectedness of Y then forces Y = {y} which we assumed not to be the case at
the outset. So m # m?, and after shrinking U and applying Proposition 6.2 we may
assume that 2y (U) has an m-standard basis.

Now because y € Supp(Oy/J) N Supp(J) and because Y is smooth, the stalk
Jy of J at y is a proper, non-zero ideal of the regular local ring Oy, = O(U)m.
Because it is Zy,y, = %y (U)m-stable by construction we obtain a contradiction
after applying the Lemma. (I

Theorem. Let X be a smooth rigid analytic variety and let £x be a Lie algebroid
on X with surjective anchor map px : Lx — Tx-

(a) 14Oy is a simple co-admissible U (Lx)-module whenever 1 : Y — X is the
inclusion of a smooth, connected, closed subvariety Y .
(b) If ' - Y — X is another such inclusion and 14Oy = 1/ Oy+ as co-admissible

o —

U (Lx)-modules, then Y =Y.
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Proof. (a) Since px : Zx — Tx is surjective, sois t*px : t*%x — 1*Tx. Because Y
is smooth, the normal sheaf Ny, x is locally free and 0 : .*Tx — Ny, x is surjective
by [, Proposition 2.5]. Thus the hypotheses of Theorem [7I] are satisfied, so by

e
the equivalence of categories the co-admissible % (Zx )-submodules of 1 Oy are in

bijective correspondence with the co-admissible % (% )-submodules of Oy. But
py : Ly — Ty is surjective because t*px : 1" Lx — 1*Tx is surjective, so that Oy
is a simple co-admissible % (%y )-module by the Proposition.

(b) It will be enough to show that Supp(t4+ Oy ) =Y. We recall the basis B from

o —

the proof of Theorem Now if .# is a co-admissible % (£x )-module then for
any U € B, #(U) =0 if and ouly if .#|y = 0. Hence Supp .# is the complement
of the union of all U € B such that .#(U) = 0. The definition of ¢4 Oy, Corollary
43l and [I Proposition 7.5(c)|] now show if U € B then (14+Oy)(U) = 0 if and only
ifUNY = 0. Thus

Supp(1+Oy) = X\ U € B:UNY =0} =Y

because X'\Y is an admissible open subset of X. g

APPENDIX A. PULLBACK AND PUSHFORWARD OF ABELIAN SHEAVES

A.1. Closed embeddings. Suppose that ¢: Y — X is a closed embedding of
rigid K-analytic spaces defined by the radical, coherent Ox-ideal Z. We will
frequently identify Y with its image in X. By [3| Definition 9.3.1/4]| and [12]
Proposition 00X6], there is a morphism of sites ¢ : Yiig — Xiig given by the contin-
uous functor which sends an admissible open subset U of X to .='(U) =UNY. It
induces a pair of adjoint functors between categories of abelian sheaves

171 Ab(Xyig) = Ab(Yrig) and . Ab(Yiig) — Ab(Xiig)

by [12, Lemma 00WX]|. We recall the explicit definitions of these functors, following
the discussion in [12], Section 00VC]. Let F € Ab(Y;ig) and G € Ab(Xyig), and let
admissible open V' C Y and U C X be given. Then

o) (V) = limG(W) and w.F(U)=FUNY)

where the direct limit is taken over all admissible open W C X such that V. C WnNY'.
We define the support of the abelian sheaf G on X, as follows:

Supp G = X\ U{U C X : U is an admissible open and M|y = 0}

and we say that G is supported on Y if SuppG C Y, or equivalently, if G|y = 0 for
every admissible open U C X such that UNY = (.

Theorem. Lett:Y — X be a closed embedding of rigid K -analytic spaces. Then
the functor v, induces an equivalence of categories between Ab(Yiig) and the full
subcategory Ab(Xr)i/g) consisting of sheaves supported on Y .

The corresponding result for ordinary topological spaces is completely standard,
and Theorem [A 1] is presumably well-known, but we were unable to locate a com-
plete proof in the literature. Since our proof involves some non-trivial ideas, we
have decided to give the details here for the convenience of the reader.


http://stacks.math.columbia.edu/tag/00X6
http://stacks.math.columbia.edu/tag/00WX
http://stacks.math.columbia.edu/tag/00VC
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A.2. Two useful results on affinoid varieties. Suppose now that X is affinoid,
so that Y is a closed analytic subset defined by the ideal Z(X) of O(X). Let

fis--., fr generate Z(X) as an ideal. For every n > 0, we call
Y. :=X<f—:l,...,f—:l)
T T

of X a tubular neighbourhood of Y. Clearly Y, is an affinoid subdomain of X
containing Y.

Proposition. Let Y be a closed analytic subset of the K -affinoid variety X. Every
admissible open subset U of X containing Y also contains Y, for some n > 0.

Proof. See [5l p.52] or [8, Lemma 2.3]. O
The other ingredient in our proof of Theorem [A1lis the following

Lemma. LetY be a closed analytic subset of the K -affinoid variety X, and let V
be a rational subdomain of Y. Then there is a rational subdomain U of X such that

V=UnY.

Proof. Note that Y is itself affinoid by [3| Proposition 9.4.4/1], and that O(Y") =
O(X)/Z(X). By [3, Proposition 7.2.4/1], there is a factorisation

V=V,—=>Vypaa— - —=>V=Y

such that Vi41 = Vi(gk) or Vg1 = Vi(1/gx) for some gr € O(Vy). By induction
on m we can therefore assume that V = Y (g) or V= Y (1/g) for some g € Y.
Suppose first that V' = Y (g). Since the map O(X) — O(Y) is surjective, we can
find some preimage h € O(X) of g € O(Y) and define U := X (h). Now applying
the Sp functor to the natural isomorphism
X)(t X) =~ Y)(t

o) o OX) = OF)H)

{t—h) owx) I(X) {t—g)
of K-Banach algebras shows that

UNY =X(hW)NY =Y(g)=V

as required. The case where V' =Y (1/g) is entirely similar. O

A.3. Proof of Theorem [A.1l Let F be an abelian sheaf on Y. Then . F is
supported on Y. We will show that the counit morphism

€F : TN TF = F

is an isomorphism. By [I, Lemma A.1] we can assume that X is affinoid. Let
Y’ C Y be an admissible open subset, and choose an admissible covering of Y’
consisting of rational subdomains in Y. By appealing to [I, Lemma A.1] again, it
is enough to show that
(T L F)V) = F(V)

is an isomorphism for every rational subdomain V of Y. Now (1=, F)(V) is the
direct limit of the F(W NY’) where W ranges over all open subdomains of X such
that V C WNY. By Lemma[A.2 we can find a rational subdomain U of X such
that V =UNY, and the result follows.

Now let G be an abelian sheaf on X which is supported on Y; we will show
that the unit morphism 7g : G — 1.+~ 'G is an isomorphism. By [I, Lemma A.1],
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it is enough to show that ng(X) is an isomorphism whenever X is affinoid. Let
fi,---, fr generate Z(X). By Proposition [A2] there is an isomorphism

lig G(V,) — (:'G)(Y) = o' G(X)

so it will be sufficient to show that the restriction morphism G(X) — G(Y;,) is an
isomorphism for any n > 0. Let f,41 = ©". Since the elements f1,..., fr, fr41 €
O(X) have no common zero on X, we may consider the rational covering U of X
generated by these elements in the sense of [3, §8.2.2]:

U={Ui,...,Ur41} where Uizx<%,___7fr]:1).

Thus U,y1 =Y, and U; NY =@ for all 4 = 1,...,r. Since G is supported on Y
by assumption, we see that G(U;) = 0 for all ¢ < r, and now the sheaf condition
satisfied by G shows that the restriction map G(X) — G(U,41) = G(Y,) is an
isomorphism. O
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