REPRESENTATION THEORY

SIMON WADSLEY

LECTURE 1
1. INTRODUCTION

Representation Theory is the study of how symmetries occur in nature; that is
the study of how groups act by linear transformations on vector spaces.

One major goal of this course will be to understand how to go about classifying
all representations of a given (finite) group. For this we will need to be precise about
what it means for two representations to be the same as well as how representations
may decompose into smaller pieces.

We'll also use Representation Theory to better understand groups themselves.
An example of the latter that we’ll see later in the course is the Burnside p®q¢®-
theorem which tells us that the order of a finite simple group cannot have precisely
two distinct prime factors.

1.1. Linear algebra revision. By vector space we will always mean a finite di-
mensional vector space over a field k unless we say otherwise. This field k& will
usually be algebraically closed and of characteristic zero, for example C, because
this is typically the easiest case. However there are rich theories for more general
fields and we will sometimes hint at them.

Given a vector space V', we define the general linear group of V

GL(V) =Aut(V) ={a: V — V | a linear and invertible}.

This is a group under composition of maps.

Because all our vector spaces are finite dimensional, there is an isomorphism
k¢ = V for some d > 0.! Here d is the isomorphism invariant of V called its
dimension. The choice of isomorphism determines a basis e, ..., eq for V.2 Then

GL(V) = {A € Maty(k) | det(A) # 0}.

This isomorphism is given by the map that sends the linear map « to the matrix
A such that a(e;) = Ajje;.

Exercise. Check that this does indeed define an isomorphism of groups. ie check
that « is an invertible if and only if det A # 0; and that the given map is a bijective
group homomorphism.

1n fact the set of such isomorphisms is in bjiection with GL(V') so typically there are very
many such.
2Here e; is the image of the ith standard basis vector for k% under the isomorphism.
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The choice of isomorphism k% =+ V also induces a decomposition of V as a
direct sum of one-dimensional subspaces

d
V= @ kei.
i=1

This decomposition is not unique is general® but the number of summands is always
dim V.

1.2. Group representations — definitions and examples. Recall that an ac-
tion of a group G on a set X is a function -: G x X — X;(g,z) — ¢ -z such
that

(i) e-xz =z for all z € X;

(ii) (gh)-x=g-(h-z) forall g,h € G and = € X.

Recall also that to define such an action is equivalent to defining a group homo-
morphism p: G — S(X) where S(X) denotes the symmetric group on the set X;
that is the set of bijections from X to itself equipped with the binary operation of
composition of functions.

Definition. A representation p of a group G on a vector space V is a group
homomorphism p: G — GL(V), the group of invertible linear transformations of
V.

By abuse of notation we will sometimes refer to the representation by p, some-
times by the pair (p, V') and sometimes just by V with the p implied. This can
sometimes be confusing but we have to live with it.

Defining a representation of G on V corresponds to assigning a linear map
p(g): V= V to each g € G such that

(i) ple) = idy;
(ii) p(gh) = p(g)p(h) for all g,h € G;
(iii) p(g~t) = p(g)~* for all g € G.

Ezercise. Show that, given condition (ii) holds, conditions (i) and (iii) are equivalent
to one another in the above. Show moreover that conditions (i) and (iii) can be
replaced by the condition that p(g) € GL(V) for all g € G.

Given a basis for V' a representation p is an assignment of a matrix p(g) to each
g € G such that (i),(ii) and (iii) hold.
Definition. The degree of p or dimension of p is dim V.
Definition. We say a representation p is faithful if ker p = {e}.
Ezxamples.

(1) Let G be any group and V = k. Then p: G — Aut(V);g +— id is called the
trivial representation.
(2) Let G = Cy = {£1}, V = R?, then

1 0 -1 0
is a group rep of G on V.

3that is it depends on the choice of basis up to rescaling the basis vectors so there is more than
one such decomposition if d > 1
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Let G = (Z,+), V a vector space, and p a representation of G on V. Then
necessarily p(O) = idy, and p(1) is some invertible linear map o on V. Now
p(2) = p(1+1) = p(1)? = % Inductively we see p(n) = a" for all n > 0.
Finally p(—n) = (a®)~! = (a‘l)". So p(n) = a™ for all n € Z.

Notice that conversely given any invertible linear map a: V — V we may
define a representation of G on V by p(n) = a™.

Thus we see that there is a 1-1 correspondence between representations of Z
and invertible linear transformations given by p — p(1).
Let G = (Z/N,+), and p: G — GL(V) arep. As before we see p(n) = p(1)" for
all n € Z but now we have the additional constraint that p(N) = p(0) = idy.

Thus representations of Z/N correspond to invertible linear maps « such
that o = idy. Of course any linear map such that o’V = idy is invertible so
we may drop the word invertible from this correspondence.
Let G = Ss3, the symmetric group of {1,2,3}, and V = R?. Take an equilateral
triangle in V' centred on 0; then G acts on the triangle by permuting the vertices.
Each such symmetry induces a linear transformation of V. For example g =
(12) induces the reflection through the vertex three and the midpoint of the
opposite side, and g = (123) corresponds to a rotation by 27 /3.

Ezercise. Choose a basis for R2. Write the coordinates of the vertices of the
triangle in this basis. For each g € S35 write down the matrix of the corre-
sponding linear map. Check that this does define a representation of S3 on V.
Would the calculations be easier in a different basis?

LECTURE 2

Given a finite set X we may form the vector space kX of functions X to k with
basis (§; | x € X) where §,(y) = dzy.

Then an action of G on X induces a representation p: G — Aut(kX) by
(p(9)f) (@) = f(g~! - 2) called the permutation representation of G on X.

It is straightforward to verify that p(g) is linear and that p(e) = idix. So to
check that p is a representation we must show that p(gh) = p(g)p(h) for each
g,h € G.

For this observe that for each z € X,

p(9)(p() (@) = (p(h) f)(g~ z) = f(h™ g™ x) = p(gh) f(2).

Notice that p(9)dz(y) = 0z g-1.4y = 0g.z,y 50 p(g)dz = dg... So by linearity
P(9) (S e Aeds) = 3 Ay
In particular if G is finite then the action of G on itself by left multiplication
induces the regular representation kG of G. The regular representation is always
faithful because p(g)d. = 0. implies that ge = e and so g = e.
If p: G — GL(V) is a representation of G then we can use p to define a
representation of G on V*

P (9)(f)w) = flp(g™ )v); YfeVi,veV
More generally, if (p, V'), (p’, W) are representations of G then («, Homg (V, W))
defined by

a(9)(f)(v) = p'(9)f(plg)~'v); Vg € G, f€Homy(V,W),veV

is a rep of G.
Note that if W = k is the trivial rep. this reduces to example 8.
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Ezercise. Check the details.* Moreover show that if V = k™ and W = k™ with
the standard bases, so that Homy (V, W) = Mat,, ,(k), then

a(g)(A) = p'(g)Ap(g)~" for all A € Mat,y, (k) and g € G.

(10) If p: G — GL(V) is a representation of G and : H — G is a group homomor-
phism then pf: H — GL(V) is a representation of H. If H is a subgroup of G
and 6 is inclusion we call this the restriction of p to H.

1.3. The category of representations. We want to classify all representations
of a group G but first we need a good notion of when two representations are the
same.

Definition. We say that p: G — GL(V) and p': G — GL(V') are isomorphic
representations if there is a linear isomorphism ¢: V' — V' such that

P (g)=pop(g)op ! forall gecG
ie. if p'(g) oo = @ o p(g). We say that ¢ intertwines p and p'.

Notice that idy intertwines p and p; if ¢ intertwines p and p’ then o~ intertwines

p and p; and if moreover ¢’ intertwines p’ and p” then ¢’¢ intertwines p and p”.
Thus isomorphism is an equivalence relation.

Notice that if p: G — GL(V) is a representation and ¢: V. — V' is a vector
space isomorphism then we may define p': G — GL(V') by p'(g) = ¢ o p(g) o o~ .
Then p’ is also a representation. In particular every representation is isomorphic
to a matrix representation G — GLg(k).

If p,p': G — GL4(k) are matrix representations of the same degree then an
intertwining map k% — k< is an invertible matrix P and the matrices of the reps
it intertwines are related by p'(g) = Pp(g)P~!. Thus matrix representations are
isomorphic precisely if they represent the same family of linear maps with respect
to different bases.

Ezxamples.

(1) If G = {e} then arepresentation of G is just a vector space and two vector spaces
are isomorphic as representations precisely if they have the same dimension.

(2) If G = Z then p: G — GL(V) and p': G — GL(V') are isomorphic reps if
and only if there are bases of V' and V' such that p(1) and p/(1) are the same
matrix. In other words isomorphism classes of representations of Z correspond
to conjugacy classes of invertible matrices. Over C the latter is classified by
Jordan Normal Form (more generally by rational canonical form).

(3) If G = Cy = {1} then isomorphism classes of representations of G correspond
to conjugacy classes of matrices that square to the identity. Since the minimal
polynomial of such a matrix divides X? — 1 = (X — 1)(X + 1) provided the
field does not have characteristic 2 every such matrix is conjugate to a diagonal
matrix with diagonal entries all +1.

Ezercise. Show that there are precisely n + 1 isomorphism classes of represen-
tations of Cy of dimension n.

(4) If X,Y are finite sets with a G-action and f: X — Y is a G-equivariant bijection
i.e. fis a bijection such that g - f(z) = f(g-z) for all x € X and g € G, then

4This will also appear on Examples Sheet 1.
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©: kX — kY defined by ¢(0)(y) = 0(f 'y) intertwines kX and kY. (Note
that QD((%) = 5f(¢))
Note that two isomorphic representations must have the same dimension but
that the converse is not true.

LECTURE 3

Definition. Suppose that p: G — GL(V) is a rep. We say that a k-linear subspace
W of V is G-invariant if p(g)(W) C W for all g € G (ie p(g)(w) € W for all g € G
and w € W).

In that case we call W a subrepresentation of V; we may define a representation
pw: G = GL(W) by pw(g)(w) = p(g)(w) for w € W.

We call a subrepresentation W of V' proper if W £ V and W # 0. We say that
V' £ 0 is irreducible or simple if it has no proper subreps.

Ezxamples.
(1) Any one-dimensional representation of a group is irreducible.

(2) Suppose that p: Z/2 — GL(k?) is given by —1 > ( 0 (1)) (char k # 2). Then

there are precisely two proper subreps spanned by <(1)> and (?) respectively.

Proof. Tt is easy to see that these two subspaces are G-invariant. Any proper
subrep must be one dimensional and so by spanned by an eigenvector of p(—1).
But the eigenspaces of p(—1) are precisely those already described. Il

(3) If G is Cy then the only irreducible representations are one-dimensional.

Proof. Suppose p: G — GL(V) is an irreducible rep. The minimal polynomial
of p(—1) divides X? —1 = (X —1)(X + 1). Thus p(—1) has an eigenvector v.
Now 0 # (v) is a subrep. of V. Thus V = (v). O

Notice we’ve shown along the way that there are precisely two simple reps
of G if k doesn’t have characteristic 2 and only one if it does.
(4) If G = Dg then every irreducible complex representation has dimension at most
2.

Proof. Suppose p: G — GL(V) is an irred. G-rep. Let r be a non-trivial
rotation and s a reflection in G. Then p(r) has a eigenvector v, say. So p(r)v =
v for some A # 0. Consider W := (v, p(s)v) C V. Since p(s)p(s)v = v and
p(r)p(s)v = p(s)p(r)~tv = A= 1p(s)v, W is G-invariant. Since V is irreducible,
W=V. O

Ezxercise. Show that there are precisely three irreducible reps of Dg up to iso-
morphism, one of dimension 2 and two of dimension 1. (Hint: In the argument
above necessarily A*> = 1 and we can split into cases where p(s)(v) € (v) and

where p(s)(v) & (v)).

(5) If G =7 and (p,V) is a representation over C then when is V irreducible?
We can choose a basis for V' so that p(1) is in Jordan Normal Form. It is
easy to see that the Jordan blocks determine invariant subspaces; so if V is
irreducible then there is only one Jordan block. Say p(1) = A then Ae; =
Ae; + e;_1 for some non-zero A and ¢ = 1,...d (where by convention ey = 0).
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Ezercise. Show that the invariant subspaces are precisely the subspaces of the
form (eq,...,e) for k < d.

It follows that the only irreducible representations of Z are one-dimensional.
p:Z—C* 1= A\

Proposition. Suppose p: G — GL(V) is a rep and W < V. Then the following
are equivalent:

(i) W is a subrep;

(ii) there is a basis v1,...,vq of V such that vy,...,v, is a basis of W and the
matrices p(g) are all block upper triangular;
(iii) for every basis vy, ...,vq of V such that vy, ..., v, is a basis of W the matrices
p(g) are all block upper triangular.
Proof. Think about it! (]

Definition. If W is a subrep of a rep (p,V) of G then we may define a quotient
representation py yw: G — GL(V/W) by pyw(g)(v + W) = p(g)(v) + W. Since
p(g)W C W for all g € G this is well-defined.

We’ll start dropping p now and write g for p(g) where it won’t cause confusion.

Definition. If (p,V) and (p’, W) are reps of G we say a linear map ¢: V — W is
a G-linear map if g = g (ie w0 p(g) = p'(g) o ) for all g € G. We write

Homeg(V,W) = {¢ € Homy(V,W) | ¢ is G linear},
a k-vector space.

Remarks.

(1) ¢ € Homg(V, W) is an intertwining map precisely if ¢ is a bijection and ¢ is in
Homg(V, W).

(2) If W < V is a subrep then the natural inclusion map ¢: W — V; w — w is in
Homg (W, V) and the natural projection map 7: V. — V/W; v +— v+ W is in
Homeg (V, V/W).

(3) Recall that Homy (V, W) is a G-rep via (g¢)(v) = g(¢(g~tv)) for o € Homy (V, W),
g € G and v € V. Then ¢ € Homg(V, W) precisely if go = ¢ for all g € G.

Lemma (First isomorphism theorem for representations). Suppose (p, V') and (p’, W)
are representations of G and ¢ € Homg(V, W) then
(i) ker p is a subrep of V.
(i) Im o is a subrep of W.
(i11) V/ker ¢ is isomorphic to Im ¢ as reps of G.
Proof.
(i) if v € ker ¢ and g € G then p(gv) = gp(v) =0
(ii) if w = ¢(v) € Imp and g € G then gw = p(gv) € Ime.
(iii) We know that the linear map ¢ induces a linear isomorphism
@: V/ker o — Imgp;v + ker ¢ — (v)

then gp(v + ker ) = g(p(v)) = ¢(gv) = P(gv + ker p) O
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LECTURE 4
2. COMPLETE REDUCIBILITY AND MASCHKE’S THEOREM

Question. Given a representation V and a G-invariant subspace W when can we
find a vector space complement of W that is also G-invariant?

Example. Suppose G = Co, V = R? and p(—1) = (01 (1)>, W = <((1)>> has
many vector space complements but only one of them, <((1)> >, is a G-invariant.

Definition. We say a representation V' is a direct sum of U and W if U and W are
subreps of V' such that V= U@®W as vector spaces (ie V =U+W and UNW = 0).

Given two representations (p1, U) and (p2, W) we may define a representation of
G on U@ W by p(g)(u,w) = (p1(g)u, p2(g)w).

FEzxzamples.

(1) Suppose G acts on a finite set X and X may be written as the disjoint
union of two G-invariant subsets X; and X5 (i.e. g-2z € X; for all z € X;
and g € G). Then kX = kX; @ kX, under f — (f|x,, f]x,)-

That is kX = {f | f(z) =0Vz e Xo} & {f | f(x) =0Vz € X1}.
More generally if the G-action on X decomposes into orbits as a disjoint
union X = (Ji_, O; then

kX = P 1o, (kX) = P k0O;.
i=1
fl@) €0,
(2) If G acts transitively on a finite set X then U := {f € kX | >°__y f(z) = 0}
and W :={f € kX | f is constant} are subreps of kX.

Proof. If f € U then for g € G,

g Ha)=> flg7'lx)=0

zeX zeX

where 1o, : kX — kX is given by 1p,(f)(z) =

since x — g~ 'z is a bijection X — X. Similarly if f € W; f(z) = A for all
x € X then for g € G, (9.f)(z) = f(g7'z) = X for all x € X. O

If k is charactersitic 0 then kX = U & W. What happens if k£ has

characteristic p > 07

(3) We saw before that every representation of Z/2 over C is a direct sum of
1-dimensional subreps as we may diagonalise p(—1). Let’s think about how
this might generalise:

Suppose that G is a finite abelian group, and (p, V) is a complex rep-
resentation of G. Each element g € G has finite order so has a minimal
polynomial dividing X™ —1 for n = o(g). In particular it has distinct roots.
Thus there is a basis for V' such that p(g) is diagonal. But because G
is abelian p(g) and p(h) commute for each pair g,h € G and so the p(g)
may be simultaneously diagonalised (Sketch proof: if each p(g) is a scalar
matrix the result is clear. Otherwise pick g € G such that p(g) is not a
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scalar matrix. Each eigenspace F(\) of p(g) will be G-invariant since G is
abelian. By induction on dim V' we may solve the problem for each subrep
E(X) and then take the union of these bases). Thus V' decomposes as a
direct sum of 1-dimensional subreps

(4) We saw that if (p, C™) is the representation of Z given by p(1)(e1) = e; and
p(1)(e;) = e; + e;—1 for i > 1, then C™ has precisely n — 1 proper invariant
subspaces namely (e, ..., ex) for 1 < k < n. Thus none of these have an
invariant complement.

Proposition. Suppose p: G — GL(V) is a rep. and V =U @ W as vector spaces.
Then the following are equivalent:

(i) V=U®@®W as reps;

(i) there is a basis vy, ..., vq of V such thatvy,. .., v, is a basis of U and vy41, ... vq
is a basis for W and the matrices p(g) are all block diagonal;
(iii) for every basisvi,...,vq of V such thatvy, ..., v, is a basis of U and v,41,...,vq
is a basis for W and the matrices p(g) are all block diagonal.
Proof. Think about it! O

But the following example provides a warning.
-1 -2

0 1
The representation R? breaks up as (e;) @ (e; — e2) as subreps even though the
matrix is upper triangular but not diagonal.

Ezample. p: Z/2 — GL2(R); 1 — defines a representation (check).

We’ve seen by considering G = Z that it is not true that for every reperesentation
of a group G, every subrepresentation has a G-invariant complement. However, the
following remarkable theorem is true.

Theorem (Maschke’s Theorem). Let G be a finite group and (p,V) a representa-
tion of G over a field k of characteristic zero. Suppose W <V is a G-invariant
subspace. Then there is a G-invariant complement to W ie a G-invariant subspace
U of V such that V. =U & W.

Corollary (Complete reducibility). If G is a finite group, (p,V) a representation
over a field of characteristic zero. Then V. = Wy @ ---W,. s a direct sum of
representations with each W; irreducible.

Proof. By induction on dimV. If dimV = 0 or V is irreducible then the result is
clear. Otherwise V' has a non-trivial G-invariant subspace W.

By the theorem there is a G-invariant complement U and V 2 U @ W as G-reps.
But dimU,dimW < dimV, so by induction they can each be decomposed as a
direct sum of irreducibles reps. Thus V' can too. O

LECTURE 5

Ezample. Let G act on a finite set X, and consider the real permutation represen-
tation RX = {f: X — R} with (p(g)f)(z) = f(g~'x).

Idea: with respect to the given basis d, all the matrices p(g) are orthogonal; that
is they preserve distance with respect to the standard inner product (—,—). This
is because (f1, f2) = >, cx J1(z) f2(x) and so for each g € G

(- fr.g-f2) = flg @) falg™ ) = (f1, f2)

zeX
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since ¢g~! permutes the elements of X.
In particular if W is a subrep of RX and

Wt = {veRX | (v,w) =0 for all w € W}

then if g € G and v € W+ and w € W we have (w, gv) = (g~ 'w,v) = 0 since
g 'w € W. Thus G preserves W+ which is thus a G-invariant complement to W.

Let’s extend this idea. Recall, if V' is a complex vector space then a Hermitian
inner product is a positive definite Hermitian sesquilinear map (—,—): VxV — C
that is a map satisfying

(i) (ax +by,z) =a(x,z) +b(y,2) and (z,ay + bz) = a(x,y) + b(x, 2) for a,b € C,
x,y,z € V (sesquilinear);
(i) (2,) = (3,2) (Hermitian);
(iii) (z,z) > 0 for all z € V\{0} (positive definite).
If W C V is a linear subspace of a complex vector space with a Hermitian inner

product and Wt = {v € V | (v,w) = 0 Vw € W} then W+ is a vector space
complement to W in V.

Definition. A Hermitian inner product on a G-rep V is G-invariant if (g, gy) =
(z,y) for all g € G and z,y € V; equivalently if (gz, gz) = (z,z) for all g € G and
zeV.

Lemma. If (—,—) is a G-invariant Hermitian inner product on a G-rep V and
W CV is a subrep then W is a G-invariant complement to W.

Proof. Tt suffices to prove that W+ is G-invariant since W+ is a complement to .
Suppose g € G, x € W+ and w € W. Then (gz,w) = (z,9 'w) = 0 since
g 'w € W. Thus gz € W+ as required. O

Recall that the unitary group U(n) is the subgroup of GL,(C) consisting of
matrices A such that AT A = I. Equivalently

U(n) ={A € GL,(C) | (Az, Ay) = (z,y) for all z,y € C"}

where (—, —) denotes the standard Hermitian inner product on C™.

It follows from the Lemma that if p: G — GL(V) is a complex representation of
any group G such that V' has a G-invariant inner product is completely reducible
i.e. it can be written as a direct sum of simple subrepresentations. In particular if
p: G = U(n) < GL,(C) is a matrix representation with all matrices p(g) in U(n)
then (p,C™) is completely reducible.

Proposition (Weyl’s unitary trick). If V' is a complex representation of a finite
group G, then there is a G-invariant Hermitian inner product on V.

Proof. Pick any Hermitian inner product (—, —) on V' (e.g. choose a basis ey, ..., e,
and take the standard inner product (3" Aie;, Y pie;) = > Aipt;). Then define a
new inner product (—, —) on V by averaging:

1
(z,y) == Il > gz, gy).

geqG



10 SIMON WADSLEY

It is easy to see that (—, —) is a Hermitian innder product because (—, —) is so. For
example if a,b € C and z,y,z € V, then

(x,ay +bz) = \G| Z gz, g(ay + bz))
geG
= ‘G| > gz, ag(y) + by (2))
geG

= \GI > (algx, gy) + blg, g2))
geG

= a(xvy) + b(zay)

as required.
But now if h € G and z,y € V then

(ha, hy) = |G| > (gha, ghy) = |G| > (g, g'y)

geG g’ eG

and so (—, —) is G-invariant. O

Corollary. For every complex representation V of a finite group G, every subrep-
resentation has a G-invariant complement and so V is completely reducible i.e. it
decomposes as a direct sum of simple subrepresentations.

Proof. Apply Weyl’s unitary trick and then the last Lemma. [l

Corollary (of Weyl’s unitary trick). Every finite subgroup G of GL,,(C) is conju-
gate to a subgroup of U(n).

Proof. By the unitary trick we can find a G-invariant Hermitian inner product
(—,—) and choose an orthonormal basis for C" with respect to (—, —) using Gram-
Schmidt, say.

Let P be the change of basis matrix from the standard basis to the (—,—)-
orthonormal basis. Then (Pa, Pb) = (a,b) for a,b € V. So, for each g € G,

(P~'gPa, P~'gPb) = (gPa,gPb) = (Pa, Pb) = (a,b).
Thus P~1gP € U(n) for each g € G as required. O

Thus studying all complex representations of a finite group G is equivalent to
studying unitary (ie distance preserving) ones.

We now adapt our proof of complete reducibility to handle any field of charac-
teristic k, even if there is no notion of inner product.

Theorem (Maschke’s Theorem). Let G be a finite group and V a representation of
G over a field k of characteristic zero. Then every subrep W of V has a G-invariant
complement.

Proof. Idea: if 7: V — V is a projection i.e. 2 = 7w then V = Im7 @ ker7 as

vector spaces. If 7 is G-linear then ker 7 and Im 7 are both G-invariant. So we pick
a projection V' — V with image W and average it.

Let m: V. — V be any k-linear projection with 7(w) = w for all w € W and
Imm=W.
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Recall that Homy (V, V) is a rep of G via (g¢)(v) = g(¢(g7'v)). Let #': V — V

be defined by
= & Z gm)
|Gl =

Then Im 7’ < W and 7/ (w) = ﬁ EgeGg(W(g_lw)) = w since g(m(g~ w)) = w for
allge G and we W.

Moreover for h € G, (hn') = ﬁ > gec(hg)m = & Ygegdm=1".

Thus 7' € Homg(V, W) and 7’ is a G-invariant projection V' — V with image
W. So ker 7’ is the required G-invariant complement to W. (Il

LECTURE 6

Remarks (on the Proof of Maschke’s Theorem).
(1) We can explicitly compute 7’ and ker 7’ given (p, V') and W via the formula
EES
|G\ =

(2) Notice that we only used that char & = 0 when we inverted |G|. So in fact we
only need that the characteristic of k& does not divide |G].
(3) For any G-rep V (with char k not dividing |G]), the map

v Zg v
|G| g€eG

is a k-linear projection onto V¢ := {v € V | g-v = v}. As a foreshadowing of
what is coming soon, notice that

dim V¢ = |G| Z tr(g)

geG
since tr is linear and for w: V' — V any projection onto W, trm = dim W.
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3. SCHUR’S LEMMA

Recall that if V' is a vector space of dimension d then Aut(V) = GLg4(k). This
group parameterises the set of bases of V. The decompositions V = @?:1 Vi
with each dimV; = 1 are parameterised by GL4(k)/T where T is the subgroup of
GL,4(k) consisting of diagonal matrices if we remember the order of the V;; and by
GL4(k)/N(T) where N(T) is the subgroup of GL4(k) consisting of matrices with
precisely one non-zero entry in each row and in each column if we only consider the
decompositon up to permuting the factors.’

Theorem (Schur’s Lemma). Suppose that V' and W are irreducible reps of G over
k. Then

(i) every element of Homg(V, W) is either O or an isomorphism,

(ii) if k is algebraically closed then dimy Homeg(V, W) is either 0 or 1 .

In other words irreducible representations are rigid in the same sense that one-
dimensional vector spaces are rigid.

Proof. (i) Let ¢ be a non-zero G-linear map from V to W. Then kerp < V is a
G-invariant subspace of V. So as V is simple, ker ¢ = 0. Similarly 0 # Imyp < W
so Imp = W since W is simple. Thus ¢ is both injective and surjective, so an
isomorphism.

(ii) Suppose 1,2 € Homg(V,W) are non-zero. Then by (i) they are both
isomorphisms. Consider ¢ = 901_1902 € Homg (V, V). Since k is algebraically closed
we may find A an eigenvalue of ¢ then ¢ — Aidy has non-zero (and G-invariant)
kernel and so the map is zero. Thus @flapg = Aidy and @9 = Ap; as required. [

Proposition. If V, Vi and Vy are k-representations of G then
Homg(V, Vi1 @ V2) = Homeg(V, V1) @ Homg (V, V3)
and

Homg(V1,8Vs, V) =2 Homg(V1, V) & Homg (Va, V).

Proof. There are natural inclusion maps Homy (V, V;) — Homy (V, V5 & V) for i =
1,2 given by postcomposition with the natural map V; — V; & V5. These induce a
linear isomorphism

Homy (V, V1) @ Homy(V, Vo) — Homy (V, V1 @ Va)

given by (f1, f2) = fi+ fo. This is an intertwining map i.e. g-(f1, f2) = g-f1+9g- fo.
Since in general, HomG(U, W) consists of the G-fixed points of Homy (U, W), it
follows that there is an induced map

Homg(V, V1) @ Homg(V, V2) — Homeg(V, Vi @ V3)

that is an isomorphism.
Similarly there is a G-linear isomorphism

Homy (Vy @ Va2, V) — Homy (V4, V) @ Homy (V2, V)
given by f +— (f|v,, flv,) and again it follows that there is an induced map
Homg(V; & Vo, V) — Homg(V1, V) @ Homg (Va, V)

that is an isomorphism. O

S5This is also the normaliser of T' in GLg (k).
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Corollary. If V=@, V; and W = @;_, W; then

T S

Home (V, W) = @) @5 Home (Vi, W;).

i=1 j=1
Proof. This follows from the Proposition by a straighforward induction argument.
O

Corollary. Suppose k is algebraically closed and

V%é}‘/}
i=1

is a decomposition of a k-rep. of G into irreducible components.
Then for each irreducible representation W of G,

[{i | V; 2% W}| = dim Homg (W, V).

Proof. By the last result

Home (W, V) = @D Home (W, V;)
i=1

and so

i
dim Home(W, V) = >~ dim Home (W, V).
i=1
Thus is suffices to show that

1 W=V

dim Home(W, V2) = {0 if W 2V

and this is precisely the statement of Schur’s Lemma. (]

Important question: How can we compute these numbers dim Homeg(V, W)?

Corollary. (of Schur’s Lemma) If a finite group G has a faithful complex irreducible
representation then the centre of G, Z(QG) is cyclic.

Proof. Let V be a faithful complex irreducible rep of G, and let z € Z(G). Then
let ¢.: V — V be defined by ¢.(v) = zv. Since gz = zg for all ¢ € G, ¢, €
Homg(V,V) = Cidy by Schur, ¢, = A, idy, say.

Now Z(G) — C;z +— A, is a representation of Z(G) that must be faithful since
V is faithful. In particular Z(G) is isomorphic to a finite subgroup of C*. But
every such subgroup is cyclic. [

Corollary. (of Schur’s Lemma) Every irreducible complex representation of a finite
abelian group G is one-dimensional.

Proof. Let (p, V) be a complex irred. rep of G. For each g € G, p(g) € Homg(V, V).
So by Schur, p(g) = A\gidy for some A\; € C. Thus for v € V non-zero, (v) is a
subrep of V. (]
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FEzxzamples. We can list all the irreducible. representations of Cy and Cy x Co

G:C4:<I> G:CQX02:<I,y>.

‘ 1 z z2 23 ‘ 1 T Yy xy

p|1 1 1 1 p1 |1 1 1 1

p2 |1 i —1 —1 p2 |1 —1 1 -1

p3 |1 —1 1 1 p3 |1 1 -1 -1

pe |1 —1 —1 1 pe |1 -1 -1 1
LECTURE 7

Proposition. Every finite abelian group G has precisely |G| complex irreducible
representations.

Proof. Let p be an irred. complex rep of G. By the last corollary, dimp = 1. So
p: G — C* is a group homomorphism.

Since G is a finite abelian group G = C,,, x --- x Cy, some nq,...,n;. Now
if G = G X G2 is the direct product of two groups then there is a 1-1 corre-
spondance between the set of group homomorphisms G — C* and the of pairs
(G1 — C*,Gy — C*) given by restriction ¢ — (¢|a,,¥|a,)- Thus we may reduce
to the case G = C,, = (x) is cyclic.

Now p is determined by p(z) and p(z)™ = 1 so p(x) must be an nth root of unity.
Moreover we may choose p(z) however we like amongst the nth roots of 1. (]

Lemma. If (p1,V1) and (p2,Va) are non-isomorphic one-dimensional representa-
tions of a finite group G then . p1(g)p2(g) =0

Proof. We've seen that Homy(Vy,Vs) is a G-rep under go(v) = pa(g)epi(g~!

)
and > o g9¢ € Homg(Vi,V2) = 0 by Schur. Since pi(g) is always a root of

unity, p1(g~%) = pi(g). Pick an isomorphism ¢ € Homy(V;,V2). Then 0
Ygec P2(9)epi(97") = X ,cq p1(9)p2(9)¢ as required.

ol

If V is a representation of a group G that is completely reducible and W is
any irreducible representation of G then the W-isotypic component of V is the
smallest subrepresentation of V' containing all simple subrepresentations isomorphic
to W. This exists since if (V;);cr are subrepresentations of V' containing all simple
subrepresentations isomorphic to W then so is (¢, V;.6

We say that V has a unique isotypical decomposition if V is the direct sum of
its W-isotypic components as W varies over all simple representations of V' (up to
isomorphism).

Corollary. Suppose G is a finite abelian group then every complex representation

V' of G has a unique isotypical decomposition.

Proof. For each homomorphism 6;: G — C* (i = 1,...,|G|) we can define W; to
be the subspace of V' defined by

W, ={v eV |plg)v=_0;(g)v for all g € G}.

Since V is completely reducible and every irreducible rep of G is one dimensional
V =>"W,;. We need to show that for each i W; N Zj# W; = 0. It is equivalent to
show that Y w; = 0 with w; € W; implies w; = 0 for all 4.

61t can also be realised as the vector space sum of all subrepresentations isomorphic to W.
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But > w; = 0 with w; in W; certainly implies 0 = p(g) > w; = > 0;(g)w;. By
choosing an ordering g1,...,g/q| of G we see that the |G| x |G| matrix 6;(g;) is
invertible by the lemma. Thus w; = 0 for all ¢ as required. (]

You will extend this result to all finite groups on Example Sheet 2.
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4. CHARACTERS

Summary so far. We want to classify all representations of groups G. We've
seen that if G is finite and k has characteristic zero then every representation V'
decomposes as V = Pn;V; with V; irreducible and n; > 0. Moreover if & is also
algebraically closed, we’ve seen that n; = dim Homg (V;, V).

Our next goals are to classify all irreducible representations of a finite group and
understand how to compute the n; given V. We’re going to do this using character
theory.

4.1. Definitions.

Definition. Given a representation p: G — GL(V), the character of p is the
function x = x, = xv: G — k given by g — tr p(g).

Since for matrices tr(AB) = tr(BA), the character does not depend on the choice
of basis for V [tr(X1AX) = tr(AX X ~!) = tr(A)]. By the same argument we also
see that equivalent reps have the same character.

Example. Let G = Dg = (s,t | s> = 1,12 = 1,sts~! = t71), the dihedral group of
order 6. This acts on R? by symmetries of the triangle; with ¢ acting by rotation
by 27/3 and s acting by a reflection. To compute the character of this rep we
just need to know the eigenvalues of the action of each element. Each reflection
(element of the form st?) will act by a matrix with eigenvalues 1. Thus x(st!) = 0
for all 7. The rotations t" act by matrices <Z?§ 5::53 _(;(S)lsn;:;?ég) thus x(t") =

2cos2nr/3 =—1forr=1,2.

Proposition. Let (p,V) be a rep of G with character x
(i) x(e) = dimV;
(ii) x(g) = x(hgh™?) for all g,h € G;
(ii3) If X' is the character of (p', V') then x + X' is the character of V& V'.
(iv) If k = C and o(g) < oo, x(¢7 1) = x(9);

Proof.

(i) x(e) =tridy = dim V.

(i) p(hgh™1) = p(h)p(g)p(h)~t. Thus p(hgh~!) and p(g) are conjugate and so
have the same trace.

(iii) is clear.

(iv) if p(g) has eigenvalues A1, ..., A, (with multiplicity) then x(g) = >_ A;. But
as o(g) is finite each \; must be a root of unity. Thus x(g) = S\, = S A;! but,
of course, the A, ! are the eigenvalues of g~ !. O

The proposition tells us that the character of p contains very little data; an
element of k£ for each conjugacy class in G. The extraordinary thing that we will
see is that, at least when G is finite and k = C, it contains all we need to know to
reconstruct p up to isomorphism.

Definition. We say a function f: G — C is a class function if f(hgh™!) = f(g)
for all g, h € G. We’ll write C for the complex vector space of class functions on

G.
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Notice that if Oy, ..., O, is a list of the conjugacy classes of G then the indicator
functions 1p,: G — C given by g — 1 if g € O, and g — 0 otherwise form a basis
for Cg. In particular dim C¢ is the number of conjugacy classes in G.

LECTURE 8

4.2. Orthogonality of characters. We’ll now assume that G is a finite group
and k = C unless we say otherwise.
We can make Cg, the space of class functions, into a Hermitian inner product

space by defining

(f1, f2) = |761¥| meﬂg)-

It is easy to check that this does define an Hermitian inner product” and that the
functions dp, are pairwise orthogonal. Notice that (dp,,d0,) = ‘I%II = m for
any z; € O;.

Thus if z1,...,z, are conjugacy class representatives, then we can write

. 1
(f1, fo) = ; mfl(@)fﬂxi)

Ezample. G = Dg = (s,t | 82 = t3 = e,sts = t~!) has conjugacy classes
{e}, {t,t71}, {s, st, st?} and

(1, 2) = SR 12() + 5HGI(s) + 3 AWML

Theorem (Orthogonality of characters). If V and V' are complex irreducible rep-
resentations of a finite group G then (xv,xv/) is 1 if V=2V’ and 0 otherwise.

This should remind you of Schur’s Lemma and in fact the similarity is no coin-
cidence. It is a corollary of Schur. Before we prove it we need a couple of lemmas.

Lemma. IfV and W are reps of a finite group G then

Xtomy, (v;w) (9) = Xxv (9)xw (9)
for each g € G.

Proof. Given g € G we may choose bases vq,...,v, for V and wy,...,w,, for W
such that gv; = A\;v; and gw; = pjw;. Then the functions o;;(vi) = 0;pw; extend
to linear maps that form a basis for Homy,(V, W)® and

(9 ij)(ve) = g (i (97" - vk)) = Gy piws

thus g - a;; = /\j_lu,»aij and

XHom(v,w)(9) = Z A i = xv(gDxw (9) = xv(9)xw(g)

as claimed. 0O

"In fact it even defines an inner product on CG with pairwise orthogonal basis (g4 | g € G)
and Cg is a subspace.

Saij is represented by the matrix with a 1 in entry ij and Os elsewhere with respect to the
given bases
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Lemma. IfU is a rep of G then

dimU% =dim{uv e U | gu=u Vg€ G} = (1,xv) = GZXU
Gl =2
Proof. Define w: U — U by w(u) = ﬁ > gec gu- Then m(u) € U% for all uw € U.
Moreover ;¢ = idyye by direct calculation. Thus

dimU% = tridye = trm = e ZXU
1G] 22

as required. 0
We can use these two lemmas to prove the following.

Proposition. If V and W are representations of G then
dim Home (V, W) = (xv, xw)-

Proof. By the lemmas dim Homg(V, W) = (1,xvxw). But it is easy to compute
that (1, xvxw) = {(xv,Xxw) as required. O

Corollary (Orthogonality of characters). If x, x’ are characters of irreducible reps
then (x,x') = dxx-

Proof. Apply the Proposition and Schur’s Lemma.’ O

Notice that this tells us that the characters of irreducible reps form part of an
orthonormal basis for Cg. In particular the number of irreducible representations
is bounded above by the number of conjugacy classes of G. In fact we’ll see that
the characters span the space of class functions and so that the number of irreps
is precisely the number of conjugacy classes in G. We saw this when G is abelian
last time.

Suppose now that V..., V; is the list of all irreducible complex reps of G up
to isomorphism and the corresponding characters are x1, ..., xx. Our main goal at
this point is to investigate how we might produce such a record of the irreducible
characters. This is because the following result is true.

Corollary. If p and p' are reps of G, then they are isomorphic if and only if they
have the same character.

Proof. We have already seen that isomorphic reps have the same character.

Suppose (p, V') decomposes as @le n;V; and (p/, V') decomposes as @le m;V;
where m;,n; > 0 for all i — Maschke’s Theorem tells us that such decompositions
exist. It suffices to establish that if

ZniXi =Xp = Xp' = ZmiXi

then n; = m; for all ¢ = 1,...,k; that is x1,..., xx are Z-linearly independent in
Cg. In fact, they are even C-linearly independent.

Indeed we've seen that n; = dim Homg(V;, V) = (X4, xp). Thus if x,» = x, then
foreach ¢ =1,...,k, n; = (Xi, Xp) = M, as required. O

9Note that if xy = xy~, with V and V/ irreducible, then dim Homg(V, V') = (xv,xv) >0
and so V= V',
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We see in the proof that the multiplicity of the factors of a complete decompo-
sition of V' can be computed purely from its character.

Notice that complete irreducibility was a key part of the proof of this corollary, as
well as orthogonality of characters. For example the two reps of Z given by 1 + idc2

and 1 — (1) D are not isomorphic but have the same trace. Indeed they both

have trivial subrepresentations with trivial quotient. Complete irreducibility tells
us we don’t need to worry about gluing.

Corollary. If p is a complex representation of G with character x then p is irre-
ducible if and only if (x,x) = 1.

Proof. One direction follows immediately from the theorem on orthogonality of
characters. For the other direction, assume that (x,x) = 1. Then we may write
X = Y_n;x; for some non-negative integers n;. By orthogonality of characters
1= (x,x) =Y. n? Thus y = x; for some j, and  is irreducible. O

This is a good way of calcuating whether a representation is irreducible.

Ezxample.
Consider the action of S on C? by extending the symmetries of a triangle.
x(1) =2, x(12) = x(23) = x(13) =0, and x(123) = x(132) = —1. Now

<x,x>=%(22+3-02+2-(—1)2):1

so this rep is irreducible. Of course we had already established this by hand in (an
exercise in) Lecture 3.

LECTURE 9

Theorem (The character table is square). The irreducible characters of a finite
group G form a orthonormal basis for the space of class functions Cg with respect

to (f1. f2) = 167 Lgec f1(9) f2(9)-

Proof. We already know that the irreducible characters form an orthonormal set.
So it remains to show that they span Cg.

Let I = (x1,...,Xx) be the span of the irreducible characters. We need to show
that I+ = 0.

Suppose f € Cg. For each representation (p, V') of G we may define ¢ = ¢y €

Homy,(V, V) by ¢ = &1 Xy F(9)0(9)-
Now,

_ 1 —_— 1 —
p(h) " op(h) = @l > F(g)p(h~"gh) = @l > Fg)eld)
geG g'eG
since f is a class function, and we see that in fact ¢ sy € Homg(V, V).
Moreover, if f € It and V is an irreducible representation then ¢y = Aidy
for some A € C by Schur’s Lemma and

AdimV =tropy = (f,xv) =0

so wry = 0.
But every representation breaks up as a direct sum of irreducible representations
V =@V, and ¢y breaks up as @ ¢yv,. So ¢f v = 0 whenever f € I+,
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But if we take V' to be the regular representation CG then
orcale = |G|7! Z f(9)dy = |GI7'T.

geqG

Thus f = 0. (]

Corollary. The number of irreducible representations is the number of conjugacy
classes in the group.

Corollary. For each g € G, x(g) is real for every character x if and only if g is
conjugate to g~ ".

Proof. Since x(g~ 1) = x(9), x(g) is real for every character y if and only if x(g) =
x(g71) for every character y. Since the irreducible characters span the space of
class functions and 1o, is a class function for each ¢ = 1,...,r, this is equivalent
to g and ¢! living in the same conjugacy class. O

4.3. Character tables. We now want to classify all the irreducible representations
of a given finite group and we know that it suffices to write down the characters of
each one.

The character table of a group is defined as follows: we list the conjugacy classes
of G, Oy,...,0 (by convention always O; = {e}) and choose g; € O; we then list

the irreducible characters x1, ..., X (by convention x; = xc the character of the
trivial rep. Then we write the matrix
e g2 - 9i Gk
1| 1 1 - 1 1
XJ PR PR PRI XJ (gl)
Xk

We sometimes write the size of the conjugacy class O; above g; and sometimes the
equivalent data |Cg(g;)|.

FEzxzamples.

27

(1) C3 = (z) and let w = €75 so w? = .

[ V)

e =
x1|1l 1 1
X2 1 w w
xs |1l W w
Notice that the rows are indeed pairwise orthogonal. The columns are too in
this case.
(2) S5

There are three conjugacy classes: O; = {e}; Oy = {(12),(23),(13)}; and
O3 = {(123), (132)}. Thus there are also three irreducible representations. We
know that the trivial representation 1 has character 1(g) = 1 for all g € G. We
also know another 1-dimensional representation e: S3 — {£1} given by g — 1
if g is even and g — —1 if g is odd.
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To compute the character y of the last representation we may use orthogo-

nality of characters. Let x(e) = a, x((12)) = b and x((123)) = ¢ (a, b and c are
each real since each g is conjugate to its inverse). We know that

1
0={(1,x) = 6(a+3b+2c),

1
0="(e,x) = 6(a73b+20) and

1
1={xx) 6(a2+362+2c2).

Thus we see quickly that b = 0, a + 2c = 0 and a? + 2¢? = 6. We also know

that a is a positive integer. Thus a =2 and ¢ = —1.
|O;] 11 3 2
e (12) (123)
1 1 1 1
€ 1 -1 1
X |2 O -1

In fact we already knew about this 2-dimensional representation; it is the one
coming from the symmetries of a triangle inside R2.

The rows are orthogonal under (f1, fo) = 33 m f1(g:) f2(gi)-
But the columns are also orthogonal with respect to the standard inner
product. If we compute their length we get:

124124+ 22 =6 = | S5
12+ (=1)? + 0% = 2 = |C%, ((12))]
12 4+12 + (1) = 3 = |Cs,((123))).
This is an instance of a more general phenomenon.
Proposition (Column Orthogonality). If G is a finite group and x1,...,Xr 1S a
complete list of the irreducible characters of G then for each g,h € G,
LR 0 if g and h are not conjugate in G
ZXi (h) = {|C’ (9)] if g and h are conjugate in G.

In particular
Z (dim V;)? sz =|G|.
i=1

Proof. Let X be character table thought of as a matrix; X,;; = x;(g;) and let D be
the diagonal matrix whose diagonal entries are |C¢/(g;)]
Orthogonality of characters tell us that

Z |OG gk szjk = azy

ie XD 'XT =1. . .
Since X is square we may write this as D™'X = X~!. Thus X X = D. That
is
> xk()xk(95) = 9551Cc(g0)]
k
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as required. O
Ezamples.
(1) G = S4: the character table is as follows
|Ca(x;)| | 24 8 3 4 4
[z]] | 1 3 8 6 6
e (12)(34) (123) (12) (1234)
1 1 1 1 1
€ 1 1 1 -1 -1
X3 3 -1 0 1 -1
€X3 3 -1 0 -1 1
s 2 2 1 0 0

Proof. The trivial 1 and sign e characters may be constructed in the same way
as for Ss.

Consider the action of Sy on CX for X = {1, 2, 3,4} induced from the natural
action of S; on X.

We can compute that the character of this rep is given by

xcx (9) = |{fixed points of g}|.1
So x(1) =4, x((12)) = 2, x((123)) =1 and x((12)(34)) = x((1234)) = 0. Thus

LECTURE 10

(Examples continued)
So if we decompose x = > n;x; into irreducibles we know Y n? = 2 then we
must have x = ¥’ + x” with ¥’ and x”" non-isomorphic irreducible characters.

Notice that
1 yo 0 12,0
X T o TRy T T T

so one of the irreducible constituents is the trivial character The other has
character y — 1.

In fact we have seen this decomposition of CX explicitly. The constant
functions gives a trivial subrep and the orthogonal complement with respect to
the standard inner product (that is the set of functions that sum to zero) gives
the other subrep.

We saw on Example Sheet 1 (Q2) that given a 1-dimensional represntation 6
and an irreducible representation p we may form another irreducible representa-
tion §®p by ®p(g) = 0(g)p(g). It is not hard to see that xee,(9) = 0(9)x,(9).
Thus we get another irreducible character eys.

We can then complete the character table using column orthogonality: We
note that 24 = 12 + 12 4 32 + 32 + xs5(e)? thus ys(e) = 2. Then using
Zf Xi(1)xi(g) = 0 we can construct the remaining values in the table. O
Notice that the two dimensional representation corresponding to xs may be

obtained by composing the surjective group homomorphism S; — S3 (with
kernel the Klein-4-group) with the irreducible two dimension rep of Ss.

10Ty see this write down the matrices. Or wait to see a more general version of this statement
next time.
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(2) G = A4. Each irreducible representation of Sy may be restricted to A4 and
its character values on elements of A4 will be unchanged. In this way we get
three characters of Ay: 1, 92 = x3|a, and 3 = xs5|a,. Of course (1,1) = 1.
Similarly,

(V2,12) = %(32 +3(-1)? +8(0%) =1

S0 1o also remains irreducible. However

1
(V3,13) = 5(22 +3(2%) +8(-1)%) =2
so 13 breaks up into two non-isomorphic irreducible reps of Ay.
FExercise. Use this information to construct the whole character table of Ay.

4.4. Permuation representations. Recall that if X is a finite set with G-action
then CX = {f: X — C} is a representation of G via gf(z) = f(g~ ).

Lemma. If x is the character of CX then x(g9) = |{z € X | gx = z}|.

Proof. If X = {z1,...,24} and gz; = ; then g0,, = 0, so the ith column of g has
a 1 in the jth entry and zeros elsewhere. So it contributes 1 to the trace precisely

Corollary. If Vi,..., Vi is a complete list of irreducible reps of a finite group G
then the regular representation decomposes as

(CGg’FLlVlEB"'@nka

with n; = dim V; = y;(e) > 0.
In particular every irreducible representation is isomorphic to a subrepresenta-
tion of the reqular representation and

G = (dimV;)*.

Proof. xca(e) = |G| and xra(g) = 0 for g # e. Thus if we decompose kG we
obtain

1
n; = (Xca, Xi) = @|G|Xi(€) = xi(e)

as required. O

Proposition (Burnside’s Lemma). Let G be a finite group and X a finite set with
a G-action and x the character of CX. Then (1,x) is the number of orbits of G
on X.

Proof. If we decompose X into a disjoint of orbits X; U ---U X}, then we’ve seen
that CX = @le CX;. So xx = Zle Xx, and we may reduce to the case that
G-acts transitively on X.
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Now
|Gl{xx,1) ZXX =Z|{m€X|gm:$}
9eG e
=[{(g2)eGxX|gr=a}=) {geGlgr=a}
reX
= |Stabg(x)
reX
1G] . .
= |X| x| (by the Orbit-Stabiliser Theorem)
= |G|
as required. O

If X is a set with a G-action we may view X X Y as a set with a G-action via
(9, (z,y)) = (92, 9y)-

Corollary. If G is a finite group and X is a finite set with a G-action and x is
the character of the permutation representation CX then (x,x) is the number of
G-orbits on X x X.

Proof. Notice that (x,y) is fixed by g € G if and only if both x and y are fixed.
Thus xxxx(9) = X( )xx(g) by the Lemma.
Now (xx,xx) = ﬁ dec xx(9)xx(g9) = (1, xxxx) and the result follows from

Burnside’s Lemma. O

Remark. If X is any set with a G-action with |X| > 1 then {(z,z)|z € X} C X x X
is G-stable and so is the complement {(z,y) € X x X | z # y}.

We say that G acts 2-transitively on X if G has only two orbits on X x X.
Given a 2-transitive action of G on X we've seen that the character y of the
permutation representation satisfies (x,x) = 2 and (1, x) = 1. Thus CX has two
non-isomorphic irreducible summands — the constant functions and the functions

[ such that >+ f(z) =0

Ezercise. If G = GLy(F,) then decompose the permutation rep of G coming from
the action of G on F, U {oo} by Mobius transformations.
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5. THE CHARACTER RING

Given a finite group G, the set of class functions Cg comes equipped with cer-
tain algebraic structures: it is a commutative ring under pointwise addition and

multiplication — ie (f1 + f2)(g9) = f1(g) + f2(9) and f1f2(g9) = f1(g)f2(g) for each
g € G, the additive identity is the constant function value 0 and the multiplicative

identity constant value 1; there is a ring automorphism * of order two given by
f*(9) = f(g71); and there is a non-degenerate bilinear form given by

1
(fi. fa) = €] > 9 fa(9)-

geG

We will see that all this structure is related to structure on the category of
representations: we have already seen some of this. If V; and V5 are representations
with characters x1 and 2 then x1+x2 = xvyov, and {x1, x2) = dim Homg (V4, V2).

LECTURE 11
Definition. The character ring R(G) of a group G is defined by
R(G) :={x1 — x2 | x1, x2 are characters of reps of G} C Cg.

We’ll see that the character ring inherits all the algebraic structure of C¢ men-
tioned above.

5.1. Tensor products. We've seen that xcxxy = Xxcx - Xcy. We want to gener-
alise this.

Suppose that V' and W are vector spaces over a field k, with bases v1,..., v,
and wi,...,w, respectively. We may view V @ W either as the vector space with
basis v1,. .., Vm, Wi, ..., wy, (so dimV & W = dimV + dim W) or more abstractly
as the vector space of pairs (v, w) with v € V and w € W and pointwise operations.

Definition. The tensor product V@ W of V and W is the k-vector space with
basis given by symbols v; ® w; for 1 <i<m and 1 <j <n and so
dmV W =dimV - dim W.

Ezample. If X and Y are sets then kX ® kY has basis 0, ®0, forx € X andy € Y.
Notice that kX ® kY is isomorphic to kX x Y under 0, ® 0y — Og 4.

Notation. Ifv =) A\v; €V andw =) pjw; € W,
VRW: = Z)\i,uj(vi®wj) eVeWw
4,J
Note that, in general, not every element of V ® W may be written in the form

vRw (eg v1 ® wy +v2 ®ws). The smallest number of summands that are required
is known as the rank of the tensor.

Lemma. The map VxW =V @ W given by (v,w) — v ® w is bilinear.
Proof. First, we should prove that if x,z1,22 € V and y,y1,y2 € W and vq,1v5 € k
then
z® (1 + 1y2) =ri(z @) + vz @ y2)
and
(171 + 1272) @ y = v1(71 R Y) + v2(22 ®@ Y).
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We’ll just do the first; the second follows by symmetry.
Write x = >, \ivi, yk = Zj u;?wj for kK =1,2. Then

2 ® (11 +vaya) = > Ni(vapf + vopd)vi @ w;
,J

and

@y +ra(z @y2) =11 Z)\iﬂ}(@i@lﬂj) + v Z/\W?(’Uﬂgwg‘)
,J 4]
These are equal. (I
Ezercise. Show that given vector spaces U,V and W there is a 1 — 1 correspondence
{linear maps V@ W — U} — {bilinear maps V x W — U}

given by precomposition with the bilinear map (v, w) — v ® w above.

Lemma. If x1,...,2,, is any basis of V and y1,...,y, is any basis of W then
iRy for L<i<m and 1 < j < nisabasis for V@ W. Thus the definition of
V @ W does not depend on the choice of bases.

Proof. It suffices to prove that the set {z; ® y;} spans V ® W since it has size mn.
But if v; =), Ariz, and w; = ), Bs;ys then v; ® w; = Zr,s AiBgjr, @ys. O

Remark (for enthusiastists). In fact we could have defined V @ W in a basis inde-
pendent way in the first place: let F' be the (infinite dimensional) vector space with
basis (v@w |v € V;w € W); and R be the subspace generated by

T ® (yr +1oy2) —vi(z @ y1) + va(z @ y2)

and
(e +1222) @Yy — 11 (21 ®Y) + v2(r2 @ Y)
for all z,x1,22 € V, y,y1,y2 € W and vy, € k; then V @ W = F/R naturally.

FEzercise. Show that for vector spaces U,V and W there is a natural (basis inde-
pendent) isomorphism

UaeV)oW s (UeW)a (Ve Ww).

Definition. Suppose that V and W are vector spaces with bases vy, ..., v, and
wi,...,w, and @: V. — V and ¢: W — W are linear maps. We can define
wRY: VW =V W as follows:

(e @) (vi @ wj) = p(v3) @ P(wy).
Ezample. If ¢ is represented by the matrix A;; and % is represented by the matrix

B;; and we order the basis v; ® w; lexicographically (ie v1 ® wi,v1 @ wa,...,v1 @
Wy, V2 @ W1, ..., Vm @ wy,) then ¢ ® 1 is represented by the block matrix
AnB ApB

Ang AQQB

Lemma. The linear map ¢ @ ¥ does not depend on the choice of bases.
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Proof. 1t suffices to show that for any v € V and w € W,

(P @¢)(v @ w) = ¢(v) ®p(w).
Writing v = >~ A\jv; and w = ) pjw; we see
(PP (vOw) =D iptyp(vi) @ (w;) = p(v) @ P(w)
4,J
as required. O

Remark. The proof really just says VxW — VW defined by (v, w) — ¢(v)®@¢(w)
is bilinear and ¢ ® v is its correspondent in the bijection

{linear maps V@ W — V @ W} — {bilinear maps V x W — V @ W}
from earlier.

Lemma. Suppose that ¢, @1, 02 € Homy(V,V) and 1, 11,12 € Homy (W, W)

(i) (p1p2) @ (Y11P2) = (01 @ P1)(p2 ® ¥2) € Homy(V @ W,V @ W);
(ZZ) idV ®idW = idV®W,' and
(iii) tr(e @) = tro-trap.

Proof. Given v € V, w € W we can use the previous lemma to compute
(p12) ® (P11h2) (v @ W) = P1a(v) ® P1tha(w) = (P1 @ Y1) (P2 ® P2)(v @ w).

Since elements of the form v ® w span V ® W and all maps are linear it follows that

(P192) @ (Y1¢02) = (1 @ Y1) (2 @ 1P2)

as required.
(ii) is clear.
(iii) For the formula relating traces it suffices to stare at the example above:
AnB AxB
tr | A2z1B AB - | ZB”AM = tr Atr B.
: : : ij

O

Definition. Given two representation (p, V') and (p’, W) of a group G we can define
the representation (p ® p/,V @ W) by (p® p’)(g) = p(g) ® p'(g).

Proposition. If (p,V) and (p', W) are representations of G then (p® p',V @ W)
is a representation of G and Xpep = Xp * Xp'-

Proof. That p ® p’ is a representation follows from (i) and (ii) of the last lemma.
The formula for characters is a straightforward consequence of part (iii). O

Remarks.

(1) It follows that R(G) is closed under multiplication.
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LECTURE 12

(2) Tensor product of representations defined above is consistent with our ear-
lier notion when one of the representations is one-dimensional.

(3) Tt follows from the lemma that if (p, V') is a representation of G and (p’, W)
is a representation of another group H then we may make V ® W into a
representation of G x H via

pvew (g, h) = p(g) @ p'(h).

That this does define a representation of G x H follows from parts (i) and
(ii) of the last lemma. Part (iii) of the lemma gives that

(xv @xw)(g,h): =xvew(g,h) = xv(g)xw(h).

In the last proposition we take the case G = H and then restrict this
representation to the diagonal subgroup G = {(g,9) | g € G} C G x G.

(4) If X,Y are finite sets with G-action it is easy to verify that the isomorphism
of vector spaces kX ® kY =2 kX xY; 6, ® 0y — 0,y is an isomorphism of
representations of G (or even of G x G).

Now return to our assumption that k = C.

Proposition. Suppose G and H are finite groups, (p1,V1),...,(pr, Vi) are all the
simple complex representations of G and (p},Wh),...,(p, Ws) are all the simple
complex representations of H.

Foreachl <i<randl <j<s, (p;® p;-,Vi ®@ W;) is an irreducible complex
representation of G x H. Moreover, all the irreducible representations of G x H
arise in this way.

We have seen this before when G and H are abelian since then all these repre-
sentations are 1-dimensional.

Proof. Let x1,..., X, be the characters of Vq,...,V, and v¥1,...,%s the characters
Ole,...7WS.
The character of V; @ W; is x; @ ¥;: (g, h) — x:i(g)¥;(h). Then
(Xi ® V5, Xk @ Yi)axu = (Xir Xk)G (V5 Vi) 1 = 031051

So the x; ® 9; are irreducible and pairwise distinct.
Now

> (dimV; @ W;)* = (Z(dimm2> > @mW;)* | =|G|[|H| = |G x H|

i,J i

z J

so we must have them all.'! O
Question. If V and W are irreducible then must V' ® W be irreducible?

We’ve seen the answer is yes is one of V' and W is one-dimensional but it is not
usually true.

Ezample. G = S;

Hywe could complete the proof by instead considering conjugacy classes in G X H to show that
dimCgxg = dimCq - dimCpy.
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1 3 2
e (12) (123)
1)1 1 1
el1 -1 1
vi2z o -1

Clearly, 1@ W = W always. e®e=1,e¢®V =V and V ® V has character x?
given by x%(1) = 4, x%(12) = 0 and x?(123) = 1. Thus x? decomposes as 1+ ¢+ x.

Of course in general x;x; = >, af,ij with ai—fj € Ny for all 4,5,k and these
numbers af ; completely determine the structure of R(G) as a ring.
In fact VRV, V®V ®V,... are never irreducible if dim V' > 1.

5.2. Symmetic and Exterior Powers. For any vector space V', define
oc=0y: VRV ->VeVbyovew)—weuvfor all v,w e V.

Ezercise. Check this does uniquely define a linear map. Hint: Show that (v, w) —
v ® w is a bilinear map.

Notice that 02 = id and so, if chark # 2, o decomposes V ® V into two
eigenspaces:
S?V={acV®V|oa=a}
AV :={acV®V|oa=—a}.
In fact this is the isotypical decomposition of V ® V' as a rep of Cs.

Lemma. Suppose vi,...,v, is a basis for V.
(i) S?V has a basis viv; == L(v; ®v; +v; @v;) for 1<i<j<d 12
(it) A2V has a basis v; Avj := 3(v; @ v; —v; @ ;) for 1 <i<j<d.t?
Thus dim S?V = im(m + 1) and dim A?V = Im(m —1).
Proof. 1t is easy to check that the union of the two claimed bases span V ® V and

have m? elements so form a basis. Moreover v;v; do all live in S?V and the v; A v;
do all live in A%2V. Everything follows.'* O

Proposition. Let (p, V) be a representation of G over C.'5
(i) V@V = S2V @ A%V as representations of G.
(ii) for g € G,
1

xs2v(9) = 5(x(9)* + x(4%))
xaev(e) = 5 (x(9)” ~ x(e):

Proof. For (i) we need to show that if a € V ® V and oy (a) = Aa for A = 1 then
ovpvev(g)(a) = Apvev(g)(a) for each g € G. For this it suffices to prove that
cg=go (iec € Homg(VRV,VRV)). But coglv@w) =gw®gv =goo(vRw).

12
13

viv; = v;v; if we allow 4 > j

v; Avj = —v; Av; if we allow 4 > j. In particular v; Av; =0

MEor an alternative argument use Ex Sheet 2 Q11.

15We don’t strictly need this assumption here. Characteristic not 2 suffices.
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To compute (ii) it suffices to prove one or the other since the sum of the right-
hand-sides is x(9)? = xvev. Let vi,..., v, be a basis of eigenvectors for p(g) with
eigenvalues Aq,..., Ap. Then g(vv;) = (AA))vv;.

Thus
X2 +x(0%) = QX2+ D A =2D NN
i i i<y

whereas xs2v(9) = >, NiAj- O

Exzxercise. Prove directly the formula for y a2y .

Ezxample. Sy
1 3 8 6 6
e (12)(34) (123) (12) (1234)
1 1 1 1 1 1
€ 1 1 1 -1 -1
xs |3 -1 0 1 -1
exs |3 -1 0o -1 1
s |2 2 -1 0 0
2 ]9 1 0 1 1
x3(9%) | 3 3 0 3 —1
S2vs | 6 2 0 2 0
A%y |3 -1 0o -1 1

Thus S%x3 = x5 + x3 + 1 and A%x3 = eys. Notice that given 1 and e and x3
we could’ve constructed the remaining two irreducible characters using S?y3 and
A2X3.

More generally, for any vector space V we may consider V" =V ®-.- @ V.
Then for any w € S,, we can define a linear map o(w): V& — V& by

O'(OJ)I Ul®"'1)nl—)’[)w—l(l)@""l)w—l(n)
for vy,...,v, € V.

Ezercise. Show that this defines a representation of S,, on V®" and that if V is a
representation of G' then the G-action and the S,,-action on V®" commute.

LECTURE 13

Thus we can decompose V®™ as a rep of S, and each isotypical component
will be a G-invariant subspace of V®". In particular we can make the following
definition.

Definition. Suppose that V is a vector space we define

(i) the n'™ symmetric power of V to be
S"V = {acV®" | o(w)(a) =a forallwe S,}

and
(ii) the nt" exterior (or alternating) power of V to be

A"V :={a e V®" | o(w)(a) = e(w)a for all w € S,,}.
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Note that S"V & A"V = {a € V®" | g(w)(a) = a for all w € A,,} T V&,
We also define the following notation for vy,...,v, € V,

1
V1 Un :E Z Uw(1)®-~-®vw(n)€S”V

wESy
and
1
VA AUy = ] Z (W) V(1) @+ @ Vy(ny € A"V.
wEeSy,
FEzxercise. Show that if vy,...,vq is a basis for V' then

{viy - vi, [ 1<i <00 <ip < d}
is a basis for S™V and
{Uil/\"'/\vi"‘1<i1<"'<in<d}

is a basis for A”V. Hence given g € V, compute the character values xgny (g) and
XAy in terms of the eigenvalues of g on V.

For any vector space V, AY™V =~ k and A"V =0 if n > dim V.

Ezercise. Show that if (p, V) is a representation of G then the representation of G
on AMMVY =~ [k is given by g + det p(g); ie the dim V" exterior power of V is
isomorphic to det p.

In characteristic zero, we may stick these vector spaces together to form algebras.
Definition. Given a vector space V we may define the tensor algebra of V,
TV := ©psoVE"

(where V®° = k). Then TV is a (non-commutative) graded ring with the product
of v ®--®@uv, € VO and wy ® -+ @ ws € VO given by

VRV QW @ Qw, € VIS,
with graded quotient rings the symmetric algebra of V',

SV =TV/(z@y—yQz|z,yeV),
and the exterior algebra of V,

AV =TV/(z@y+yoz|z,yeV).

One can show that SV = @7@0 S™V under 1 ® -+ ® T, — T1---x, and
AV = @n>OA”V under 21 ® - Q Xy = X1 A -+ A Xy,

Now SV is a commutative ring and AV is graded-commutative; that isif x € A"V
and y € AV then z Ay = (—1)"y A z.

5.3. Duality. Recall that Cg has the x-operation given by f*(g) = f(g~'). This
also restricts to R(G).

Definition. If G is group and (p, V) is a representation of G then the dual repre-
sentation (p*,V*) of G is given by (p*(g)0)(v) = 8(p(g~')v) for § € V*, g € G and
veV.

Lemma. xy- = (xv)*.
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Proof. If p(g) is represented by a matrix A with respect to a basis vy,...,v4 for V
and €1, ...,€q is the dual basis for V*. Then p(g)~'v; = > (A7) iv;.

Thus (p*(9)er)(vi) = ex (X, (A);i05 ) = (A™)as and s0

pr(9)er =Y (A Nfe

9

i.e. p*(g) is represented by (A~1)T with respect to the dual basis. Taking traces
gives the result. 0

Definition. We say that V is self-dual if V=2 V* as representations of G.

When G is finite and k = C, V is self-dual if and only if x (g) € R for all g € G;
since this is equivalent to xy« = xv.

Ezxamples.

(1) G=Cs=(z)and V = C. If pis given by p(z) = w = ¢ 5 then p*(z) = w? =@
and V is not self-dual.

(2) G =S, since g is always conjugate to its inverse in S,,, x* = x always and so
every representation is self-dual.

(3) Permutation representations CX are always self-dual.

Ezercise. Show both directly and using characters that if U, V, W are complex
representations of GG then

V @ W =2 Homg(V*, W) and Homg(V ® W,U) = Homy (V, Homy (W, U))
as representations of G. Deduce that if V is self-dual then either (1, xg2y) # 0 or
(1, xa2v) # 0. Hint:
O: V*®@ W — Homy(V,W); O(c @ w)(v) = e(v)w
and
¥ Homy,(V @ W, U) — Homy,(V, Homy (W, U)); ¥(a) (v)(w) = a(v @ w)
characterise the required isomorphisms.

We’ve now got a number of ways to build representations of a group G:

e permutation representations coming from group actions;

via representations of a group H and a group homomorphism G — H (e.g.
restriction);

tensor products;

symmetric and exterior powers;

decomposition of these into irreducible components;

character theoretically using orthogonality of characters.

We're now going to discuss one more way related to restriction.
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LECTURE 14
6. INDUCTION

Suppose that H is a subgroup of GG. Restriction turns representations of G into
representations of H. We would like a way of building representations of G from
representations of H. There is a good way of doing so called induction although it
is a little more delicate than restriction.

Notation. Given a group G we’ll write [g]g for the conjugacy class of g € G. So
1y G — k given by

1 if x is conjugate to g in G
1[9]G(x) =

0 otherwise
is in Cq.
We note that for g € G,
9l = [g_l]&
since (zgz~') "' =xzg 7'z, and so (1ig,)" = 1jg-1),-

If H < G then [g]g N H is a union of H-conjugacy classes

YenH= |J [Wa
[hluClgla
SO
r:Ce = Cu; f = flu
is a well-defined linear map with

*(lge) = >, 1

[hluClgle

Since for every finite group G, (f1, f2)a = ﬁ > gec 11(9)f2(g) defines a non-
degenerate bilinear form on C¢, the map r has an adjoint r* characterised by

(r(f1), foym = (f1,7"(f2))c for f1 € Cq, f2 € Cu.

In particular for f € Cy,

(A7 (Mo = Wyl = gz 30 [l ).
(M uClgle
On the other hand,
1
o™ (Pl = g7 X 7060 = (1))
Thus, by comparing these we see that

Question. Is r*(R(H)) C R(G)?
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Suppose that x is a C-character of H and v is an irreducible C-character of G.
Then

<¢7T*(X)>G = <7"(1/’)7X>H € No

by orthogonality of characters, since r(¢) is a character of H.
So writing Irr(G) to denote the set of irreducible C-characters of G

(2) r(x) = Z (Ola, )y
x€E€Irr(G)

is even a character in R(G). The formula (2) is only useful for actually computing
r*(x) if we already understand Irr(G). Since our purpose will often be to use Irr(H)
to understand Irr(G), the formula (1) will typically prove more useful.

Ezample. G = S5 and H = Az = {1, (123), (132)}.
If f € Cy then

P(F)(e) = 2 fle) = 2f(e),

3
r*(f)((12)) =0, and
P (7)((123)) = S F((123)) + 5 7((132) = F(123)) + £((132).
Thus

A3 |1 (123) (132) Sy |1 (12) (123)
x1 |1 1 1 r*(x1) | 2 0 2
x2 |1 w w? r*(x2) | 2 0 -1
xa |l w? w r*(xs) | 2 0 -1

So r*(x1) = 14+e€ and r*(x2) = r*(x3) is the 2-dimensional irreducible character
of S5 consistent with the formula (2).

Note that if x is an irreducible character then 7*(x) may be irreducible but need
not be so.

If G is a finite group and W is a k-vector space we may define Hom(G, W) to
be the vector space of all functions G — W under pointwise addition and scalar
multiplication. This may be made into a representation of G by defining

(9- (@)= flg"x)
for each g,z € G. If wy,...,wy is a basis for W then {d,w; | g € G,1 < i < n}is
a basis for Hom(G, W). So dim Hom(G, W) = |G|dim W.

Lemma. Hom(G, W) = (dim W)kG as representations of G.
Proof. Given a basis w1, ..., w, for W, define the linear map
©: P kG — Hom(G, W)

1=1
by

(fzzl Zfz

It is easy to see that © is injective because the w; are linearly independent so by
comparing dimensions we see that © is a vector-space isomorphism.
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It remains to prove that © is G-linear. If g,z € G then

n

g- Of)ie))@) =Y filg™ z)wi = O(g - (fi)izy)(2)

i=1

as required. O

Ezercise. Use the basis of Hom(G, W) given above to find a character-theoretic
proof of the lemma.

Now, if H is a subgroup of G and W is a representation of H then we can define
Homp (G, W) := {f € Hom(G, W) | f(zh) = h™' f(2) Vx € G,h € H},
a k-linear subspace of Hom(G, W).

Ezample. If W = 1 is the trivial representation of H and f € Hom(G,1), then
f € Hompy(G,1) if and only if f(axh) = f(z) for h € H and = € G. That is
Hompg (G, 1) consists of the functions that are constant on each left coset in G/H.
Thus Hompy (G, 1) can be identified with kG/H. One can check that this identifi-
cation is G-linear.

Lemma. Hompy (G, W) is a G-invariant subspace of Hom(G,W).

Proof. Let f € Homgy (G, W), g,z € G and h € H we must show that

(g- N)(xh) =h" (g f)(x).
But (g- f)(zh) = f(g7'zh) = h~ 1 f(g7'z) = h~ (g f)(x) as required. O

Definition. Suppose that H is a subgroup of G of finite index and W is a represen-
tation of H. We define the induced representation to be Indg W := Hompg (G, W)

Proposition. Suppose W is a representation of H then for g € G,

Xlndgw(g) = (xw)

_ Ca(9)l
A

S LS e

reG
z-lgreH

1 o s _
= HZXW@ 'gx)

zeG

where xy, € Ca 1s given by

olg) = {XW(Q) when g € H

0 otherwise.

In particular dim Ind$ W = Xmna§ w(€) = % dim W;
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LECTURE 15

Remark. x~'gx € H if and only if grH = xH so if W is the trivial representation
1 1 1
N (e lgr) = o {w € G| gaH = aH}|
] 2 H
= |{aH € G/H |gzH = zH}|
and we get the permutation character of kG/H as required.

Proof of Proposition. First we observe that for z,v, ¢ € G, since z~'gz = y gy if
and only if 2y~ € Cg(g),

Ca(9)l _ Calg)|
WHZQ[Q]G ‘CH(hHXW(h) - heHZﬂ[sﬂc |H| xw (h)
1

] 2 X ).

zeG

So it suffices to show that

1
Xinag w(9) = 7 > Xz ga).
zeG
Let x1,...,2, be left coset representatives in G/H. Then f € Hompg(G, W) is
determined by f(x1),..., f(z,) € W since f(x;h) = h=1f(z;) for alli = 1,...7
and h € H.
Moreover, given wy, ..., w, € W we can define f € Homgy (G, W) via

f(z;h) =h tw; fori=1,...,r and h € H.
Thus
©: Homp (G, W) - W

i=1
defined by f — (f(x;))7_; is an isomorphism of vector spaces.

In particular given w € W, and 1 < j < r, we can define ¢;,, € Homg (G, W)
by

pjw(@rh) = 8ph™ w
for each h € H and 1 < k < r so that © ({¢;..|w € W}) is the jth copy of W in
S W

Now given g € G, let’s consider how g acts on a ¢, ,,. For each coset represen-
tative x; there is a unique o (i) and h; € H such that g~ lz; = xa(i)hi_l € roi)H,
and

(9 Piw) (@) = Liw(g7"25) = i (@o(jyh; ") = Sio(jyhjw.
Thus g Piw = Qoa'*l(i),ha,l(i)w'

Thus g acts on @_, W via a block permutation matrix and we only get con-
tributions to the trace from the non-zero diagonal blocks which correspond to the
fixed points of o. Moreover if (i) =i then g acts on W; via h; = 2; *g;

Thus

T Grmag w = ZX?/V(mi_lgxi)'

7
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Since G = {z;h | h € H} and x§,(h~tyh) = x5 (y) for all y € G and h € H we
may rewrite this as

1 3 _
tr grnag w = 1H]| Z Xy (zga™")
zeG
as required. 0

If V is a representation of G, we’ll write Resfl V for the representation of H
obtained by restriction.

Corollary (Frobenius reciprocity). Let V' be a representation of G, and W a rep-
resentation of H, then

(i) (xv,Ind% xw)e = (Res% xv, xw)u;
i) Home(V,Ind% W) = Homy (Res$, V, W).
H H

Proof. (i) follows from Ind$ xyw = r*(xw) and the fact that Res$ xv = r(xv).
We’ve already seen that (i) implies (ii) since the dimension of the LHS of (ii) is the
LHS of (i) and the dimension of the RHS of (ii) is the dimension of the RHS of
(i). O
Ezercise. Prove (ii) directly by considering

©: Homg(V,Hompy (G, W)) +» Homy (V,W): ¥
defined by ©(f)(v) = f(v)(e) and ¥(B)(v)(g) = B(g~'v). This gives an alternative

proof that Xtom, (c,w) = r*(xw)-

6.1. Mackey Theory. This is the study of representations like Res?( Indff W for
H, K subgroups of G and W a representation of H. We can (and will) use it to
characterise when Indfl W is irreducible using that

(Indf; xw,Indf xw)e = (Resf; Indf; W, W) 4.
If H, K are subgroups of G we can restrict the action of G on G/H to K
K xG/H - G/H; (k,gH) — kgH.

The the union of an orbit of this action is called a double coset. The union of the
K-orbit of gH is written KgH := {kgh |k € K,h € H}.

Definition. K\G/H := {KgH | g € G} is the set of double cosets.

The double cosets partition G.

Given any representation (p, W) of H and g € G, we can define (9p,9 W) to be
the representation of YH := gHg~ ! < G on W given by (9p)(ghg™!) = p(h) for
heH.

Theorem (Mackey’s Restriction Formula). If G is a finite group with subgroups
H and K, and W is a representation of H then

Res$ Ind§ W = @ Ind o g ReSZﬁﬁK w.
9EK\G/H

Proof. For each double coset KgH we can define
Vicgr = {f € IndG W | f(x) =0 for all = ¢ KgH}.



38 SIMON WADSLEY

Then Vicyp is a K-invariant subspace of Ind$ W since we always have (kf)(z) =
f(k~'z). Thus there is a decomposition

Resft IndG W= P Viyn
geK\G/H
and it suffices to show that for each g,
Vicgr =2 Ind% .y Resy 2 9W

as representations of K.
It is easy to see that

Vicgm = {f: KgH — W | f(zh) = h™ ' f(z) for all x € KgH}
with K-action given by kf(z) = f(k~'z) and we must show
Vigr = Homgno g (K, 9W).
Define such a © by O(f)(k) = f(kg). If ghg™* € K for some h € H,
O(f)(kghg™") = f(kgh)
= p(h™")f(kg)
= (“p)(ghg™") ' O(f)(K)

Thus Im © < Ind% ., ;; Resi L, 7 9W.
Also, if k¥’ € K then

(K'O(f))(k) = f(K''kg) = (k' f)(kg) = O(K'f)(k)
and so © is K-linear.
© is injective since, if f € Vigg with f(kg) =0 for all k € K, then

f(kgh) = h=" f(kg) = h~'(0) =0
forall k € K and h € H so f = 0. It thus remains to show that
dim Vg = dim Ind %, ;7 9W.

Since choosing f € Vig4u is equivalent to choosing an element of W for coset
representatives of each element Orbg (¢9H) C G/H,

. . . K| , K]
dim V; =dimW|Orbg(¢gH)| =dimW ———+ =dimW ———
im Vi gr im W|Orbg (gH)| im Stabr (91| im KA gHg ]
(since kgH = gH if and only if k € gHg™'). Finally
. g |K| :
dim Indgmg[{ Resgng IW = m dim W
by the Proposition stated at the end of the last lecture. (Il

LECTURE 16

Corollary (Character version of Mackey’s Restriction Formula). If x is a character
of a representation of H then
Res& Ind§ x = Z Indfynx I
KgHeK\G/H
1

where 9x is the class function on 9H N K given by 9x(x) = x(¢ 'zg).

Ezercise. Prove this corollary directly with characters
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Corollary (Mackey’s irreducibility criterion). If H is a subgroup of G and W is a
representation of H, then Indg W is irreducible if and only if
(i) W is irreducible and
(ii) for each g € G\H, the two representations Resyh, y IW and Resty g W of
H N9 H have no irreducible factors in common.

Proof.

Frob. recip.

< Indfl XW, Indg Xw)e (Xw, Resg Indg XW)H

Mackey g
= Z (xw, IndgnﬁH ResHlLrIWH IXw)a

geEH\G/H

Frob. recip. g

= Z <ResgnyH XW7RGSHI?19H IXW)Hns H

geEH\G/H

So Indg W is irreducible precisely if

Z (Resfrmo g XW»ReSj{PrIwH IXw)ansg = 1.
geH\G/H
The term corresponding to the coset HeH = H is (xw, xw)m which is at least 1
and equal to 1 precisely if W is irreducible. The other terms are all > 0 and are
zero precisely if condition (ii) of the statement holds. O

Corollary. If H is a normal subgroup of G ,and W is an irreducible rep of H then
Indg W is irreducible if and only if Ixw # xw for all g € G\H.

Proof. Since H is normal, gHg~! = H for all g € G. Moreover YW is irreducible
since W is irreducible.
So by Mackey’s irreducibility criterion, Indg W irreducible precisely if W 2 9W
for all g € G\H. This last is equivalent to xw # 9xw as required.
O

Ezxzamples.

(1) H = (r) = C,, the rotations in G = Da,. The irreducible characters x of H
are all of the form x(r7) = e . We see that Ind% x is irreducible if and only
if x(r7) # x(r~7) for some j. This is equivalent to y not being real valued.

(2) G=S,and H=A,. If g € S, is a cycle type that splits into two conjugacy
classes in A,, and x is an irreducible character of A,, that takes different values
of the two classes then Indg X is irreducible.

6.2. Frobenius groups.

Definition. A Frobenius group is a finite group G that has a transitive action on
a set X with |X| > 1 such that each g € G\{e} fixes at most one z € X and
Stabg(z) # {e} for some (all) x € X.

FEzxzamples.

(a) G = Dy, with n odd acting naturally on the vertices of an n-gon.

(b) G = {(8 l{) |a,b€Fp,a7é0} acting on X = {(f) xer} by matrix

multiplication.
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Lemma. G is a Frobenius group if and only if G has a proper subgroup H such
that HNgHg™ ' = {e} for all g € G\H.

Proof. Suppose the action of G on X shows G to be Frobenius and pick z € X.
Let H := Stabg(z) for some fixed x € X, a proper subgroup of G. Then
gHg™! = Stabg(gr) for each g € G. Since no element of G'\{e} fixes more than
one z € X it follows that gHg~' N H = {e} for each g € G\H.
For the converse let X = G/H with the left regular action and reverse the
argument. (I

Theorem. (Frobenius 1901) Let G be a finite group acting transitively on a set X.
If each g € G\{e} fizes at most one element of X then

K={1}U{geG|gx#zx foralzec X}
is a normal subgroup of G of order |X|.

It follows that no Frobenius group can be simple. The normal subgroup K is
called the Frobenius kernel and the group H is called the Frobenius complement.
No proof of the theorem is known that does not use representation theory.

Proof. For x € X, let H = Stabg(x) so |G| = |X||H| by the orbit-stabiliser theo-
rem.
By hypothesis if g € G\ H then

Stabg(gz) N Stabg(x) = gHg ' N H = {e}.
Thus

() |U,ex Stabg(2)] = |Uyeq 9Hg ' = (1H| - 1)|X| + 1
(ii) h and A’ in H are conjugate in G if and only if they are conjugate in H.
(iii) |Cg(h)| = |Cy(h)| fore #h € H
By (i) |K| = {e} U (IG\U,ex Staba(z)) | = [H||IX| - (|H| = 1)|X] = |X] as
required.
We must show that K <G. Our strategy will be to prove that it is the kernel of
some representation of G.
Now if x is a character of H we can compute Indg X:

[ XIx(e) ifg=e
d§ x(g) = { x(h)  ifg=he H\{e}
0 if g € K\{e}

Suppose now that xi,..., X, is a list of the irreducible characters of H and let
0; = Ind% x; + xi(e)le — xi(e)Ind§ 15 € R(G) for i =1,...,7 and so

xi(e) ifg=e
0i(g) = { xi(h) ifg=heH
xi(e) ifgek
If 6; were a character then the corresponding representation would have ker-

nel containing K. Since #; € R(G) we can write it as a Z-linear combination of
irreducible characters 8; = > n;1;, say.
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Now we can compute

1 2
(0:,0i)c = @ Z 10:(9)]

geG

1

e S X+ xile)
heH\{e} KEK

|X] (Z )
=14 |Xi(h)|

Gl \ier
= (Xi»Xi)a =1

But on the other hand it must be " n?. Thus 6; is +¢ for some character 1 of G.
Since 6;(e) > 0 it must actually be an irreducible character.

To finish we write 8 = > x;(e)0; and so 0(h) = > xi(e)xi(h) = 0 for h € H\{e}
by column orthogonality, and (k) = 3" xi(e)? = |H| for k € K. Thus K = ker 0 is
a normal subgroup of G. O
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LECTURE 17
7. ARITHMETIC PROPERTIES OF CHARACTERS

In this section we’ll investigate how arithmetic properties of characters produce
a suprising interplay between the structure of the group and properties of the
character table. The highlight of this will be the proof of Burnside’s famous p®q®-
theorem that says that the order of a simple group cannot have precisely two distinct
prime factors.

7.1. Arithmetic results. We’ll need to quote some results about arithmetic with-
out proof; proofs should be provided in the Number Fields course (or in one later
case Galois Theory). We’ll continue with our assumption that & = C and also
assume that our groups are finite.

Definition. z € C is an algebraic integer if it is a root of a monic polynomial with
integer coefficients.

Facts.

Fact 1 The algebraic integers form a subring of C. (cf Groups, Rings and Modules
2021 Examples Sheet 4 Q13)

Fact 2 Any subring of C that is finitely generated as an abelian group consists of
algebraic integers. (cf Groups, Rings and Modules 2021 Examples Sheet 4
Q13)

Fact 3 If € Q is an algebraic integer then z € Z. (cf Numbers and Sets 2010
Example Sheet 3 Q12)

Lemma. If x is the character of a representation of a finite group G, then x(g) is
an algebraic integer for all g € G.

Proof. We know that x(g) is a sum of n'* roots of unity for n = |G|. Since each
n*" root of unity is by defintion a root of X™ — 1 and so an algebraic integer. The
lemma follows from Fact 1. O

7.2. The group algebra. Before we go further we need to explain how to make
the vector space kG into a ring. There are in fact two sensible ways to do this. The
first of these is by pointwise multiplication: f1 f2(g) = f1(g)f2(g) for all g € G will
make kG into a commutative ring. But more usefully for our immediate purposes
we have the convolution product

fifa(g) = filgx) fala™) = D fi(@) fa(y)

ze€G z,yeG
Y=g

that makes kG into a (possibly) non-commutative ring. Notice in particular that
with this product dy, 64, = 04,4, and so we may rephrase the multiplication as

9192
O N8O b)) =D D Agtin | Ok
9geG heG keG \gh=k

From now on this will be the product we have in mind when we think of kG as a
ring.

We notice in passing that a (finitely generated) kG-module is the ‘same’ as a
representation of G: given a representation (p,V) of G we can make it into a
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kG-module via

fo=">"f@)r(g) ().

for f € kG and v € V. Conversely, given a finitely generated kG-module M we can
view M as a representation of G via p(g)(m) = dym.

FEzxercise. Suppose that kX is a permutation representation of G. Calculate the
action of f € kG on kX under this correspondence.

It will prove useful understand the centre Z(kG) of kG; that is the set of f € kG
such that fh = hf for all h € kG.

Lemma. Suppose that f € kG. Then f is in Z(kG) if and only if f € Cq, the
set of class functions on G. In particular dimy Z(kG) is the number of conjugacy
classes in G.

Proof. Suppose f € kG. Notice that fh = hf for all h € kG if and only if
fog = d4f for all g € G: the forward direction is clear and for the backward
direction if fd, = d4f for all g € G then

Fh="Y" fh(g)dg =Y h(g)dyf = hf.

9eG geG
But 0, f = fd, if and only if d,fd,-1+ = f and
(04f34-1)(x) = (3,f)(xg) = f(g~ ' zg).
So if f € Z(kG) if and only if f € Cg as required. O

Remark. The multiplication on Z(kG) is not the same as the multiplication on Cg
that we have seen before even though both have the same additive groups and both
are commutative rings.

Definition. Suppose O; = {e},..., O, are the conjugacy classes of G, define the

class sums C4,...,C; to be the class functions on G so that
1 i
C, - geO

We called these 1, before but have changed notation to remind ourselves that the
multiplication is not pointwise. Also we’ll fix g; € O; for convenience.

We’ve seen that the class sums form a basis for Z(kG).

Proposition. There are non-negative integers ai;i, such that C;C; = >, a;j1Ck
fori,j ke {l,...,r}. Indeed
aijr = |(2,y) € O; x O | 2y = g }|-
The a;;i are called the structure constants for Z(kG).
Proof. Since Z(kG) is a ring, we can certainly write C;C; = > a;;4C} for some
ik € k.
However, we can explicitly compute for gi € O,

aiji = (C:Cy)(gr) = Y Ci(x)C5(y) = {(x,y) € Oi x O; | zy = gi}|

z,y€G
TY=9k

as claimed. O
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Suppose now that (p, V) is an irreducible representation of G. Then if z € Z(kG)
we see that z: V — V given by 20 =3 - 2(9)p(g9)v € Homg(V, V).

By Schur’s Lemma it follows that z acts by a scalar A, € k on V. In this way
we get an algebra homomorphism w,: Z(kG) — k; z — A..

Taking traces we see that

dimV -\, = Z z(g)xv(g).
geG
So

(€)= X810, for g € 0.

We now see that w, only depends on x, (and so on the isomorphism class of p)
and we write w, = w,,.

Lemma. The values w, (C;) are algebraic integers.

Note this isn’t a prior:i obvious since ﬁ will not be an algebraic integer for

x(e) # 1.

Proof. Since w, is an algebra homomorphism Z(kG) — k,
Wy (C)wy (C5) =Y aijrwy (Cr).
i

So the subring of C generated by w, (C;) for i = 1,...,r is a finitely generated

abelian group. The result follows from Fact 2 above. O
Lemma.
G| x(gi)x g] (95 )
Aiik — .
/ ‘CG 9i HCG 9gj | Z

In particular the a5, are determined by the character table.

Proof. For each irreducible character Y,

x(9:) |O¢|X(gj) 0,=% iij(gk) Ol

= a
x(e) " x(e) - x(e)
Multiplying both sides by %(lgfl), using |O;| = % for [ = 4,7,k and sum-

ming over x € Irr(G) we obtain

IGI x(9:)x(95) 1
CaloniCatay)] 2= (0 Z| gl 2 Xox(e) = i

x€lrr(G)

by column orthogonality. (Il

LECTURE 18

7.3. Degrees of irreducibles.

Theorem. If V is an irreducible representation of a group G then dimV divides

Gl
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Proof. Let x be the character of V. We’ll show that % is an algebraic integer
and so, since it is rational, an actual integer by Fact 3 from §7.1.

Gl _ % > x(9)x(g™h)

x(e)  x(e) =

-y ﬁ\onx(gi)x(gi—l)

= wa(Ci)x(gfl)

But the set of algebraic integers form a ring (by Fact 1 in §7.1) and each w, (C;) and

each x(g; 1) is an algebraic integer so % is an algebraic integer as required. [

FEzxzamples.

(1) If G is a p-group and x is an irreducible character then x(e) is always a
power of p. In particular if |G| = p? then, since > x x(e)? = p?, every
irreducible rep is 1-dimensional and so GG is abelian.

(2) fG= A, or S, and p > n is a prime, then p cannot divide the dimension
of an irreducible rep.

In fact a stronger result is true:

Theorem (Burnside (1904)). If (p,V) is an irreducible representation then dim V'
divides |G/ Z(G)].

You could compare this with |O;| = |G|/|Cs(g;)| divides |G/Z(G)|.

Proof. If z € Z = Z(G) then by Schur’s Lemma p|z: Z — GL(V) is of the form
p(z) = Aidy with A, € k.
For each m > 2, consider the irreducible representation of G™ given by

P G™ — GL(V®™).

If 2 = (21,...,2m) € Z™ then z acts on V™ via [['2) A.,idy = Arpm .,idy. Thus
if TI" z; = 1 then z € ker p®™.

Let Z' = {(z1,...,2m € Z™ | [\, z: = 1} so |Z'| = | Z|™~ . We may view p®™
as a degree (dim V)™ irreducible representation of G™/Z’.

Since |G™/Z'| = |G|™/|Z|™~! we can use the previous theorem to deduce that
(dim V)™ divides |G|™/|Z|™~ 1.

Suppose that p is a prime such that p® divides dimV. Then p*™ divides
|G/Z|™|Z|. By taking m to be large, in particular so that p™ does not divide
|Z|, we see that p® divides |G/Z|. Thus dim V' divides |G/Z| as claimed. O

Proposition. If G is a simple group then G has no irreducible representations of
degree 2.

Proof. If G is cyclic then G has no irreducible representations of degree bigger than
1, so we may assume G is non-abelian.
If |G| is odd then we may apply the theorem above.
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If |G| is even then G has an element x of order 2. By example sheet 2 Q2,
for every irreducible x, x(x) = x(e) mod 4. So if x(e) = 2 then x(x) = £2, and
p(x) = £I. Thus p(x) € Z(p(QG)), a contradiction since G is non-abelian simple. [

Remark. In 1963 Feit and Thompson published a 255 page paper proving that there
is no non-abelian simple group of odd order.

7.4. Burnside’s p®¢® Theorem.

Lemma. Suppose « is an non-zero algebraic integer of the form o = % POHEPY
with A\ = 1 for alli. Then |a| = 1.16

Sketch proof (non-examinable). By assumption o € Q(¢) where € = e27/™,

Let G = Gal(Q(e)/Q). It is known that {8 € Q(e) | 0(8) = S for all 0 € G} = Q.

Consider N(a) := [],¢g o(a). Since N(a) is fixed by every element of G, N(«) €
Q. Moreover N(«) is an algebraic integer since Galois conjugates of algebraic
integers are algebraic integers — they satisfy the same integer polynomials. Thus
N(a) € Z.

But for each o € G, |o(a)| = |2 > o(A;)| < 1. Thus N(a) = £1, and |a| =1 as
required. (I

Lemma. Suppose x is an irreducible character of G, and O is a conjugacy class
in G such that x(e) and |O| are coprime. For g € O, |x(g)| = x(e) or 0.

Note if x = xy this is saying that either g acts as a scalar on V or x(g) = 0.

Proof. By Bezout, we can find a,b € Z such that ax(e) + b|O| = 1. Define

x(9) x(9)
o= =ax(g) + b==|0
x(e) D+
Then, since x(g) is a sum of |G|th roots of unity, « satisfies the conditions of the
previous lemma (or is zero) and so this lemma follows. (]

Proposition. If G is a non-abelian finite group with a conjugacy class O; # {e}
such that |O;| has prime power order then G is not simple.

Proof. Suppose for contradiction that G is simple and has an element g € G\{e}
that lives in a conjugacy class O of order p".

If x is a non-trivial irreducible character of G then |x(g)| < x(1) since otherwise
p(g) is a scalar matrix and so lies in Z(p(G)) = Z(G).

Thus by the last lemma, for every non-trivial irreducible character, either p

divides x(e) or |x(g)] = 0 . By column orthogonality,

0="> x(e)x(g)-

Thus % =2 1 %Mg) is an algebraic integer in Q. Thus % in Z the desired
contradiction. O
Theorem (Burnside (1904)). Let p,q be primes and G a group of order p®q® with
a, b non-negative integers such that a +b = 2, then G is not simple.

16 e. all the A; are equal.



REPRESENTATION THEORY 47

Proof. If a,b > 0, then let @ be a Sylow-g-subgroup of G. Since Z(Q) # 1 we can
find e # g € Z(Q). Then ¢" divides |Cg(g)|, so the conjugacy class containing g
has order p" for some 0 < r < a. The theorem now follows immediately from the
Proposition. [

Remarks.

(1) Tt follows that every group of order p®q® is soluble. That is, there is a chain
of subgroups G = Gy > G1 > --- > G, = {e} with G;;1 normal in G; and
G;/G;41 abelian for all i.

(2) Note that |A5| =22-3-5 so the order of a simple group can have precisely
3 prime factors.

(3) The first purely group theoretic proof of the p®q®-theorem appeared in 1972.
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8. TOPOLOGICAL GROUPS

Consider S' = U;(C) = {g e C* | |g| = 1} X R/Z.
By considering R as a Q-vector space we see that as a group

s'=Q/ze P
rzeX
for an an uncountable set X.
Thus we see that as an abstract group S! has uncountably many irreducible
representations: for each x € X we can define a one-dimensional representation by

2w 627”-# He Qx
px(e ) = .
1 1€ Q/ZSD,ex\ 12y Qu

These p, are non-isomorphic so in this way we get uncountably many irreducible
representations of S (we haven’t listed them all). We don’t really have any control
over the situation.

LECTURE 19

However, S' is not just a group; it comes with a topology as a subset of C.
Moreover S! acts naturally on complex vector spaces in a continuous way.

Definition. A topological group G is a group G which is also a topological space
such that the multiplication map G x G — G;(g,h) — gh and the inverse map
G — G; g+ g1 are continuous maps.

Ezxamples.

(1) GL,(C) with topology from c’.

(2) G finite — with the discrete topology.

(3) O(n) ={A € GL,(R) | ATA=1}; SO(n) ={A € O(n) | det A= 1}.
(4) U(n) = {A € GL,(C) | ATA=1}; SU(n) = {A € U(n) | det A = 1}.
(5

) *G profinite such as Z,, the completion of Z with respect to the p-adic metric.

Definition. A representation of a topological group G on a vector space V is a
continuous group homomorphism G — GL(V).

Remarks.

(1) If X is a topological space then a: X — GL,(C) is continuous if and only if
the maps = — o;;(z) = a(z);; are continuous for all ¢, j.

(2) If G is a finite group with the discrete topology. Then continous function
G — X just means function G — X.

8.1. Compact Groups. Our most powerful idea for studying representations of
finite groups has been averaging over the group; that is the operation I—é‘ > 9eG-

When considering more general topological groups we should replace >~ by [.

Definition. For G a topological group and C(G,R) = {f G — R | f is continuous},
alinear map [ : C(G,R) — R (we write [, f = [,f(g)dg) is called a Haar integral
if
(i) Jo1=1(so [ is normalised so total volume is 1);
i) [, flzg)dg = [, f(9)dg = [, f(gx)dg for all z € G (so [, is translation
invariant).
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Note that for any R-vector space [, induces a linear map C(G,V) — V; if
V1y...,0p 18 a basis for V then f € C(G,V) is uniquely of the form f = Y fiv;
with f1,...,fn € C(G,R) and [, f =>7 ([ fi) vi. Moreover this map is also
translation invariant and sends a constant function to its unique value.

Moreover if a: V — W is a linear map and f € C(G, V) then o ([, f) = [ (af).
In particular if V' is a C-vector space then f ¢ is C-linear.

FEzxzamples.

(1) If G finite, then [, f = ﬁ >gec F9)-
2

(2) UG=5" [, f=5 [, f(e)do.

Theorem. If G is a compact Hausdorff group, then there is a unique Haar integral
on G.

Proof. Omitted U

All the examples of topological groups from last time are compact Hausdorff
except GL,(C) which is not compact. We’ll follow standard practice and write
‘compact group’ instead of ‘compact Hausdorff group’.

Corollary (Weyl’s Unitary Trick). If G is a compact group then every representa-
tion (p, V) has a G-invariant invariant Hermitian inner product.

Proof. Same as for finite groups: let (—, —) be any inner product on V', then

(v, 0) = /G (p(g)0, plg)w) dg

is the required G-invariant inner product since

(p(R)v, p(h)w) = /G (p(gh)v, p(gh)w) dg = (v, w)

for v,w € V. Checking that (—, —) is an inner product is straightforward. O

Thus every representation of a compact group is equivalent to a unitary repre-
sentation.

Corollary (Maschke’s Theorem). If G is a compact group and V is a representation
of G then every subrepresentation of V' has a G-invariant complement. Thus G is
completely reducible.

We can use the Haar integral to put an inner product on the space Cg of (con-
tinuous) class functions:

1) = /G 7@/ (9) dg.

If p: G = GL(V) is a representation then x, := trp is a continuous class function
since each p(g);; is continuous.

Corollary (Orthogonality of Characters). If G is a compact group and V. and W
are irreducible reps of G then

1 fVeEwW

<XV7XW> = {O ifVEW.
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Proof. Same as for finite groups:

o) = [ @) dg
= dim Homg (1, Hom(V, W))
= dim Homg (V, W).

Then apply Schur’s Lemma.

Note along the way we require that yy(g7') = xv(g) which follows from the
fact that we may assume that py(G) C U(V) and so the eigenvalues of py(g) are
contained in S! for all g € G.

We also need to define a projection map w: U — U for U = Homy, (V, W). For
this we define 7 = [, p € Homy (U, U): if u € U then

</G pU) (u) = /GPU(Q)Udg —u

pu(h)m = /Gpu(h)pU(g) dg = /Gpu(hg) dg = .

Moreover trm = xp. [

and

It is also possible to make sense of ‘the characters are a basis for the space of
class functions’ but this requires a little knowledge of Hilbert spaces.

8.2. A worked example: S'.

Theorem. Every one dimensional (cts) representation of S is of the form z — 2"
for somen € Z.

First we need to prove a couple of Lemmas.

Lemma. If¢: (R,+) = (R,+) is a continous group homomorphism then there is
some X € R such that ¥(x) = Az for all x € R.

Proof. Let A = 4(1). Since v is a group homomorphism, ¥(n) = An for all n € Z.
Then mi(n/m) = ¥(n) = An and so ¥(n/m) = An/m. That is ¥(z) = Az for all
x € Q. But Q is dense in R and ¢ is continuous so ¥ (z) = Az for all z € R. O

LECTURE 20

Lemma. If ¢: (R,+) — S is a continuous group homomorphism then 1(x) =
2™ for some X € R.

Proof. Claim: if ¢: R — S! is any continuous function with 1/(0) = 1 then there is
a unique continuous function a: R — R such that a(0) = 0 and ¢ (z) = e?mie(®) 17
(Sketch proof of claim: locally a(z) = 51 logt(z) and we can choose the branches
of log to make the pieces glue together continuously).

Now given the claim, if ¢ is a group homomorphism and « is the map defined
by the claim we can define a continuous function R2 — R by

A(a,b) := ala+b) — ala) — a(b).
17In the language of algebraic topology R — S1; & + €27 is a covering map and so paths in
S1 lift uniquely to paths in R after choosing the lift of the starting point. In fact R is the universal
cover of S! via this map.
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Since €m0 = 4h(a + b)ip(a) " "p(b)"' = 1, A only takes values in Z. Thus as
R? is connected, A is constant. Since A(0,0) = 0 we see that A =0 and so « is a
group homomorphism. By the previous lemma we can deduce that there is A € R
such that a(z) = Az for all # € R and so 1 (x) = €™ as required. O

Theorem. Every irreducible representation of S' has degree 1 and is of the form
z > 2" for some n € Z.

Proof. Since S! is abelian, by Schur’s Lemma every simple representation (p, V') of
S1 has degree 1 — each p(g) € Homg: (V, V) and so is a scalar endomorphism.

Let p: S1 — GL1(C) be a continuous homomorphism. Since S! is compact,
p(S1) has closed and bounded image. Since p(z") = p(z)" for n € Z, it follows that
p(S*) c St.

Now let ¢: R — S be defined by ¥ (x) = p(e*™*®), a continuous homomorphism.
By the most recent Lemma, p(e2™*) = 1)(z) = €2™** for some A € R.

Since also p(e?™) =1 we see \ € Z. O

The theorem tell us that the ‘character table’ of S has rows y,, indexed by Z
with y,,(e?) = ei?.

Notation. Let

Nolz, 271 :== {Z anz" | an € Ny with Z an < oo}

nez n€Np

Now if V is any rep of S then by Machke’s Theorem V breaks up as a direct
sum of one dimensional subreps and so its character xy = >_ a,2" lies in Ng[z, 27!]
with " a, = dimV. As usual a,, is the number of copies of p,: z — 2" in the
decomposition of V' as a direct sum of simple subrepresentations. Thus we can
compute

1 o ] —in
an = (Xn,XV)s1 = %/ Xv(ele)e ? 46.
0
Thus ,
1 1 " 1 —in in
xv(e?) = Z (%/0 xv (e%)e ¢d¢) el
nez

So Fourier decomposition gives the decomposition of yy into irreducible charac-
ters and the Fourier mode is the multiplicity of an irreducible character.

Remark. In fact by the theory of Fourier series any continuous function on S! can
be uniformly approximated by a finite C-linear combination of the x,,.
Moreover the y, form a complete orthonormal set in the Hilbert space

2
L*(SY) = {f: St C| / |f(e")]? A0 exists and is ﬁnite}
0

of square-integrable complex-valued functions on S!. That is every function f €
L?(S') has a unique series expansion

f(ew) _ Z (1 2Trf(ei9’)e—z’n€/ de/) eind

2
nez 0

converging with respect to the norm || f|| = ;- O%\f(ei@ﬂ2 dé.
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We can phrase this as
L2(Sl) _ @anw

neEZ

kG = @ Vdim 14
Velrr(GQ)

which is an analogue of

for finite groups.
8.3. Second worked example: SU(2).
Recall that SU(2) = {A € GL3(C) | ATA=1,det A =1}.

If A= (a b> € SU(2) then since det A =1, A~ = ( d _b>.
c d —c a

Thus d = @ and ¢ = —b. Moreover a@ + bb = 1. In this way we see that

SU(2) = {(_ab b) | a,b € C and |a® + |b]* = 1}

a
which may be viewed topologically as S® C C? = R%.
More precisely if
H::R-SU(Z):{( Z>|w,zEC}CM2(C).

Then ||A||?> = det A defines a norm on H = R* and SU(2) is the unit sphere in H. If
A€ SU(2) and X € H then ||AX]|| = ||X]]| since ||A]| = 1. So, after normalisation,
usual integration of functions on S3 defines a Haar integral on SU(2). i.e.

1
f=5=51 I
/su(z) 212 Jgs

Here 272 is the volume of S? in R* with respect to the usual measure.
We now try to compute the conjugacy classes in SU(2).

z
—w

a

Definition. Let T = {(O

SU(2).

0 ) .
a_1> |a€C,la| = 1} ~ S1 a mazimal torus in

Also define s = (_01 é) e SU(2)
Lemma.
(i) if t € T then sts™! =t71;
(ii) s> = -1 € Z(SU(2))

0 0
(iii) Ngy@)(T) =T UsT = {(8 a1> , (a1 g) |a€C,lal = 1}

Proof. All three parts follow from direct computation (exercise). O

Proposition.
(i) Every conjugacy class O in SUy contains an element of T
(ii) More precisely. if O is a conjugacy class then ONT = {t,t~'} for somet € T
—t=t"1 if and only if t = +1 when O = {t}.

18@ is supposed to mean a completed direct sum or more precisely a direct sum in the category
of Hilbert spaces.
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(iii) There is a bijection
{conjugacy classes in SU(2)} — [-1,1]
given by A — %tr A.

Proof. (i) For every unitary matrix has an orthonormal basis of eigenvectors. So

if A € O there is a unitary matrix P such that PAP~! is diagonal. We want

to arrange that det P = 1. But we can replace P by Q = \/dlﬁP. Thus every

conjugacy class O in SU(2) contains a diagonal matrix ¢. Since additionally ¢ €
SU(2),teT.

(ii) If £7 € O the result is clear.

Suppose t € ONT for some t # +£1. Then

O={gtg™" | g€ SU@2)}.

We've seen before that sts™! =¢=1 so ONT D {t, t71}.

Conversely, if t’ € ONT then t' and ¢ must have the same eigenvalues since they
are conjugate. This suffices to see that ¢ € {t*!'}.

(iii) To see the given function is injective, suppose that i tr A = 1 tr B. Then
since det A = det B = 1, A and B must have the same eigenvalues. By part (i)
they are both diagonalisable and by the proof of part (ii) this suffices to see that
they are conjugate.

i0
To see that it is surjective notice that % tr (60 692-9) = cosf. Since cos: R - R
has image [—1, 1] the given function is surjective. O

LECTURE 21

Let’s write O, = {A € SU(2) | 1tr A = 2} for « € [-1,1]. We’ve proven that

the O, are the conjugacy classes in SU(2). Clearly O; = {I} and O_; = {-T}.
For —1 < & < 1 there is some 6 € (0,7) such that cos@ = z then

_ a b 2 2 _ 2
OI_{(—b a)|(1ma) + [b]* = sin 9}

since Rea = x = cosf. That is O, is a 2-sphere of radius |sin§).

8.4. Representations of SU(2).
Let V,, be the complex vector space of homogeneous polynomials in two variables
x,y. So dimV,, = n + 1. Then GL(C?) acts on V,, via
pn: GL(C?) — GL(V,,)

given by
pn((&0)) Fen) = flaa+ eyt dy).

Ezxamples.

Vo = C has the trivial action.

V; = C? is the standard representation of GL(C?) on C? with basis x,y.
Vo = C3 has basis x2, 2y, y? then

o b a? ab b2
02 (<c d)) = | 2ac ad+bc 2bd
c? cd d?
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In general V,, & S™V) as representations of GL2(C).

Since SU(2) is a subgroup of GL2(C) we can view V), as a representation of
SU(2) by restriction. In fact as we’ll see, the V,, are all irreducible reps of SU(2)
and every irreducible rep of SU(2) is isomorphic to one of these.

Lemma. A (continuous) class function f: SU(2) — C is determined by its restric-

tion to T and f|r is even te f ((S 201>) =f ((zal 2)) ‘

Proof. We've seen that each conjugacy class in SU(2) meets T and so a class
fucntion is determined by its restriction to 7. Then evenness follows from the
additional fact that TN O = {t*!} for some t € T. O
Let N[z, 271 = {f € N[z, 271 | f(2) = f(z~H)}.
Lemma. If x is a character of a representation of SU(2) then x|r € No[z, z71]°v.
Proof. If V is a representation of SU(2) then ResiU(Q) V' is a representation of T
and YRes, v 15 the restriction of xy- to T'. Since every character of T is in No[z, 271
and x|r is even we’re done. (]

The next thing to do is compute the character xv., |7 of (pn, Vs ), the represen-
tation consisting of degree n homogeneous polynomials in = and y.

p (5 0)) i) = Gyt =y

z

So {z7y"77|0 < j < n} is an eigenbasis for V;, with respect to the T-action and

n+l _ ,—(n+1)
. (g 91 —M g2y 2 TE T N[z, 2~ 1.
" 0 =z 2 — o1

Theorem. V,, is irreducible as a reperesentation of SU(2).

Proof. Let 0 # W < V,, be a SU(2)-invariant subspace. We want to show that
W =V,.

W is T-invariant so as ResiU(g) Vo = @j_Caly" 7 is a direct sum of non-
isomorphic representations of T,
(3) W has as a basis a subset of {27y 7 | 0 < j < n}.

Thus 27y" 7 € W for some 0 < j < n. Since

1 1 1\ , 1 , ,
el Py = (=) (z+ )" ) e W
(2 1)ehr = e
so by (3) we can deduce that " € W. Repeating the same calculation for ¢ = n,
we see that (x 4+ y)™ € W and so, by (3) again, zy"~* € W for all i.

Thus W =V,,. O

Alternative proof:
We've seen that Ogosg = {4 € SU(2) | 1trA = cosf} with the two-sphere
{(Im(a))? + |b|> = sin® 0} of radius |sin@|. Thus if f is a class-function on SU(2),

since f is constant on each Ogosg,

/ f(g)dg—l/ﬂf(<6i0 0 ))47rsin29d9—1 27Tf(e“g)sinZ@dH
SU(2) 27T2 0 0 6_10 ™ Jo '
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Note this is normalised correctly, since % f02 "sin?#df = 1. So it suffices to prove
that %f02ﬂ|Xvn (€9))?sin?0dfh = 1 for z = €%, (exercise: verify this).
Theorem. FEvery irreducible representation of SU(2) is isomorphic to V,, for some
n > 0.
Proof. Let V be an irreducible representation of SU(2) so xv € N[z,271]**. Now
Xo=1,x1=2+2"1x2=22+1+2"2 ... form a basis of Q[z,27!]¢ as (non-f.d.)
Q-vector spaces. Thus xy = Y a;x; for some a; € Q, only finitely many non-zero.
Clearing denominators and moving negative terms to the left-hand-side, we get

a formula
mxy + ZmiXi = ijXj
i€l jeJ
for some disjoint finite subsets I,J C N and m,m; € N. By orthogonality of
characters and complete reducibility we obtain

mVEB@miVi = @mjvj
i€l jeJ
since V' is irreducible, V' = V; some j € J. ([

8.5. Tensor products of representations of SU(2). We've seen that if V, W
are representations of SU(2) such that ResiU(z) V= ResiU(Q) W then V=W. We
want to understand ® for representations of SU(2).
Recall that if G is a group and V,W are representations of G then yyvgw =
XVXW -
Let’s compute some examples for SU(2):
XViewv (Z) = (Z + 2_1)2 =2 +1+ z7? +1=xwn+Xxv,
and
(.2 -2 —1y _ .3 -1, ,-3_
Xvoovi(2) = (z°+14+27)(z4+27")=2"+22+22" +27° = xv, + Xv,-
Proposition (Clebsch-Gordan rule). For n,m € N,
Vn ® Vm = n+m S ‘/TL-',-TYL—Q oD ‘/\n_mH—Q @ V\n—m|-
Proof. Without loss of generality, n > m. Then

Zn—i—l _ Z—n—l

(Xn - Xm)(2) = I (M2 2T

gntm41-25 _ Z—(n+m+1—2j)

.

z—2z1
Jj=0
m
= Xntm-2;(2)
j=0
as required. (I

LECTURE 22

8.6. Representations of SO(3).
Proposition. There is an isomorphism of topological groups SU(2)/{x£I} = SO(3).
Proof. See Example Sheet 4 Q4.9 O

Lorf you get stuck then consult my notes from 2012 for some hints.
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Corollary. FEvery irreducible representation of SO(3) is of the form Va, for some
n > 0.

Proof. It follows from the Proposition that irreducible representations of SO(3)
correspond to irreducible representations of SU(2) such that —I acts trivially. But
it is easy to verify that —I acts on V,, as (—1)" O
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9. CHARACTER TABLE OF GLy(F,)

9.1. F,. Let p > 2 be a prime, ¢ = p® a power of p for some a > 0, and Fy be the
field with ¢ elements. We know that F; = C;_;.

Notice that Fy — F; 52— 22 is a group homomorphism with kernel £1. Thus
half the elements of F are squares and half are not. Let € € Fy be a fixed non-
square and let F2 := {a+b\/€ | a,b € F,}, the field extension of F, with ¢* elements
under the obvious operations.

Every element of IF, has a square root in IF 2 since if A is non-square then A /e = p
is a square, and (y/eu)? = . It follows by completing the square that every
quadratic polynomial in IF, factorizes in IE"qz.20

Notice that (a + by/€)? = a? + bqe%l\/é = (a — by/e). Thus the roots of an
irreducible quadratic over F, are of the form A, A9.

2

9.2. GLy(F,) and its conjugacy classes. We want to compute the character
table of the group

G = GLy(F,) = {(Z Z) | a,b,¢,d € F, and adbc¢o}.

The order of G is the number of bases for F7 over F,. This is (¢> —1)(¢* — ).

First, we compute the conjugacy classes in G. We know from linear algebra that
2 x 2-matrices are determined by their minimal polynomials up to conjugation. By
Cayley-Hamilton each element A of GL2(F,) has minimal polynomial m4(X) of
degree at most 2 and m(0) # 0.

There are four cases.

Case 1: ma = X — X for some A € F,*. Then A = A. So Cg(4) = G, and
I[A]lc = 1. There are ¢ — 1 such classes corresponding the possible choices of .

Case 2: mg = (X — \)? for some A € F,* so 4 is conjugate to (3 /1\> Now

(D) 2)oerenss

(g—1)%*(g+1)q
(g—1)q

[Alle =

There are g — 1 such classes.
Case 3: myg = (X —\)(X — p) for some distinct A, o € F,*. Then A is conjugate

to A0 and to po0 . Moreover
7 0 A

G ) Y

alg—1)(¢* - 1)
A Ggl=—————"
There are (qgl) corresponding to each possible choice of the pair {\, u}.

=(g—-1D(g+1).

So

=qlg+1).

20 5 A7 should be viewed as an analogue of complex conjugation.
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Case 4: m4(X) is irreducible over F, of degree 2 so (X — a)(X — a?) € Fp2[X],

= A+ pye with \,up € F,, p # 0. Then A is conjugate to (2 65) and

ZAM ) Now
() 2)1-wea) -

If a® = €b? then € is a square or a = b = 0. So |K| = ¢®> — 1 and (2 E;f) SO

_ 2 _
_alg q;)ﬁql D _ alq—1).

There are q(q — 1)/2 such classes corresponding to the choices of the pair {«, a?}.
In summary

[Alg|

Representative A Ca I[4]¢c] No of such classes
A0
1 -1
b3 | q
Al a b
G (Y avarn| e

(A 0) T gt (%3))

0 pn
%) K | qla-1) (®

The groups T and K are both mazimal tori. That is they are maximal subgroups
of G subject to the fact that they are conjugate to a subgroup of the group of
diagonal matrices over some field extension of F,. T is called split and K is called
non-split.

Some other important subgroups of G are Z which is the subgroup of scalar

1
matrices (the centre); N := {(0 ?) |be ]Fq} a Sylow p-subgroup of G; and

B := {(g Z) |beFy,a,de qu} a Borel subgroup of G. Then N is normal in
B and B/N 2F,* xF,* =2 Cy_1 x Cy_1.
G acts transitively on F, U {co} via M6bius transformations
0 b ZZZIS for z € Fy and ed + z # 0
(c d)(z)z afc  for z=o00and c#0
00 for (¢=0and z =00)l or (¢ # 0 and z = —d/c).

so B = Stabg(c0).!

Writing s = <(1) (1)> we see that

(0l 7)-( "3)

2IThus |G| = |Bl(g + 1) = q(q — 1)2(g + 1).
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and these elements are all distinct. Hence BsN contains ¢|B| elements so must be
G\B. Thus BsN = BsB and B\G/B has two double cosets B and BsB (this is
called Bruhat decomposition).

By Mackey’s irreduciblity criterion it follows that if W is an irreducible rep-
resentation of B, then Indg W is an irreducible representation of G precisely if
Resgms 5 W and Res;%g g °W have no irreducible factors in common. Since s swaps
0,00 € F, U {oo},

“B = Stabg(0) = {(‘CL 2) la,d € F%,ce Fq}

and BN°*B=T.

LECTURE 23

9.3. The character table of B. Let’s warm ourselves up by computing the char-

acter table of B.
a b %
B= 0 d |beFya,delF,

Recall
and
1 b
N::{( >|b€Fq}<B<G:GL2(]Fq).

0 1

1
G = B]] BsB where s = ((1) O> and B/N 2F,* xF,* 2 Cy_1 x Cy_y.

If x,y € B are conjugate in G then because G = B U BsB either x is conjugate
to y in B or = (basby)y(basby) ™! for some by, by € B (or both). Thus [z]¢ N B
splits into at most two conjugacy classes in B.

The conjugacy classes in B are

Representative | Cg | No of elts | No of such classes
(())\ g) B 1 q—1
(3 /1\> ZN q—1 q—1
G || ¢ | @e-2

Now B/N =T =TF,* xF,*. So if O, := {reps 6: F* — C*}, then O, is a cyclic
group of order ¢ — 1 under pointwise operations. Moreover, for each pair 8, ¢ € O,
we have a 1-dimensional representation of B given by

a b
we (5 5)) =o@et@
giving (¢ — 1)? linear reps.

Suppose v: (Fy, +) — C* is a degree 1 representation and 6 € ©,, we can define
a 1-dimensional representation of ZN by

mo (5 1)) =dtantan.
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We see that

N () e

Al
it (3 )

=0\ | D) | -6

beF,
=0(N)(¢(L,7)r, — 1)

)=o) ify#1
Cl@-1en)  ify=1

A0
o (3 )

Let pp := IndgN po, for v # 1 noting that this does not then depend on . Now

(g, 11o) = s((a=Dlg—1)*+(¢-1(g-1)1+0) =1

a(qg—1)
so each pyg is irreducible and we have (¢ — 1) irreducible representations of degree
q — 1. Thus the character table of B is

A0 Al A0
o 3) 166 )
Xo.p | ON)S(A) | 0(N)B(A) | 0(A)o(k)
po | (g—1)0(N) | —0(N) 0
We note in passing that the 0 in the bottom right corner appears in ¢ — 1 rows
and (¢ — 1)(¢ — 2) columns. But they are forced to be 0 by a Lemma in §7.4
since the order of these conjugacy classes are all ¢, the degree of the irreducible

representations are all (¢ — 1) which is coprime to ¢, and these elements don’t act
by scalars.

We also note that B = Z x {(g I;) laeFy,be Fq} and the second factor

is a Frobenius group. So Example Sheet 3 Q10, together with our construction of
irreducible representations of a direct product as the tensor product of the irre-
ducible representations of the factors, tells us that we should expect to be able to
construct all the irreducible representation of B in the manner that we have done
S0.

9.4. The character table of G. Let’s start computing some representations of
G.

As det: G — F,* is a surjective group homomorphism, for each § € ©, gives a
1-dimensional representation of G via yg := 6 o det.

Let’s continue by inducing x4.4 from B to G. Notice that

e ((09) = s (¢ 2)) =00t
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and so Res;” *Xo.6 = ResP xp, if and only if § = ¢. So Wy4 := Ind$ xp.4 is
irreducible precisely if 0 # ¢.

Now
wne (3 1)) = @ Dos0.
weo (3 3)) = oeen.
e (3 0)) = 609800 + 0000 and

v (3 9)) = o

Notice that Wy o = Wy g so we get (qgl) irreducible representations in this way.
They are known as principal series representations.

We consider also Wy 1 22 Ind§ 1 = C(F, U {co}). Since G acts 2-transitively
on F, U oo, Wy, decomposes as 1 @ Vi, with V7 irreducible of degree ¢. This
representation is known as the Steinberg representation.

By tensoring W7 1 by xs we also obtain Wy g = xy @ Vy with Vp irreducible of
degree q.

So far we have

# classes qg—1 g—1 (‘Sl) (g)
A0 Al A0 A e
@2 1) G | G%) |#ormem
Xo O(1)? (1) 0(N)0(1) 0N —eu®) | g1
Vo g0(\)? 0 (A1) 0N —ep?) | -1
Woo | (@+ 10NN | (NG | (N () + ()0 (1) 0 le=la=2)

We have explicitly constructed all these representations i.e. not just their char-
acters. We have (g) characters to go. It will turn out that they are indexes by
irreducible representations ¢ of K such that ¢ # ? but we won’t we able to
explicitly construct the representation.

LECTURE 24

The next natural thing to do is compute Indg 1o. It has character given by

tma o ( (3 1)) =G+ 100~ Do,
mag o (1)) =000,
Indgua(( 2)) 0 and
win((, 7)-

>

o >
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Thus

1

(Ind$ p, Ind§ pg) =Gl ((g+1)*q—1)*(q— 1)+ (¢ — 1)(¢* — 1))

(q2—1)—|—1):q

1
q
SO Indg 1o has many irreducible factors.

Our next strategy is to induce characters from K. We write a = X\ + u+/e for

the matrix (~ ). Notice that Z < K with (* °
nwooA 0 A

Suppose that ¢: K — C* is a 1-dimensional character of K. Then & := Indf( %)
has character given by ®(A) = ¢(q — 1)p(), ®(a) = ¢(a) + ¢(af) for a € F; and
® = 0 away from these conjugacy classes.

Let’s compute

) = ) in our new notation.

@.8) = = [@- D@1 +ala=1) 3 fel)+ (ot
{o,0}CK\Z

But

Y lel@)+e@)fP = > (pla) +e(@) (plah) + (™)

{a, 04} CK\Z {a,a9}CK\Z
= > 2+ + ')
{a,09}CK\Z
=@ -9+ > ¢ o)=Y p(A)
aeK AEZ

If 9! # 1 then the middle term in the last sum is 0 since (p?~% 1) = 0. Since
Al =1for A € F; the third term is also easy to compute. Putting this together
we get (®,®) = ¢ — 1 when 971 # 1.

We similarly compute

(Indf pig, ©) = ﬁ > (¢® = 1DINalg — De(N)
ANEZ

= (¢ —1)(0,Res}; ¢)z

Thus Indg o and ® have many factors in common when ¢|z = 6.
Now, for each ¢ such that 7! # 1 (there are ¢>—q such choices) let 6 := Res’ ¢
then our calculations tell us that if 8, = Ind$ ug — ® € R(G) then

<5¢75¢>=CI—2(Q—1)+((1—1) =1.

Since also f,(1) = ¢ —1 > 0 it follows that S, is an irreducible character. Since

By = Bpa (and o7 = ©) we get () characters in this way and the character table
of GLy(F,) is complete.
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# classes qg—1 qg—1 ("51) ({21)

A0 Al A0 p ]
rep (O /\> (0 /\) (0 M) a, # of reps
X0 0(N)? 0(N)? O(A)0(1) C q—1
Vo go(N)? 0 O(N)0(1) —0(a®) g—1

Woe | (@+1)0(N)d(A) | 6(AN)D(A) | 0(N)d(1) + O(N)d(k) 0 (51)
B (@=Den) | —p() 0 —(+eD@) | (9

The representations corresponding to the 3, known as discrete series representa-
tions have not been computed explicitly. Drinfeld found these representations in
l-adic étale cohomology groups of an algebraic curve X over Fy. These cohomology
groups should be viewed as generalisations of ‘functions on X’. This work was
generalised by Deligne and Lusztig for all finite groups of Lie type.

This construction also enables us to compute the character table of PGLo(F,) :=
GLy(F,)/Z(GLy(Fy)) as its irreducible representations are the irreducible represen-
tations of GLy(Fy) such that the scalar matrices act trivially. i.e. the xg and Vj
such that 62 = 1, the Wy -1 such that 02 # 1 and the B, such that ¢|z = 17 i.e.
@It =1 as well as 971 # 1.

We can also then compute the character table of PSLy(F,) = SLao(Fy)/Z(SLa(Fy))
which has index 2 in PGLy(F,) by restriction. These groups are all simple when
q > 5 and this can be seen from the character table.




