Fixed point theorems for holomorphic maps on Teichmüller spaces and beyond

Stergios M. Antonakoudis
University of Cambridge

Differential Geometry and Topology Seminar
20 January 2016, Cambridge
When does a holomorphic map from Teichmüller to itself have a fixed point?
The short answer...

Theorem (SA). If a holomorphic map $F : T_{g,n} \to T_{g,n}$ has a recurrent orbit, then it has a fixed point.

In other words, there is a dichotomy: either there is a fixed point, or every orbit diverges.

Proof. Focus on the intrinsic geometry of $T_{g,n}$. □

Remarks:
• I'd like to thank A. Karlsson for asking the question answered by the theorem above.
• H. Cartan, J. Lambert, E. Bedford, A. Beardon, M. Abate and many more.

There is a vast literature on this topic and I will not attempt to be comprehensive.
The short answer...

...whenever it is plausible.

Theorem (SA).

If a holomorphic map $F : T^g, n \to T^g, n$ has a recurrent orbit, then it has a fixed point.

In other words, there is a dichotomy: either there is a fixed point, or every orbit diverges.

Proof. Focus on the intrinsic geometry of T^g, n. □

Remarks:

• I'd like to thank A. Karlsson for asking the question answered by the theorem above.
• H. Cartan, J. Lambert, E. Bedford, A. Beardon, M. Abate and many more.

There is a vast literature on this topic and I will not attempt to be comprehensive.
The short answer...

...whenever it is plausible.

Theorem (SA). If a **holomorphic** map $F : \mathcal{T}_{g,n} \to \mathcal{T}_{g,n}$ has a **recurrent** orbit, then it has a **fixed point**.
The short answer...

...whenever it is plausible.

Theorem (SA). *If a holomorphic map* \(F : \mathcal{T}_{g,n} \to \mathcal{T}_{g,n} \) *has a recurrent orbit, then it has a fixed point.*

In other words, there is a **dichotomy**: either there is a fixed point, or every orbit diverges.
The short answer...

...whenever it is plausible.

Theorem (SA). *If a holomorphic map $F : \mathcal{T}_{g,n} \to \mathcal{T}_{g,n}$ has a recurrent orbit, then it has a fixed point.*

In other words, there is a **dichotomy**: *either* there is a fixed point, *or* every orbit diverges.

Proof. Focus on the **intrinsic** geometry of $\mathcal{T}_{g,n}$. □
The short answer...

...whenever it is plausible.

Theorem (SA). If a **holomorphic** map $F : T_{g,n} \to T_{g,n}$ has a **recurrent** orbit, then it has a **fixed point**.

In other words, there is a **dichotomy**: either there is a fixed point, or every orbit diverges.

Proof. Focus on the **intrinsic** geometry of $T_{g,n}$. □

Remarks:

- I’d like to thank A. Karlsson for asking the question answered by the theorem above.
 There is a **vast** literature on this topic and I will not attempt to be comprehensive.
The long answer...

...will takes us through the following list of questions:

• What is Teichmüller space $T_{g,n}$?
• Why care about the existence of fixed points?
• Isn't the theorem true for all bounded domains? or, What's special about $T_{g,n}$?
• Is this really a result in complex analysis? or, How about a theorem for topological manifolds?
The long answer...

...will takes us through the following list of questions:

- What is Teichmüller space $\mathcal{T}_{g,n}$?
The long answer...

...will takes us through the following list of questions:

- What is Teichmüller space $\mathcal{T}_{g,n}$?

- Why care about the existence of fixed points?
The long answer...

...will take us through the following list of questions:

• What is Teichmüller space $\mathcal{T}_{g,n}$?

• Why care about the existence of fixed points?

• Isn't the theorem true for all bounded domains? or, What's special about $\mathcal{T}_{g,n}$?
The long answer...

...will take us through the following list of questions:

• What is Teichmüller space $\mathcal{T}_{g,n}$?

• Why care about the existence of fixed points?

• Isn’t the theorem true for all bounded domains?
 or, What’s special about $\mathcal{T}_{g,n}$?

• Is this really a result in complex analysis?
 or, How about a theorem for topological manifolds?
Definition **Teichmüller space** $\mathcal{T}_{g,n}$ is the *universal cover* of the moduli space of Riemann surfaces of genus g and n marked points. It is naturally a complex manifold of dimension $3g - 3 + n$ that is homeomorphic to an open ball.
Definition **Teichmüller space** $\mathcal{T}_{g,n}$ is the *universal cover* of the moduli space of Riemann surfaces of genus g and n marked points. It is naturally a complex manifold of dimension $3g - 3 + n$ that is homeomorphic to an open ball.

Example When $\dim(\mathcal{T}_{g,n}) = 1$, we have $\mathcal{T}_{1,1} \cong \mathcal{T}_{0,4} \cong \Delta$, the unit disk in \mathbb{C}.

Definition Teichmüller space $\mathcal{T}_{g,n}$ is the *universal cover* of the moduli space of Riemann surfaces of genus g and n marked points. It is naturally a complex manifold of dimension $3g - 3 + n$ that is homeomorphic to an open ball.

Example When $\dim(\mathcal{T}_{g,n}) = 1$, we have $\mathcal{T}_{1,1} \cong \mathcal{T}_{0,4} \cong \Delta$, the unit disk in \mathbb{C}.

Basic facts:

- $\mathcal{T}_{g,n}$ can be realized as a **bounded domain** in \mathbb{C}^{3g-3+n}. (L. Bers)
Teichmüller space $\mathcal{T}_{g,n}$

Definition Teichmüller space $\mathcal{T}_{g,n}$ is the *universal cover* of the moduli space of Riemann surfaces of genus g and n marked points. It is naturally a complex manifold of dimension $3g - 3 + n$ that is homeomorphic to an open ball.

Example When $\dim(\mathcal{T}_{g,n}) = 1$, we have $\mathcal{T}_{1,1} \cong \mathcal{T}_{0,4} \cong \Delta$, the unit disk in \mathbb{C}.

Basic facts:

- $\mathcal{T}_{g,n}$ can be realized as a **bounded domain** in \mathbb{C}^{3g-3+n}. (L. Bers)

- In particular, it is equipped with a **complete, intrinsic** metric: the Teichmüller-Kobayashi metric. (H. Royden)
Definition The intrinsic, or Kobayashi, metric of a bounded domain Ω in \mathbb{C}^n is characterized by the property: it is the largest metric such that, every holomorphic map $F : \Delta \to \Omega$ is non-expanding: $\|F'(0)\| \leq 1$.
Definition The **intrinsic**, or *Kobayashi*, metric of a *bounded domain* Ω in \mathbb{C}^n is characterized by the property: it is the *largest* metric such that, every *holomorphic* map $F : \Delta \to \Omega$ is **non-expanding**: $\|F'(0)\| \leq 1$.

Example The Kobayashi metric of the unit disk Δ is given by $\frac{|dz|}{1 - |z|^2}$.
Definition The intrinsic, or Kobayashi, metric of a bounded domain Ω in \mathbb{C}^n is characterized by the property: it is the largest metric such that, every holomorphic map $F : \Delta \to \Omega$ is non-expanding: $\|F'(0)\| \leq 1$.

Example The Kobayashi metric of the unit disk Δ is given by $\frac{|dz|}{1 - |z|^2}$.

The following important fact follows readily from the definition:
Definition The intrinsic, or Kobayashi, metric of a bounded domain \(\Omega \) in \(\mathbb{C}^n \) is characterized by the property: it is the largest metric such that, every holomorphic map \(F : \Delta \to \Omega \) is non-expanding: \(\|F'(0)\| \leq 1 \).

Example The Kobayashi metric of the unit disk \(\Delta \) is given by \[\frac{|dz|}{1 - |z|^2}. \]

The following important fact follows readily from the definition:

A holomorphic map between two complex domains is non-expanding for the Kobayashi metrics.
• The study of fixed point theorems for Teichmüller space provides a framework for proving geometrization theorems. The three fundamental theorems of W. Thurston are equivalent to, and are proved by, fixed point theorems for certain holomorphic maps on Teichmüller space $\mathcal{T}_{g,n}$.

The study of fixed point theorems for Teichmüller space provides a framework for proving geometrization theorems. The three fundamental theorems of W. Thurston are equivalent to, and are proved by, fixed point theorems for certain holomorphic maps on Teichmüller space $\mathcal{T}_{g,n}$.

- Dynamical classification of surface homeomorphisms, for mapping classes
The study of fixed point theorems for Teichmüller space provides a framework for proving geometrization theorems. The three fundamental theorems of W. Thurston are equivalent to, and are proved by, fixed point theorems for certain holomorphic maps on Teichmüller space $\mathcal{T}_{g,n}$.

- Dynamical classification of surface homeomorphisms, for \textit{mapping classes}
- Topological characterization of post-critically finite rational maps and, for \textit{pullback maps}
• The study of fixed point theorems for Teichmüller space provides a framework for proving geometrization theorems. The three *fundamental* theorems of W. Thurston are *equivalent to*, and are proved by, fixed point theorems for certain holomorphic maps on Teichmüller space $\mathcal{T}_{g,n}$.

- Dynamical classification of surface homeomorphisms, for *mapping classes*
- Topological characterization of post-critically finite rational maps and, for *pullback maps*
- Hyperbolization theorem of atoroidal Haken 3-manifolds, for *skinning maps*
• The study of fixed point theorems for Teichmüller space provides a framework for proving geometrization theorems. The three *fundamental* theorems of W. Thurston are *equivalent to*, and are proved by, fixed point theorems for certain holomorphic maps on Teichmüller space $\mathcal{T}_{g,n}$.

– Dynamical classification of surface homeomorphisms, for *mapping classes*
– Topological characterization of post-critically finite rational maps and, for *pullback maps*
– Hyperbolization theorem of atoroidal Haken 3-manifolds, for *skinning maps*

• By the fundamental property of the Kobayashi metric, any holomorphic self-map of $\mathcal{T}_{g,n}$ is *non-expanding*. Hence it makes sense to attempt to find its fixed point by iteration.
The study of fixed point theorems for Teichmüller space provides a framework for proving geometrization theorems. The three fundamental theorems of W. Thurston are equivalent to, and are proved by, fixed point theorems for certain holomorphic maps on Teichmüller space $T_{g,n}$.

- Dynamical classification of surface homeomorphisms, for mapping classes
- Topological characterization of post-critically finite rational maps and, for pullback maps
- Hyperbolization theorem of atoroidal Haken 3-manifolds, for skinning maps

By the fundamental property of the Kobayashi metric, any holomorphic self-map of $T_{g,n}$ is non-expanding. Hence it makes sense to attempt to find its fixed point by iteration.

Recall: Contraction mapping theorem
A strictly contracting self-map of a complete metric space has a fixed point.
• In complex dimension one:

 Theorem (Denjoy-Wolff). A holomorphic map $F: \Delta \to \Delta$ with a recurrent orbit has a fixed point.

 Dichotomy: A holomorphic map either has a fixed point, or every orbit diverges.

 Proof. Schwarz's lemma (which is simply the fundamental property of the Kobayashi metric in dimension one). □

• In higher dimensions: life is more interesting.

 – The theorem of Denjoy-Wolff remains true for convex domains but,

 – M. Abate et al, constructed a holomorphic self-map of a contractible bounded domain with recurrent orbits and no fixed points.

 Hence the Dichotomy fails in general!
• In complex dimension one:

Theorem (Denjoy-Wolff). A holomorphic map $F : \Delta \to \Delta$ with a recurrent orbit has a fixed point.
• In complex dimension one:

Theorem (Denjoy-Wolff). A holomorphic map $F : \Delta \to \Delta$ with a recurrent orbit has a fixed point.

Dichotomy: A holomorphic map *either* has a fixed point, *or* every orbit diverges.
• In complex dimension one:

Theorem (Denjoy-Wolff). A holomorphic map $F : \Delta \to \Delta$ with a recurrent orbit has a fixed point.

Dichotomy: A holomorphic map either has a fixed point, or every orbit diverges.

Proof. Schwarz’s lemma (which is simply the fundamental property of the Kobayashi metric in dimension one).

□
• In complex dimension one:

Theorem (Denjoy-Wolff). A holomorphic map $F : \Delta \to \Delta$ with a recurrent orbit has a fixed point.

Dichotomy: A holomorphic map either has a fixed point, or every orbit diverges.

Proof. Schwarz’s lemma (which is simply the *fundamental* property of the Kobayashi metric in dimension one).

• In higher dimensions: ...*life is more interesting.*
• In complex dimension one:

Theorem (Denjoy-Wolff). A holomorphic map $F : \Delta \to \Delta$ with a recurrent orbit has a fixed point.

Dichotomy: A holomorphic map either has a fixed point, or every orbit diverges.

Proof. Schwarz's lemma (which is simply the *fundamental* property of the Kobayashi metric in dimension one).

\[\square \]

• In higher dimensions: ...*life is more interesting.*

 – The theorem of Denjoy-Wolff remains *true* for **convex** domains **but**,
• In complex dimension one:

Theorem (Denjoy-Wolff). A holomorphic map $F : \Delta \to \Delta$ with a recurrent orbit has a fixed point.

Dichotomy: A holomorphic map either has a fixed point, or every orbit diverges.

Proof. Schwarz’s lemma (which is simply the *fundamental* property of the Kobayashi metric in dimension one).

• In higher dimensions: ...

 – The theorem of Denjoy-Wolff remains *true* for **convex** domains but,
 – M. Abate and P. Heinzner constructed a **holomorphic** self-map of a **contractible bounded** domain with **bounded** orbits and **no** fixed points.

 *Hence the **Dichotomy** fails in general!*
• In complex dimension one:

Theorem (Denjoy-Wolff). A holomorphic map $F : \Delta \to \Delta$ with a recurrent orbit has a fixed point.

Dichotomy: A holomorphic map *either* has a fixed point, *or* every orbit diverges.

Proof. Schwarz’s lemma (which is simply the *fundamental* property of the Kobayashi metric in dimension one).

• In **higher** dimensions: ...

 – The theorem of Denjoy-Wolff remains *true* for **convex** domains *but*,

 – M. Abate and P. Heinzner constructed a **holomorphic** self-map of a **contractible bounded** domain with **bounded** orbits and **no** fixed points.

 Hence the **Dichotomy** fails in general!

The **problem** is that $\mathcal{T}_{g,n}$ is not a convex domain and its boundary is not a smooth manifold.
Although $\mathcal{T}_{g,n}$ is not a convex domain, it is convex from within:
Intrinsically straight complex spaces

Although $T_{g,n}$ is not a convex domain, it is convex from within:
Its intrinsic, Kobayashi, metric is straight: there exists a unique geodesic between any two distinct points.
Although $\mathcal{T}_{g,n}$ is not a convex domain, it is convex from within: Its intrinsic, Kobayashi, metric is straight: there exists a unique geodesic between any two distinct points.

Examples of straight metric spaces:

- The unit ball \mathbb{B}^n in \mathbb{C}^n
Although $T_{g,n}$ is not a convex domain, it is convex from within: Its intrinsic, Kobayashi, metric is straight: there exists a unique geodesic between any two distinct points.

Examples of straight metric spaces:

- The unit ball B^n in C^n
- Negatively curved spaces
Although $T_{g,n}$ is not a convex domain, it is convex from within:
Its intrinsic, Kobayashi, metric is straight: there exists a unique geodesic between any two distinct points.

Examples of straight metric spaces:

- The unit ball B^n in \mathbb{C}^n
- Negatively curved spaces
- Finite-dimensional Teichmüller spaces
Although $\mathcal{T}_{g,n}$ is not a convex domain, it is convex from within: Its intrinsic, Kobayashi, metric is straight: there exists a unique geodesic between any two distinct points.

Examples of straight metric spaces:

- The unit ball \mathbb{B}^n in \mathbb{C}^n
- Negatively curved spaces
- Finite-dimensional Teichmüller spaces

Theorem (SA). A holomorphic self-map of a finite-dimensional complex manifold, whose intrinsic metric is straight, either has a fixed point, or every orbit diverges.
What is straightness good for?

Straightness is used in order to establish the following fundamental lemma:
What is *straightness* good for?

Straightness is used in order to establish the following fundamental lemma:

Lemma. *The locus of points of any given period is contractible.*
Straightness is used in order to establish the following fundamental lemma:

Lemma. The locus of points of any given period is contractible.

Combining this lemma with a basic fact from homotopy theory: a finite group cannot act freely on a contractible finite-dimensional CW-complex. We conclude the following proposition.
Straightness is used in order to establish the following fundamental lemma:

Lemma. *The locus of points of any given period is contractible.*

Combining this lemma with a basic fact from *homotopy* theory: a finite group cannot act *freely* on a **contractible finite-dimensional** CW-complex. We conclude the following proposition.

Proposition. *If a holomorphic map* $F : \mathcal{T}_{g,n} \to \mathcal{T}_{g,n}$ *has a periodic point, then it has a fixed point.*
The last ingredient we need to prove the theorem goes back to H. Cartan.

We also refer to the works of E. Bedford, M. Abate and H. Mok
The last ingredient we need to prove the theorem goes back to H. Cartan. We also refer to the works of E. Bedford, M. Abate and H. Mok

Proposition. If a holomorphic self-map of a complex manifold (whose intrinsic metric is complete) has a recurrent orbit then the closure of the set of its iterates contains a retraction.
The last ingredient we need to prove the theorem goes back to H. Cartan. We also refer to the works of E. Bedford, M. Abate and H. Mok

Proposition. If a holomorphic self-map of a complex manifold (whose intrinsic metric is complete) has a recurrent orbit then the closure of the set of its iterates contains a **retraction**.

The proposition allows us to apply **induction** on the dimension of the manifold in order to establish the existence of periodic points.
The last ingredient we need to prove the theorem goes back to H. Cartan.
We also refer to the works of E. Bedford, M. Abate and H. Mok

Proposition. If a holomorphic self-map of a complex manifold (whose intrinsic metric is complete) has a recurrent orbit then the closure of the set of its iterates contains a *retraction*.

The proposition allows us to apply *induction* on the dimension of the manifold in order to establish the existence of periodic points.

Finally, a simple *combinatorial* approach (using Ramsey theory) is used to prove a generalisation of this proposition, which can be applied to prove a similar fixed point theorem for non-expanding maps for *straight metrics* on finite-dimensional manifolds.
Theorem (SA). A non-expanding map on a finite-dimensional manifold, equipped with a straight metric, either has a fixed point or every orbit diverges.
Theorem (SA). **A non-expanding map on a finite-dimensional manifold, equipped with a straight metric, either has a fixed point or every orbit diverges.**

Corollary. **A non-expanding map from \(\mathbb{R}^n \) to itself, equipped with the Euclidean metric, either has a fixed point or every orbit diverges.**
Theorem (SA). A non-expanding map on a finite-dimensional manifold, equipped with a straight metric, either has a fixed point or every orbit diverges.

Corollary. A non-expanding map from \mathbb{R}^n to itself, equipped with the Euclidean metric, either has a fixed point or every orbit diverges.

Remark: There are examples of maps from \mathbb{R}^n to itself with bounded orbits, yet having no fixed points!
Theorem (SA). A non-expanding map on a finite-dimensional manifold, equipped with a straight metric, either has a fixed point or every orbit diverges.

Corollary. A non-expanding map from \mathbb{R}^n to itself, equipped with the Euclidean metric, either has a fixed point or every orbit diverges.

Remark: There are examples of maps from \mathbb{R}^n to itself with bounded orbits, yet having no fixed points!

Brouwer’s (1912) ‘translation theorem’ and the bounded orbits conjecture in the plane.
Thank you!