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INDEPENDENCE OF /¢ FOR FROBENIUS CONJUGACY
CLASSES ATTACHED TO ABELIAN VARIETIES

MARK KISIN AND RONG ZHOU

ABSTRACT. Let A be an abelian variety over a number field E C C and let G
denote the Mumford—Tate group of A. After replacing E by a finite extension,
the action of the absolute Galois group Gal(E/E) on the f-adic cohomology
Hét (Ag, Qg) factors through G(Qg). We show that for v an odd prime of E
where A has good reduction, the conjugacy class of Frobenius Frob, in G(Qy)
is independent of ¢. Along the way, we prove that under certain hypotheses,
every point in the p-ordinary locus of the special fiber of Shimura varieties has
a special point lifting it.
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1. INTRODUCTION

Let A be an abelian variety over a number field E C C and E the algebraic closure
of E in C. We fix a prime p and v|p a place of E where A has good reduction. Then
for any prime ¢ # p, the action of Gal(E/E) on the f-adic cohomology H}, (Ag, Q) is
unramified at v, and the characteristic polynomial P, ¢(¢) of a geometric Frobenius
Frob, € Gal(E/E) has coefficients in Z, and is independent of ¢. The aim of this
paper is to prove a refinement of this statement for the image of Frob, in the
Mumford—Tate group of A.

Recall that the Mumford—Tate group G of A is a reductive group over Q, defined
as the Tannakian group of the Q-Hodge structure given by the Betti cohomology
Vg = HL(A(C),Q). It may also be defined as the stabilizer in GL(Vp) of all
Hodge cycles of type (0,0) on the tensor spaces V5" @ (V)" for r € Zso. A
fundamental result of Deligne [Del82] asserts that there exists a finite extension
E'/E in E such that for any prime ¢, the action of Gal(E/E’) on H} (Az, Q) is
induced by a representation

pS : Gal(E/E') — G(Q0).

It is not hard to see that for any finite extension E'/E, if péG exists for one £, then
it exists for all £. Moreover there is a minimal such extension E’. The existence of
p? is in fact predicted by the (in general still unproved) Hodge conjecture for A;
Deligne’s result on absolute Hodge cycles [Del82] provides a reasonable substitute
in this case so that the existence is unconditional. Upon replacing E by E’, we
assume there is a map p& : Gal(E/E) — G(Qy).

For any reductive group H over Q we write Conjyy for the variety of semisimple
conjugacy classes of H (cf. §5.1.3) and yg : H — Conjy for the natural projection
map which sends an element of H to the associated conjugacy class of its semisimple
part. We thus obtain a well-defined element

Ye = v(v) == xa(pf (Frob,)) € Conjg(Qy),
the conjugacy class of f-adic Frobenius at v. Our main theorem is the following.

Theorem 1.1. Let p > 2 and v|p a prime of E where A has good reduction. Then
there exists v € Conjg(Q) such that

v =y € Conjg(Q¢), Y # p.

Explicitly, v is a Gal(Q/Q)-stable G(Q)-conjugacy class whose associated G(Q,)-
conjugacy class contains p& (Frob,) for all £ # p. Since P, ¢(t) is independent of ¢,
the image of v, in Conjgr,(v,,)(Qe) is defined over Q and independent of £. However,
in general the map Conjg(Q) — Conjgy,(v,,)(Q) is not injective, so the theorem
gives more information than the ¢-independence of P, ¢(t). We remark that G de-
pends on the chosen embedding E C C; in general changing the embedding has
the effect of replacing G by an inner form. However, the variety Conjg and the
elements v, do not depend on the choice of this embedding, and so neither does
the statement of the theorem. When G is quasi-split at p it is expected that + can
be lifted to an element 79 € G(Q), which is G(Q)-conjugate to p& (Frob,). We
prove a slightly weaker version of this result, when G9° is simply connected; see
§6.3 below for this and other potential refinements of the theorem.
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An analogue of the above theorem for any algebraic variety (or more generally
motive) over a number field was conjectured by Serre in [Ser94, 12.6], but in general
one does not even know the analogue of Deligne’s theorem on the existence of p?.

Previously proved cases of our theorem include a result of Noot who showed
a version of this theorem where Conjg is replaced by a certain quotient Conjg .
and under the additional assumption that the Frobenius element -, is weakly neat
[Noo09]. More recently, one of us [Kisl7, Corollary 2.3.1] proved the Theorem
when G is unramified at p. In fact, [Kis17] proves the stronger result that ~ lifts
to 70 € G(Q) and is G(Qy)-conjugate to p& (Frob,). Noot’s argument uses the
independence of ¢ of P, ¢(t), together with group theoretic arguments to analyze
the map Conjg — Conjgy,(v,,)- The result of [Kis17] is proved by showing that, on
the Shimura variety associated to G, the isogeny class corresponding to A contains
a point which admits a CM lift.

For the rest of the introduction we assume p > 2. Our proof of Theorem 1.1
makes use of families of abelian varieties with Mumford-Tate group contained in
G, and especially the structure of their mod p reductions. These families are
parameterized by a Shimura variety Shk (G, X) associated to G, and defined over
a number field (its reflex field) E C C which is contained in E. We take K = K,K?
with K, C G(Q,) a parahoric subgroup and K? C G(A‘;) a compact open subgroup.
Let w be the restriction of v to E. Write E,, for the completion of E at w, Og,, for
the ring of integers of E,, and x(w) for its residue field. Under some mild conditions,
Shk (G, X) has an integral model .7k (G, X) over Og,,, which is smoothly equivalent
to a “local model”, defined as the closure of an orbit of G acting on a certain
Grassmannian. These are constructed in [KPZ], extending results of the first author
and Pappas [KP18].

For each prime ¢ # p, & (G, X) is equipped with a G(Qy)-torsor L,. In partic-
ular, for any finite extension x/k(w) and x € Sk (G, X)(k), the g = |k|-Frobenius
acting on the geometric fiber of L, at x, gives rise to an element v, , € Conjg (Qy).
We say x has the property (¢-ind), or the ¢-independence property, if there exists
an element v € Conjg(Q) such that

Y = Ya,e € Conjg(Qe), V¢ # p.

Now suppose that (G, X) satisfies the conditions needed to guarantee the ex-
istence of Sk (G, X); the general case of Theorem 1.1 is eventually reduced to
this one. Then for a suitable choice of K, our abelian variety A corresponds to
a point 4 € Shk(G,X)(E) and its mod v reduction is a point x4 of the special
fiber Sk 1= Yk (G, X) ®oy, K(w). Moreover there is an equality v¢(v) = vz, ¢ as
elements of Conjg(Qy). Thus in order to show Theorem 1.1, it suffices to prove

(1) If k/k(w) is finite and = € Sk(k), then z satisfies (¢-ind).

By considering A as a point on a larger Shimura variety related to a group of
the form Resp,oG where F is a suitably chosen totally real field, one can show that
Theorem 1.1 follows from the following special case of (}).

Theorem 1.2. Let (G, X,K,) be a strongly acceptable triple. Then for any k/k(w)
finite and x € Sk(k), x satisfies ((-ind).

The condition of strong acceptability of the triple (G, X,K,) is a technical one,
and we refer the reader to §4.2 for the definition. We only mention here that
the condition implies that K, is a certain type of maximal compact subgroup of
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G(Q,) known as a very special parahoric. These conditions are needed to ensure
the integral models satisfy some desirable properties as we explain below.

As a first step towards Theorem 1.2, we prove the following analogue of Serre—
Tate theory, which allows us to show that under the assumptions of Theorem 1.2,
(¢-ind) holds on a dense, Zariski open subset of Sk.

Theorem 1.3. Assume the triple (G, X,K,) is strongly acceptable. Then

(1) The p-ordinary locus Sk, ), C Sk is Zariski open and dense in Sk.
(2) Any closed point x lying in Sk, p],, admits a lifting to a special point T €
Shk (G, X).

The p-odinary locus in (1) is the group theoretic generalization of the ordinary
locus in the moduli space of principally polarized abelian varieties, and the density
follows from results about the local structure of (G, X) and [KPS22, Corollary
1.3.16]. The lifting constructed in (2) is then the analogue in our setting of the
canonical lift for ordinary abelian varieties and had been considered for Shimura
varieties with good reduction in previous work of Moonen [Moo04] and Shankar
and the second author [SZ21]. For these points, the Frobenius lifts to an auto-
morphism of the associated CM abelian variety, and we obtain the desired element
v € Conjg (Q) by considering the induced action on Betti cohomology.

To prove Theorem 1.2, one considers a smooth curve C with a map 7 : C —
Sk. Using a theorem of L. Lafforgue [Laf02, Théoreme VII.6] on the existence of
compatible local systems on smooth curves, we show that if the property (¢-ind)
holds for a dense open subset of points on C then it holds for all points of C. The
results in [KPZ, §7] on the structure of the integral models .7k (G, X) imply that Sk
is equipped with a certain combinatorially described stratification, the Kottwitz—
Rapoport stratification. The stratum of maximal dimension is the smooth locus of
Sk. A theorem of Poonen [Poo04] shows that 7w can be chosen so that its image
intersects Sk [p), and any point z of the maximal stratum. The p-ordinary case
explained above then implies that any such z satisfies (¢-ind). We now argue by
induction on the codimension of the strata; for a closed point x in some stratum
of Sk, we show that 7 can be chosen so that its image contains x, and also meets
some higher dimensional stratum.

In fact, using general arguments with ampleness, it is not hard to construct a
map 7 from a smooth curve whose image contains any closed point € Sk, and
meets the p-ordinary locus. This would appear to avoid the induction on strata
above. However, this argument would only allow us to prove the ¢-independence
result for some power of the Frobenius. To prove Theorem 1.2 in full, one needs
the existence of a y € C, with 7w(y) = z, such that 7 induces an isomorphism of
residue fields k(x) ~ k(y). To construct such curves, we first construct a sequence
of smooth curves which are subschemes of the local model associated to .k (G, X),
using the explicit group theoretic description of this local model. These are then
pulled back to (G, X) via the local model diagram. The assumption that K,
is very special is key to our argument, as this not only guarantees the density of
Sk, [p),.» but also that the Kottwitz—Rapoport stratification on the local model has
a particularly simple description (cf. §5.2.1) which is used in the construction of 7.

The induction argument would also be unnecessary if one could show a conjecture
of Deligne [Del80, Conjecture 1.2.10] on the existence of compatible local systems
on a normal variety. For smooth schemes Deligne’s conjecture has been proved by
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Drinfeld [Dril2], but the special fiber Sk is not smooth, so Drinfeld’s theorem does
not suffice for our purposes.

We now give some details about the geometric properties of the integral models
Sk (G, X) that we use. The two main results we need about these models are the
existence of a local model diagram as predicted in [Rap05], which relates the models
to an orbit closure on a Grassmannian, and the analogue of Serre-Tate theory at
p-ordinary points, already mentioned in Theorem 1.3 above.

Under some mild assumptions, [KPZ] proves the existence of a version of the
local model diagram for abelian type Shimura varieties where the torsor is for the
parahoric of the adjoint group. The strategy follows that of [KP18] which proved
the result under an additional tameness hypothesis on the group G. In [KPZ],
the local model diagram is first constructed in some special Hodge type cases;
the general case is eventually reduced to this via Deligne’s formalism of connected
Shimura varieties. Both the reduction step and the construction in the Hodge-type
case make crucial use of the notion of R-smoothness for tori introduced in §2.4.
This is related to the failure of a closed immersion of tori to extend to a closed
immersion of 1ft Néron models, a phenomenon which does not occur in the tamely
ramified case. For us, this notion is needed to prove certain functoriality properties
of our integral models in §4.3.

In the special Hodge type case, the construction of the local model diagram is
intertwined with a result (Proposition 4.1.9) which gives a description of the formal
neighborhood of the Shimura variety in terms of the deformation theory of a p-
divisible group equipped with a collection of tensors in its crystalline cohomology.
For this we use the constructions in [KP18, §3], as generalized in [KPZ|. This result
is used as a key input in proving the existence of canonical liftings in these cases,

The special Hodge-type cases considered above are actually not enough for appli-
cations to proving f-independence for abelian varieties. This is due to pathologies in
the local models when p||m; (G9°")|. In order to prove the results concerning integral
models in the required level of generality, we consider the Hodge-type Shimura da-
tum of interest as a datum of abelian type. The results concerning the local model
diagram and canonical liftings are then transferred to the integral model using a
different, auxiliary, Hodge-type datum which does satisfy the required properties.
The price of this indirect approach is that we have to do some work to prove that
the integral model constructed in this way maps to an appropriate moduli space of
abelian varieties. This is needed in order to define the p-ordinary locus, and prove
Theorem 1.3.

We now explain the organization of the paper. In §2-4 we prove the geometric
result concerning integral models of Shimura varieties we need. These are then
used to prove Theorem 1.1 in §5,6. In §3, we recall results concerning local models
and review the deformation theoretic results of [KP18, §3] and [KPZ|, which are
then used to show the existence of canonical deformations for p-ordinary p-divisible
groups in §3.4. The latter uses a generalization to general parahorics of a result of
Wortmann on p-ordinary o-conjugacy classes, which is proved in §2.3. In §4, we
recall the construction of the local model diagram and prove Theorem 1.3, first in
some special Hodge-type cases in §4.1, then in general in §4.2-4.4.

In §5, we prove Theorem 1.2 following the strategy outlined above and in §6
we prove Theorem 1.1 using Theorem 1.2. Finally we remark that for technical
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reasons related to the level structure on A, we actually work with Shimura stacks
(i.e. Shimura varieties where the level structure is not neat) in §4-6.

Acknowledgments: M.K. was supported by NSF grant DMS-1902158. R.Z. was
supported by NSF grant DMS-1638352 through membership of the Institute for
Advanced Study, and by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No.
804176). We would like to thank the referees for many suggestions which greatly
improved the paper. We also thank Yihang Zhu for useful discussions.

2. GROUP THEORETIC RESULTS

In this section, we prove some group theoretic results which will be used in §4.
§2.1-62.3 contains the results needed for the construction of canonical liftings in
63.4 and §4.4. In §2.4 we study properties of Néron models of tori needed to study
embeddings of parahorics.

2.1. o-straight elements.

2.1.1. Let F be a non-archimedean local field with ring of integers Op. We fix a
uniformizer wp € O and we let kp denote the residue field of Op. We let F
denote the completion of the maximal unramified extension of F' and Oy its ring
of integers, and we fix F' an algebraic closure of F. We let k be the residue field of
O} which is an algebraic closure of kr. We write I' for the absolute Galois group

Gal(F/F) of F and I for the inertia subgroup, which is identified with Gal(g/ﬁ).
We let o denote the Frobenius element of Aut(F/F).

Let S be a scheme. If X is a scheme over S and S’ — S is a morphism of
schemes, we write Xg/ for the base change of X along S’ — S.

2.1.2. Let G be a reductive group! over F. Let S be a maximal F-split torus of G
defined over F' and T its centralizer (cf. [Tit79, 1.10] for the existence of S). By
Steinberg’s Theorem, G is quasi-split over F and T is a maximal torus of G. We
let B(G, F) (resp. B(G,F)) denote the (extended) Bruhat-Tits building of G over
F (resp. F). Let a denote a o-invariant alcove in the apartment V := A(G, S, F)
over I associated to S ; we write Z for the corresponding Iwahori group scheme over
Op. The relative Weyl group Wy and the Iwahori Weyl group are defined as
(2.1.2.1) Wo = N(F)/T(F), W =N(F)/To(Op),

where N is the normalizer of T and 7y is the connected Néron model for T. These
are related by an exact sequence

For an element A\ € X,.(T); we write ¢y for the corresponding element in W;
such elements will be called translation elements. We will sometimes write W or
Wg, for W if we want to specify the group that we are working with.

LOur convention is that all reductive groups are connected.



INDEPENDENCE OF ¢ FOR FROBENIUS CONJUGACY CLASSES 7

2.1.3. We also fix a special vertex s lying in the closure of a. Such a vertex induces
a splitting of the exact sequence (2.1.2.1) and gives an identification

(2131) V%X*(T)] Rz R.

Let Aff(V') denote the group of affine transformations of V. Then we have an
identification Aff(V) 2 V x GL(V'). The Frobenius o acts on V via affine transfor-
mations and we write ¢ € GL(V) for the linear part of this action. The identification
(2.1.3.1) also determines a dominant chamber Cy C X, (T');®zR; namely by taking
the one containing a, and we write B for the corresponding Borel subgroup defined
over F'. We write oq for the automorphism of X, (T); ®z R defined by o¢ := wgo¢
where wg € Wy is the unique element such that wg o ¢(Cy) = Cy. We call this the
L-action on X.(T); ®z R; by definition it preserves C..

2.1.4. Let S denote the set of simple reflections about the walls of a. We let W,
denote the affine Weyl group; it is the subgroup of W generated by the reflections
in S. Then (W,,S) has the structure of a Coxeter group, and hence we have a
notion of length and Bruhat order. The Iwahori Weyl group and affine Weyl group
are related via the following exact sequence

(2.1.4.1) 0 > W, W 7T1(G)[ — 0.

The choice of a induces a splitting of this exact sequence and m1(G); can be identi-
fied with the subgroup 2 C W consisting of elements which preserve a. The length
function ¢ and Bruhat order < extend to W via this choice of splitting and 2 is
identified with the set of length 0 elements.

We let Kg(w) denote the image of w € W in 7 (G); and kg(w) its projection
to m1(G)r. For w € W, there is an integer n such that ¢™ acts trivially on W
and wo(w)...o" Y (w) =ty for some A\ € X.(T);. We define the (non-dominant)
Newton cocharacter v, € X, (T);q9 = X*(T)(I@ to be %)\, which is easily seen to be

independent of n. We let 7,, € X, (T)(IQJJr be the dominant representative of v4,.

2.1.5. Let G9°* be the derived group of G and let T°¢ denote the preimage of T in
the simply connected covering G*¢ of G4°*. Then W, is the Iwahori Weyl group for
G*° and we have the following exact sequence

OHX*(TSC)I Wa Wg 0.

Since the action of I permutes the set of absolute coroots, X, (T5°); is torsion free
and there is an inclusion X, (7°°); — X.(T);. By [HRO08], there exists a reduced
root system 3 such that
W, ~ QY (X) x W (%)

where QY (X2) and W (X) denotes the coroot lattice and Weyl group of 3, respec-
tively, and there is a canonical isomorphism W (X) = W;,. The roots of ¥ are
proportional to the roots of the relative root system for G j; however the root
systems themselves may not be proportional.

As explained in [HR08, p7], we may consider elements of 3 as functions on
X.(T); ®z R, and we write ( , ) for the induced pairing between X, (T); ®z R and
the root lattice associated to X. We let p denote the half sum of all positive roots
in X. Then for any A € X, (T); we have the equality

(2.1.5.1) U(t2) = (X, 2p),
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where A € Wy - A is the dominant representative of )\, i.e. the image of A in
X.(T); ®z R lies in C4.

2.1.6. We say that an element w € W is o-straight if for any n € N, we have
Lwo(w)...o" Y w)) = nb(w).

It is straightforward to check that this is equivalent to the condition £(w) = (7, 2p).

In this paper, we are particularly interested in translation elements ¢, which are
also o-straight; the key property of these elements that we will need is that they
are central for some Levi subgroup of G defined over F.

For any v € X,.(T); ®z R, we let ®,( be the set of relative roots a for G
such that (v, a) = 0. We may then associate to v the semi-standard Levi subgroup
M, C G generated by T' and the root subgroups U, corresponding to a € ®,.
If in addition v is fixed by ¢, then M, is defined over F. We say A € X,.(T); is
central in G if it pairs with any relative root (equivalently any root in ) to give 0.

Lemma 2.1.7. Let i/ € X.(T); such that t, is a o-straight element and let
M = M,, , be the semi-standard Levi subgroup of G associated to the Newton
I

cocharacter vy ,. Then M s defined over F' and p' is central in M.
Proof. For any A € X, (T);, and for sufficiently divisible n we have
Moty = 0(tx) ... 0" (tx) = ty gty = nu,

Note that o(ty) = te(n; it follows that v, () = ¢(v¢,) and hence v, is fixed by <.
Therefore M is defined over F'.
We let u € Wy be such that u(yt“/) =7, Fora sufficiently divisible n, we have
1 n—1 .
Utw) = (Tr,,20) = — D (us' (W), 2p)

=0

where the first equality follows from the o-straightness of ¢,,. Now (us’(1'),2p) <
£(t,r) with equality if and only if uc*(y’) is dominant. Therefore uc’(y’) is dominant
for all i and hence ¢*(y) is contained in the translate C’ of the dominant chamber
Cy by u~? for all i.

Now M corresponds to a sub-root system X, of 3 consisting of the roots a € %
such that (14 ,,a) = 0. Then ¥ is also the reduced root system associated to
the affine Weyl group for M as in §2.1.5. We must show for all a € ¥;;, we have
(/,a) = 0. Let a € ¥ be a root, then since ¢?(y') is contained in a single Weyl
chamber for all i, it follows that (¢*(1), ) have the same sign for all i.

Without loss of generality, assume (s*(u'), @) > 0,Vi. Then we have

1 n—1 )
2.1.7. = = — (! .
(2171) 0= (,00) = = D (' (u),)
=0
Since all terms in the sum are non-negative, they must be 0. Hence p’ is central in
M. O

2.1.8. Now let {u} be a geometric conjugacy class of cocharacters of G. Let u €
X«(T); denote the image of a dominant (with respect to the choice of Borel B
defined above) representative 11 € X, (T) of {u}.
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Lemma 2.1.9. Let w € Wy such that for p' == w(u), t, is a o-straight element.
Let X := w(p) € X.(T). Then X is central in M := M,, . Here, we consider Wy
as a subgroup of the absolute Weyl group for G.

Proof. Let w(C;) € X.(T)r ®z R be the translate of the dominant chamber by
w. Then w(C,) determines a chamber Cys for M (it is the unique chamber for M
such that w(C;) C Cuy) and we have p/ € Cy. The chamber Cj; determines an
ordering of the root system ;. Let « be a positive root for ¥ and & € X*(T') an
(absolute) root lifting a; such a lift exists by the construction of ¥, see eg. [Bou68,
VI, 2.1]. We let (, ): X,.(T) x X*(T) — Z denote the natural pairing.

Let K/ F be a finite Galois extension over which T splits. We have by definition
of ZM

0= </L,7 a> =c Z (AvT(a))
reGal(K/F)

for some positive ¢ € R, where the first equality follows since u' is central in M.
For any 7 € Gal(K/F), Cy is preserved by 7 and hence 7(&) is a positive root for

M. Therefore (X, 7(&)) > 0, and hence (X, 7(&)) = 0 for all 7. Applying this to

every relative root a for M, we see that A is central in M. [
2.2. p~ordinary o-conjugacy classes.

2.2.1. Let {u} be a geometric conjugacy class of cocharacters of G; we let i € X, (T))
and p € X,.(T)r as above. The p-admissible set is defined to be

Adm({p}) = {w € W|w <ty for some z € Wy}.

It has a unique minimal element denoted 7(,;, which is also the unique element of
Adm({u}) N Q.

For b € G(F), we let [b] denote the set {g~'bo(g)|g € G(F)}, the o-conjugacy
class of b. The set of o-conjugacy classes B(G) has been classified by Kottwitz
in [Kot92] and [Kot97]. For b € G(F), we let v, : D — G denote its Newton
cocharacter and

_ + A~ I,+

Up € Xu(T) g = Xu(T)gy
the dominant representative for vy; it is known that 7, is invariant under the action
of 9. We let kg : G(F) — m1(G)r denote the Kottwitz homomorphism and we
write y

kg : G(F) — m(G)r

for the composition of K¢ and the projection map 71 (G); — 71 (G)r. This induces
a well-defined map B(G) — 71 (G)r, also denoted kg. Then there is an injective
map
(2.2.1.1) B(G)

=T
LGP, 1 (G x (XL (T)F)7.
2.2.2. There is a more explicit description of this map using the Iwahori Weyl
group W. For w € W, its o-conjugacy class is the set {u™lwo(w)lu € W}. We let
B(W, o) denote the set of o-conjugacy classes in W. For w € W, we let w € N(F)
be a lift of w. Then to w € W, we associate the o-conjugacy class of w; by Lang’s

theorem this does not depend on the choice of representative w. We write
U : B(W,o0) — B(G)

for the map induced by w — [w].
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By [Hel4, Theorem 3.7], ¥ is surjective and we have a commutative diagram

N4

m (T,ka)

(X (T)g™) x m(G)r

(2.2.2.1) B(W,0) B(G) .

The map ¥ is not injective in general, however it is proved in [Hel4, Theorem 3.7]
that its restriction to the set of o-straight o-conjugacy classes is a bijection. Here,
a o-conjugacy class in W is said to be o-straight if it contains a o-straight element.

2.2.3. Note that there is a partial order on the set X*(T)g; for A, X € X*(T)Eg,
we write A < X if M — X is a non-negative rational linear combination of positive
roots. For {u} as above, we write uf for the common image of an element of {u}
in m (G)r and we define

1 i ~ 5
D € Xo(T)f g = X(T)

i=1

pe =

where N is the order of the element o giving rise to the L-action on X.(T); ®z Q.
We set
B(G, {u}) = {[b] € B(G) : 5a(b) = i, 7 < p°}.
Note that for [b;], [b2] € B(G, {u}), we have [bi] = [bo] if and only if 7 ) = Tpy,),
since [b1] and [bs] have common image p? under kg.

Definition 2.2.4. Suppose there exists a class [b] € B(G, {u}) such that Tp) = pu®
(such a class is necessarily unique if it exists by the above remark). We write [b],
for this class; it is called the p-ordinary o-conjugacy class.

Remark 2.2.5. [HN18, Theorem 1.1] have shown that B(G, {u}) always contains a
unique maximal element with respect to the partial order <. When G is quasi-split,
this class is just [b],,. However if G is not quasi-split, there may be no [b] € B(G, {1})
such that D = p°.

Lemma 2.2.6. Assume there exists [b],, € B(G,{u}) with V), = pu°. There exists
W € Wo - u such that t, is o-straight and t,, € [b],,.

Proof. Since [b], € B(G,{u}), there exists a o-straight element w € Adm({x})
such that w € [b],, by [Hel6, Theorem 4.1]. The commutativity of diagram (2.2.2.1)
implies that 7,, = u®. Since w is o-straight, we have

U(w) = (Tw, 2p) = (1%, 2p) = (1, 2p) = L(t,),
where the third equality follows from the fact p is invariant under oy, and the final
equality uses (2.1.5.1) and the fact that p is dominant. Since w € Adm({u}),
L(w) < L(t,) with equality if and only if w = t,, for some pu' € Wy - p. O

2.2.7. Now let G’ be another reductive group over F' and f : G — G’ a group
scheme morphism which induces an isogeny GI¢* — G’de*. We write {u'} for the G'-
conjugacy class of cocharacters induced by {u}. We have the following relationship
between p-ordinary o-conjugacy classes for G and G’.

Lemma 2.2.8. (1) There exists [b],, € B(G,{pu}) with Uy, = pu° if and only
if there exists [V'], € B(G', {p'}) with vy, = p'.
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(2) Let [b] € B(G,p) and [V] == [f(b)] € B(G',{i'}). Then [b] = [b],, if and
only if [t'] = [t/] -

Proof. (1) Note that we have a commutative diagram

B(G) —— (X (D)g ") x m(G)r

| J

B(G") —— (X.(T)§T) x m(G")r

where T is the centralizer of a maximal F-split torus of G’ containing f (T). Thus
one direction of (1) is clear.

For the converse, suppose there exists [b'],, € B(G',{i'}). Note that by as-
sumption, there is an identification of relative Weyl groups for G and G’. Then by
Lemma 2.2.6, there exists wg € Wy such that £,,(,) is a o-straight element of the
Iwahori Weyl group for G’ and £,,,(,/) € [b'],. Then it is easy to check that ()
is a o-straight element of the Iwahori Weyl group for G and that Dty = u. It
follows that [f,,(.] = [b], € B(G,{n}).

(2) One direction is clear. Suppose then that [b'] = [b'],. It follows that T =
1€ + o for some a € X, (ker(G — G’))’. But [b] € B(G,{u}) and hence pu® — vy is
a rational linear combination of positive coroots. Thus o = 0 and [b] = [b],,. O

2.3. Parahoric group schemes.

2.3.1. Recall that B(G, F) and B(G, F) denote the extended Bruhat-Tits buildings
associated to G. For a non-empty bounded subset = C B(G, F) which is contained
in an apartment, we let G(F)z (resp. G(F)z) denote the subgroup of G(F) (resp.
G(F)) which fixes Z pointwise. By the main result of [BT84], there exists a smooth
affine group scheme G= over O with generic fiber G which is uniquely characterized
by the property G=(Op) = G(F‘)E. As in [KP18, §1.1.2], we will call such a group
scheme the Bruhat—Tits stabilizer scheme associated to Z. If £ = {z} is a point we
write G(F), (resp. G,) for G(F){a) (resp. g{m}).

For 2 C B(G, F), we write G= for the “connected stabilizer” = (cf. [BT84, §4]).
We caution the reader that our convention differs from [KP18], where Gz is used
for the Bruhat-Tits stabilizer scheme and G2 for the connected stabilizer. We are
mainly interested in the cases where = is a point = or an open facet f. In this case,
G. (resp. Gj) is the parahoric group scheme associated to = (resp. f). By [HRO8],

G=(0p) = G=(Op) NkerRg. Tt follows that G=(Or) = G=(OF) Nker k.

We may also consider the corresponding objects over F and we use the same
notation in this case. When it is understood which point of B(G, F) or B(G, F) we
are referring to, we simply write G and G for the corresponding group schemes.

An important case that is needed for applications is when G, = QNx, i.e. the
parahoric is equal to the Bruhat-Tits stabilizer. When this happens, we necessarily
have that sz = ’g}, where f is the facet which contains x, and = € § is a point which
is “in general position.” We say that G is a connected parahoric if there exists a
point € B(G, F) such that G, = G.

Let G’ be another reductive group and assume there is an identification G#d =
G2 between their respective adjoint groups. Then there are surjective maps of
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buildings B(G, F) — B(G*, F) and B(G',F) — B(G'*, F) which are equivariant
for G(F) and G'(F) respectively. Let G = G, be a parahoric group scheme of G
corresponding to z € B(G, F), and let #*! € B(G*!, F) denote the image of x.
Then for any 2’ € B(G’, F) lifting 22, the parahoric G’ = G/, of G’ is independent
of the choice of 2’ lifting 24, Thus G determines a parahoric G’ of G’; in this case
we say that G and G’ are associated.

2.3.2. Now let J C S be a subset and we write W for the subgroup of W generated
by J. If Wy is finite, J corresponds to a parahoric group scheme G over O; such
parahorics are called standard (with respect to a). We let W (resp. W) denote
the set of minimal length representatives of the cosets W/W; (resp W;\W).

We recall the Iwahori decomposition. For w € W, the map w — w induces a
bijection

WAW/W, = GONGE)/6(05).

We now assume J is o-stable; in this case the parahoric group scheme G is defined
over Op. For the rest of §2.3, we fix a geometric conjugacy class of cocharacters
{1} of G and assume the existence of [b], € B(G,{u}). We define Adm({x})s to
be the image of Adm({u}) in W;\W/W ;. We sometimes write Admg({p})s if we
want to specify the group G we are working with. The following is the key group
theoretic result needed to prove the existence of canonical liftings in §4.4.

Proposition 2.3.3. Let b € (UweAdm({u})J g(oﬁ)wg(oﬁ)) N[b],. Then

(1) b€ G(O)E,G(Op) for some o-straight element t, .
(2) There ezists g € G(Op) such that g~'bo(g) = iy, for t, as in (1).

Proof. By [HR17, Theorem 6.1 (b)], there exists h € G(O3) such that h=bo(h) €
Z(O)WI(O) for some w € YW. Thus w € "W NW;Adm({u})W, and hence lies
in “WNAdm({u}) by [Hel6, Theorem 6.1]. Thus upon replacing b by h=tbo(h), we
may assume b € Z(Op)wZ(O). By [HZ20, Theorem 4.1], there exists a o-straight
element = < w such that [b], NZ(O)#Z(Op) # 0 (the Theorem in loc. cit. proves
the non-emptiness of the affine Deligne—Lusztig variety X, (b), which is equivalent
to this statement). By the proof of [Hel4, Theorem 3.5], we have & € [b], and by
the same argument as in Lemma 2.2.6 we have x =t/ for some p/ € Wy - . Since
z <w and w € Adm({u}), we have w = t,,,. This proves (1).

For (2), the above argument shows that we may assume b € Z(O;)f,,Z(O) for
t, a o-straight element. By [Hel4, Proposition 4.5], there exists i € Z(Op) such
that i~'bo (i) = £,/; the result follows. O

Remark 2.3.4. This result is a generalization to general parahorics of [SZ21, Propo-
sition 2.5] which is due to Wortmann. In the case when G is a hyperspecial para-
horic, this result is the group theoretic analogue of the fact that there is exactly
one isomorphism class of ordinary F-crystal over O .

2.4. Néron models of tori.

2.4.1. In this subsection, we introduce the notion of R-smooth tori and discuss
some consequences for Bruhat—Tits group schemes.

Let T be a torus over a non-archimedean local field F'; recall we have defined 7
to be the connected Néron model of T. We let T (resp. Tg) denote the lft Néron
model (resp. finite type Néron model) for 7. Then we have 7(Op) = T(F) and Ty,
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is characterized by the condition 75, (O) = {t € T(F)|Rr(t) € Xu(T)1 1ors} where
X(T)1tors is the torsion subgroup of X, (T);. Alternatively, by [Rap05, n°1] the
connected components of the special fiber of 7 are parameterized by X, (T"); and
Tee is the unique smooth subgroup scheme of 7 whose special fiber is given by the
set of connected components corresponding to the subgroup X.(T); tors of X+ (T);1.

2.4.2. Let F/F be a finite Galois extension over which T splits and To, denote
the Ift Néron model of T'z. ? By [BLR90, §7.6, Proposition 6], Reso_ /0, To is the
Ift Néron model over Op for Resz / w15 There is a natural map T' — Resz / 15
and we define 7° to be the Zariski closure of T" inside Reso_ /0, To,. Asin [BT84,

§4.4.8], T° does not depend on the choice of splitting field F.
Definition 2.4.3. We say a torus T is R-smooth if T¢ is smooth.

Since T°¢ satisfies the Néron mapping property (see [Edi92, Proof of Theorem
4.2] for the proof in the case of abelian varieties which also works for tori), we have
T = 7°¢if T is R-smooth.

We can similarly define a notion of R-smoothness for tori over F. It is easy to
see using compatibility of Néron models with base change along O — O that a
torus over F' is R-smooth if and only if T} is R-smooth.

Lemma 2.4.4. Suppose we have a closed immersion f : Ty — Tb between tori
where T1 is R-smooth. Then

(1) [ extends to a closed immersion T — Ta of ift Néron models.
(2) f extends to a closed immersion Ty g — Ta g of finite type Néron models.

Proof. (1) Let F/F be a finite Galois splitting field for both Ty and T». Then since
Tl, 7 and TQ’ 7 are products of multiplicative group schemes, the map Tl, 7 T27 7
extends to a closed immersion of Ift Néron models Toi — 7'2’@? over Op. We
obtain a diagram

T1 > T2

%
Reso. 0, T1,0, — Reso_j0,.T2,05

where ¢ is a closed immersion since it is obtained via restriction of scalars of a
closed immersion, and ¢ is a closed immersion since 77 is R-smooth. It follows that
ho f=1io0gis a closed immersion, and hence f is a closed immersion.

(2) By (1), we have a closed immersion 7; — Tz of lft Néron models. We
let ¢ : X.(T1)r — X.(T»); denote the morphism on the targets of the Kottwitz
homomorphism. Using that ker(¢) is torsion, one sees that

Qsil(X* (TQ)I,tors) = X* (Tl)I,tors-

As the finite type Néron models 77 ¢ and 7z ¢ correspond to the subschemes of 7;
and 72 whose special fibers are given by the connected components parameterized
by X.(T1)1t0rs and X, (T2)1 tors respectively, it follows that 71 — 72 induces a
closed immersion 71 ¢ — 72, as desired. O

2We are abusing notation here since Toﬁ is not necessarily the base change to O of the Néron
model T of T over Op.
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2.4.5. The proof of [Edi92, Theorem 4.2] shows that if T splits over a tamely ram-
ified extension of F', then T is R-smooth. In addition, the main examples of R-
smooth tori that we will consider are given by the following proposition.

Proposition 2.4.6. (1) Let T =T];_, Resk, pSi, where K; are finite separa-
ble extensions of F and S; are K;-tori which split over a tamely ramified
extension of K;. Then T is R-smooth.

(2) LetT be a torus which is an extension of an R-smooth torus by an R-smooth
torus. Then T is R-smooth.

Proof. (1) We will make use of the following result which follows from [BLR90,

§7.6 Proposition 6]: If S is a torus over a finite separable extension K of F with 1ft

Néron model S over O, then Resp,. /0, S is the Ift Néron model for Resg/pS.
We may reduce to the case s = 1, in which case we write 7' = Resg,pS for S a

tamely ramified torus over K. Let F /F be a finite Galois splitting field of T' which

necessarily contains K. For any F-morphism 7 : K — ﬁ7 the base change of S
along 7 is split. Since S is R-smooth, it follows that we have a closed immersion of
Og-group schemes

S — ReSoﬁ/oKS(gﬁ,
where S (resp. Sp) is the Ift Néron model for S (resp. Sg).

Applying Resp,. /0, we obtain a closed immersion

ReS@K/oFS — ReSOﬁ/OFSOﬁ-
Taking the product over all 7: K — F we obtain a closed immersion

Reso, /0.8 — H Reso_ 0,80, Z Reso_ 0, To,-
T K—F
Since Resp, /0, S is the Ift Néron model T for T, it follows that 7T is the closure
of its generic fiber inside Reso /0, 7o, and hence T" is R-smooth.

(2) We may assume F' = F. Assume we have an exact sequence

f g

1 Ty T T, 1

where T} and T, are R-smooth. Since T) is R-smooth, f extends to a closed
immersion of Ift Néron models 71 — 7, by Lemma 2.4.4. The quotient T /77 is
a smooth group scheme with generic fiber T, and by Steinberg’s theorem it has
the same Ox-points as the Ift Néron model 73 for T5. Thus by [BT84, Proposition
1.7.6], T/T1 = T2 and we have an exact sequence of group schemes

1 T T T2 1.

Let F /F be a finite Galois extension over which 77, T» and T split. We obtain
a commutative diagram with exact rows:

1 Ti T T2 1

J | J

1— ReS@ﬁ/@F'TL(Qﬁ —_— ReSoi/oFToﬁ — Resoﬁ/OFE7Oﬁ —1
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Let 7€ be the Zariski closure of T' in Reso /0 To- By R-smoothness of T3 and
Ty, the two outer vertical maps in the diagram above are closed immersions. Hence,
T; is closed in 7€, and the composite

7-2 ~ T/7-1 — TC/’Tl — ReSOﬁ/OF'TZC)ﬁ

is a closed immersion. Thus, 7 /77 is closed in 7¢/7;. As these are two Op-flat
schemes with the same generic fiber, it follows that 7/7; ~ T¢/7;, and hence
T =~ T¢. Hence j is a closed immersion and T is R-smooth. (]

2.4.7. The previous results have the following consequences for Bruhat—Tits group
schemes. Let G be a reductive group over F and G a Bruhat-Tits stabilizer scheme
corresponding to « € B(G, F). Let 5: G — G’ be a closed immersion of reductive
groups over F, which induces an isomorphism on derived groups. As in [KP18,
§1.1.3], « determines a point 2’ € B(G', F) and we write G’ for the corresponding
stabilizer scheme of G’; then 8 extends to a group scheme morphism S : GG

Proposition 2.4.8. Assume that there exists a mazimal F-split torus in G whose
centralizer is an R-smooth torus. Then 8 :G — G’ is a closed immersion.

Proof. As all maximal F -split tori are F‘—conjugate, the centralizer of any maximal
F-split torus is R-smooth if there exists one such centralizer which is R-smooth.
Therefore we may assume that all such centralizers are R-smooth. Moreover, since
the construction of Bruhat—Tits stabilizer schemes is compatible with unramified
base extensions, it is enough to prove the result in the case F' = F.

Let S be a maximal F-split torus in G such that z lies in A(G, S, F) Let T
be the centralizer of S which by assumption is an R-smooth torus. Let S’ be a
maximal F-split torus of G’ such that ' NG = S and T’ the centralizer of S’.

By the construction of Bruhat—Tits stabilizer schemes in [BT84, §4.6], the Zariski
closure of T' (resp. T") inside G (resp. G') can be identified with the finite type
Néron model Tg (resp. 7z ). By Lemma 2.4.4, the natural map T'— T” extends to
a closed immersion T — Ty of finite type Néron models.

For any relative root a, the map G — G’ induces an isomorphism between the
root subgroups U, and U/,. If we let U, and U/, denote the corresponding schematic
closures, then by the construction of G and G in [BT84, §4.6], the map G — G’ also
induces an isomorphism U, — U,,. Thus as in [BT84, Theorem 2.2.3] the schematic
closure QA of G in 5’ contains the smooth big open cell

Hu—a X ﬁt X Hua;

hence by [BT84, Corollary 2.2.5], G is smooth. Since é((’)F) =G(F)n 5’((’)1&), it

follows that G =~ G , and hence we obtain a closed immersion G < G’ as desired. [

2.4.9. Now let K/F be a finite separable extension. There is a natural embedding
of buildings B(G,F) — B(G,K) and the image of = in B(G, K) determines a
Bruhat-Tits stabilizer scheme g~0 over Og. Then by [Pra0l, p. 172], there is an
identification of buildings B(G, K) = B(Resx,rG i, I') and the stabilizer scheme for
Resg/rGx corresponding to x can be identified with Resop, /0, QNO (see eg. [HR20,
§4.2]). By [BT84, §1.7.6], we obtain a natural morphism 7 : G — ResoK/@Fgo of
Op-group schemes. A similar argument to Proposition 2.4.8 gives the following
proposition which generalizes [KP18, Prop. 1.3.9] (cf. [FHLR, Cor. 5.26]).
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Proposition 2.4.10. Assume p > 2 and that the centralizer of a mazimal F-split
torus in G is R-smooth. Then i : Q — Res@K/oFgo is a closed immersion.

Proof. We may assume F' = F. Tt suffices to prove the result for K a field over
which G splits. Indeed, if K/K is an extension over which G splits and Gl is the
Bruhat—Tits stabilizer scheme over O correspondlng to x, then G — Resp,. /OF Go
is a closed immersion if the composition G — ResoK/OFgo — ResoK,/oFgo is a
closed immersion.
The same argument as in Proposition 2.4.8 shows that we can reduce to proving
the following two statements:
(1) |7, is a closed immersion, where T is the centralizer of a maximal F-split
torus S whose apartment contains z.
(2) ], is a closed immersion, where « is a relative root for G and U, is the
schematic closure of the root subgroup U, inside G.

The first follows from Lemma 2.4.4 (2) applied to the map T'— T, where T is the
centralizer in Resg/pGk of a maximal F -split torus containing S.

For the second statement, let a be a relative root and let G, denote the simply-
connected cover of the subgroup of G generated by the root subgroups correspond-
ing to relative roots which are proportional to . Then G, is isomorphic to either

(1) Resy,rSLy for L/F a finite separable extension.
(2) Resy,rSUs, where SU3 is the special unitary group over L associated to a
hermitian space over a separable quadratic extension L'/L.

Let G, denote the subgroup of G generated by the image of G, and T then
G, contains the maximal F-split torus S of G. By the main result of [Lan00],
the inclusion G, — G induces a G (F v) equivariant embedding of buildings, which
restricts to an identification of apartments A(GY,, S, F) = A(G, S, F). The point
z € A(G, S, F) corresponding to G determines a Bruhat-Tits stabilizer scheme of
G!,, and since G,, and G/, have the same adjoint group, we obtain a stabilizer scheme
G., of G,, via the choice of a lift z,, € B(G,, F) of the image of z in B(G'4, F)

We have a commutative diagram

Go — Resoy jop ga,O

L

G—r Resoy, j0r So,

where §a o denotes the parahoric for G, k corresponding to z, € B(Gq, K). The
natural morphism G — G induces an isomorphism on the integral root subgroups
U, and similarly for the morphism Ga o0 — (]0 It therefore suffices to prove the
result for G = G,. Note that since we have assumed p > 2, G, is the Weil-
restriction of a tamely ramified group. Thus it suffices to prove the proposition in
this case, which we now do.

We first consider the case that G itself splits over a tamely ramified extension
K'/F. We may assume K contains K*. Let 53 denote the Bruhat—Tits stabilizer
scheme of G+ corresponding to G. Then i factors as

_C’7 — ReSOKt/oF(jé — ReSoK/OFgo.
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The first morphism is a closed immersion by [KP18, Proposition 1.3.9]. The second
morphism is obtained from 53 — Resoy /0, QNO by applying Weil-restriction. Since
Gt is split, we can reduce to the case G+ = SLs, as above, and this follows from
Lemma 2.4.11 below.

Now assume G' = Resy, /- H where H is a group which splits over a tame extension
of L and that K contains L. Then G — Resg,pGk arises from Weil-restriction of a
morphism H — Resg Gk, which is given by a product of the diagonal morphisms
H — Resk, Hi. Hence the result in this case follows from the tame case proved
in the previous paragraph. The proposition follows. ([

Lemma 2.4.11. Let G = SLy. Then the morphism i : G — ResoK/@Fgo s a
closed immersion.

Proof. We may assume G corresponds to a point in the apartment for the diagonal
torus T; let U be a root subgroup for 7T'. Since T is split, hence R-smooth, it suffices
as above to show U — Resg,rUk extends to a closed immersion U — Resp . /0-Uo,
where U (resp. Up) is the Zariski closure of U in G (resp. Ug in Gp). The morphism
U — Resg,rpUk can be identified with the diagonal morphism G, — Resg/rG,.
Let wp (resp. wk) be a uniformizer for F' (resp. K), and let e denote the
ramification index of K/F. By the construction of the stabilizer schemes in [BT84],
Up is the Ok-group scheme cordeoresponding to the Ox-submodule @ Ok of
K = G4(K), for some n € Z and k € {0,...,e — 1}, which depend on the choice
of x € B(G, F'). Then U corresponds to the Op-submodule @wZOp of F' = G4(F).
We can extend w’ to an Op-basis for w}’f—k(’)K considered as an Op-module, and
this induces an identification Resp, j0,Uo = A™ where m = [K : F]. The map
U — Resp, j0,.Uop is then identified with the closed immersion Al — A™ taking a
to (a,0,...,0). O

2.4.12. Now let 8 : G — G’ be a central extension between reductive groups with
kernel Z and G the parahoric group scheme associated to some = € B(G, F'). We let
G’ denote the parahoric of G’ corresponding to G. As above, 3 extends to a group
scheme homomorphism G — G’.

Proposition 2.4.13. Assume Z is an R-smooth torus. Then the Zariski closure
Z of Z inside G is smooth and there is an (fppf) exact sequence

(2.4.13.1) 0 Z ¢ g 0

of group schemes over Op.

Proof. As before, it suffices to prove the proposition when F = F. Let S be a
maximal F-split torus of G such that  lies in A(G, S, F‘) Let T be the centralizer
of S and we let T” be the corresponding maximal torus of G’.

Assume there exists an fppf exact sequence

(2.4.13.2) 1 Z T T 1

where Ty and 7T are the connected Néron models of T and T’ respectively. Then
we may argue as in [KP18, Proposition 1.1.4] to obtain the desired exact sequence
(2.4.13.1).

It remains to exhibit the exact sequence (2.4.13.2); we follow the argument of
[PRO8, Lemma 6.7]. By Lemma 2.4.4 we obtain a closed immersion between 1ft
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Néron models Z — T. We let Z’ denote the subgroup scheme of Z with generic
fiber Z, and special fiber corresponding to the connected components of the special
fiber of Z parameterized by ker(X,(Z); — X,(T);). Then Z' is smooth and we
have a closed immersion Z~’~ — To. It follows that Z' coincides with Z and we
obtain a closed immersion Z — 7. As in [PR08, Lemma 6.7] we have an exact
sequence:

1—— 2(0p) —— To(0p) —— T(0p) —— 1

The quotient 7o/ Z is a smooth affine commutative group scheme with the same
generic fiber as 77 and with the same Oz-points; hence by [BT84, Proposition

1.7.6] we have 7] = To/Z. The result follows. O

3. DEFORMATION THEORY OF p-DIVISIBLE GROUPS

In this section we prove the deformation theoretic results needed for the study
of integral models of Shimura varieties in §4. In §3.1, we discuss properties of local
models and their embeddings in Grassmannians. §3.2-§3.3 contains the results
needed to describe the formal neighborhood of Shimura varieties, and in §3.4, we
apply this to the case of p-ordinary p-divisible groups to construct an analogue of
the Serre-Tate canonical lift.

3.1. Local models and good embeddings.

3.1.1. Let (G,{u},G) be a local model triple over F as in [HPR20, §2.1]. Thus

e (G is a reductive group scheme over F.
e {u} is a geometric conjugacy class of minuscule cocharacters of G.
e G =G, for some xz € B(G, F) is a parahoric group scheme.

A morphism of local model triples (G,{u},G) — (G',{i'},G’) is a morphism
G — G’ taking {u} to {i'}. We denote by E the reflex field of the pair (G, {u}). Tt
is a subfield of F' containing F.

We consider local model triples which satisfy the following property.

Definition 3.1.2. A reductive group G over F is said to be acceptable if G*4 =2
[T;_, Resg,/rH where K;/F is a finite extension and H?! is an adjoint group
over K; which splits over a tame extension of K;.?

A local model triple (G, {u},G}) is said to be acceptable if G is acceptable.

Remark 3.1.3. If p > 3, there are no automorphisms of a connected Dynkin diagram
of order divisible by p, hence any such reductive group is acceptable. Moreover, for
p = 3, any reductive group which has no factors of type D, is acceptable, as this is
the only connected Dynkin diagram with an automorphism of order 3.

Let (G, {u},G) be a local model triple. An embedding p: G — GL(V) is called
a local Hodge embedding if the following conditions are satisfied:

e p(@) contains the scalars.
e p is a minuscule representation.
e poy is conjugate to a standard minuscule cocharacter of GL(V).

3In [PRb] and [KPZ], these groups are called essentially tamely tamified.
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We say that (G, {u}, G) is of local Hodge type if it admits a local Hodge embedding.

As explained in [KPZ, Remark 3.1.5], if (G, {u},G) arises from completion at
p > 2 of a global Shimura datum (G, X) of Hodge type, then (G, {u},G) will be
acceptable of local Hodge type.

3.1.4. In the rest of this section we assume p > 2. We write Mlg"c{u} for the local

model associated to the local model triple (G,{u},G). By definition, Mlé)::{#} is
the unique, up to unique isomorphism, proper flat Og-scheme with G-action, with
generic fiber G/P, and reduced special fiber, which represents the v-sheaf Mg ,,
over Spd(Op) defined in [SW20] (this is denoted by Grg spa(oy),. in [SW20, Lect.
21]).

The existence of Mlgol‘f{u} was conjectured by Scholze-Weinstein [SW20, Conj.
21.4.1] and is shown in [AGLR] under mild assumptions, and in general in [GL24]. If
(G, {u},G) is acceptable and of local Hodge type, which is our main case of interest,
a simpler proof of the existence of is given in [KPZ, Theorem 3.2.15]. Under these
assumptions, the construction of Mlgoﬂc{u} in [KPZ, §3.2.12] shows that it is identified
with the scheme Mg/ (,/1 constructed in [Lev16] for an auxiliary local model triple
(G', {i'},G") with p { |71 (G"e7)| and G'*d = G294, In particular, Mlg°7‘:{#} ®op k
admits a stratification indexed by the p-admissible set Adm({x})s, where J is
the set of affine reflections corresponding to G, and its irreducible components are
normal and Cohen-Macaulay; see [KPZ, Theorem 3.2.9].

3.1.5. The following notion will be needed for applications in §4.

Definition 3.1.6. Let (G, {i}, G) be an acceptable local model triple of local Hodge
type.
(1) An integral Hodge embedding for (G, {u},G) is a closed immersion p : G —
GL(A), where G is a stabilizer scheme for G with associated parahoric G and
A C V is an Op-module in a finite dimensional vector space V', such that
the induced map G — GL(V') on generic fibers is a local Hodge embedding.
(2) An integral Hodge embedding p : G — GL(A) is said to be good if there is
a closed immersion of local models
Mlgof{“} — Gr(A) ®0, O
extending the natural map on the generic fiber. Here Gr(A) is the smooth
Grassmannian of subspaces & C A of rank d, where d € Z> is such that
{popu} is the conjugacy class of a — diag(1»=9 (a=1)(D),
A local Hodge embedding G — GL(V) is good, if it extends to a good integral
local Hodge embedding G — GL(A) for some G and A C V.

Remark 3.1.7. If we assume in addition that C: = @G, then Definition 3.1.6 (2)
recovers the definition of a strongly integral local Hodge embedding for (G, Mlgoc{ #})

as in [Pap22, §3.1.4].
3.1.8. The following result gives a strengthening of [KPZ, Theorem 3.3.25].

Proposition 3.1.9. Let p > 2 and (G,{u},G) an acceptable local model triple of

local Hodge type. Assume p 1 |m(GI)| and that the centralizer of a mazimal I -
split torus in G is R-smooth. Then (G,{u},G) admits a good local Hodge embedding
p:G— GL(W).
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Proof. Let K/F be a finite extension over which G splits and let p' : G — GL(V)
be a local Hodge embedding. We let W denote the underlying F' vector space of
Vik :=V ®p K. Then we have a faithful embedding p : G — GL(W) given by the
composition

where the morphism Resyx/pGx — Resg/pGL(Vk) arises from Weil restriction of
the morphism p% : Gx — GL(Vk) given by the base change of p’ to K and the last
morphism is given by restriction of structure. Then p is (geometrically) isomorphic
to a direct sum of the representations p’ and hence is also local Hodge embedding.

Let {415/} denote the conjugacy class of cocharacters of Resi /G i induced by
{p}. Let Gy (resp. g~0) denote the parahoric (resp. stabilizer) group scheme over
O corresponding to the image of z in B(G, K). We set

Gk/r = Resoy 0, Y0, éK/F = RGSOK/OFgo-

Then we obtain an acceptable local model triple (Resg/rGr, {,uK/F}, Gk/r) and
we let ' be its local reflex field. The morphism

RQSK/FGK — ResK/FGL(VK) — GL(W)

obtained above is a local Hodge embedding for (RGSK/FGK7{,UK/F};QK/F) and
satisfies the assumptions in [KPZ, Theorem 3.3.25]. Thus by loc. cit., upon possibly
replacing x by a different point and p by a direct sum, we obtain a good integral
local Hodge embedding QVK/F — GL(A) for A € W an Op-module. Note that
our assumption that p { |r1(G9")| implies that the scheme Mg, ,, ., in [KPZ,

Theoremn 3.3.25] is isomorphic to M!¢ , cf. [KPZ, Proof of Theorem
Ok rAbK/F}

3.2.15]. We obtain closed immersions:

Q~K/F — GL(A), Mlgo;/F7{uK/F} — Gr(A) ®(’)F OE"

By Proposition 2.4.10 and Lemma 3.1.10 below, we have closed immersions
~ ~ loc loc
g— gK/F’ Mg,{u} - MgK/Fv{NK/F} ®0p: Ok,

and hence composing with the above, we obtain a good integral local Hodge em-
bedding G — GL(A).
|

Lemma 3.1.10. With the notation and assumptions of the previous proposition,
there is a closed immersion

1 1
(3.1101) Mgo,c{u} — MgoIi/F7{IJ'K/F} ®OE' OE

Proof. This follows from [FHLR, Lemma 5.27] and [AGLR, Theorem 7.21]. More
precisely, [AGLR, Theorem 7.21] shows that the models constructed in [FHLR,
Lemma 5.27] agree with our Mlgo"f{#}. [FHLR, Lemma 5.27] then shows the existence
of the closed immersion noting that Hypotheses 2.1 and 5.24 of loc. cit. are satisfied

by our assumptions of acceptability and that p > 2. (]
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3.1.11. We prove a slight variant of Proposition 3.1.9 in the presence of an alternat-
ing form. Let p : G — GSp(V) be a faithful symplectic representation where V is
a 2n-dimensional vector space over F' equipped with a perfect alternating bilinear
form ¥. We assume that p o y is conjugate to the standard minuscule coweight
a — diag(1™, (a=1)™)) and that p(G) contains the scalars. We call such an em-
bedding a local symplectic Hodge embedding. We say p is good if the corresponding
representation G — GL(V) is good.

Proposition 3.1.12. Let p > 2 and (G,{u},G) an acceptable local model triple
of local Hodge type. Assume p { |71(GI)|, the centralizer of a mazimal F-split
torus in G is R-smooth and that G admits a local symplectic Hodge embedding
p: G — GSp(V). Then (G,{u},G) admits a good local symplectic Hodge embedding
p G — GSp(W).

Proof. We apply the construction in Proposition 3.1.9 to obtain a good Hodge
embedding G — GL(W). By construction, there is a finite extension K/F such
that W = Vi considered as an F-vector space. Let ¥ : V x V — F be the
alternating form on V. We define ¥’ : V}; x Vi — F to be the alternating form
given by ¥/ =377 | Trg,po (¥ ®p K). Then G — GL(W) factors through a good
local symplectic Hodge embedding p' : G — GSp(W) as desired. O

3.1.13. Now let (G, {p},G) be an acceptable local model triple of local Hodge type
and p : G — GL(A) a good integral local Hodge embedding extending p : G —
GL(W). We assume that G = G. We finish this section by giving a more explicit
description of the embedding I\\/Jllgoc{ u — Gr(A) ®o, Op on the level of k-points
which will be needed in §3.4. We assume G is a standard parahoric corresponding
to a subset J C S.

As explained in [Zho20, §3.6], we may identify the k-points of Gr(A) with a
subset of GLw (F')/GLw (O), where GLw := GL(A). The convention in loc. cit.
is that g € GLy (F)/QEW(OF) NGr(A)(k) corresponds to the subspace of A®p,. k
induced by the reduction mod wpg of the lattice wpgA. We thus obtain an inclusion
Mlgo,c{#}(k) C GLw(F)/gﬁw(Oﬁ)

Proposition 3.1.14. Assumep>2 and G = G. Let g€ G(F’) with
9€9(0p)uwG(0p)

for some w € W \W/W;. Then the image of p(g) in GLW(F)/QEW(Oﬁ) lies in
Miee (k) if and only if w € Adm({u}),.

G.{n}
Proof. By [AGLR, Theorem 7.23], the inclusion Mg<,, (k) € GLw (F)/GLw (Op)
lifts to an inclusion Mgf[u}(k) C G(F)/G(O) which identifies Mlgofm}(k:) with the

v}

p-admissible locus in G(F)/G(O) (i.e. elements of the form G(Oz)wG(Ox)/G(Ox)
forw € Adm({u})s). By our assumption that G = G, the morphism G(F)/Q(OF) —
GLw (F)/GLw (O}) induced by p is injective, and the result follows. O

Remark 3.1.15. The reason for the convention in [Zho20, §3.6] is as follows. Let p
be the standard minuscule cocharacter of GL,, given by a — diag(1(*=% (a=1)(@).
Then on the generic fiber, p corresponds to the subspace of W where it acts by
weight —1. The specialization of this point in Gr(A)(k) is the subspace of A ®¢o,. k
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given by the reduction mod wp of wrpp(wr)A. Thus with this convention, Gr(A)(k)
is identified with the p-admissible locus of GLyy (F')/QLW(OF).

3.2. The versal deformation space with tensors.

3.2.1. We assume p > 2 and we work over the base field Q, so that @p = W(k)[%],
where W (k) denotes the Witt vectors of k. For any ring R and an R-module M, we
let M® denote the direct sum of all R-modules obtained from M by taking duals,
tensor products, symmetric and exterior products. If R is a complete local ring
with residue field of positive characteristic and ¢ is a p-divisible group over R, we

write () for its (contravariant) Dieudonné crystal.

3.2.2. Let % be a p-divisible group over k and set D := ID)(%O)(ZP). We write ¢ for
the Frobenius on D and Dy C D the preimage of the filtration on D(%)(k). Let
(Sa.0) C D® be a collection of p-invariant tensors whose image in D(%)(k)® lie in
Fil®. We assume that there exists a Zp-module U and an isomorphism

(3.2.2.1) U®z, L, =D

such that s, 0 € U®. Write GcC GL(U) for the pointwise stabilizer of {sq,0}a SO
that QZP can be identified with the stabilizer of s, in GL(D). We assume that

the generic fiber G := QN®ZD Qp is a reductive group and that g~ = ’g} for some
x € B(G,Qp). We write G for the associated parahoric group scheme.
Let P C GL(ID) be a parabolic subgroup lifting the parabolic Py corresponding to

the filtration on D(%) (k). Write M'°¢ = GL(D)/P and SpfA = M°¢ the completion
of M'¢ at the identity; then A is isomorphic to a power series ring over Zp. Let
K’/Qp be a finite extension and y : A — K’ a continuous map such that Sa,0 €
Fil’D® ®z, K’ for the filtration induced by y on D¥® ®z, K’. By [Kisl10, Lemma
1.4.5], the filtration corresponding to y is induced by a G-valued cocharacter f,, (by
convention 4, has weights (0,1)). Let G.y be the orbit of y in M!°° ®z, K’ which
is defined over a finite extension E/ Qp, and we write Mlgoc for the closure of this
orbit in M°°,

3.2.3. Let R be a complete local ring with maximal ideal m and residue field k. We
let W(R) denote the Witt vectors of R. Recall [Zin01] we have a subring

W(R) = W (k) & W(m) C W(R),

where W(m) C W(R) consists of Witt vectors (w;);>1 with w; € m and w; — 0 in
the m-adic topology. The Frobenius of W(R) induces a map ¢ : W(R) — W(R),

and we write I for the kernel of the projection W(R) — R. We recall the following
definition, which is [Zho20, Definition 4.6] in the case that G splits over a tamely
ramified extension of Q,.

Definition 3.2.4. Let K/Qp be a finite extension. Let ¢4 be a p-divisible group
over Oi whose special fiber is isomorphic to 4. We say ¢ is (G, p1,)-adapted if the

tensors sq,0 extend to Frobenius invariant tensors s, € D(¥ )(W(Ok))® such that
the following two conditions hold:

o~ o~

(1) There is an isomorphism D(¥)(W (Ok)) = D®; W(Ok) taking sq t0 sa,0.
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(2) Under the canonical identification
D(¥)(Ok) ®ox K =D&y K

given by [KP18, Lemma 3.1.17], the filtration on D ®; K is induced by a
G-valued cocharacter conjugate to 1.

3.2.5. Consider the local model triple (G, {,u;l}, G) with reflex field E. We assume
in addition that the following conditions are satisfied:

(A) (G,{py;"'},G) is acceptable and of local Hodge type.
(B) The embedding p : G — GL(U) is a good local integral Hodge embedding.

Under assumption (B), property (3) of Definition 3.1.6 implies that the definition

of Mlgoc above agrees with the local model Mlgoﬁc{u;l} ®oy Op. We write I\Aﬂlgoc o~

SpfAg for the completion of M® at the point § € M°(k) corresponding to the
identity element. Then Az is normal and we have a natural surjective map A ®z,
Op — Ag corresponding to the closed immersion I\Aﬂlgoc C Moe ®z, Og.

We also make the following assumption

(C) The embedding G — GL(U) is very good at the point 3 € Mg<(k) in the

sense of [KPZ, Definition 5.2.5].

We briefly recall this notion, which was erroneously omitted in [KP18] and previous
versions of this manuscript. We set M = U @z, W(A). Let My C M/I4M be the

universal direct summand of I\AAIIQOC and M; C M the preimage of M. Let M; denote
the image of the map

M, W(A) = M @, W(A).

W (a),p (A),p

By the argument of [KP18, Corollary 3.2.11], we have s4,0 € ]/\\/.171® D (a) W(Ag),
and the scheme

(3.2.5.1) T = Isom, (M &g 4 W(Ag), M g 4) W(4g))

of isomorphisms which preserve the tensors s, o is a trivial G-torsor.

Let ma denote the maximal ideal in Ag and set ag = miE +ngAg, where g €
E is a unifomizer. We also let U; C U ®z,, Zp denote the preimage of the filtration
corresponding to g (this corresponds to the submodule Dy under the identification
with U ®z, Zp), and we let Uy denote the image of ¢*(Uy) — ¢©* (U ®z, ZP). By
[KPZ, Lemma 5.1.3] (cf. [KP18, Corollary 3.1.9]), there is a canonical isomorphism

c: (71 ®Zp W(Ag/ag) = M, ®/VV(A) W(A§)7

and the embedding G — GL(U) is said to be very good at g if we can choose a
collection of s, cutting out G C GL(U) such that ¢(sq,0 ® 1) = sq,0 ® 1. This
is equivalent the condition that ¢ defines an isomorphism of G-torsors and hence
is independent of the choice of s4,0. More generally, we say that the integral local

Hodge embedding G — GL(U) is very good, if it is very good at all points of
Mloc(k).
g
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3.2.6. With the corrected assumptions above, we may now apply the construction
in [KP18, 3.2]; the following is essentially [KP18, Proposition 3.2.17].

Proposition 3.2.7. There exists a versal p-divisible group Y4 over SpfA ®y, Op
deforming 9y such that for any K/@p finite, @ map w : A ®z, O — K factors
through Ag if and only if the p-divisible group 9= given by the base change of ¥4
along w is (G, py)-adapted.

Proof. Under our assumptions and using [Ans, Proposition 10.3] (see also [PRb,
Proposition 5.3.2] for a different proof which applies in our setting) in place of
[KP18, Proposition 1.4.3], we find that the conditions (3.2.2)-(3.2.4) of [KP18] are
satisfied; we may thus apply the construction in [KP18, §3.2] to obtain ¥4. We
briefly recall the construction.

Recall the trivial G-torsor T = Isom, (Ml D (a) /V[7(Ag~), M @ 4 W(Ag)) of

tensor-preserving isomorphisms from the previous paragraph. We let
\I’Ag s My ®VV\(A) W(Ag) — M ®/W(A) W(Ag)
be a section of 7 which is constant mod ag in the sense of [KP18, §3.1.11]; such a
section exists by assumption (C). We then lift ¥4 to an isomorphism
v M ®W(A) W(A ®ZP OE) = M®W(A) W(A ®Zp OE)
which is constant mod ag. By [KP18, Lemma 3.1.5], this gives rise to a Dieudonné
display over A®Zp O}, and hence to a p-divisible group ¢4 over SpfA ®z, O}, which

is versal by [KP18, Lemma 3.1.12].
By construction, the base change 94, = ¥4 ®ag, 0, Ag is equipped with

Frobenius invariant tensors sq,0,4, € D(%Aé)(W(AQ))Q It is then clear that for
w : Ag — K, the tensors s, extend to

5o € D(%)(W(0k))®
so that Definition 3.2.4 (1) is satisfied. Indeed the tensors s, are obtained from
Sa,0,45 Via base change. The argument in [Zho20, Proposition 4.8] shows that

condition (2) is also satisfied, so that % is (G, fy)-adapted.
The converse is [KP18, Proposition 3.2.17]. O

3.3. Deformations with étale tensors.

3.3.1. Let K/ @p be a finite extension and ¢ a p-divisible group over Ok with special
fiber . We write T,% for the p-adic Tate-module of ¢ and T,%" its linear dual.

We let sqe € T4V be a collection of tensors whose stabilizer G has reductive

generic fiber G and G = G, for some z € B(G,Q,). We write D := D(%)(Z,) and
we let

Sa,O € Dcris(Tpgv ®Zp Qp)® =~ D® ®Zp Qp
denote the ¢-invariant tensors corresponding to the image of s, ¢ under the p-adic
comparison isomorphism.
Proposition 3.3.2. (1) We have sq 0 € D® c Db® ®Zp Qp. Moreover the sq,0

extend canonically to tensors 5, € D(g)(W(OK))@) and there exists an
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isomorphism
(3.3.2.1) T,9" @5 W(Ok) = D(&)(W(Ox))

taking S0 10 Sq.
(2) There exists a G-valued cocharacter p, such that
(i) Under the canonical isomorphism

v:D ®Zp K 2D(¥)(0k) Rox K,
the filtration is induced by a G-valued cocharacter conjugate to fi,,.
(i) The filtration on D®ZPK induced by ., lifts the filtration on the module
D(%) ®Zp k.
Here we consider G C GL(D ®y, Q,) via base change of (3.3.2.1) to Q,.

Proof. The argument is the same as [KP18, Proposition 3.3.8, Corollary 3.3.10],
where again we are using [Ans, Proposition 10.3] in place of [KP18, Proposition
1.4.3]. O

3.3.3. The isomorphism (3.3.2.1) induces an isomorphism

T,9" ®z, L, =D
taking sq ¢t t0 Sq,0 which we now fix. Taking Tp%\/ to be U, we place ourselves in
the setting of §3.2.2. Therefore we have a notion of (G, u,)-adapted lifting where
Iy is as in Proposition 3.3.2. Moreover it follows from the same proposition that
9 itself is a (G, py)-adapted lifting. The next proposition then follows immediately

from Proposition 3.3.2 and the definition of (G, ty)-adapted liftings (cf. [KP18,
Proposition 3.3.13]).

Proposition 3.3.4. Let K’/@p be a finite extension and let 4’ be a deformation
of % to Ok such that
1) The filtration on D ®; K’ corresponding to 4’ is induced by a G-valued
( %, ponding y
cocharacter conjugate to fi.
(2) The tensors Sq,0 € D® correspond to tensors Saét € Tpg’\@ under the
p-adic comparison isomorphism.

Then 4’ is (QN, Ly )-adapted lifting.

3.4. Canonical liftings for p-ordinary p-divisible groups.

3.4.1. We now study the deformation theory of u-ordinary p-divisible groups. The
results in this subsection will be used in §4.4 to prove our main result on CM
(special) liftings for Shimura varieties.

We return to the setting of §3.2. Thus ¥ is a p-divisible group over k equipped
with sq,0 € D®. We fix a Zp—linear isomorphism

9

(3.4.1.1) U ®2, Z, = D(%,)

as in (3.2.2.1) so that s, € U® and assume that (A) and (B) are satisfied. In

§3.4, we will assume in addition that G = G, so that we have a closed immersion
G — GL(U). Since the so,0 are p-invariant, the Frobenius is given by bo for an
element b € G(Qp), and modifying (3.4.1.1) by an element h € G(Z,) modifies b
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by b+ h=tba(h). Therefore b is well-defined up to o-conjugation by an element of
G(Z,) and in particular we obtain a well-defined class [b] € B(G).

We choose a maximal (@p—split torus S of G defined over Q, such that z €
A(G, S, Qp) and we let T be its centralizer. We fix a o-stable alcove a C A(G, S, Qp)
such that x lies in the closure of a; this determines a set of simple reflections S for
W, and G corresponds to the subset J C S of reflections which fix . We follow the
notation of §2 and let 1 € X,.(T') denote the dominant (with respect to a choice of
Borel defined over Qp) representative of the conjugacy class {p,}; we write p for
its image in X, (T");. We have a closed immersion of local models

M o1y < Gi(U) ®z, Op,

where Gr(U) classifies submodules of U of rank dim,Fil'D ®y, k. By definition,
the filtration on DD ®; k& corresponds to an element of Gr(U)(k) which lies in

Mlgoc{#,l}(k). This filtration is by definition the kernel of ¢. Thus its preimage
’ Y

in D is given by {v € D|bo(v) € pD}, which is just the Z,-lattice o~ (b~")pD.
It follows from Corollay 3.1.14 that o~ (b~') € G(Z,)wG(Z,) for some element
w € Adm({p;'})s, and hence that

be Q(ZP)U(Q)Q(ZP)

for some u € Adm({sy})s. In particular we have [c71(b)] € B(G,{uy}) by [Hel6,
Theorem 1.1].

3.4.2. Now assume the existence of [b], € B(G,{uy}) as in Definition 2.2.4, and
that o1 (b) € [b],,. We will construct a (G, u,)-adapted (recall G = G) deformation
of ¢, which will be the analogue of the Serre-Tate canonical lift in this context.
By Proposition 2.3.3 applied to o~1(b), there exists an element h € g(Z,,) such
that h=1bo(h) = o(f,) for some y' € Wy - p with ¢,/ o-straight. Upon modifying
the isomorphism (3.4.1.1), we may assume b = o(f,,/); we fix this choice of (3.4.1.1)
from now on. Let M be the semistandard Levi subgroup of G corresponding to
Vt,) = Vo(t,)} then ¢,/ is central in Wj; by Lemma 2.1.7. Let w € Wy such that

"
w-p =y and write A := (w - 1); then by Lemma 2.1.9, X is central in M.
Let

M(Zp) = M(@p) N Q(Zp)a

which is the Zp—points of a parahoric group scheme M of M defined over Z,. Explic-
itly, we have an identification of apartments A(G, S, Qp) =~ A(M, S, Qp) and hence
we may consider x as an element of A(M, S, @p) which determines the parahoric
M = M,. Since M(Zp) is stable under o, M is defined over Z,.

The kernel of the map m (M) — m1(G) is freely generated by a subset of the
roots of G which are not roots of M, and which are stable under the action of
I'. Hence ker(m (M) — m1(G)) is an induced module for the action of I' and
7 (M); — m1(G); has torsion-free kernel. Since G = G, it follows from this fact
that the image of M(Zp) in 71 (M) is trivial, and hence M=M.

Lemma 3.4.3. Let K be the field of definition ofx. The filtration induced by X on
D ®z, K specializes to Fil'D ®z, k.
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loc
GAny '}
image in M'°¢ = Gr(U) ®z, Z corresponds to the filtration induced by A

By [SW20, 21.3.1], apphed to the torus 7', the point s5_, reduces to the point

t_/l € MIOC{ ,1}( ) C G(Qp)/g(Zp) By construction of the embedding

Proof. The cocharacter A1 determines a K-point s5_, of M and whose

MgS,-1, (k) = GLu(Q,)/GLy (Z,)

in §3.1.13, the filtration on D ®z, k corresponding to the image of this element is
given by the mod p reduction of i;,lpD = o~ 1(b~1)pD. The proposition follows. [

3.4.4. We extend the tensors sa 0 € U® to aset of tensors tg o € U® whose stabilizer
is M. Viewed in D ~ U ®z, Z,, the tg are p-invariant as b = o(i,) € M(@p)
Since A is an M-valued cocharacter, we may apply the construction in §3.2 to M and
the tensors tg. In particular we have a notion of (M, X)-adapted liftings of 4. It
is clear from the definition that any (M, X)—adapted lifting is also a (G, uy )-adapted
lifting.

Let J, denote the o-centralizer group for b. It is a reductive group over Q,, such
that

Jy(R) = {g € G(Q, ®g, R)lg~"bo(g) = b}
for any Qp-algebra R. There is an action of J,(Q,) on % in the isogeny category.
Since vg-1p(g) = g 'vyg for any g € G(@p)7 it follows that for b = o (f,), we have

Jb(@p) - M(@p)'

Theorem 3.4.5. Assume we are in the setting of §3.4.2 so that b = O'(tu /). Let
K/Qp be an extension over which X is defined, and suppose G =G. There exists a
(G, uy)-adapted lifting 4 to Ok such that the action of J,(Qp) on % lifts to ¥ in
the isogeny category.

Proof. Suppose there exists an (M,X)—adapted lifting 4 of %; from the above
discussion, we have that ¢ is also a (G, py)-adapted lifting. By Definition 3.2.4
(2), the filtration on the weakly admissible filtered ¢-module associated to 7,9
is induced by an M-valued cocharacter conjugate to X, hence by \ itself since it is
central in M. Since J,(Q,) C M(Qp), the action of J,(Q,) respects the filtration
and hence lifts to an action on ¢ in the isogeny category.

It suffices to show the existence of an (M, A)-adapted lifting. This follows from
the same argument as [Zho20, Proposition 4.9]; we briefly recall the construction
for the convenience of the reader.

We set & := Z,[[u]] and we let 0 : & — & be the map given by the usual
Frobenius on Z, and u — u?. We define 9 := D ®y-17, 6, so that o* (M) =

D ®j, S, and we let F C o* (M) denote the preimage of the filtration induced by A
on D®Zp Ok ; here the map & — O is induced by sending u to a uniformizer w in
Ok. Then F is a free G-module and t5o € F®; this follows from the argument in
[KP18, Lemma 3.2.6] using [Ans, Proposition 10.3] in place of [KP18, Proposition
1.4.3]. Moreover the scheme of &-linear isomorphisms Isom,  (F,o"(MM)) taking
g0 to tg,o is a trivial M-torsor. Then arguing as in [Zho20, Prop051t10n 4.9], we
may construct a morphism ¢ : o*(90%) — M satisfying the following properties:
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e The map ¢ gives 9 the structure of an element of BT¥ (see [Zho20, §4.1]
for the definition of BT?).

e The canonical identification o*(90t/ud) = D is an isomorphism of F-
crystals.

e ( preserves the tensors tg .

By [Kis10, Theorem 1.4.2], 9 corresponds to a p-divisible group ¢ over O, and the
argument of [Zho20, Proposition 4.9] shows that ¢ is an (M, \)-adapted lifting. O

4. INTEGRAL MODELS OF SHIMURA VARIETIES AND CANONICAL LIFTINGS

In this section we establish the main geometric properties of integral models for
Shimura varieties that are needed for later applications. These include a version of
the local model diagram and the existence of canonical liftings over the p-ordinary
locus which are proved in some special cases in §4.1. In §4.2—4.4, these results are
extended to the main cases of interest, certain Shimura varieties which we term
strongly acceptable, see Definition 4.2.2.

4.1. Integral models.

4.1.1. For the rest of this paper we fix an algebraic closure Q, and for each place
vofQ (incklding v = o0) an algebraic closure Q, together with an embedding

iy, : Q = Q, (here Q,, = C). Let G be a reductive group over Q and X a
Gpg-conjugacy class of homomorphisms

h:S:= ReSC/RGm — G]R

such that (G, X) is a Shimura datum in the sense of [Del71].
Let ¢ be complex conjugation. Then S(C) = (C ®@g C)* =2 C* x ¢*(C*) and we
write uyp, for the cocharacter given by

C* — C* x ¢*(C*) & G(C).

We set wy, 1= ,u;luffl.

For the rest of this section, we fix a prime p > 2 and we set G := Ggq,. Let
Ay denote the ring of finite adeles and Afe the ring of prime-to-p adeles which we
consider as the subgroup of Ay with trivial p-component. Let K, C G(Q,) and
KP C G(Ay) be compact open subgroups and write K := K,KP. Then if K? is
sufficiently small (in fact if K? is neat, see [Mil92, p. 34]), the set

(4.1.1.1) Shi (G, X)c = G(Q)\X x G(As)/K

can be identified with the complex points of a smooth algebraic variety. The theory
of canonical models implies that Shk (G, X )¢ has a model Shi (G, X) over the reflex
field E C C, which is defined to be the field of definition of the conjugacy class {up }.
We may consider E as a subfield of Q via the embedding i : Q < C and we write
Og for the ring of integers of E. For a general compact open subgroup K, we take
a sufficiently small compact open subgroup K4 which is normal in K? and define
the Shimura stack Shk (G, X) to be the quotient Shi kr(G,X)/(KP/KY); it is a
smooth algebraic stack over E.
We also define
ShKp (G, X) = 41:1}?1: ShKPKP(G, X)

ShK(G, X) = lim ShK(G, X),
+—K
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these are pro-varieties equipped with actions of G(A%) and G(A) respectively.

4.1.2. We now assume that there is an embedding of Shimura data
t: (G, X) — (GSp(V), 5%).

Here GSp(V) is the group of symplectic similitudes of a Q-vector space V' equipped
with a perfect alternating bilinear form ¥, and S* is the Siegel double space. Such
an ¢ is called a Hodge embedding and we say (G, X) is of Hodge type.

Let v|p be a prime of E; upon modifying i, : Q — @p, we may assume v is
induced by this embedding. We let OE(v) denote the localization of Og at v, and
we write E for the completion of E at v. We let kg denote the residue field at v and
we fix an algebraic closure k of kg. We let G := G, for some x € B(G,Q,) and we
write G for the associated parahoric. We obtain a local model triple (G, {un},G)
and the base change tg, gives a local (symplectic) Hodge embedding (note that
t(G) contains the scalars since it contains the image of wy). Thus (G, {urn},G) is
acceptable and of local Hodge type (see [KPZ, Remark 3.1.5]). Then we have the
attached local model M9¢ } from §3.1. The Hodge embedding ¢ is said to be good

G.{un
if the corresponding local Hodge embedding tq, : G — GSp(Vg,) is good.

4.1.3. For the rest of §4.1, we make the following assumptions, cf. §3.2.5.
(A") (G, X) of Hodge type and G = G.
(B") ¢: (G, X) — (GSp(V), S*) extends to a good integral local Hodge embed-
ding G — GL(Vz,) where Vz, C Vg, is a Z,-lattice.
The following lemma gives sufficient conditions for the existence of an ¢ as in (B’).

Lemma 4.1.4. Let (G, X) be a Shimura datum of Hodge type and G a parahoric
for G. Assume that p { |m1(G9)| and that the centralizer of a mazimal Q,-split
torus in G is R-smooth. Then (G, X,G) admits a good Hodge embedding.

Proof. Our assumptions imply that ¢q, satisfies the conditions in Proposition 3.1.12.
The construction there provides us with a good local symplectic Hodge embedding
p’ which is easily seen to come from a global Hodge embedding. ([

4.1.5. We set K, := G(Z,), and we let K := K,KP. Upon scaling, we may assume
Vz, is contained in the dual lattice VZVP. Let VZ(p) =Vz, NV. We write Gz(p) for
the Zariski closure of G in GL(VZ(p)); then Gz, ®z,, Zp = G. Let K = K;K’p
where K, is the stabilizer in GSp(Vg,) of the lattice Vz, and K’? C GSp(AY) is
a compact open subgroup. The choice of Vz , gives rise to an interpretation of
Shk/(GSp, S*) as a moduli stack of abelian varieties up to prime-to-p isogeny and
hence an integral model .7/ (GSp, ST) over Zpy, see [KP18, §4] and [Zho20, §6].

Assume that K? is a neat compact open subgroup. By [Kis10, Lemma 2.1.2], we
can choose K? such that ¢ induces a closed immersion

Shk (G, X) < Shi:(GSp, SF) ®¢ E.

Let .%k(G, X)™ be the Zariski closure of Shi (G, X) inside .#k/(GSp, S*) Rz,
Og,,,; and Jk (G, X) the normalization of /k(G,X)~. We also define the pro-

scheme
pr(G,X) = HII? prKp(G,X).
+—Kpr

The G(A%)-action on Shk, (G, X) extends to i, (G, X). Hence we may define
Jx,kr» (G, X) for a general (not necessarily neat) compact open subgroup K? C
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G(Ay) as the quotient stack .k, (G, X)/KP. Alternatively, we may take a compact
open subgroup K} € K? which is neat and normal in K?, and define .7« (G, X) as
the quotient of i xr (G, X)) under the action of the finite group K?/K7.

4.1.6. In order to understand the local structure of .7 (G, X), we introduce Hodge
cycles. By [Kis10, Proposition 1.3.2], the subgroup Gz, is the stabilizer of a
collection of tensors s, € VZ% - Let h: A — (G, X) denote the pullback of

the universal abelian scheme on %/ (GSp, S*) and let Vg := R! han «Z(p), where
han is the map of complex analytic spaces associated to h. Since the tensors s,
are G-invariant, they give rise to sections s, p € VB? . We also let V = R'h,Q°
be the relative de Rham cohomology of A. Using the de Rham isomorphism, the
5q,B give rise to a collection of Hodge cycles s, 4r € Vg’ , where V¢ is the complex
analytic vector bundle associated to V. By [Kis10, Corollary 2.2.2], these tensors
are defined over E.

Similarly for a finite prime ¢ # p, we let V, = Vy(A) = R'he.Qp and V), =
Vp(A) = Ry e0xZy where h, is the generic fiber of h. Using the étale-Betti
comparison isomorphism, we obtain tensors s, ¢ € V? and s, € VI?.

For T' an O, -scheme and = € % (G, X)(T'), we write A, for the pullback of
A to z, and for * = ¢ or dR, we write s4 4, for the pullback of s, . to . Similarly,
for T an E-scheme (resp. C-scheme) and =z € (G, X)(T'), we write sq 4 (resp.
Sa,B,z) for the pullback of s, p (resp. sqa,B) to .

For T' an Og,,,-scheme, an element z € Yk (G, X)(T') corresponds to a triple
(Az, A, €x,), where X is a weak polarization (cf. [Zho20, §6.3]) and ey, is a section

~

of the étale sheaf Isom, ,(V(Az), VA?)/K’P; here
V(Ax) = @Am[n]
pin

is the adelic prime-to-p Tate module of A,. As in [Kis10, §3.4.2], €}, can be pro-
moted to a section

e € T(T,Isom,  (V(Ay), Vaz ) /KP)
which takes sq4 ¢4 to so for £ # p.

4.1.7. Recall that k is an algebraic closure of kr and (@p = W(k)[1/p]. Let T €
(G, X)(k) and T € Sk (G, X)(Ok) a point lifting T, where K/@p is a finite
extension.

Let % denote the p-divisible group associated to Az and % its special fiber;
we let D := ]D(%;)(Zp). Then T,¥ is identified with H}, (A; %+ Zp) and we obtain
Gal(K /K)-invariant tensors s, 7 € 7,94 ® whose stabilizer can be identified with
G. Let 540z € ]D)[%]‘8 denote the tensors corresponding to s,z via the p-adic
comparison isomorphism. By [KPS, Proposition 1.3.7], s,,07 are independent of
the choice of lifting ¥ € Sk (G, X)(Ok). We may therefore denote them by s4.0.z-

By Proposition 3.3.2, we have s,,07 € D® and there is a Zp—linear bijection
(4.1.7.1) Vy @z, Ly 2 T,95 ®z, L, 2Dy 7,

taking s, t0 54,0,z The filtration on D ®z, K corresponding to % is induced by

a G-valued cocharacter conjugate to ugl. By a result of Blasius and Wintenberger
[Bla91], sq.arz € T°(V)® = D(¥%)(Ok)® corresponds to s, 7 via the p-adic
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comparison isomorphism. Hence s, 4rz may be identified with the image of the
elements 3, € D(%)(W(Ok))® of Proposition 3.3.2 inside D(¥%;)(Ok)®. The same
Proposition implies that there is an Og-linear bijection

]D)(%)(OK) =D ®Zp Ok

taking s, dr,z t0 Sa,07 and which lifts the identity over k. Thus there is a G-
valued cocharacter j,, which is G-conjugate to u;l and which induces a filtration
on D ®z, Ok lifting the filtration on D ®z, k. We may therefore define the notion
of (G, uy)-adapted liftings as in §3 and it follows from Proposition 3.3.2 that ¥4 is
a (G, py)-adapted lifting.

4.1.8. Note that G C GL(Vg,) contains the scalars. It follows that under our
assumptions, conditions (A) and (B) of §3.2.5 are satisfied. We let P C GL(D) be
a parabolic lifting Py as in §3.2. We obtain formal local models Mlee = SpfA and
I\?Jllgoc = SpfAg = I\AAIlgOf{M}, and the filtration corresponding to j, is given by a point

y:Ag = Ok. Lety € Mlg"f{#h}(k) correspond to the closed point of I\Aﬂlgoc{#h}(k)

Proposition 4.1.9. Assume KP is neat and that the embedding G — GL(Vz,) is
very good aty € Mlgof{uh}(k). Let Uy be the completion of S« (G,X)™ at the image
of T.
(1) [75 can be identified with a closed subspace of SpfA ®; Op containing
SpfAg. ’
(2) A deformation 9 of % corresponds to a point on the irreducible component
of U containing T if and only if 9 is (G, py)-adapted.
(8) Let T € (G, X)(k) whose image in Sk (G, X)” (k) coincides with that
of T. Then Sa,07 = Sa,0z € D® if and only if T =7,

Proof. Since the conditions (A)—(C) of §3.2.5 are satisfied, we may apply the con-
struction of Proposition 3.2.7; this allows us to view SpfA as a versal deformation
space for % and hence we obtain a map © : Uz — SpfAd ®z, Op such that the

universal p-divisible group over SpfA ®y, O, pulls back to the one over ﬁ; arising

from the universal abelian scheme over (75 The map © is a closed immersion by
the Serre-Tate theorem. R

Let Z C Uz denote the irreducible component of Uz containing Z. Let K’ be
a finite extension of E and let 2 € Z(K'). Then the tensors Sq,p,3 correspond
to 84,0,z under the p-adic comparison isomorphism. Moreover the filtration on
D ®z, K’ corresponding to % is induced by a G-valued cocharacter conjugate to

u,:17 and hence conjugate to p,. By Proposition 3.3.4, % is a (G, uy)-adapted
deformation of ¢ and hence Z’ corresponds to a point of SpfAg. Since this is true
for any 7, it follows that ©|z factors through SpfAg. Since Z and SpfAg have the
same dimension, it follows that Z = SpfAg. We thus obtain (1) and (2).

One direction of (3) is clear. For the other direction, let ¥’ € Sk (G,X)(Ok-)
be a lift of Z’. Then by Proposition 3.3.2, s, 07 arises from the specialization of
tensors S, € ID)(%;/)(W(OK)) By assumption, we have s4.07 = Sa,0z. It follows
that % corresponds to a (G, p,)-adapted lifting and hence to a point of SpfAg.
By what we have seen, Z' corresponds to a point in the same irreducible component
Z C ﬁf containing Z and hence T = 7. [
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4.1.10. We use the above to construct the analogue of the Serre-Tate canonical lift
in this setting. Let T € (G, X)(k) and we fix an isomorphism

(4.1.10.1) Vz, ©z, Qp 2D ®y Qp,

taking s, to sq,0z. Then the Frobenius on D ®2p (@p is given by bo for some b €

G(@p). By [KPS, Lemma 1.3.9], we have [b] € B(G, {u;'}). We write Sk for the
special fiber of .« (G, X) over the residue field k. The map Sk (k) — B(G, {u;'})
sending T to the o-conjugacy class [b] of the associated element b induces the Newton
stratification of Sk := Sk ®k, k. For an element [b] € B(G, {u,"'}), we write
Sk,p) C Sk,k for the corresponding stratum; if K? is neat, it is a locally closed
subscheme of Sk ;. If there is a class [b], € B(G,{u;'}) as in Definition 2.2.4,
then we define the p-ordinary locus of Sk x to be Sk ), -

For 7 € S (G, X)(k), define Autg(Az) to be the Q-group whose points in a
Q-algebra R are given by

Autg(Az)(R) = (End(Az) ®z R)*

By functoriality, Autg(Az) acts on Ty Az Qz, Q. for ¢ # p and on D& Qp, and we
write Iz for the closed subgroup of Autg(Az) consisting of automorphisms which
preserve S, ¢z and s, 0z. There is a canonical inclusion Iz ®g Q, C Ji, where Jy
is the o-centralizer group for b € G(@p).

Theorem 4.1.11. Let T € Sk ), (k) and assume G — GL(Vz,) is very good at
Y€ Mlgo,c{uh}(k:). Then T admits a lifting to a special point T € Sk (G, X)(K) for
some K/@p finite such that the action of Iz(Q) on Az lifts to an action (in the
isogeny category) on Az.

Remark 4.1.12. Recall that 2 € Shk (G, X)(C) is said to be special if there exists
a torus T C G such that under the identification

Shk (G, X)(C) = G(Q\X x G(Af)/K,

the point = corresponds to an element (h, g) € G(Q)\X x G(As)/K, with A(C*) C
T(R). More generally, if K is a field of characteristic 0 which contains E and
x € Shg (G, X)(K), we say z is a special point if for some (equivalently any) Eo-
algebra embedding K — C, the induced C-point of Shk (G, X) is a special point.

Proof. Since the definition of I is independent of the prime-to-p level, it suffices
to consider the case of neat KP. Applying the construction in §3.4, we obtain a
parahoric model M of a Levi subgroup M C G, and an M-valued cocharacter Py
lying in the G-conjugacy class of y15, and such that A is central in M. Let ¢ be the
(M, N)-adapted deformation to O constructed in Theorem 3.4.5. By Proposition
4.1.9, ¢ corresponds to a point T € (G, X)(Ok) lifting T and hence to an
abelian variety Az over K. By Theorem 3.4.5, the action of Jy(Q,) on % lifts to
9. Since Iz(Q) C J5(Qyp), by the Serre-Tate theorem, the action of Iz lifts to Az
in the isogeny category.

We now show T is a special point. Since Iz fixes the tensors sq 0z, it also fixes
Sa,p,3» and hence it fixes s, g. Thus we may consider Iz as a subgroup of G. By
[KPS, Theorem 6], the absolute rank of Iz is equal to the absolute rank of G.
Let T be a maximal torus of Iz, which is therefore a maximal torus of G. The
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Mumford-Tate group of Az is a subgroup of G which commutes with T hence must
be contained in T. Therefore T is a special point. ([

Remark 4.1.13. For = € SK,[b]”(/f), the corresponding ¥ lies in the stratum of

Mlé’f{#h} corresponding to t,, € Adm({u})s, with ¢/ € Wy - p as in §3.4.2. It is

possible to show that this stratum lies inside the smooth locus of Mlgoc{ unt ®05 k
and hence the embedding G — GL(Vz,) is automatically very good at 3 by [KPZ,
Corollary 4.3.9].

4.1.14. The description of the local structure of .7 (G, X) in Theorem 4.1.15 can
be globalized. For this we introduce the following assumption, cf. §3.2.5.

(C’) The embedding G — GL(Vz,) is very good at all points of Mg’f{“h}(k).

Theorem 4.1.15. Under the assumptions (A’)-(C’), the schemes Sk (G, X) sat-
isfy the following properties.

(1) For R a discrete valuation ring of mized characteristic (0,p), we have a
bijection

Im Sk, k» (G, X)(R) = Shx, (G, X)(R[1/p]).
Kp

(2) There exists a local model diagram

(G, X)op

/ \
(G, X))o, Mlgof{“h}

where 7 is a G-torsor and q is G-equivariant and smooth of relative dimen-
sion dim G.

Proof. This follows from [KPZ, Theorem 7.1.3] which proves the result for neat level
structure K?. In general, we take a normal neat compact open subgroup K} < K,
and take the quotient of the diagram by the finite group K?/KY. ([

Remark 4.1.16. (1) By [PRb, Theorem 4.5.2] and our assumption that G =
G, the integral model #x (G, X) is independent of the choice of Hodge
embedding ¢.

(2) Formally, Theorem 4.1.15 and Theorem 4.1.11 are all that are needed to
prove our main results on /-independence in §5 and §6. In the next three
subsections, we will extend these theorems to the required generality needed
for these applications.

4.2. Strongly acceptable Shimura varieties. For later applications, we need
to consider integral models for certain Shimura varieties of Hodge type with the
conditions (A”)—(C’) relaxed. To do this we will view the Shimura variety as one of
abelian type and we may construct an integral model using an auxiliary Shimura
variety of Hodge type as in [KPZ, §7.2].
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4.2.1. Let (G, X) be a Shimura datum of Hodge type. Then the center Zg of G
splits over a CM field, and so the maximal compact subtorus Zg o is defined over
Q. We let Zg denote the subgroup of G generated by Zg,¢ and the center Zgaer
of the derived group G9*. We let Z¢ denote the base change of this group to Q.
We will now focus on Shimura data satisfying the following property.

Definition 4.2.2. Let (G2, X2) be a Shimura datum and set Gy := Gy g,. Then
(Ga, X>) is said to be strongly acceptable if the following conditions are satisfied:
e (Gg, X>2) is of Hodge type.
o G9" =[]\, Resp, g, H;, where F;/Qy, is finite and H; is a split reductive
group over Fj.
e Z¢, is a product of induced tori.

If Go is a parahoric group scheme for G, we say the triple (Ga, Xo, Go) is strongly
acceptable if (Gg, X3) is strongly acceptable and G is a very special parahoric (recall
that a parahoric G, is very special if Gy (Zp) is a special parahoric of G (@p), which
exists by [Zhul4, Lemma 6.1]).

Proposition 4.2.3. Let (Go, X5,Gs) be a strongly acceptable triple. Then there
exists a Shimura datum (G, X) together with a central isogeny G — G3°* which
induces an isomorphism (G*4, X2d) = (G34, X34). Moreover, (G, X) may be cho-
sen to satisfy the following properties.
(1) 7 (G9) is a 2-group and is trivial if (G54, X54) has no factors of type D¥.
(2) Any prime va|p of Eq splits in the composite E' := E.E,.
(8) There exists a Hodge embedding ¢ : (G, X) — (GSp(V), ST) which extends
to a good integral local Hodge embedding G — GL(Vz,), which is very good
at all points of Mlgoffwh}(k). Here G is the parahoric group scheme for G
which is associated to Ga.
(4) Zg is an R-smooth torus and Z¢ is a product of Weil restrictions of tame

tori.
(5) X.(G*) is torsion.

Proof. We let (G,X) be the Shimura datum constructed in [KPZ, Proposition
7.2.14] which is equipped with a central isogeny G — G$°" inducing an isomor-
phism (G4, X2d) =~ (G3d, X39). Then (G, X) satisfies (1), (2), (4), and property
(5) follows since our assumptions imply that G3 does not have a simple factor
of the form Resp/q,PGL,,(D), where D is a division algebra over F' with index
divisible by p.

Note that if G3% = J];_; Resp, oH; for some F;/Q totally real and H; abso-
lutely simple over F;, then G°" 2 [T7_, Resp, /Qﬂg, where HE is defined in [KPZ,
§7.2.1]. In particular G satisfies the first assumption in Lemma 4.2.4 below. Thus
by that lemma, we have G, = G, for any =z € B(G,Q,) lifting the image of x9
in B(G34,Q,) = B(G*,Q,). Property (3) then follows from the corresponding
property in [KPZ, Proposition 7.2.18] using this fact. d

Lemma 4.2.4. Let G be a reductive group over Q, and G a parahoric of G corre-
sponding to z € B(G,Q)). We assume the following conditions are satisfied.

o Gder H:zl Resr, jq, Hi where H; is a split group over F;.

o X, (G*); is torsion-free

e G is a very special parahoric.
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Then we have 5 =g.

Proof. Let 2*4 € B(G*},Q,) denote the image of 2 and G4 (resp. G*1) the asso-
ciated stabillizer scheme (resp. parahoric group scheme). Then G is of the form
[[i=, Resoy, /z, H2d for H2d a special (equivalently hyperspecial) parahoric of H34,
and hence we have G*d = g*d.

There is a natural map G — G2d = Gad and a commutative diagram

G(Zy) —— G*(Zy)
7T1(G)[ — Wl(Gad)[.

It follows that G(Z,) maps to ker(m (G); — m1(G*¥);) and it suffices to show this
group is torsion-free.
We have a commutative diagram with exact rows.

7T1(Gder)[ *>7T1(G)[ %X*(Gab)] —0

Lo

0 —— m (G2 —=— 1 (G2 {1} 0

Since 71 (G9") — 71 (G*Y) is injective and these are induced modules, it follows that
71 (G — 71 (G*); is injective. Thus ker(m (G); — m1(G?4);) is torsion-free by
the snake Lemma. O

4.2.5. We use the previous proposition to extend the construction of integral models
to strongly acceptable triples.

Theorem 4.2.6. Let (Go, Xo,Gs) be a strongly acceptable triple with reflex field
E; and set Koy, = Go(Zy). Then for any prime va|p of Eo with corresponding
completion Eo, there is a G (A?)-equivam’ant Og,-scheme Yk, ,(Ga, X2) extending
Shk, , (G2, X2)E, satisfying the following properties:
(1) k., ,(Ga, X2) is étale locally isomorphic to Mlg()2°7{uh2},
(2) For any discrete valuation ring R of mized characteristic the map

sz,p <G2a XQ)(R) — szp(G%X)(R[l/p])
18 a bijection.

(3) There exists a diagram

(4.2.6.1) T2 (Ga, Xo)

sz,p (GQ,XQ) Mlgozcy{#hz}

where 7 is a Gg (Aiﬁ)-equivam’ant G3d_torsor and q is G§-equivariant, smooth

of relative dimension dim G*4, and GQ(A?)—equivariant, when Mlgof{m y 18
) o

equipped with the trivial GQ(A?)-action. Here G34 is the parahoric group

scheme for ng associated to Go.



36 MARK KISIN AND RONG ZHOU

Proof. Let (G, X) be the Shimura datum of Hodge type from Proposition 4.2.3
which satisfies the assumptions in [KPZ, Proposition 7.1.14]. The result then follows

from loc. cit. noting that we have G = G.
O

Remark 4.2.7. (1) The condition that Z¢, is a product of induced tori in the
definition of strongly acceptable datum is not needed for this theorem. It
is used in the next subsection to prove certain functoriality properties for
integral modes. s

(2) A key property in Theorem 4.2.6 that we need is that yﬁjp(Gg, Xs) in (3)
is a torsor for a smooth group scheme with connected special fiber and is
one of the reasons we restrict to considering strongly acceptable triples.

4.2.8. We recall some features of the construction in Theorem 4.2.6 which will be
needed in the next subsection. We let (G, X) denote the auxiliary Hodge type
Shimura datum from Proposition 4.2.3. This is equipped with a central isogeny
G4 — Gg° inducing an isomorphism (G4, X3d) = (G3d, X34). There is a Hodge
embedding (G, X) — (GSp(V), ST) satisfying the assumptions (A’)~(C’) of §4.1,
and hence we may construct an integral model .7k (G, X)) for Shk (G, X) as before
by taking closure and normalization inside the Siegel Shimura variety.

Fix a connected component X C X. By real approximation, upon modifying
the isomorphism G®! = G34 by an element of G*(Q), we may assume that the
image of Xo C X34 contains the image of X*. We write X, for Xt viewed as a
subset of X5. We denote by Shy, (G, X)" C Shg, (G, X) and Shk, (G2, X2)" C
Shk, , (G2, X2) the geometrically connected components corresponding to X T and
X2Jr . These are defined over extensions of E and E’ respectively, which are unram-
ified at primes above p by [KPZ, Proposition 7.1.11]. We let .#k (G, X)* denote
the connected component of .7k, (G, X) corresponding to Shk, (G, X)™.

For a subgroup H C G(R), we write H, for the preimage of G*!(R)*, the con-
nected component of the identity in G**(R). We write G*(Q)" (resp. G*(Z;,))™)
for G*(Q) N G*4(R)* (resp. G%‘?p) (Zp)) N G*(R)") and we write Z = Zg for
the center of G. We let Z(Q)~ and G(Q) denote the closures of Z(Q) and
G(Q)+ in G(Ay), respectively. We let Z(Z,))~ and G(Z,); denote the clo-
sures of Zz,, (Z(y)) and Gz, (Z(y))+ in G(A}), respectively. As in [KP18, §4.5.6],
we set

A (G) = G(Af)/Z(Q)” *a(0),/z@ G (Q7F

A (Gaz,)) = GAY)/Z(L)) ™ *a(2)4 /200 G (L),
and as in [KP18, §4.6.3], we set

(G)° = G(Q)7/Z(Q)” *g(q), /z@ G (Q)*

A (Ga,y)” 1= G(Zp) 2/ 2(Li) ™ G+ /220 G (L)
We refer to loc. cit. §4.5.6 for the definition of the * product. We obtain an
o (G)-action (resp. </(Gz,, )-action) on Sh(G, X) (resp. Shxk, (G, X)). Here, the
fact that the center of G is an R-smooth torus implies that the o/ (Ggz,, )-action on
Shk, (G, X) extends to an &/ (Gz,, )-action on Sk, (G, X). As in [KP18, §4.6.12],
the natural map

(4.2.8.1) A (Gz,))\ A (Gaz,,,) = (G)°\ (G2)/Ka,
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is an injection. We fix a set J C G2(Q),) which maps bijectively to a set of coset
representatives for the image of &7 (Gzz,,) in & (G)°\(Gz2)/Kz,,. A calculation
shows that J is a finite set. Then #k, , (G2, X3) is constructed as

(4.282)  Fi,,(Ga, X2) = [k, (G, X)* x o (Gay,,) )]/ (Ca,,) )]

4.3. Some functorial properties of integral models. In this subsection we
prove some functorial properties of the integral models. The main result is Propo-
sition 4.3.6 which will be used to define the p-ordinary locus in the next subsection.

4.3.1. Let f: (G,X) — (G, X’) be a morphism of Shimura data and let G and

G’ be parahorics of G and G’ respectively. We assume that G=Gand G = ¢,

and that G — G’ extends to a morphism G — G'. Let K = K, K?, K’ = K[ K'?, be

compact open subgroups of G(Ay) and G’(Af) respectively, with K, = G(Z,) and

K}, = G'(Zp). We fix a prime v|p of the reflex field E of (G, X), and write E' = E,.
We assume there are Hodge embeddings

t:(G,X) = (GSp(V),8%) and /: (G, X') — (GSp(V'),5™),
and Zy-lattices Vz, C Vg, and V; C Vg such that ¢ and . extend to good integral
local Hodge embeddings G — GL(Vz,), ¢" — GL(V; ). Thus (G, X) and (G', X)
both satisfy assumptions (A’) and (B’) of §4.1.3.

Proposition 4.3.2. The morphism Shk(G,X) — Shx/ (G, X')g induced by f
extends to a morphism of integral models over Og

fy : fK(G7X)oE — yK/(GI,X/)oE,

associated to v and o'

Moreover, if f induces an isomorphism of derived groups G = G'4°" and the
parahorics G and G’ are associated, then for K and K’ neat and@ € S (G, X)o, (k)
with image T € Sk (G, X") o, (k), the morphism fo induces an isomorphism of
completions Uy = Uz at T and .

Proof. We set (G”, X") = (G x G’, X x X’) and K” = K x K’. Then the product
S = yK(G,X)oE X0Og YK(G’,X’)OE

is an integral model for the Shimura variety Shx. (G”, X") which satisfies the condi-
tions in [PRb, Conjecture 4.2.2]. Therefore there exists a unique map x (G, X) —
" extending the diagonal morphism on the generic fiber by [PRb, Theorem 4.3.1],
and its composition with the projection . — Yk (G, X')o, gives the desired
morphism fo.

Now assume that Gder =2 G/der and that G and G are associated. To show that
f induces isomorphisms on completions, we follow the proof of [PRb, Theorem
4.2.4]. We let & and &’ denote the shtukas over the p-adic completions 5/”1\(((-}, X)
and %(/(G’,X’) constructed in [PRb, Theorem 4.5.2]. Then by [PRb, Theorem
2.7.7], we have an isomorphism of G’-shtukas

P xIG = fr,P
over %((G,X ), since they extend the same G’-shtuka over the generic fiber. Let

T € Sk (G, X)(k) with image 7’ € %k (G, X")(k). Since Uz and Uy are normal, it
suffices to show f& induces an isomorphism of Ug = Ug, of the associated v-sheaves.
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We set g = pp and ' = ppr. Let bz € G((@p) the element corresponding to the G-
shtuka Pz at @, which is well-defined up to o-conjugacy by Q(Zp). By construction,
this is the element corresponding to Frobenius on D given by the choice of a tensor
preserving isomorphism VZVP ®z, Zp >~ D. Then by = f(bz) € G’ (Qp) corresponds
to the G’-shtuka Pz. Let M‘gmby " be the integral model for the local Shimura
variety associated to the local Shimura datum (G, bz, i) and the parahoric G, cf.
[SW20, Definition 25.1.1], and let Migffb:%io denote the v-sheaf completion at the
base point Ty . By [PRb, Theorem 4.5.2], there is an isomorphism:

e 70
Mgllru o = Uz

such that ©%(2) is isomorphic E)ihe universal G-shtuka on Mg uzo- Lhere is
a similar isomorphism Oz : Mign,t,bil)u,% = US, for (G b, 1)),

For r >> 0, we let 5,”; be the v-sheaf over ﬁx, classifying trivializations of &
as in [PRb, Proof of Theorem 4.2. 4] Exphmtly, for S = Spa(R, R™) a perfectoid

space over k and y an S-point of U Y classifies trivializations
r gy[r,m)(s) ’_> Y (‘@)|y[r,oo)(s)’
where YV}, o) is as in [PRb, §2.1]. Then there is a natural map
nat : Y% — Mgltlﬁu

We define 575’ over ﬁg/ similarly as trivializations of the G’-shtuka &?’. Then we
have a commutative diagram

o nat int
Iz Mg,bi#t

| ]

nat int
Sy —— Mgry

where the vertical maps are obtained via pushout along G — G’. As in the proof of
[PRb, Theorem 4.2.4], upon modifying ©z by an element of the group G;_(Q,) =

{9 € G(Q,)]|g~'bzo(g) = bz}, we have a commutative diagram

S U2
e
lg bz, p Mabf,u,xo’

and the right side of the diagram is determined by the left. Similarly, we obtain a
diagram for .#% and Ug,. It follows that the following diagram is commutative

00 97 o gt
U Mg bz, 1, To
35% o
Uz —— ./\/llg“, by ! T
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Since the right vertical morphism is an isomorphism by [PRa, Theorem 5.2], it
follows that UY — Ug/ is an isomorphism as desired. O

4.3.3. We now assume that f : (G,X) — (G’,X’) induces an isomorphism of
derived groups and that the parahorics G and G’ are associated. As in §4.2.8, we fix
a connected component X+ C X which determines neutral connected components
%, (G, X)* and S (G', X')*; for notational convenience we assume these are
base changed to Ogur.

Corollary 4.3.4. The morphism fo induces an isomorphism of Opgur-schemes.
pr(CUX)Jr — yK;(GI?X/)+'

Proof. We will consider neat compact open subgroups K'?,K?? c G/ (A’}), and
we write K! = K;Kl’p and K? = K;Kz’p. Since the morphism G — G’ induces
an isomorphism of derived groups, the map Shk, (G, X)" — ShK;(G/, X")*t is an
isomorphism. Thus for any sufficiently small neat compact open KP C G(A’;),
there exist K7, K*? C G/(A%) such that f induces maps

(4.3.4.1) Shi:(G', X)t = Shk (G, X)* — Shi (G, X')*.

Let .} (G, X)* be the normalization of %1 (G’, X')* in Shk(G,X)t. Then
(4.3.4.1) extends to a sequence of morphisms

T2 (G, XY = SHG, X)T = S (G, X)) T

whose composite is finite étale. It follows that both maps in the sequence are finite,
and since all the schemes are normal, both maps are finite étale. Passing to the
limit with K?P and KP we obtain a commutative diagram

Fie2 (G X —— AL (G, X)

| |

Fie2 (G X —— UG, X)*

Since the map on the left is pro-finite étale, and the bottom map is finite étale, the
map on the right is pro-finite étale.

By Proposition 4.3.2 and the normality of (G, X)", there is also a mor-
phism a : % (G, X)t — Z(G,X)T, whose composite with .} (G, X)* —
S (G, X")T is étale, and hence « is étale. Again, passing to the limit with
KP?, we obtain a commutative diagram

S, (G, X))t —— AL (G, X)*

| |

Fx(G, X))t —2 #H(G, X)*

where the vertical maps are pro-finite étale. For any finite extension K of W (k)[1/p],
a point 2t € .71 (G, X)T(Ok) lifts to a point of 7! € Y&p(({ X)"(Ok), and hence
to a point & € %k, (G, X)"(K). By Theorem 4.1.15 (2), & extends to a point in
%, (G, X)"(Ok). This implies that « is surjective.
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Thus « is a surjective étale birational morphism between normal schemes, hence
an isomorphism. We thus obtain a morphism k2 (G’, X")* — %k (G, X)T which,
after taking the inverse limit, gives an inverse for the morphism

pr(G,X)-i— — yK;(G/,X/)J'_
induced by fo. |

4.3.5. We now use the notation of §4.2. We let (G2, X2, G2) be a strongly acceptable
triple and we write Kz, = Ga(Z,) a very special parahoric. Fix Kj C Ga(A%) a
compact open subgroup and set Ky = Ko ,K5. By Theorem 4.2.6, we may construct
an integral model .7k, (G2, X2) = Zk, , (G2, X2)/K5 over Op, for Shk, (G2, X»)
by viewing (Gg, X2) as a Shimura datum of abelian type and using an auxiliary
Shimura datum (G, X) from Proposition 4.2.3 together with a choice of Hodge
embedding ¢ : (G, X) — (GSp(V),S*) satisfying the assumptions (A’)—(C’) in
§4.1.1. We fix such a (G, X) and ¢ for the rest of this section.

Now let 15 : (G, X3) = (GSp(Va), S5) be any Hodge embedding. By the main
theorem of [Lan00], ¢5 induces a G2(Q}") and Gal(Q}"/Qj)-equivariant embedding
of buildings. Upon replacing ¢5 with a new Hodge embedding and applying Zarhin’s
trick we may assume there is a Zy-lattice Va7, C Vaq, with Va7, = V2V,Zp such
that Go — GSp(V2,q,) extends to a morphism of Bruhat-Tits stabilizer schemes

Gy — GSP, where GSP is the group scheme stabilizer of V37, in GSp(Vz,q,). We
set Kb , := GSP(Z,) and Kj = K, K7 where K C GSp(VZA?) is a compact

open subgroup containing K5.

Proposition 4.3.6. There is a map of Og,-stacks

(4.3.6.1) ks (G2, X2) = Fi, (GSp(V2), S5 ) 0,
extending the natural map on the generic fiber.

4.3.7. To prove this proposition, we make use of the following auxiliary construc-
tion. Let Gg be the identity component of G2 Xgad g, G, where the projections
onto G,, are given by composing ¢,y with the symplectic multipliers. There are
natural morphisms Gz — G4 and G3 — G, the latter of which induces an isomor-
phism G§" = G9°r. Let h € X+. As in §4.2.8, we may choose the isomorphism
G =~ G3d in such a way that we may view X T as a subset of X5, and we let

hs € X5 denote the element determined by h. The homomorphism
hg = (hg,h) :S—> Gy x G

factors through Gs, and we denote by X3 the Ggg-orbit of hs. The pair (Gs, X3)
forms a Shimura datum which is equipped with a Hodge embedding ¢3 : (G3, X3) —
(GSp(V3),S5) induced from (1,15); here V3 = V @ V,. The lemma below ensures
(G3, X3) satisfies the assumptions in Proposition 4.3.2. We set G3 = Gsq,-

Lemma 4.3.8. Let G3 be the very special parahoric for Gs associated to Gs.

(1) We have Gz = Gs.
(2) (Gs, X3) admits a good Hodge embedding (with respect to Gs).

Proof. For (1), it suffices by Lemma 4.2.4 to show that X,.(G3P); is torsion-free.
By [KPZ, Lemma 7.2.5], we have an sequence

1 —— 78, % 2§ Ze, Gum 1.
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By Proposition 4.2.3 (4) and Definition 4.2.2, Z¢ and Z¢, are both tori. It follows
that Zg, is a torus with Z¢, = Z¢, X Z¢ and the map Zgae: = Zgaer — 26, X 2
is given by the diagonal embedding. Thus we have an exact sequence of tori

1 —— Z¢, —— Z¢&, [ Zgger — 2&/Zgaer — 1.

Note that X, (G*"); is an extension of Z by X.(Z&/Zqgaer)1; hence X, (Z& ) Zqaer )1
is torsion-free by Proposition 4.2.3 (5). By assumption (see Definition 4.2.2),
X (Z¢,)1 is torsion-free. It follows that X, (Z¢, /Zgger)s is torsion-free, and hence
X.(G3P)r, which is an extension of Z by X (Z§, | Zgger)1 s torsion-free.

For (2), note that p { |71 (G$®)| = |m1(G9°")| since p > 2. Thus by Lemma
4.1.4, it suffices to show that the centralizer of a maximal Qp—split torus in G5 is
R-smooth. The isomorphism Z¢, = Z¢ X Z¢ implies that Zg, is a product of
Weil-restrictions of tame tori, and hence is R-smooth by Proposition 2.4.6. Then
Zg, is an extension of G,, by an R-smooth torus and Zg, is R-smooth. The result
then follows from [KPZ, Lemma 7.2.6].

(]

Proof of Proposition 4.3.6. It suffices to construct a map
(4.3.8.1) Fa, (Ga, Xo) = Fx, (GSp(Va), S5 )0,
which is G2(A%)-equivariant. Let 7k, , (G2, X2)" be the closure of
(4.3.8.2) Shi, , (G2, X2) = Fk, , (G2, Xs) X Fx; (GSp(V2), 55 )0g,
Then the existence of (4.3.8.1) is equivalent to requiring that

H,, (Ga, X2) — Fx, ,(Ga, X2)

is an isomorphism. We may check this over Op/, where E’ O F», is any complete,
discretely valued extension of Fs. In particular, we may assume that the connected
components of .7k, ,(Gg, X2) are defined over Op:.

Let ¥ — %’ be a map of connected components induced by (4.3.8.1). Then the
explicit description given by (4.2.8.2) shows that one may identify the diagrams

S[1/pl —— [1/p]

|

54 2
coming from different choices of .. Thus, it suffices to construct the map
(4.3.8.3) Fics (G, Xa)§ = Fx, (GSp(Va), 53)4

where Sk, p(GSp(Vg), Szi)ag, is the connected component corresponding to the
connected component of S5 containing the image of X, .

To do this we make use of the Shimura datum (Gs, X3) constructed above. This
is equipped with morphisms of Shimura data

(G, X) +— (G3, X3) —— (G2, X5) —— (GSp(Va), S5),

where the leftmost morphism induces an isomorphism on derived groups. Let G
and Gs denote the parahoric group schemes for G and G5 associated to Go, and set
K, = G(Zy), K3, = G3(Z,). We may construct an integral model .7k, ,(Gs, X3)
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for Shk, ,(Gs, X3) as in §4.1 using a good Hodge embedding provided by Lemma
4.3.8.

By Lemma 4.2.4 and Lemma 4.3.8, we have G3 = C;g and similarly Q~ = @G. Thus
we may apply Corollary 4.3.4 to the morphism (Gg, X3) — (G, X). We assume
that E’ is large enough that the connected components of Shi, (Gs, X3) are defined
over E’. Thus we have an isomorphism

(4.3.8.4) Fis,(Ga, X3)5,, — Jx, (G, X)5 -

By Proposition 4.3.2 and taking inverse limits, there is a morphism of integral
models

Fis (G, X3)0,, = Sy, (GSP(V2), 55 )0, -

Restricting to neutral connected components, we obtain a morphism

(4.3.8.5) T, (G, X3)5 = Sy, (GSP(Va), 55)

B’
By the construction of ., , (G2, X2)o,, (cf. (4.2.8.2)), we have
Freay (G X)h, = i, (G X)G /MG, Ga) = i, , (G Xa)y, JA(G, Ga),

where A(G,Gz) = ker(#(Gz,,)° = #(G2z,,)). The map (4.3.8.5) factors
through the action of A(G, Gz), since it does so on the generic fiber. We thus
obtain a map YKZP(GQ,XQ)JCSE/ — Sy, (GSp(V2), Szi)J(gE, as desired. O

4.4. p-ordinary locus and canonical liftings.

4.4.1. In this subsection, we study the p-ordinary locus in the strongly acceptable
case and prove the existence of canonical liftings. As in the construction of the
local model diagram, the result will be deduced from the corresponding result in
the special Hodge type case given by Theorem 4.1.11.

Let (G2, X2,02) be a strongly acceptable triple and K C Gz(A%) a compact
open subgroup. We have the integral model %k, (G2, X2) over O, which is con-
structed from an auxiliary Hodge-type Shimura datum (G, X') and a choice of good
Hodge embedding ¢ satisfying assumptions (A’)—(C’) of §4.1.3. Let t2 : (G2, X2) —
(GSp(V2), S5) be a Hodge embedding and Vogz, C Vagq, a self-dual lattice as in
§4.3.5. Then by Proposition 4.3.6, there is a morphism of integral models

(4.4.1.1) ko (G2, X2) = i, (GSp(V2), S5 ) 0p, -

Let h: Ay = F%,(G2, X2) denote the pullback of the universal abelian variety
along (4.4.1.1). Let s, € V° be a collection of tensors whose stabilizer is G. Then
as in §4.1.6, these give rise to tensors so.5 € Vp = R'han.Q, sap € Vo(A2) =
R'hgQp for all ¢ # p and Sap € Vp(Ag) := thmét*(@p. For any Og,-scheme T
and z € Yk, (Gae, X2)(T'), we write As , for the pullback of Az to .

For K/(@p finite and = € S, (G2, X2)(Ok) with special fiber T, we let s, 0z €
D(As z[p™])[1/p]® denote the images of s, ;, 7 under the p-adic comparison isomor-
phism. As in §4.1.7, these tensors depend only on T and not on Z; we thus write
Sa,0,z for these tensors. Note that [KPS, Prop. 1.3.7] applies here since the mor-
phism i, (G2, X2) = i, (GSp(V2), SéE)OE2 factors through the normalization
of its scheme theoretic image, and all objects are pulled back from this.
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4.4.2. Let T € Yk, (G2, X2)(k), and set D := D( Az z[p>°]). We fix an isomorphism
Volz, ®z, Q=D 7, Qp,

taking s, to $q,0z; such an isomorphism exists by Steinberg’s theorem (cf. [KPS,

1.3.8]). Then as in §4.1.10, we obtain an element b € G2(Q,) with [b] € B(G2, {u2})

where {us} = {u,;l}. This induces the Newton stratification on the geometric

special fiber Sk, r (resp. Sk, k) of Sk, (G2, X2) (resp. Fk, (G2, X2)). We write
Sk,,) C Sko,k for the strata corresponding to [b] € B(G,{uz2}). We also write

SKZ,pv[b] = EII?pSKZYPng[b] )
2

which makes sense since Sk, [y is compatible with the prime-to-p level. For the rest
of §4.4 we assume the existence of the class [b],, € B(G2,{u2}) in Definition 2.2.4.

Definition 4.4.3. We define the po-ordinary locus of Sk, i to be Sk,

o’

The following is deduced easily from [KPS, Corollary 1.3.16].

Theorem 4.4.4. Assume Kb is neat. Then

(1) Sk, is normal.
(2) The pg-ordinary locus SK,,[b],, 18 Zariski open and dense in Sk, k-

Proof. To show (1), it suffices by Theorem 4.2.6 to show that the special fiber of

MIQOQC (uns} is normal. Note that the geometric irreducible components of this special
’ 2

fiber are normal (see §3.1.4), and hence it suffices to show that Mlé)zc,{uhQ} ®oy k

is integral. This follows from the argument in [PZ13, Corollary 9.4], noting that
as in loc. cit. the p-admissible set Adm({u})s has a single extremal element when
J C S corresponds to a very special standard parahoric of G(@p).

(2) follows from (1) by [KPS, Corollary 1.3.16]. d

4.45. Let T € Sxk,(Ga,X2)(k). Then we can define Iz C Autg(Aszz) to be the
subgroup preserving Sq,0,¢ and sq 0z as in §4.1.10. The goal of the rest of this
section is to prove the following generalization of Theorem 4.1.11.

Theorem 4.4.6. Let (Ga, X2, G2) be a strongly acceptable triple. LetT € SKo,[b] 0, (k).

Then T admits a lifting to a special point T € Fi,(Ga, X2)(K) for some K/Q, fi-
nite such that the action of Iz(Q) on As z lifts to an action (in the isogeny category)
on ./4275.

We will deduce this theorem from 4.1.11 using the auxiliary construction from
Proposition 4.3.6. For notational convenience, we write (G, X;) for (G, X) and
1 : (G, X)) = (GSp(V1), ST) for the Hodge embedding ¢. Then Gs is defined
to be the identity component of G X @ g, Gz. We obtain a Shimura datum
(G3, X3) together with morphisms (G, X1) + (Gs, X3) — (G2, X3) and a Hodge
embedding ¢3 : (G3, X3) — (GSp(V3), S?jf), where V3 = V] @ V5.

Fori =1,2,3, let E; denote the reflex field of (G;, X;); then we have E3 C E' :=
EiE;. We let v; (resp. v’) denote the place of E; (resp. E’) induced by the embed-
ding i, and we let E; (resp. E’) denote the completion. By construction, we have
E' = FE,. Set G; = Gi,q,, and let G; (resp. G3) denote the parahoric group scheme
of G1 (resp. G3) determined by G,. For i = 1,2, 3, we set K, ,, := G;(Z,,) and we fix
compact open subgroups K¥ C Gi(Azf’) such that K% maps to K} and Kb. We set
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K; := K; ,K”. We then have integral models .7k, (G, X;), where .7k, (G1, X1) is
constructed from the (very) good Hodge embedding ¢1, Sk, (G2, X2) is constructed
from Y, (G1,X1) by viewing (Gg, X2) as a Shimura data of abelian type, and
S5 (G3, X3) is constructed from a good Hodge embedding as in Lemma 4.3.8.

4.4.7. Let H denote the subgroup of GSp(V;) x GSp(V2) consisting of elements
(g1, 92) such that ¢1(g1) = c2(g2). Then the natural map Gz — GSp(V1)xGSp(V3)
factors through H and we let Sy denote the Hg-conjugacy class of homomorphisms
S — Hpg induced by X35. There are natural morphisms of Shimura data (H, Sy) —
(GSp(V;), S) for i = 1,2, 3.

Welet Viz, C Vi, be a Zy-lattice such that ¢y extends to a good local integral
Hodge embedding G, — Vi z, Which is very good at all points of Mlgoﬁ i, (k), and
weset V3z =Vigz ®Vaz, CV3q,. Fori=1,2,3, welet K’ denote the stabilizer

of Viz, 1n51de GSp(V2 @p) and let H, denote the stabilizer of V3 z, inside H(Qy).
We also fix compact open subgroups K” ¢ GSp(V; AP) containing the image of K%
for i = 1,2,3, H? C H(A%) containing the image of K37 and we set K} = K| K7,
H = H,H?. Then the Shimura variety Shy(H, Sg) admits a moduli interpretatlon
as pairs of tuples (A;, \;, €;), ¢ = 1,2, where A; are abelian varieties of dim(V;)/2, \;
is a weak polarization, and ¢; are level Im(H? — GSp(V;, A;))—structures which pre-
serve symplective pairings up to the same A’;x-scalar (cf. [Zho20, 7.2]). This moduli
problem extends to Z,), hence we obtain an integral model /x(H, Si)/Z )

Proposition 4.4.8. There is a commutative diagram of Qg -stacks
(4.4.8.1)

<y}(l(c}lvj(l)(QE/ <j—1yK3(G37X3)OE/ L><yK2(c_}27)(2>(9E/

! : !

i (GSp(V1), ST) o, «—— Fi (H,Su)o,, — Fx (GSp(V2), 55 )0,

Proof. 1t suffices to consider the case of neat prime-to-p level structure so that we
may assume all objects are schemes. The existence of the bottom row follows from
the moduli interpretations of the integral models. The morphism j; is constructed
in Proposition 4.3.2 and j9 is constructed in a similar way to Proposition 4.3.6.

The morphism 4; exists by construction of .7, (G1, X1)o,, and i3 is constructed
in Proposition 4.3.6. For 3, note that there is a finite morphism

S (M, Si)o,, — S« (GSp(V1), ST)o,, X S, (GSp(V2), 55 )o,, -
The morphism
Jx3(G3, X3)o,, — Jk, (GSp(V1), SHo,, x Jx;, (GSp(V2), SF)o,,

induced by (i1 01,2, 0j2) factors through .« (H, Sr)o,, on the generic fiber, and
hence lifts to a morphism i3 : Sk, (Gs, X3)o,, = Y& (H,SH)o,, as desired. [0

4.4.9. Let A; — %,(Gy, Xi)o,,, denote the pullback of the universal abelian
variety along .k, (Gi, Xi)o,, — Jx (GSp(V;, Sii)oE,. For 4 = 3, this map factors
through .71 (H, Sy )o,, and there is an identification

(4491) .A3 = jTAl X ];AQ
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Let T3 € st (Gg, Xg)(k‘) and write T, € y}(l (Gl, X1)(l€), T2 € y}(2 (G27 XQ)(k)
for the image of T3 under j; and jo. The isomorphism (4.4.9.1) implies we have an
isomorphism As z, =2 A; 7, X Asz,. We let Iz, C Autg(Asz,), Iz, C Autg(Aiz,)
denote the groups constructed in the same way as §4.4.5.

Proposition 4.4.10. There are natural exact sequences:

0 C1 Iig Ifl O

0 C, Iz, Iz, 0
where Cy (resp. Cy) is the kernel of the map f: Gg — Gy (resp. g: Gz — Ga).

Proof. Since Gs C H, we may assume that the set of tensors defining Gs C GL(V3)
includes tensors corresponding to the projections of V37 onto the direct sum-
mands Vi,Z(m C V37Z(p) for ¢+ = 1,2. It follows that Iz, respects the product de-
composition Az z, = Ay z X Az, and hence we obtain a natural map Iz, —
Autg(Ay z,). Similarly, by considering the pullback to V3 of tensors defining Gq,
one can show that Iz, — Autg(A1z,) factors through Iz,. We obtain a natural
map Iz, — Iz,.

Let T3 € Sk,(Gs, X3)(Ok) denote a lift of T3. Since C; lies in the center of
G3, we have natural maps

Ci — Autg(As 7, @k K) — Autg(As z, 1)

whose image lies in Iz,.

We thus obtain a sequence C; — Iz, — Iz, and it suffices to check the exactness
upon base changing to Q, for some prime £ # p. By [KPS, Theorem 6] there is a
semisimple element v, € G3(Qy) such that the natural inclusion Iz, ®g Qr C Gs g,
(resp. Iz, ®9Qr C G1,q,) identifies Iz, ®g Qg (resp. Iz, ®q Q) with the centralizer
of v, in Gz g, (resp. f(7¢) in G1,g,). We thus obtain the first exact sequence and
the argument for Iz, is analogous. O

4.4.11. Proof of Theorem 4.4.6. It suffices to consider the case of neat prime-to-p
level structure. For i = 1,2,3, we write Sk, for the special fiber of the integral
model Sk, (Gi, X;). Let Ty € Sk, 1), (k). We first assume Ty = j»(3) for some
Tz € Sk, (k); by Lemma 2.2.8 we have T3 € SKSv[b]ug (k). Let 7, € SKh[qu (k)
denote the image of 3. By Theorem 4.1.11 there exists K/Qp finite and 7; €
Shi, (G1, X1)(K) lifting Z7; such that the action of Iz, (Q) lifts to A; z,. Then
we may consider Iz, as a subgroup of G; and we let T; denote the connected
component of the center of Iz,. The Mumford-Tate group of A; 7 is a connected
subgroup of G; which commutes with Iz, , hence is contained in T, as Iz, and G;
have the same rank.

Let T3 C Gj3 denote the identity component of the preimage of T; in G and
Ts the image of T3 in Gs. By construction, the morphisms of integral models

Jx,(G1, X1)o,, + Si,(G3,X3)0,, = Tk, (G2, X2)0,,

induce isomorphisms of completions at geometric points in the special fiber. Thus
let T3 (resp. T2) denote the point lifting T5 (resp. Ta) corresponding to ;. Then
the Mumford-Tate group for As z, (resp. Az z,) is contained in T3 (resp. T2). It
follows from Proposition 4.4.10 that Iz, (resp. Iz,) is contained in the centralizer
of T3 in Gg (resp. T2 in Gz), and hence the action of Iz, (Q) lifts to one on Az, .
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Now let Ty € SK27[b]u2(k) be any point. It suffices to prove the result with
Sk, (G2, X2) in place of ., (G2, X2), and with Ty replaced by a lift to a point
of Sk, 1], (k), which we will again denote . Recall J C G2(Qp) is a set
mapping bijectively to a set of coset representatives for the image of (4.2.8.1).
Then by the construction of .k, ,(Ga, X2) via ik, p(G1,X1) in §4.2.8, there ex-
ists j € J such that Ty € [Fk, ,(G1, X1)" x 7 (Gapz,)il/7(G1z,,)° We let
Ty € [Hk,, (G, X1)T x (Gaz,,)/ o (G1z,,)° be the point corresponding to T
under the isomorphism induced by j. Then upon modifying Ts by an element of
G, (A’}) which only changes the abelian variety A2 z, up to prime-to-p isogeny, we
may assume Ty = j2(T3) for some T3 € Sk, ,(Gs, X3)(k).

Let T € .7k, , (G2, X2)(Ox) be alift of of T, for some finite extension K/Q,. By
construction, corresponding to the element j, there is (after possibly increasing K)
a point T € Sk, , (G2, X2)(Ok) lifting T2, and a p-power quasi-isogeny Az z, —
Az 7, taking sa 0z, t0 S0z, (T€Sp. Saez, t0 Saez, for £ # p). By considering
the reduction of this quasi-isogeny one sees that T, € SKM’[Z,]M(k), and one also
obtains an induced isomorphism Iz, = Iz,. From what we saw above, it follows

that we may choose 7/, such that the action of Iz, lifts to A 7,. Then the action
of Iz, = Iz lifts to Az 7, . ]

4.4.12. We will use the above to deduce properties about the conjugacy class of
Frobenius as in [Kisl7, §2.3]. Assume T € SK%[Z,]M(k:) arises from an F,-point
xr € Jk,(Ge, X2)(F,) where F, is a finite extension of kg,. For £ # p a prime, let
¢ denote the geometric g-Frobenius in Gal(F,/F,) acting on the dual of the ¢-adic
Tate module Tg/lg@. Since the tensors s, ¢z € T gA?E are Galois-invariant, we may

consider 7, as an element of G2(Qy) via the level structure Vg, = Ty Az 7 @z, Qo.

Corollary 4.4.13. Assume (Gaq, X2,Gs) is a strongly acceptable triple. Suppose
T € Sk, [b),, (k) arises from x € Sk, (Ga, X2)(Fy). There exists an element o €
G2(Q), such that

(1) For £ # p, o is conjugate to v in Go(Qp).
(2) 7o is elliptic in Ga(R).

Proof. The proof is the same as in [Kisl7, Corollary 2.3.1]. Since Az, is defined
over F,, the g-Frobenius v lies in Iz(Q). Let T € ., (Gz, X2)(K) denote the lifting
constructed in Theorem 4.4.6. Then by considering the action of Iz(Q) on the Betti
cohomology of Aj 3z, we may consider Iz(Q) as a subgroup of G2(Q). Defining ~
to be the image of v inside G2(Q), we have that 7o is conjugate to v, in Go(Qy)
by the Betti-étale comparison isomorphism. If T is any torus in Iz containing 7o,
the positivity of the Rosati involution implies T(R)/wp,(R*) is compact. Hence
v € T(Q) is elliptic in Ga(R). O

Remark 4.4.14. The elements ~, arise as the local Frobenii acting on the stalk of
a G2(Qy)-local system L, over Sk,; see §5.1.1. Thus even though the proof of
Corollary 4.4.13 uses the Hodge embedding ¢s in order to define the abelian variety
Aj 5, one can view it as proving a property of the local systems L, over SKz,[b]“z,
which is intrinsic to .7k, (Gz, X2). In particular, the image of 79 in Conjg(Q) is
independent of ¢s.
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5. INDEPENDENCE OF ¢ FOR SHIMURA VARIETIES

We now apply the results of the previous section to prove f-independence for the
conjugacy class of Frobenius at all points on the special fiber of Shimura varieties.

5.1. Frobenius conjugacy classes.

5.1.1. Let p > 2 be a prime. We fix a strongly acceptable triple (G, X,G) and
set K, = G(Z,). The associated Shimura variety has an integral model .7« (G, X)
over O constructed from an auxiliary triple (G1, X1, G1) and a (very good) Hodge
embedding ¢ as in Proposition 4.2.3. The auxiliary Shimura datum (G, X;) plays
a minor role in what follows.

Let £ # p be a prime and suppose that in addition the compact open subgroup
K C G(Ay) is of the form K/K*, with K, € G(Q;) and K* C G(Afc). We let Ly
denote the G(Qy)-local system on .7k (G, X) arising from the pro-étale covering

tSﬂKf(G',)() = hgl yKZKZ(G7X) HyK(G7X)

KjCKy

and we write Ly for the induced local system on the special fiber Sk over kg. If
t:(G,X) — (GSp(V),S%) is a Hodge embedding as in §4.4.1 then we have an
identification

(5.1.1.1) Le = Isom, (Vo V)

where the scheme classifies Q-linear isomorphisms taking s, to s.,¢; here the no-
tation is as in §4.4.1.

5.1.2. Let y € Sk(F,) and we write 7 for the induced geometric point of Sk.
We let S denote the connected component of Sk containing y and T € S (k)
a fixed geometric point. Over S%, the G(Qy)-local system L, corresponds to a
homomorphism

pY T (SE,T) — G(Qyp).
We have a map

Gal(Fq/Fq) — Wl(slooy) = 7T1(Slo<af)7

where the isomorphism m1(S%,7) — m1(S%,7) is well-defined up to conjugation.
We thus obtain a well defined conjugacy class in 71 (S, T) corresponding to the
image of the geometric ¢-Frobenius and we write Frob,, for a representative of this
conjugacy class.

5.1.3. For a reductive group H over a field F' of characteristic 0, we write Conj; for
the variety of conjugacy classes in H. Explicitly, if H = Spec R, the action of H on
itself via conjugation induces an action of H on R, and we have Conj; = Spec R,
Then Conjy is an F-variety which is a universal categorical quotient for this action,

and the set Conjy (F) can be identified with the set of semisimple H (F') conjugacy
classes in H(F) (see [MF82, Chapters 0,1]). We write xz : H — Conjy for the
projection map. For example if H = GL,,, Conjqy, is the variety A;ffl X Gy, r and
the map x takes an element of GL,, to its associated characteristic polynomial.

In our setting, we thus obtain for each prime ¢ # p, a well-defined element
Yy € Conjg(Qy) corresponding to xg(p?(Froby)). Our main theorem concerning

the /-independence property of Shimura varieties is the following.
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Theorem 5.1.4. Let p > 2 and (G, X,G) a strongly acceptable triple. Let y €
Sk(F,) where Fy/kg is a finite extension. Then there exists an element vy €

Conje (Q) such that vo = vy,e € Conjg(Qe) for all £ # p.

Remark 5.1.5. A group theoretic argument shows that if we assume in addition
that G4°* is simply-connected, 7 can be lifted to an element of G(Q) (cf. Corollary
6.3.4). See also Remark 6.3.5 about the expectations surrounding liftability of .

The rest of §5 will be devoted to the proof of Theorem 5.1.4.
5.2. Explicit curves in the special fiber of local models.

5.2.1. We begin by recalling the local model diagram and properties of the Kottwitz—
Rapoport stratification. By Theorem 4.2.6 (3), there exists a diagram of stacks

(5.2.1.1) F2(G, X)

/ \
(G, X) Mlgc’,c{uh}

where 7 : 157;%‘1((},)() — Y%(G, X) is a G*-torsor.

Let M denote the special fiber of Mlé)‘f{uh}; it is a scheme over k. By the

construction of Ml_gc{ o} D [KPZ, §3] (cf. [Levl16]), there is a reductive group
scheme G over F,((t)) and a parahoric group scheme G for G such that M is
identified with a union of Schubert varieties inside the partial affine flag variety
FLg. By definition, FLg = LG/L*G is the fpqc quotient of the loop group LG
by the positive group L*G (see [PR08|). Let W denote the Iwahori Weyl group for
G. Fix an alcove a such that G is a standard parahoric and let J C S be the subset
of simple affine reflections corresponding to G. Then a determines an alcove a for
G, and we have an identification of simple reflections S = § in a and a respectively
(see [Lev16, §3.3]). The parahoric G corresponds to the image J of J under this
identification.

Let Wg denote the Iwahori Weyl group for G and let {u} = {urn}. Then the
union of Schubert varieties appearing in M is naturally indexed by Adm({u})s,
under an order preserving embedding

Adm({u}); = W \Wg/W;.

In particular the closure relations are given by the Bruhat order on Adm({u}).
Under our assumption that G is very special, this ordering has the following alter-
native description.

We let s € B(G,@p) denote the special vertex associated to G. Let S be a
maximal @p-split torus of G defined over Q, such that s € A(G,S, Qp) and T
the centralizer of S. Fix a Borel subgroup of G defined over @, and assume we
have identified X, (T); ®z R with A(G, S, @p) via the choice of special vertex s.
We let € X.(T)r be the image of a dominant representative of {u} in X, (7).
For A\, N € X.(T)}, we write A < )\ if X — X is an integral linear combination of
positive coroots in the reduced root system X associated to G; we write A < A if
in addition A # ). Then there is an identification

WJ\W/WJ = X*(T)—I"_,
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and the ordering < agrees with the Bruhat order on W;\W/W under this identi-
fication (cf. [Lus83]). It follows that we have an identification

Adme({p})s = {trlr € X(T)7, A= pu}.

For A € X.(T);, we write ./\/12 for the open stratum corresponding to t) €
Admg({p})s. Then M3 is the G(k[[t]])-orbit of an element £, € G(k((t))) rep-
resenting the image of ¢\ in W;\Wg/W,. It follows formally from the existence
of the diagram (5.2.1.1) and the fact that G*-orbits on My and G-orbits on My
agree, that Sk j admits a stratification by Adme({gt})s. This is known as the
Kottwitz—Rapoport stratification and we write SIAQ i for the stratum corresponding
to tx € Admg({u})s. From the definition of this stratification, for T € Sk (k) the
complete local ring of SI’; . at T is identified with the complete local ring at a point
T e Mﬁ(/ﬂ) Thus under our assumptions My, and Sk ; are normal schemes; cf.
Theorem 4.4.4. Since t, € Admg({p})s is the unique maximal element, it follows
that M} is contained in the smooth locus of M and hence S{é) & is contained in the
smooth locus of Sk .

The strata Mj; and Sf}J€ are both defined over the field of definition of A €
W AW/W ;. In other words, if n is the smallest positive integer such that o™ (\) = A,
then My and Sy ; are both defined over Fyn; we write M* and S for the models
over Fyn.

5.2.2. The key geometric property of the Kottwitz—Rapoport stratification on My
that we will need is the following.

Proposition 5.2.3. Let y € M (F,) with A\ € Admg({n}); and X # p. There
exists a smooth, geometrically connected curve C over Fq and a map ¢ : C — Mg,
such that

(i) There exists y' € C(F,) such that ¢(y') = y.
(ii) ¢~ (M) is open and dense in C for some X' € Adma({u}) s with A < X.

Remark 5.2.4. Using an ampleness argument, it is easy to show that such a map
always exists if we replace F, by its algebraic closure k. The key property is that
for M, this map exists without extending the residue field. By [Dril2, §6], there
are normal and Cohen—Macaulay schemes where this property fails.

Proof of Proposition 5.2.3. We first show using the G-action on M that it suffices
to consider the case

y =t € G(k((1))/G(K[[t])-

Let o, denote the g-Frobenius; then since y € M?*(F,), we have a,(\) = A.
Therefore we may choose the lift £, € G(F,((t))) so that £, € M*(F,). By Lemma
5.2.5 below, there exists g € G(F,[[t]]) such that gf, = y in FLg. Therefore if C
satisfies the conditions (i) and (ii) for the point £,, gC satisfies (i) and (ii) for the
point y. It therefore suffices to prove the case y = ﬁA; we make this assumption
from now on.

Now since A < p, by Stembridge’s Lemma [Rap00, Lemma 2.3], there exists a
positive root @ € ¥ such that A + ¥ < . Since A\, u € X.(T)7°, it follows that

A+ afl(av) 2 i
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for all ¢. If {a, 0¢(a), ..., a;”’l(oz)} denotes the orbit of o under oy, it follows that
m—1 )
Noi= A+ Z o, () X p,
i=0

and hence A" € Admg ({})s. Now « determines a relative root & of G over Fy((t))
which we always take to be the short root; then either 2« is a relative root, or
no rational multiple of & is a relative root. We let Uz denote the relative root
subgroup corresponding to & and G the simply connected covering of the (semi-
simple) group generated by Uz and U_g; it is a reductive group over Fy((¢)). We
will identify Uz with the corresponding unipotent subgroup of G. The parahoric
G determines a parahoric model G of G5 and there is a morphism

ly - fﬁga — fﬁg,ﬂ:q
defined over Fy, where FLg_ is the partial affine flag variety associated to G. Then
L5 factors as ]-',CQa — ]-'EQN — ]:EQan’ where ]-'EQN is the corresponding partial
affine flag variety for the group generated by Uz and U_g. The first map identifies
FLg_ with the neutral connected component of FLg, by [PRO8, §6.a.1] and the
second is a proper monomorphism when restricted to a connected component. It
follows that ¢z is a closed immersion. We write Uy (resp. U_g) for the group
schemes over F,[[t]] corresponding to Uz (Fq((¢))) NG(F,[[t]]) (resp. U_z(F,((2))) N
G(F,[[t]])). Then we claim that for each positive «, there exists a morphism
fibg, = FLg

defined over I, satisfying the following two conditions

(i) f(0) = ¢, where ¢ is the base point in FLg_.

(i) f(AR,\{0}) C LT Uzt LTG, /LG,

Assuming the claim we may prove the proposition as follows. We consider the
morphism

o : A]%q — FLg, x> t\(tz 0 f)(x),

in other words we translate the composition ¢z o f by £,. Then condition (i) follows
from (i) and condition (ii) follows from (ii’) using the fact that A is dominant.

It remains to prove the existence of f satisfying (i’) and (ii’). We will construct f
explicitly using a presentation of the group Gy; it turns out that by [BT84, §4.1.4]

there are essentially three distinct cases to consider which we now describe.
If 2c is not a relative root then there is an identification

G = Resg/r, (1) SLe

where K is some finite separable extension of IF,((¢)) and the parahoric G is char-
acterized by the property

G (K[[t]]) = SL2(Ok ®g, (e KI[1])-
If 2 is also a relative root, then there is an identification
G = Resg/r, ((1)SUs
where K/F,((t)) is finite separable and SUj3 is the special unitary group associated

to a hermitian space over a (separable)? quadratic extension K’/K. We recall the

4Since we have assumed p > 2, this is automatic.
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presentation of the K-group SUjs in [Tit79, Example 1.15]. We let 7 € Gal(K'/K)
denote the non-trivial element and we consider the hermitian form on K’3 given by

(x—1,20,21), (Y-1,90,91)) = T(x-1)y1 + 7(w0)yo + 7(¥1)y-1-

The group SUj is the special unitary group attached to this form. For ¢,d € K’
such that 7(c)c 4+ d + 7(d) = 0, we define uy (¢, d), u_(c,d) € SU3(K) by

ui(ca d) = I3+ (grs)
where I3 is the identity matrix and (grs) is the matrix with entries g+1,0 = —7(c),
go,£1 = ¢, 971,41 = d and g,s = 0 otherwise. The root subgroups Uiy are then
given by
Ura(K) ={us(c,d)|c,d € K',7(c)c+ 7(d) + d = 0}.
Then we may consider the parahoric

G (F,[[t]]) = SU3(K) N GL3(Ok-);

we call this the standard parahoric.

When K’/K is unramified this is the only very special parahoric (up to conju-
gacy). When K'/K is ramified, there is another conjugacy class of very special para-
horics in addition to the standard parahoric which we shall call the non-standard
parahoric. We let «’ be a uniformizer of K’ such that 7(u') = —u’ and we define
s € GL3(K") to be the element diag(1,1,%’). Then the non-standard parahoric G
is given by

G (Fy[[t]) = SU3(K) N sGL3(Ok/)s™ .

We label the cases as follows.

Case (1): 2a is not a root, G5 = Resg r, ((1))Ske and G (F,[[t]]) = SL2(Ok).

Case (2): 2a is a root, Gz = Resgr, ((1))SUs and G is the standard parahoric.

Case (3): 2a is a root, G5 = Resg r, ((1))SUs with K'/K ramified and G is the
non-standard parahoric.

We now proceed with the construction of f in each of the three cases.

Case (1). In this case the isomorphism G5 = Resg/r, ((1))SL2 induces identifica-
tions

u4 RGSK/Fq((t))Ga l) U:ta.
Let u be a uniformizer of K; then we may define a map
f Alqu —FLg_, x> u_(utz).

Clearly (i’) is satisfied, and a simple calculation in SLy shows that for 0 # z, we
have

u_ (v 'w) € uy(ur i LG,
so that (ii’) also holds.

Case (2). Recall in this case, the parahoric G is characterized by G (F,[[t]]) =
SU3(K) N GL3(Ok+). We define

fibg, = FLg , wu (0,4 '),

where we recall that v’ € K’ is a uniformizer with 7(u’) = —u/. A calculation using
the presentation recalled above shows that for z # 0, we have

u_(0,u''z) € uyp (0,w/z™ i LG

as in Case (1), it follows that (i’) and (ii’) are satisfied.
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Case (3). Recall K'/K is ramified and G (F,[[t]]) = SU3(K) N sGL3(Ok)s™ .
We consider the map

.5!?2

5

Then in the presentation above, we have that _Juy (=227, 2272) " tu_(z, —22/2)
is equal to

W7t o 0 1 —2z71 —2272 1 00 0 0 —u' 12272

0 -1 0 0o 1  92z-! z 10 = 0 1 —2z7! .
/ - —z?/2 —z 1 ’o2 / /

0 0 —u 0 0 1 /2 —x u'z®/2 u'z —u

This lies in the parahoric G, and hence we have

Ay, = FLg , zru_(z,—

2

u_(z, 7%) € u-‘r(*?xilv 2x72)1€avL+ga.

As in the previous two cases it follows that (i’) and (ii’) are satisfied. O

Lemma 5.2.5. Let y € M*(F,) and assume £, € G(F,[[t]]). Then there exists
g € G(Fy[[t]]) such that gt,LTG =y in FLg.

Proof. By definition, there exists h € G(k[[t]]) such that hf, = y. We consider the
subgroup

GR[A) NG (RN < GLR((1)));
it is the intersection of the kernel of the Kottwitz homomorphism kg and the
stabilizer of a bounded subset of the building B(G, k((¢))). Thus by [HR08, Prop.
3 and Remark 4], it arises as the k-points of a smooth group scheme [C, defined
over IF,[[t]] with connected special fiber.

The element h is defined up to right multiplication by I, (k[[¢]]); hence since
o4(y) =y, we have o,(h) = hk for some k € IC, (k[[t]]). By Lang’s theorem applied
to Ky, there exists k1 € K, (k[[t]]) such that g := hk; is fixed by o4, and we have
gix =y in F Lg. ]

5.2.6. Using Theorem 5.2.1.1, we may deduce the following result about the local
structure of the Shimura stack Sk.

Corollary 5.2.7. Let v € Sg(F,) with A € Admg({u}); and X\ # pu. There exists
a smooth, geometrically connected curve C' over Fy and a map ¢' : C" — Sp, such
that

(i) There exists ¢’ € C'(F,) such that ¢'(2') = .
(i) (i)"l(ng/’k) C C' is an open dense subscheme for some N € Admeg({p})s
with A < X.

Proof. We write

S
WV \%E
Sk M
for the special fiber of (5.2.1.1). Since 7, is a torsor for the smooth group scheme

Gad,kp With connected special fiber, the point « lifts to a point = € S’Iv((]Fq) and we
write y for its image in M(F,). By definition of the stratification on Sk, we have
y € M*F,). We apply Proposition 5.2.3 to y to obtain a map ¢ : C — Mg,
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satisfying (i) and (ii) in Proposition 5.2.3 for some X € Admg({p})s with A < N;
we let y' € C(F,) mapping to y.

Consider the pullback gK,qu X M, C which is a smooth stack over F,. By [LMBO0O,
Théoréme 6.3], there exists a smooth scheme Y/F, and a smooth map ¥ —
gKJFq X Mg, C defined over Fy such that Z lies in the image of a point § € Y (F,).

Now let Y denote the preimage of MY inY; by the assumption on C| it is a
dense open subscheme of Y. By [Poo04, Corollary 3.4], there exists a smooth geo-
metrically connected curve €’ C Y such that § € C'(F,) and ¢’ N Y # ) so that
the preimage of Y in €’ is open and dense. We write ¢/ : C/ — Sk r, for the
composition

'Y — gK,]Fq XMnqu — gK,IFq — SK,]Fq~

Then setting 2" =y € C'(Fy), we have ¢/(2’) = z, so (i) is satisfied, and property
(ii) follows by the construction. O

5.3. Compatible local systems and /-independence.

5.3.1. We recall the theory of compatible local systems. Let X be a normal scheme
over F, where ¢ is a power of p and let £, be a Q,-local system (lisse sheaf) on
X. For z € X(Fyn), we write Frob, for the local Frobenius automorphism acting
on the stalk £,z of L, at a geometric point T lying over x. Suppose that for every
closed point z € X (F4n) the characteristic polynomial det(1 — Frob,t|L,z), has
coefficients in a number field E C Q, (this is conjectured to be the case if £, has
determinant of finite order). Let ¢ be a prime not equal to p and X' : E < Q, an
embedding of fields. A Q-local system Ky is said to be N -compatible for L, if for
every closed point x € X (F4» ), the characteristic polynomial det(1 — Frobgt|KC ¢ z)
has coefficients in F and there is an equality

det(1 — Frob,t|Lez) = det(1 — Frob,t|Kp z) € E[t].

The existence of X-compatible local systems over smooth curves is due to Laf-
forgue [Laf02, Théoreme VIIL.6] (under the assumption of finite determinant), and
the case of smooth schemes is due to Drinfeld [Dril2, Theorem 1.1].

5.3.2. We now continue with the notations of §5.1. For the rest of this section, it
will be convenient to fix a Hodge embedding ¢ : (G, X) — (GSp(V),S*) as in
§4.4.1.

The element 7, € Conjg(Qy) arises as an element of Conjg(Q). Indeed the
image of vy,¢ in Conjgr,v)(Qr) under the map induced by ¢ lies in Conjgr,v)(Q)
since it corresponds to the action of Frobenius on the f-adic Tate module of an

abelian variety. Since Conjg — Conjgryy is a finite map, v, € Conjg(Q).

Similarly if ¢’ { p¢ is another prime, -y, o arises as an element of Conjg(Q).

We let F' be a finite extension of Q such that 7, ¢,7v,¢ € Conjg(F); such an
extension exists since Conjg is a Q-variety. Let A, )\’ be the two places over F
induced by the fixed embeddings iy : Q — Q, and iy : Q — Q. We take 9 :
Gr — GL,r to be an arbitrary representation over F' (not necessarily coming
from the Hodge embedding ¢); then the G(Qy)-local system L, induces an Fy-adic
local system L; over Sk. Similarly we obtain an F/-adic local system L.

Lemma 5.3.3. For any closed point v € Sk(F,), the eigenvalues of Frob, acting
on Loz are (-adic units.
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Proof. 1t suffices to prove this for a single faithful representation of G. For the
representation G — GL(V) induced by ¢, the action of Frob, on L,z corresponds
to the action of Frobenius on the ¢-adic Tate module of an abelian variety and
hence its eigenvalues are all /-adic units. [

5.3.4. We let J(vy,e) € Conjgr, (F) C Conjgy,, (F)\) denote the image of the con-
jugacy class of Frob, under ¥ and we similarly define ¥(v, ) € Conjgy, (F) C

COanLn (FA/).
Proposition 5.3.5. For any representation ¢ : Gp — GL,r, we have

V(vy,e) = I(vy,er)

Proof. Let C' be a smooth geometrically connected curve and ¢ : €' — Sk, a
morphism defined over F, such that there exists a point € C(F,) with ¢(z) = y.
We first show that if the proposition holds for the image under v of a Zariski open
and dense set U C C, then it holds for y.

We write £§ (resp. L) for the pullback ¢*L, of L, (resp. ¢*Ly of Lyr) to
C. By Lemma 5.3.3, L satisfies the conditions in Chin’s refinement of Lafforgue’s
Theorem [Chi04, Theorem 4.6]. Thus upon enlarging F, there exists a Q-local
system K§ over C' which is \'-compatible for LS.

For any closed point « € C(Fys),

det(1 — Frob,t|£{ ;) = det(1 — Frob,t|K{/ ;) € F[t].
By assumption, for any closed point z € U(F,s), we have
det(1 — Frobxt|£g@) = det(1 — Frobwt\ﬁgi) = det(1 — Frobwt|ICgc,j).

Therefore, by the Chebotarev density Theorem, the semisimplifications of ICZC: and
Eg are isomorphic, and hence

V(yy,e) = det(1 — Frobyt|£g’:g) = det(1 — Frobyt|£g_g) =9(vy0)

as desired.

We now show that the Proposition holds for y € S (F,); we recall that S is
the open Kottwitz—Rapoport stratum and is smooth. Using the same argument as
in the proof of 5.2.7 (i.e. applying [LMBO00, Théoréme 6.3] and [Poo04, Corollary
3.4]), we may find a smooth geometrically connected curve C' over F, and a map
v C — S{é,Fq defined over F, such that there exists a point z € C(F,) with
Y(x) = y and such that the preimage U := dj_l(SK,[b]H) C C of the p-ordinary
locus is open and dense. By Corollary 4.4.13, the Proposition holds for points y’
lying in the image of U, and hence it holds for y by the above argument.

Finally we show that the Proposition holds for all y € Sk(F,). We assume
y € Sk(F,) and we proceed by descending induction on v; the case of the maximal
element v = u was proved above. Now suppose the result is true for all v/ = v. Let
Y C — Sk, be a map as in Corollary 5.2.7 where C' is a smooth geometrically
connected curve over F,. We let U C C denote the preimage of (J,_,, SI”(:IFQ which
is Zariski open and dense. By induction hypothesis, the proposition holds for the

image of U, hence it holds for y.
O
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5.3.6. We may now prove Theorem 5.1.4.

Proof of Theorem 5.1.4. For all £,¢" # p, and 9 as above, we have ¥(7y,¢) = U(7y,¢)
by Proposition 5.3.5. This implies that v, ¢ = 7,¢ € Conjg(Q), by a result of
Steinberg [Ste65, 6.6]. Hence, there exists v, € Conjg(Q) such that 7, = 7, for
all £ # p. It suffices to show v, is defined over Q.

Since Conjg is a Q-variety, the residue field of the point v, is a finite extension
F/Q. Since v, € Conjc(Qy) for all ¢, each finite prime of Q has a split prime in
F above it; hence the Chebotarev density theorem implies v, € Conjc(Q). Indeed
let F//Q be the Galois closure of F. Then for every prime ¢ # p, there exists [ a
prime of F’ above ¢ such that the Frobenius Frob; lies in Gal(F’/F) C Gal(F'/Q).
It follows that Gal(F’/F') intersects every conjugacy class of Gal(F’/Q) and hence
these groups are equal. [

Remark 5.3.7. The application of [Ste65, 6.6] in the previous theorem is one of the
reasons we obtain vy as an element of Conjg(Q), as opposed to an element of G(Q).

6. CONJUGACY CLASS OF FROBENIUS FOR ABELIAN VARIETIES
We apply the results of §5 to prove our main result concerning abelian varieties.
6.1. Mumford—Tate groups.

6.1.1. Let A be an abelian variety over a number field E. Recall we have fixed
an embedding i, : Q — C; using this we may consider E as a subfield of C. We
write Vg for the Betti cohomology HL(A(C), Q) which is equipped with a Hodge
structure of type ((0,—1), (—1,0)). This Hodge structure is induced by a morphism

h: S := Resc/gGm — GL(Vp)

We write
X % »(2,1)
L

©:C C* x ¢*(C*) & GL(V ® C)

for the Hodge cocharacter.

Definition 6.1.2. The Mumford—Tate group G of A is the smallest algebraic
subgroup of GL(Vg) defined over Q such that G(C) contains the image of u.

The group G can also be characterized as the algebraic subgroup of GL(Vp)
that stabilizes all Hodge cycles of type (0,0) on the tensor spaces V5" @ (Vy)®" for
T € Z>0; it is known that G is a connected reductive group.

We remark that G depends on the embedding E — C; if G; is the group
defined by a different embedding then there is a canonical inner twisting G@ =~
Gl,@ induced by the torsor of tensor preserving isomorphisms between the Betti
cohomology groups (see [Del82, Proof of Theorem 3.8] for the construction of this
torsor).

6.1.3. For a prime number ¢, we write Ty A for the Tate module of A. The action of
the absolute Galois group I'g := Gal(E/E) on Ty AV gives rise to a representation py :
I'e — GL(T;AY) and the Betti-étale comparison gives us a canonical isomorphism

HE(A(C), Q) ®q Qez = T;AY ®z, Qe

Deligne’s theorem that Hodge cycles are absolutely Hodge [Del82], implies that
upon replacing E by a finite extension, the map p; factors through G(Qy); see
[Noo09, Remarque 1.9]. In fact this condition does not depend on ¢.
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Lemma 6.1.4. The representation py factors through G(Qy) for some prime £, if
and only if it factors through G(Qy) for all primes L.

Proof. The subgroup G C GL(Vp) is the stabilizer of a collection of Hodge cy-
cles (sq)a- We consider the ¢-adic components (sq¢)e, as in §4.1.6. For o € I'g,
(0(sa,e))e, is again a Hodge cycle, by Deligne’s theorem [Del82, Theorem 2.11]. In
particular, if (0(Sa.))e, and (sq,¢)¢ have equal components at some prime ¢, then
they are equal. (Il

The lemma shows that the condition that I'g fixes (sq¢)e pointwise does not
depend on /. This condition is equivalent to asking that 'y maps to G(Qy).

6.1.5. We replace E by the smallest extension such that I'y maps to G(Qy), and
we write p& for the induced map I's — G(Qy) and ¢, for the inclusion G(Q,) —
GL(T,AY).

Let v be a prime of E lying above a prime p such that A has good reduction at
v. Upon modifying the embedding i), : Q — Q,, fixed in §4.1.1, we may assume that
v is induced by i,. We write &/ = E,, and we let F,; denote the residue field of E
at v. For ¢ # p a prime, p, is unramified at v. Let Fr, be a geometric Frobenius
element at v, we write v,(v) = xa(p€ (Fr,)) € Conjg(Qy) for the conjugacy class
of p&(Fr,) which only depends on v and not the choice of Frobenius element. We
write P, ¢(t) for the characteristic polynomial of Fr, acting on TyAY, which has
coefficients in Z and is independent of ¢.

6.1.6. We will make use of the following auxiliary construction. Let F/Q be a
totally real field, and let H' := Resp /@GF. There is a canonical inclusion G < H'.
We let (V,1) be the symplectic space corresponding to H;(A(C), Q) where ¢ is
a Riemann form for A and G — GSp(V) is the natural map. We let W denote
the symplectic space over Q whose underlying vector space is V ®g F and whose
alternating form 1’ is given by the composition

) Tr
Wox W L2 e )

Let cq : G — G, denote the restriction of the multiplier homomorphism c :
GSp(V) = G,, to G. We form the fiber product

H—— G,

Resp/qca

H —— %, Resp /oG

where the map A is the diagonal map. Then H is an extension of G, by the group
Resp /gGg, where G C G is the subgroup generated by Gder and the largest com-
pact subtorus of the center of G; see [KPZ, Lemma 7.2.5]. Thus H is a connected
reductive group over Q. The inclusion G — H’ factors through H and we let h’
denote the composition
S Gg — Hg.
Write X for the G(R)-conjugacy class of h and Xg for the H(R)-conjugacy class
of B'.
Consider the composition

Resp/qt

/o H =% Resyp gGSp(V) & GL(W)
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where f is induced by the forgetful functor from F-vector spaces to Q-vector spaces.
It is easy to see that the restriction of +’ to H factors through GSp(W), and we also
denote by ¢’ the induced map. We write S’* for the Siegel half space corresponding
to W. One checks easily that (G, X), and (H, Xg) are Shimura data, and that we
have embeddings of Shimura data

(G,X) = (H,Xu) — (GSp(W), $'F).

6.2. The main theorem. We now prove our main theorem (cf. Theorem 1.1).
We need the following preliminary result.

Lemma 6.2.1. Let G be a connected reductive group over Q,. If g € G(Q)) lies
in some compact open subgroup of G(Qy), then there exists a finite extension F'/Q,
over which G splits and such that g lies in the parahoric subgroup of G(F') associated
to a special vertex in the building B(G, F).

Remark 6.2.2. Note that if G splits over F', the notion of special vertex, very special
vertex, and hyperspecial vertex in B(G, F') all coincide.

Proof. Write g = gsg,, for the Jordan decomposition of g so that gy is semisimple
and g, is unipotent. Since g lies in a compact open subgroup of G(Q,), ¢ is power
bounded and hence g5 and g, are power pounded. Let T C G be a maximal torus
defined over Q, such that g; € T(Q,). We will take F' to be the splitting field of
T.

Since g5 € T(F) is power bounded, it is contained in Tz 0(Op) where Tgq is the
connected Néron model for the base change Tr. If we let A(G, T, F) C B(G, F) be
the apartment corresponding to T, then gy acts trivially on A(G, T, F).

Now g, € U(F) where U is the unipotent radical of some Borel subgroup B
of G containing T. Let s € A(G,T,F) be any special vertex and we use this
vertex to identify A(G, T, F) with X, (T) ®z R. Since each affine root subgroup of
Gr fixes a half apartment in A(G,T, F'), there exists a sufficiently dominant (with
respect to the choice of Borel B) special vertex s’ which is fixed by g,. It follows
that s’ is fixed by g. We write G for the Bruhat-Tits stabilizer scheme over Or
corresponding to s’; by the above discussion we have g € G (OF). Since G is split
over F, G is equal to the parahoric group scheme G associated to s'. (]

6.2.3. We now return to the assumptions and notation of §6.1. Thus we have an
abelian variety A/E, such that p; : I's — GL(T,AY) factors through G(Qy) for all
{. Recall E = E, and F, is its residue field. The map %), : Q- @p determines an
inclusion

(6.2.3.1) Gal(E/E) — Gal(E/E).

We let 7, € T'g be the image under (6.2.3.1) of a lift of the geometric Frobenius in
Gal(E/E).

Proposition 6.2.4. Let p > 2. There exists a totally real field F such that if
(H, Xu) denotes the Shimura datum of Hodge type coming from the construction
in §6.1.6, there exists a very special parahoric group scheme H for H = Hg, such
that

(1) The image of p$(o4) in H(Qp) lies in H(Zy).

(2) H = H(’Qp is a product of Weil restrictions of split groups.
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Proof. Let G = Gq,. By Lemma 6.2.1 applied to the element pS(5,) € G(Qp),
there exists a finite extension F'/Q,, such that G is split and there exists a special
parahoric G of Gp such that the image of p§(7,) in G(F) lies in G(Op). We let
F be a totally real field such that F,, = F for all places w|p of F. By construction
H C H' = Resp/gG and we have an isomorphism

H :=Hj = H Resy,, /g, Gr,, = H Resp/q,Gr

wlp wlp

so that (2) follows.

We let H' denote the parahoric group scheme of H' corresponding to [[,,, G(Or).
Then H' =[], Reso/z,0, and since G splits over F', H' is a very special para-
horic. It follows that H'(Z,) N H(Q,) arises as the Z,-points of a very special
parahoric group scheme H for H. Since G(Q,) C H(Q,), the image of p$(5,) in
H(Qp) lies in H(Z,) so that (1) is satisfied.

(]

6.2.5. In order to apply the results of §5.1 we need to consider a modification of H
with connected center. Thus let T C H be the centralizer of a maximal Qp—split
torus in H. Then by an argument as in [Kis10, Proposition 2.2.4], we may choose
T a maximal torus in H such that Tq, is H(Q,) conjugate to T and there exists
h € X such that h factors through Tg. We let T¢ denote the maximal compact
subtorus of T which is defined over Q. Then T° = T@p is a product of induced

tori. We set H; := H xZ2 T and let H; denote the very special parahoric of H;
associated to H. We let X; denote the conjugacy class of Deligne homomorphisms
for H; determined by h x 1 so that (Hy, X;) is a Shimura datum.

Lemma 6.2.6. (1) The triple (Hy, X1,H1) is strongly acceptable.
(2) The inclusion G — H; induces a Gal(Q/Q)-equivariant injection

Conjg(Q) — Conjg, (Q).

Proof. (1) Let W' = Homg,, (W, W) (Q-linear maps which are Zyj-equivariant) and
we let Hy act on W’ via (h,t)f(x) = hf(t~'x). Then as in [KP18, Lemma 4.6.22],
we may equip W’ with an alternating form such that we obtain a Hodge embedding
(Hy, X1) — (GSp(W'), 8'*); thus (Hy, X;) is of Hodge type.

Note that H{e" = Hder = H'®" and H, is a very special parahoric. Moreover
Zg, = T¢is a product of induced tori and hence the result follows.

(2) We first show that G — H induces a Gal(Q/Q)-equivariant injection

(6.2.6.1) Conjg (Q) — Conjy (Q).

Let g,g' € G(Q) such that there exists h € H(Q) such that h~1gh = g. We consider
H as a subgroup of H'. Then under the identification

!~ o
H > II Gao
+:F—Q
g,¢" correspond to the elements (g,...,9),(¢,...,9") respectively and we write

h = (h1,...,hy). Then h='gh = ¢’ implies hygh;* = ¢’. Thus g and ¢’ have the
same image in Conjg(Q). The Gal(Q/Q)-equivariance follows from the fact that
G — H is defined over Q.



INDEPENDENCE OF ¢ FOR FROBENIUS CONJUGACY CLASSES 59

Now let h € H(Q) and (h/,t) € H{(Q) with »’ € H(Q), t € T(Q). Then we have
(R, t)(h, 1)(R',t)"t = (W'hH' 71, 1),

and hence H — H; induces a Gal(Q/Q)-equivariant injection

Conjz (Q) — ConjHl(@),
and the result follows by composing with (6.2.6.1). O

Theorem 6.2.7. Let p > 2 be a prime and v|p a place of E where A has good
reduction. Then there exists an element v € Conjg(Q) such that for all £ # p, we
have 5 = 74(v) in Conj(Qy).

Remark 6.2.8. As remarked above, the group G depends on the embedding E — C
up to inner automorphism. If G’ is the group associated to a different embedding
E — C, the inner twisting Gz = Gj@ induces a canonical isomorphism Conjg =
Conjg. and it can be checked that the statement of the theorem is independent of
the choice of embedding.

Proof of 6.2.7. We may assume that G is not a torus as in this case A has complex
multiplication and the result is a theorem of Shimura—Taniyama. We choose a
totally real field F as in Proposition 6.2.4 and let (H, X, H) denote the associated
triple. By construction, the image of pz(,;(&q) inside H(Q,) lies in K, := H(Z,).
Hence, there exists a finite extension E’ of E such that pl(f Ir,, factors through K,
and such that there is a prime v'|v of E’ such that E/, has residue field F,. We may
thus replace E by E’, without changing the statement of the theorem, and assume
that the image of pff in H(Q,) factors through K,,.

Now let (Sa,¢)ep € V?(A)® denote the (-adic realizations of the absolute Hodge
cycles for A. By our assumption on E, the representation p?P : 'y — GL(‘A/”(A))
factors through G(Az}) C H(A’;), and hence through a compact open subgroup
KP C H(AIJZ). Write K := K, KP.

We now define a point of Shi (H, Xg) using the Hodge embedding

V1 (H, Xu) — (GSp(W), S%).
Consider the abelian variety up to isogeny A¥ = A ®g F given by the Serre tensor
construction [Con04, §7], equipped with the isomorphism ¢ : V(AF) ~ V®oAr@oF
induced by the identity on V. Since plcf and p? act via K, the K-orbit of ¢ is I'g-
invariant. Thus, the triple (A", A ® F\¢), defines a point 24 € Shk(H, X11)(E).
(Note that, since 9 is H-invariant, up to scalars, A is defined over E as a weak
polarization).

Now let (Hy, X;,H1) be the modification of (H, Xg, H) given by the construc-
tion in 6.2.5. We set Ky, = H1(Zy), K1 = K ,K] where K7 C H(AY) is a compact
open subgroup containing the image of KP. We let y4 € Shg, (H;, X1)(E) de-
note the image of T4. By Lemma 6.2.6 (1), the triple (H;, X1, H1) satisfies the
assumptions of Theorem 5.1.4. Thus we may apply it to the reduction y4 €
Fx(Hy, X1)(Fy), where , (Hi, X;) is the integral model constructed from a
choice of auxiliary Hodge type Shimura datum. This implies that there exists
v € Conjg, (Q) such that for all £ # p, we have v = 7(v) in Conjg, (Q¢). By
Lemma 6.2.6 (2), it follows that v € Conjg(Q) and v = 4¢(v) in Conjg(Q). O

6.3. Refinements.
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6.3.1. We retain the notation introduced above. Write 9,(v) = p& (Fr,). There are
a number of ways one might try to refine Theorem 6.2.7. For example one could ask
if v lifts to a point ¥ € G(Q). When this is the case, one can also try to refine the
relationship between 4,(v) and 5. We will prove such a result when G has simply
connected derived group, and is quasi-split at p.

6.3.2. Let H, H' be connected reductive groups over a field K with algebraic closure
K. Suppose we are given an isomorphism H ~ H’ over K. Recall that an inner
twisting between H and H' is an isomorphism ¢ : H ~ H’ over K such that for
o € Gal(K/K), there exists g, € H'(K) so that o(y(h)) = g, (o(h))g; ! for
h € H(K). We say that a subgroup M C H transfers to H' via v, if (M) C H'
is defined over K, and v induces an isomorphism M ~ (M) over K. We say that
M transfers to H', if it transfers to H' via some 1.

An element h C Hp is called elliptic if it is contained in an elliptic maximal
torus, that is a maximal torus which is anisotropic modulo the center of H.

Lemma 6.3.3. v € Conjg(Q) lifts to an elliptic element g € G(R).

Proof. The composite G,, = G § G,, is given by z ~ 2! for some i. Here,
as above, p and cg are the Hodge cocharacter and multiplier homomorphism re-
spectively. For any lift ¥ € G(C) of v, we have cg(§) = ¢* [Del79, 2.2.3]. In
particular, cg () € R**. Hence there exists z € Zg(R) with cg(z) = ca(¥). Set
1 = vz~ ! € Conjg (R). It suffices to show 4, admits an elliptic lift in G(R).

Let 44 € G(C) be any lift. Under any representation of G (for example its
canonical symplectic one), the eigenvalues of the image of 47 have absolute value 1.
Hence 7, is contained in a maximal compact subgroup of G(C). Let G = G /w(G,,),
and denote by 72 € G(C) the image of 53 Then 7, is contained in a maximal
compact subgroup of G(C). Such a subgroup has the form G¢(R), where G¢ is a
real form of G. Consider the canonical isomorphism ¢ : G& ~ G¢. As the center
of Gg is anisotropic, 1 induces an isomorphism between the centers of G and G¢,
over R. Moreover, G3°* is an inner form of its compact form, so this implies that v
is an inner twisting. Let T' C C_a‘r]fg be a maximal torus containing ¢ ~1(5z). Then T
transfers to G [LR87, Lem. 5.6], and 1 ~1(32) € T(R) C G(R) is elliptic. Any lift
of p™1(32) to G(R) yields the required lift of . O

Corollary 6.3.4. With the assumptions of Theorem 6.2.7, suppose that G is
simply connected and that Gq, is quasi-split. Then vy lifts to an element v € G(Q)
such that

o 79 € G(R) is elliptic

e 7y is conjugate to 7, (v) in G(Qy) for all but at most one prime £ # p.

Proof. Since ~ lifts to an elliptic element by Lemma 6.3.3, this follows from the
argument of [Kot90, p188]. O

Remarks 6.3.5.

(1) When G is not quasi-split at p, there does not seem to be any reason to
believe that v in the statement of Theorem 6.2.7 should lift to an element
of G(Q).

(2) When G is quasi-split at p, one expects the conclusion of Corollary 6.3.4
to hold without assuming that G is simply connected, and without ex-
cluding one prime ¢ # p. Indeed this follows when one can show that the
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isogeny class on the corresponding Shimura variety contains a point which
lifts to a special point. This is conjectured to hold in general [KPS22,
Conj. 2.3.8]. One way to motivate this conjecture would be to prove the
analogous statement for the admissible morphisms which appear in the
Langlands—Rapoport conjecture [LR87]. This is done in loc. cit when the
level at p is hyperspecial.

It follows from the argument of [Kot90, p188] that the exceptional prime
in the statement of the corollary can actually be chosen in a set of positive
density. Of course the choice of this prime affects the choice of vq.

It is possible to prove a version of Theorem 6.2.7 and Corollary 6.3.4 which
includes ¢ = p, using the crystalline Frobenius. We aim to return to this in
a future work.

In a paper in preparation [KZ], we extend our methods to prove a version of
Theorem 6.2.7 at a place v of E where A has bad reduction. This involves an
independence of ¢ statement for representations of the Weil-Deligne group.
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