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Abstract. Let A be an abelian variety over a number field E ⊂ C and let G

denote the Mumford–Tate group of A. After replacing E by a finite extension,
the action of the absolute Galois group Gal(E/E) on the `-adic cohomology

H1
ét(AE,Q`) factors through G(Q`). We show that for v an odd prime of E

where A has good reduction, the conjugacy class of Frobenius Frobv in G(Q`)
is independent of `. Along the way, we prove that under certain hypotheses,

every point in the µ-ordinary locus of the special fiber of Shimura varieties has

a special point lifting it.
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1. Introduction

Let A be an abelian variety over a number field E ⊂ C and E the algebraic closure
of E in C. We fix a prime p and v|p a place of E where A has good reduction. Then
for any prime ` 6= p, the action of Gal(E/E) on the `-adic cohomology H1

ét(AE,Q`) is
unramified at v, and the characteristic polynomial Pv,`(t) of a geometric Frobenius

Frobv ∈ Gal(E/E) has coefficients in Z, and is independent of `. The aim of this
paper is to prove a refinement of this statement for the image of Frobv in the
Mumford–Tate group of A.

Recall that the Mumford–Tate group G of A is a reductive group over Q, defined
as the Tannakian group of the Q-Hodge structure given by the Betti cohomology
VB := H1

B(A(C),Q). It may also be defined as the stabilizer in GL(VB) of all
Hodge cycles of type (0,0) on the tensor spaces V ⊗rB ⊗ (V ∨B )⊗r for r ∈ Z≥0. A
fundamental result of Deligne [Del82] asserts that there exists a finite extension
E′/E in E such that for any prime `, the action of Gal(E/E′) on H1

ét(AE,Q`) is
induced by a representation

ρG` : Gal(E/E′)→ G(Q`).

It is not hard to see that for any finite extension E′/E, if ρG` exists for one `, then
it exists for all `. Moreover there is a minimal such extension E′. The existence of
ρG` is in fact predicted by the (in general still unproved) Hodge conjecture for A;
Deligne’s result on absolute Hodge cycles [Del82] provides a reasonable substitute
in this case so that the existence is unconditional. Upon replacing E by E′, we
assume there is a map ρG` : Gal(E/E)→ G(Q`).

For any reductive group H over Q we write ConjH for the variety of semisimple
conjugacy classes of H (cf. §5.1.3) and χH : H→ ConjH for the natural projection
map which sends an element of H to the associated conjugacy class of its semisimple
part. We thus obtain a well-defined element

γ` = γ`(v) := χG(ρG` (Frobv)) ∈ ConjG(Q`),

the conjugacy class of `-adic Frobenius at v. Our main theorem is the following.

Theorem 1.1. Let p > 2 and v|p a prime of E where A has good reduction. Then
there exists γ ∈ ConjG(Q) such that

γ = γ` ∈ ConjG(Q`), ∀` 6= p.

Explicitly, γ is a Gal(Q/Q)-stable G(Q)-conjugacy class whose associated G(Q`)-
conjugacy class contains ρG` (Frobv) for all ` 6= p. Since Pv,`(t) is independent of `,
the image of γ` in ConjGL(VB)(Q`) is defined over Q and independent of `. However,

in general the map ConjG(Q) → ConjGL(VB)(Q) is not injective, so the theorem

gives more information than the `-independence of Pv,`(t). We remark that G de-
pends on the chosen embedding E ⊂ C; in general changing the embedding has
the effect of replacing G by an inner form. However, the variety ConjG and the
elements γ` do not depend on the choice of this embedding, and so neither does
the statement of the theorem. When G is quasi-split at p it is expected that γ can
be lifted to an element γ0 ∈ G(Q), which is G(Q`)-conjugate to ρG` (Frobv). We
prove a slightly weaker version of this result, when Gder is simply connected; see
§6.3 below for this and other potential refinements of the theorem.
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An analogue of the above theorem for any algebraic variety (or more generally
motive) over a number field was conjectured by Serre in [Ser94, 12.6], but in general
one does not even know the analogue of Deligne’s theorem on the existence of ρG` .

Previously proved cases of our theorem include a result of Noot who showed
a version of this theorem where ConjG is replaced by a certain quotient Conj′GA

and under the additional assumption that the Frobenius element γ` is weakly neat
[Noo09]. More recently, one of us [Kis17, Corollary 2.3.1] proved the Theorem
when G is unramified at p. In fact, [Kis17] proves the stronger result that γ lifts
to γ0 ∈ G(Q) and is G(Q`)-conjugate to ρG` (Frobv). Noot’s argument uses the
independence of ` of Pv,`(t), together with group theoretic arguments to analyze
the map ConjG → ConjGL(VB). The result of [Kis17] is proved by showing that, on
the Shimura variety associated to G, the isogeny class corresponding to A contains
a point which admits a CM lift.

For the rest of the introduction we assume p > 2. Our proof of Theorem 1.1
makes use of families of abelian varieties with Mumford–Tate group contained in
G, and especially the structure of their mod p reductions. These families are
parameterized by a Shimura variety ShK(G, X) associated to G, and defined over
a number field (its reflex field) E ⊂ C which is contained in E. We take K = KpK

p

with Kp ⊂ G(Qp) a parahoric subgroup and Kp ⊂ G(Apf ) a compact open subgroup.
Let w be the restriction of v to E. Write Ew for the completion of E at w, OEw for
the ring of integers of Ew and κ(w) for its residue field. Under some mild conditions,
ShK(G, X) has an integral model SK(G, X) overOEw , which is smoothly equivalent
to a “local model”, defined as the closure of an orbit of G acting on a certain
Grassmannian. These are constructed in [KPZ], extending results of the first author
and Pappas [KP18].

For each prime ` 6= p, SK(G, X) is equipped with a G(Q`)-torsor L`. In partic-
ular, for any finite extension κ/κ(w) and x ∈ SK(G, X)(κ), the q = |κ|-Frobenius
acting on the geometric fiber of L` at x, gives rise to an element γx,` ∈ ConjG(Q`).
We say x has the property (`-ind), or the `-independence property, if there exists
an element γ ∈ ConjG(Q) such that

γ = γx,` ∈ ConjG(Q`),∀` 6= p.

Now suppose that (G, X) satisfies the conditions needed to guarantee the ex-
istence of SK(G, X); the general case of Theorem 1.1 is eventually reduced to
this one. Then for a suitable choice of K, our abelian variety A corresponds to
a point x̃A ∈ ShK(G, X)(E) and its mod v reduction is a point xA of the special
fiber SK := SK(G, X) ⊗OEw

κ(w). Moreover there is an equality γ`(v) = γxA,` as
elements of ConjG(Q`). Thus in order to show Theorem 1.1, it suffices to prove

(†) If κ/κ(w) is finite and x ∈ SK(κ), then x satisfies (`-ind).

By considering A as a point on a larger Shimura variety related to a group of
the form ResF/QG where F is a suitably chosen totally real field, one can show that
Theorem 1.1 follows from the following special case of (†).

Theorem 1.2. Let (G, X,Kp) be a strongly acceptable triple. Then for any κ/κ(w)
finite and x ∈ SK(κ), x satisfies (`-ind).

The condition of strong acceptability of the triple (G, X,Kp) is a technical one,
and we refer the reader to §4.2 for the definition. We only mention here that
the condition implies that Kp is a certain type of maximal compact subgroup of
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G(Qp) known as a very special parahoric. These conditions are needed to ensure
the integral models satisfy some desirable properties as we explain below.

As a first step towards Theorem 1.2, we prove the following analogue of Serre–
Tate theory, which allows us to show that under the assumptions of Theorem 1.2,
(`-ind) holds on a dense, Zariski open subset of SK.

Theorem 1.3. Assume the triple (G, X,Kp) is strongly acceptable. Then

(1) The µ-ordinary locus SK,[b]µ ⊂ SK is Zariski open and dense in SK.
(2) Any closed point x lying in SK,[b]µ admits a lifting to a special point x̃ ∈

ShK(G, X).

The µ-odinary locus in (1) is the group theoretic generalization of the ordinary
locus in the moduli space of principally polarized abelian varieties, and the density
follows from results about the local structure of SK(G, X) and [KPS22, Corollary
1.3.16]. The lifting constructed in (2) is then the analogue in our setting of the
canonical lift for ordinary abelian varieties and had been considered for Shimura
varieties with good reduction in previous work of Moonen [Moo04] and Shankar
and the second author [SZ21]. For these points, the Frobenius lifts to an auto-
morphism of the associated CM abelian variety, and we obtain the desired element
γ ∈ ConjG(Q) by considering the induced action on Betti cohomology.

To prove Theorem 1.2, one considers a smooth curve C with a map π : C →
SK. Using a theorem of L. Lafforgue [Laf02, Théorème VII.6] on the existence of
compatible local systems on smooth curves, we show that if the property (`-ind)
holds for a dense open subset of points on C then it holds for all points of C. The
results in [KPZ, §7] on the structure of the integral models SK(G, X) imply that SK

is equipped with a certain combinatorially described stratification, the Kottwitz–
Rapoport stratification. The stratum of maximal dimension is the smooth locus of
SK. A theorem of Poonen [Poo04] shows that π can be chosen so that its image
intersects SK,[b]µ and any point x of the maximal stratum. The µ-ordinary case
explained above then implies that any such x satisfies (`-ind). We now argue by
induction on the codimension of the strata; for a closed point x in some stratum
of SK, we show that π can be chosen so that its image contains x, and also meets
some higher dimensional stratum.

In fact, using general arguments with ampleness, it is not hard to construct a
map π from a smooth curve whose image contains any closed point x ∈ SK, and
meets the µ-ordinary locus. This would appear to avoid the induction on strata
above. However, this argument would only allow us to prove the `-independence
result for some power of the Frobenius. To prove Theorem 1.2 in full, one needs
the existence of a y ∈ C, with π(y) = x, such that π induces an isomorphism of
residue fields κ(x) ' κ(y). To construct such curves, we first construct a sequence
of smooth curves which are subschemes of the local model associated to SK(G, X),
using the explicit group theoretic description of this local model. These are then
pulled back to SK(G, X) via the local model diagram. The assumption that Kp

is very special is key to our argument, as this not only guarantees the density of
SK,[b]µ , but also that the Kottwitz–Rapoport stratification on the local model has
a particularly simple description (cf. §5.2.1) which is used in the construction of π.

The induction argument would also be unnecessary if one could show a conjecture
of Deligne [Del80, Conjecture 1.2.10] on the existence of compatible local systems
on a normal variety. For smooth schemes Deligne’s conjecture has been proved by
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Drinfeld [Dri12], but the special fiber SK is not smooth, so Drinfeld’s theorem does
not suffice for our purposes.

We now give some details about the geometric properties of the integral models
SK(G, X) that we use. The two main results we need about these models are the
existence of a local model diagram as predicted in [Rap05], which relates the models
to an orbit closure on a Grassmannian, and the analogue of Serre–Tate theory at
µ-ordinary points, already mentioned in Theorem 1.3 above.

Under some mild assumptions, [KPZ] proves the existence of a version of the
local model diagram for abelian type Shimura varieties where the torsor is for the
parahoric of the adjoint group. The strategy follows that of [KP18] which proved
the result under an additional tameness hypothesis on the group G. In [KPZ],
the local model diagram is first constructed in some special Hodge type cases;
the general case is eventually reduced to this via Deligne’s formalism of connected
Shimura varieties. Both the reduction step and the construction in the Hodge-type
case make crucial use of the notion of R-smoothness for tori introduced in §2.4.
This is related to the failure of a closed immersion of tori to extend to a closed
immersion of lft Néron models, a phenomenon which does not occur in the tamely
ramified case. For us, this notion is needed to prove certain functoriality properties
of our integral models in §4.3.

In the special Hodge type case, the construction of the local model diagram is
intertwined with a result (Proposition 4.1.9) which gives a description of the formal
neighborhood of the Shimura variety in terms of the deformation theory of a p-
divisible group equipped with a collection of tensors in its crystalline cohomology.
For this we use the constructions in [KP18, §3], as generalized in [KPZ]. This result
is used as a key input in proving the existence of canonical liftings in these cases,

The special Hodge-type cases considered above are actually not enough for appli-
cations to proving `-independence for abelian varieties. This is due to pathologies in
the local models when p||π1(Gder)|. In order to prove the results concerning integral
models in the required level of generality, we consider the Hodge-type Shimura da-
tum of interest as a datum of abelian type. The results concerning the local model
diagram and canonical liftings are then transferred to the integral model using a
different, auxiliary, Hodge-type datum which does satisfy the required properties.
The price of this indirect approach is that we have to do some work to prove that
the integral model constructed in this way maps to an appropriate moduli space of
abelian varieties. This is needed in order to define the µ-ordinary locus, and prove
Theorem 1.3.

We now explain the organization of the paper. In §2-4 we prove the geometric
result concerning integral models of Shimura varieties we need. These are then
used to prove Theorem 1.1 in §5,6. In §3, we recall results concerning local models
and review the deformation theoretic results of [KP18, §3] and [KPZ], which are
then used to show the existence of canonical deformations for µ-ordinary p-divisible
groups in §3.4. The latter uses a generalization to general parahorics of a result of
Wortmann on µ-ordinary σ-conjugacy classes, which is proved in §2.3. In §4, we
recall the construction of the local model diagram and prove Theorem 1.3, first in
some special Hodge-type cases in §4.1, then in general in §4.2–4.4.

In §5, we prove Theorem 1.2 following the strategy outlined above and in §6
we prove Theorem 1.1 using Theorem 1.2. Finally we remark that for technical
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reasons related to the level structure on A, we actually work with Shimura stacks
(i.e. Shimura varieties where the level structure is not neat) in §4-6.

Acknowledgments: M.K. was supported by NSF grant DMS-1902158. R.Z. was
supported by NSF grant DMS-1638352 through membership of the Institute for
Advanced Study, and by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No.
804176). We would like to thank the referees for many suggestions which greatly
improved the paper. We also thank Yihang Zhu for useful discussions.

2. Group theoretic results

In this section, we prove some group theoretic results which will be used in §4.
§2.1–§2.3 contains the results needed for the construction of canonical liftings in
§3.4 and §4.4. In §2.4 we study properties of Néron models of tori needed to study
embeddings of parahorics.

2.1. σ-straight elements.

2.1.1. Let F be a non-archimedean local field with ring of integers OF . We fix a
uniformizer $F ∈ OF and we let kF denote the residue field of OF . We let F̆
denote the completion of the maximal unramified extension of F and OF̆ its ring

of integers, and we fix F an algebraic closure of F . We let k be the residue field of
OF̆ which is an algebraic closure of kF . We write Γ for the absolute Galois group

Gal(F/F ) of F and I for the inertia subgroup, which is identified with Gal(F̆ /F̆ ).

We let σ denote the Frobenius element of Aut(F̆ /F ).
Let S be a scheme. If X is a scheme over S and S′ → S is a morphism of

schemes, we write XS′ for the base change of X along S′ → S.

2.1.2. Let G be a reductive group1 over F . Let S be a maximal F̆ -split torus of G
defined over F and T its centralizer (cf. [Tit79, 1.10] for the existence of S). By

Steinberg’s Theorem, G is quasi-split over F̆ and T is a maximal torus of G. We
let B(G,F ) (resp. B(G, F̆ )) denote the (extended) Bruhat–Tits building of G over

F (resp. F̆ ). Let a denote a σ-invariant alcove in the apartment V := A(G,S, F̆ )

over F̆ associated to S; we write I for the corresponding Iwahori group scheme over
OF . The relative Weyl group W0 and the Iwahori Weyl group are defined as

(2.1.2.1) W0 = N(F̆ )/T (F̆ ), W = N(F̆ )/T0(OF̆ ),

where N is the normalizer of T and T0 is the connected Néron model for T . These
are related by an exact sequence

0 // X∗(T )I // W // W0
// 0.

For an element λ ∈ X∗(T )I we write tλ for the corresponding element in W ;
such elements will be called translation elements. We will sometimes write WG or
WGF̆

for W if we want to specify the group that we are working with.

1Our convention is that all reductive groups are connected.
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2.1.3. We also fix a special vertex s lying in the closure of a. Such a vertex induces
a splitting of the exact sequence (2.1.2.1) and gives an identification

(2.1.3.1) V ∼= X∗(T )I ⊗Z R.

Let Aff(V ) denote the group of affine transformations of V . Then we have an
identification Aff(V ) ∼= V oGL(V ). The Frobenius σ acts on V via affine transfor-
mations and we write ς ∈ GL(V ) for the linear part of this action. The identification
(2.1.3.1) also determines a dominant chamber C+ ⊂ X∗(T )I⊗ZR; namely by taking
the one containing a, and we write B for the corresponding Borel subgroup defined
over F̆ . We write σ0 for the automorphism of X∗(T )I ⊗Z R defined by σ0 := w0 ◦ ς
where w0 ∈W0 is the unique element such that w0 ◦ ς(C+) = C+. We call this the
L-action on X∗(T )I ⊗Z R; by definition it preserves C+.

2.1.4. Let S denote the set of simple reflections about the walls of a. We let Wa

denote the affine Weyl group; it is the subgroup of W generated by the reflections
in S. Then (Wa,S) has the structure of a Coxeter group, and hence we have a
notion of length and Bruhat order. The Iwahori Weyl group and affine Weyl group
are related via the following exact sequence

(2.1.4.1) 0 // Wa
// W // π1(G)I // 0.

The choice of a induces a splitting of this exact sequence and π1(G)I can be identi-
fied with the subgroup Ω ⊂W consisting of elements which preserve a. The length
function ` and Bruhat order ≤ extend to W via this choice of splitting and Ω is
identified with the set of length 0 elements.

We let κ̃G(w) denote the image of w ∈ W in π1(G)I and κG(w) its projection
to π1(G)Γ. For w ∈ W , there is an integer n such that σn acts trivially on W
and wσ(w) . . . σn−1(w) = tλ for some λ ∈ X∗(T )I . We define the (non-dominant)
Newton cocharacter νw ∈ X∗(T )I,Q ∼= X∗(T )IQ to be 1

nλ, which is easily seen to be

independent of n. We let νw ∈ X∗(T )I,+Q be the dominant representative of νw.

2.1.5. Let Gder be the derived group of G and let T sc denote the preimage of T in
the simply connected covering Gsc of Gder. Then Wa is the Iwahori Weyl group for
Gsc and we have the following exact sequence

0 // X∗(T
sc)I // Wa

// W0
// 0.

Since the action of I permutes the set of absolute coroots, X∗(T
sc)I is torsion free

and there is an inclusion X∗(T
sc)I ↪→ X∗(T )I . By [HR08], there exists a reduced

root system Σ such that

Wa ' Q∨(Σ) oW (Σ)

where Q∨(Σ) and W (Σ) denotes the coroot lattice and Weyl group of Σ, respec-
tively, and there is a canonical isomorphism W (Σ) ∼= W0. The roots of Σ are
proportional to the roots of the relative root system for GF̆ ; however the root
systems themselves may not be proportional.

As explained in [HR08, p7], we may consider elements of Σ as functions on
X∗(T )I ⊗Z R, and we write 〈 , 〉 for the induced pairing between X∗(T )I ⊗Z R and
the root lattice associated to Σ. We let ρ denote the half sum of all positive roots
in Σ. Then for any λ ∈ X∗(T )I we have the equality

(2.1.5.1) `(tλ) = 〈λ, 2ρ〉,
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where λ ∈ W0 · λ is the dominant representative of λ, i.e. the image of λ in
X∗(T )I ⊗Z R lies in C+.

2.1.6. We say that an element w ∈W is σ-straight if for any n ∈ N, we have

`(wσ(w) . . . σn−1(w)) = n`(w).

It is straightforward to check that this is equivalent to the condition `(w) = 〈νw, 2ρ〉.
In this paper, we are particularly interested in translation elements tµ′ which are

also σ-straight; the key property of these elements that we will need is that they
are central for some Levi subgroup of G defined over F .

For any v ∈ X∗(T )I ⊗Z R, we let Φv,0 be the set of relative roots α for GF̆
such that 〈v, α〉 = 0. We may then associate to v the semi-standard Levi subgroup
Mv ⊂ GF̆ generated by T and the root subgroups Uα corresponding to α ∈ Φv,0.
If in addition v is fixed by ς, then Mv is defined over F . We say λ ∈ X∗(T )I is
central in G if it pairs with any relative root (equivalently any root in Σ) to give 0.

Lemma 2.1.7. Let µ′ ∈ X∗(T )I such that tµ′ is a σ-straight element and let
M := Mνt

µ′
be the semi-standard Levi subgroup of G associated to the Newton

cocharacter νtµ′ . Then M is defined over F and µ′ is central in M .

Proof. For any λ ∈ X∗(T )I , and for sufficiently divisible n we have

nνσ(tλ) = σ(tλ) . . . σn(tλ) = t−1
λ nνtλtλ = nνtλ .

Note that σ(tλ) = tς(λ); it follows that νσ(tλ) = ς(νtλ) and hence νtλ is fixed by ς.
Therefore M is defined over F .

We let u ∈W0 be such that u(νtµ′ ) = νtµ′ . For a sufficiently divisible n, we have

`(tµ′) = 〈νtµ′ , 2ρ〉 =
1

n

n−1∑
i=0

〈uςi(µ′), 2ρ〉

where the first equality follows from the σ-straightness of tµ′ . Now 〈uςi(µ′), 2ρ〉 ≤
`(tµ′) with equality if and only if uςi(µ′) is dominant. Therefore uςi(µ′) is dominant
for all i and hence ςi(µ′) is contained in the translate C ′ of the dominant chamber
C+ by u−1 for all i.

Now M corresponds to a sub-root system ΣM of Σ consisting of the roots α ∈ Σ
such that 〈νtµ′ , α〉 = 0. Then ΣM is also the reduced root system associated to
the affine Weyl group for M as in §2.1.5. We must show for all α ∈ ΣM , we have
〈µ′, α〉 = 0. Let α ∈ ΣM be a root, then since ςi(µ′) is contained in a single Weyl
chamber for all i, it follows that 〈ςi(µ′), α〉 have the same sign for all i.

Without loss of generality, assume 〈ςi(µ′), α〉 ≥ 0,∀i. Then we have

0 = 〈νtµ′ , α〉 =
1

n

n−1∑
i=0

〈ςi(µ′), α〉.(2.1.7.1)

Since all terms in the sum are non-negative, they must be 0. Hence µ′ is central in
M . �

2.1.8. Now let {µ} be a geometric conjugacy class of cocharacters of G. Let µ ∈
X∗(T )I denote the image of a dominant (with respect to the choice of Borel B
defined above) representative µ̃ ∈ X∗(T ) of {µ}.
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Lemma 2.1.9. Let w ∈ W0 such that for µ′ := w(µ), tµ′ is a σ-straight element.

Let λ̃ := w(µ̃) ∈ X∗(T ). Then λ̃ is central in M := Mνt
µ′

. Here, we consider W0

as a subgroup of the absolute Weyl group for G.

Proof. Let w(C+) ⊂ X∗(T )I ⊗Z R be the translate of the dominant chamber by
w. Then w(C+) determines a chamber CM for M (it is the unique chamber for M
such that w(C+) ⊂ CM ) and we have µ′ ∈ CM . The chamber CM determines an
ordering of the root system ΣM . Let α be a positive root for ΣM and α̃ ∈ X∗(T ) an
(absolute) root lifting α; such a lift exists by the construction of Σ, see eg. [Bou68,
VI, 2.1]. We let ( , ) : X∗(T )×X∗(T )→ Z denote the natural pairing.

Let K/F̆ be a finite Galois extension over which T splits. We have by definition
of ΣM

0 = 〈µ′, α〉 = c
∑

τ∈Gal(K/F̆ )

(λ̃, τ(α̃))

for some positive c ∈ R, where the first equality follows since µ′ is central in M .
For any τ ∈ Gal(K/F̆ ), CM is preserved by τ and hence τ(α̃) is a positive root for

M . Therefore (λ̃, τ(α̃)) ≥ 0, and hence (λ̃, τ(α̃)) = 0 for all τ . Applying this to

every relative root α for M , we see that λ̃ is central in M . �

2.2. µ-ordinary σ-conjugacy classes.

2.2.1. Let {µ} be a geometric conjugacy class of cocharacters of G; we let µ̃ ∈ X∗(T )
and µ ∈ X∗(T )I as above. The µ-admissible set is defined to be

Adm({µ}) = {w ∈W |w ≤ tx(µ) for some x ∈W0}.
It has a unique minimal element denoted τ{µ}, which is also the unique element of
Adm({µ}) ∩ Ω.

For b ∈ G(F̆ ), we let [b] denote the set {g−1bσ(g)|g ∈ G(F̆ )}, the σ-conjugacy
class of b. The set of σ-conjugacy classes B(G) has been classified by Kottwitz

in [Kot92] and [Kot97]. For b ∈ G(F̆ ), we let νb : D → GF̆ denote its Newton
cocharacter and

νb ∈ X∗(T )+
I,Q
∼= X∗(T )I,+Q

the dominant representative for νb; it is known that νb is invariant under the action
of σ0. We let κ̃G : G(F̆ ) → π1(G)I denote the Kottwitz homomorphism and we
write

κG : G(F̆ )→ π1(G)Γ

for the composition of κ̃G and the projection map π1(G)I → π1(G)Γ. This induces
a well-defined map B(G) → π1(G)Γ, also denoted κG. Then there is an injective
map

(2.2.1.1) B(G)
(κG,b 7→νb)−−−−−−−→ π1(G)Γ × (X∗(T )I,+Q )σ0 .

2.2.2. There is a more explicit description of this map using the Iwahori Weyl
group W . For w ∈W , its σ-conjugacy class is the set {u−1wσ(w)|u ∈W}. We let

B(W,σ) denote the set of σ-conjugacy classes in W . For w ∈W , we let ẇ ∈ N(F̆ )
be a lift of w. Then to w ∈W , we associate the σ-conjugacy class of ẇ; by Lang’s
theorem this does not depend on the choice of representative ẇ. We write

Ψ : B(W,σ)→ B(G)

for the map induced by w 7→ [ẇ].
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By [He14, Theorem 3.7], Ψ is surjective and we have a commutative diagram

(2.2.2.1) B(W,σ)
Ψ // //

(ν,κG) ((

B(G)
iI

(ν,κG)ww

(X∗(T )I,+Q )× π1(G)Γ

.

The map Ψ is not injective in general, however it is proved in [He14, Theorem 3.7]
that its restriction to the set of σ-straight σ-conjugacy classes is a bijection. Here,
a σ-conjugacy class in W is said to be σ-straight if it contains a σ-straight element.

2.2.3. Note that there is a partial order on the set X∗(T )+
Q ; for λ, λ′ ∈ X∗(T )+

Q ,

we write λ ≤ λ′ if λ′ − λ is a non-negative rational linear combination of positive
roots. For {µ} as above, we write µ\ for the common image of an element of {µ}
in π1(G)Γ and we define

µ� =
1

N

N∑
i=1

σi0(µ) ∈ X∗(T )+
I,Q
∼= X∗(T )I,+Q .

where N is the order of the element σ0 giving rise to the L-action on X∗(T )I ⊗ZQ.
We set

B(G, {µ}) = {[b] ∈ B(G) : κG(b) = µ\, νb ≤ µ�}.
Note that for [b1], [b2] ∈ B(G, {µ}), we have [b1] = [b2] if and only if ν[b1] = ν[b2],

since [b1] and [b2] have common image µ\ under κG.

Definition 2.2.4. Suppose there exists a class [b] ∈ B(G, {µ}) such that ν[b] = µ�

(such a class is necessarily unique if it exists by the above remark). We write [b]µ
for this class; it is called the µ-ordinary σ-conjugacy class.

Remark 2.2.5. [HN18, Theorem 1.1] have shown that B(G, {µ}) always contains a
unique maximal element with respect to the partial order ≤. When G is quasi-split,
this class is just [b]µ. However ifG is not quasi-split, there may be no [b] ∈ B(G, {µ})
such that ν[b] = µ�.

Lemma 2.2.6. Assume there exists [b]µ ∈ B(G, {µ}) with ν[b]µ = µ�. There exists

µ′ ∈W0 · µ such that tµ′ is σ-straight and ṫµ′ ∈ [b]µ.

Proof. Since [b]µ ∈ B(G, {µ}), there exists a σ-straight element w ∈ Adm({µ})
such that ẇ ∈ [b]µ by [He16, Theorem 4.1]. The commutativity of diagram (2.2.2.1)
implies that νw = µ�. Since w is σ-straight, we have

`(w) = 〈νw, 2ρ〉 = 〈µ�, 2ρ〉 = 〈µ, 2ρ〉 = `(tµ),

where the third equality follows from the fact ρ is invariant under σ0, and the final
equality uses (2.1.5.1) and the fact that µ is dominant. Since w ∈ Adm({µ}),
`(w) ≤ `(tµ) with equality if and only if w = tµ′ for some µ′ ∈W0 · µ. �

2.2.7. Now let G′ be another reductive group over F and f : G → G′ a group
scheme morphism which induces an isogeny Gder → G′der. We write {µ′} for the G′-
conjugacy class of cocharacters induced by {µ}. We have the following relationship
between µ-ordinary σ-conjugacy classes for G and G′.

Lemma 2.2.8. (1) There exists [b]µ ∈ B(G, {µ}) with ν[b]µ = µ� if and only
if there exists [b′]µ′ ∈ B(G′, {µ′}) with ν[b′]µ′

= µ′�.
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(2) Let [b] ∈ B(G,µ) and [b′] := [f(b)] ∈ B(G′, {µ′}). Then [b] = [b]µ if and
only if [b′] = [b′]µ′ .

Proof. (1) Note that we have a commutative diagram

B(G) //

��

(X∗(T )I,+Q )× π1(G)Γ

��

B(G′) // (X∗(T
′)I,+Q )× π1(G′)Γ

where T ′ is the centralizer of a maximal F̆ -split torus of G′ containing f(T ). Thus
one direction of (1) is clear.

For the converse, suppose there exists [b′]µ′ ∈ B(G′, {µ′}). Note that by as-
sumption, there is an identification of relative Weyl groups for G and G′. Then by
Lemma 2.2.6, there exists w0 ∈ W0 such that tw0(µ′) is a σ-straight element of the

Iwahori Weyl group for G′ and ṫw0(µ′) ∈ [b′]µ. Then it is easy to check that tw0(µ)

is a σ-straight element of the Iwahori Weyl group for G and that νtw0(µ)
= µ�. It

follows that [ṫw0(µ)] = [b]µ ∈ B(G, {µ}).
(2) One direction is clear. Suppose then that [b′] = [b′]µ′ . It follows that ν[b] =

µ� +α for some α ∈ X∗(ker(G→ G′))I . But [b] ∈ B(G, {µ}) and hence µ� − ν[b] is
a rational linear combination of positive coroots. Thus α = 0 and [b] = [b]µ. �

2.3. Parahoric group schemes.

2.3.1. Recall that B(G,F ) and B(G, F̆ ) denote the extended Bruhat–Tits buildings
associated to G. For a non-empty bounded subset Ξ ⊂ B(G,F ) which is contained

in an apartment, we let G(F )Ξ (resp. G(F̆ )Ξ) denote the subgroup of G(F ) (resp.

G(F̆ )) which fixes Ξ pointwise. By the main result of [BT84], there exists a smooth

affine group scheme G̃Ξ over OF with generic fiber G which is uniquely characterized

by the property G̃Ξ(OF̆ ) = G(F̆ )Ξ. As in [KP18, §1.1.2], we will call such a group
scheme the Bruhat–Tits stabilizer scheme associated to Ξ. If Ξ = {x} is a point we

write G(F )x (resp. G̃x) for G(F ){x} (resp. G̃{x}).
For Ξ ⊂ B(G,F ), we write GΞ for the “connected stabilizer” Ξ (cf. [BT84, §4]).

We caution the reader that our convention differs from [KP18], where GΞ is used
for the Bruhat–Tits stabilizer scheme and G◦Ξ for the connected stabilizer. We are
mainly interested in the cases where Ξ is a point x or an open facet f. In this case,
Gx (resp. Gf) is the parahoric group scheme associated to x (resp. f). By [HR08],

GΞ(OF̆ ) = G̃Ξ(OF̆ ) ∩ ker κ̃G. It follows that GΞ(OF ) = G̃Ξ(OF ) ∩ ker κ̃G.

We may also consider the corresponding objects over F̆ and we use the same
notation in this case. When it is understood which point of B(G,F ) or B(G, F̆ ) we

are referring to, we simply write G̃ and G for the corresponding group schemes.

An important case that is needed for applications is when Gx = G̃x, i.e. the
parahoric is equal to the Bruhat–Tits stabilizer. When this happens, we necessarily

have that G̃x = G̃f, where f is the facet which contains x, and x ∈ f is a point which
is “in general position.” We say that G is a connected parahoric if there exists a

point x ∈ B(G,F ) such that G̃x = G.
Let G′ be another reductive group and assume there is an identification Gad ∼=

G′ad between their respective adjoint groups. Then there are surjective maps of
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buildings B(G,F ) → B(Gad, F ) and B(G′, F ) → B(G′ad, F ) which are equivariant
for G(F ) and G′(F ) respectively. Let G = Gx be a parahoric group scheme of G
corresponding to x ∈ B(G,F ), and let xad ∈ B(Gad, F ) denote the image of x.
Then for any x′ ∈ B(G′, F ) lifting xad, the parahoric G′ = G′x′ of G′ is independent
of the choice of x′ lifting xad. Thus G determines a parahoric G′ of G′; in this case
we say that G and G′ are associated.

2.3.2. Now let J ⊂ S be a subset and we write WJ for the subgroup of W generated
by J . If WJ is finite, J corresponds to a parahoric group scheme G over OF̆ ; such

parahorics are called standard (with respect to a). We let W J (resp. JW ) denote
the set of minimal length representatives of the cosets W/WJ (resp WJ\W ).

We recall the Iwahori decomposition. For w ∈ W , the map w 7→ ẇ induces a
bijection

WJ\W/WJ
∼= G(OF̆ )\G(F̆ )/G(OF̆ ).

We now assume J is σ-stable; in this case the parahoric group scheme G is defined
over OF . For the rest of §2.3, we fix a geometric conjugacy class of cocharacters
{µ} of G and assume the existence of [b]µ ∈ B(G, {µ}). We define Adm({µ})J to
be the image of Adm({µ}) in WJ\W/WJ . We sometimes write AdmG({µ})J if we
want to specify the group G we are working with. The following is the key group
theoretic result needed to prove the existence of canonical liftings in §4.4.

Proposition 2.3.3. Let b ∈
(⋃

w∈Adm({µ})J G(OF̆ )ẇG(OF̆ )
)
∩ [b]µ. Then

(1) b ∈ G(OF̆ )ṫµ′G(OF̆ ) for some σ-straight element tµ′ .

(2) There exists g ∈ G(OF̆ ) such that g−1bσ(g) = ṫµ′ , for tµ′ as in (1).

Proof. By [HR17, Theorem 6.1 (b)], there exists h ∈ G(OF̆ ) such that h−1bσ(h) ∈
I(OF̆ )ẇI(OF̆ ) for some w ∈ JW . Thus w ∈ JW ∩WJAdm({µ})WJ and hence lies

in JW ∩Adm({µ}) by [He16, Theorem 6.1]. Thus upon replacing b by h−1bσ(h), we
may assume b ∈ I(OF̆ )ẇI(OF̆ ). By [HZ20, Theorem 4.1], there exists a σ-straight
element x ≤ w such that [b]µ ∩ I(OF̆ )ẋI(OF̆ ) 6= ∅ (the Theorem in loc. cit. proves
the non-emptiness of the affine Deligne–Lusztig variety Xx(b), which is equivalent
to this statement). By the proof of [He14, Theorem 3.5], we have ẋ ∈ [b]µ and by
the same argument as in Lemma 2.2.6 we have x = tµ′ for some µ′ ∈W0 · µ. Since
x ≤ w and w ∈ Adm({µ}), we have w = tµ′ . This proves (1).

For (2), the above argument shows that we may assume b ∈ I(OF̆ )ṫµ′I(OF̆ ) for
tµ′ a σ-straight element. By [He14, Proposition 4.5], there exists i ∈ I(OF̆ ) such

that i−1bσ(i) = ṫµ′ ; the result follows. �

Remark 2.3.4. This result is a generalization to general parahorics of [SZ21, Propo-
sition 2.5] which is due to Wortmann. In the case when G is a hyperspecial para-
horic, this result is the group theoretic analogue of the fact that there is exactly
one isomorphism class of ordinary F -crystal over OF̆ .

2.4. Néron models of tori.

2.4.1. In this subsection, we introduce the notion of R-smooth tori and discuss
some consequences for Bruhat–Tits group schemes.

Let T be a torus over a non-archimedean local field F ; recall we have defined T0

to be the connected Néron model of T . We let T (resp. Tft) denote the lft Néron

model (resp. finite type Néron model) for T . Then we have T (OF̆ ) = T (F̆ ) and Tft
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is characterized by the condition Tft(OF̆ ) = {t ∈ T (F̆ )|κ̃T (t) ∈ X∗(T )I,tors} where
X∗(T )I,tors is the torsion subgroup of X∗(T )I . Alternatively, by [Rap05, n◦1] the
connected components of the special fiber of T are parameterized by X∗(T )I and
Tft is the unique smooth subgroup scheme of T whose special fiber is given by the
set of connected components corresponding to the subgroup X∗(T )I,tors of X∗(T )I .

2.4.2. Let F̃ /F be a finite Galois extension over which T splits and TOF̃ denote

the lft Néron model of TF̃ .
2 By [BLR90, §7.6, Proposition 6], ResOF̃ /OF TOF̃ is the

lft Néron model over OF for ResF̃ /FTF̃ . There is a natural map T → ResF̃ /FTF̃
and we define T c to be the Zariski closure of T inside ResOF̃ /OF TOF̃ . As in [BT84,

§4.4.8], T c does not depend on the choice of splitting field F̃ .

Definition 2.4.3. We say a torus T is R-smooth if T c is smooth.

Since T c satisfies the Néron mapping property (see [Edi92, Proof of Theorem
4.2] for the proof in the case of abelian varieties which also works for tori), we have
T ∼= T c if T is R-smooth.

We can similarly define a notion of R-smoothness for tori over F̆ . It is easy to
see using compatibility of Néron models with base change along OF → OF̆ that a
torus over F is R-smooth if and only if TF̆ is R-smooth.

Lemma 2.4.4. Suppose we have a closed immersion f : T1 → T2 between tori
where T1 is R-smooth. Then

(1) f extends to a closed immersion T1 → T2 of lft Néron models.
(2) f extends to a closed immersion T1,ft → T2,ft of finite type Néron models.

Proof. (1) Let F̃ /F be a finite Galois splitting field for both T1 and T2. Then since
T1,F̃ and T2,F̃ are products of multiplicative group schemes, the map T1,F̃ → T2,F̃

extends to a closed immersion of lft Néron models TOF̃ → T2,OF̃ over OF̃ . We
obtain a diagram

T1
f

//

g

��

T2

h

��

ResOF̃ /OF T1,OF̃
i // ResOF̃ /OF T2,OF̃

where i is a closed immersion since it is obtained via restriction of scalars of a
closed immersion, and g is a closed immersion since T1 is R-smooth. It follows that
h ◦ f = i ◦ g is a closed immersion, and hence f is a closed immersion.

(2) By (1), we have a closed immersion T1 → T2 of lft Néron models. We
let φ : X∗(T1)I → X∗(T2)I denote the morphism on the targets of the Kottwitz
homomorphism. Using that ker(φ) is torsion, one sees that

φ−1(X∗(T2)I,tors) = X∗(T1)I,tors.

As the finite type Néron models T1,ft and T2,ft correspond to the subschemes of T1

and T2 whose special fibers are given by the connected components parameterized
by X∗(T1)I,tors and X∗(T2)I,tors respectively, it follows that T1 → T2 induces a
closed immersion T1,ft → T2,ft as desired. �

2We are abusing notation here since TO
F̃

is not necessarily the base change to O
F̃

of the Néron

model T of T over OF .



14 MARK KISIN AND RONG ZHOU

2.4.5. The proof of [Edi92, Theorem 4.2] shows that if T splits over a tamely ram-
ified extension of F , then T is R-smooth. In addition, the main examples of R-
smooth tori that we will consider are given by the following proposition.

Proposition 2.4.6. (1) Let T =
∏s
i=1 ResKi/FSi, where Ki are finite separa-

ble extensions of F and Si are Ki-tori which split over a tamely ramified
extension of Ki. Then T is R-smooth.

(2) Let T be a torus which is an extension of an R-smooth torus by an R-smooth
torus. Then T is R-smooth.

Proof. (1) We will make use of the following result which follows from [BLR90,
§7.6 Proposition 6]: If S is a torus over a finite separable extension K of F with lft
Néron model S over OK , then ResOK/OF S is the lft Néron model for ResK/FS.

We may reduce to the case s = 1, in which case we write T = ResK/FS for S a

tamely ramified torus over K. Let F̃ /F be a finite Galois splitting field of T which

necessarily contains K. For any F -morphism τ : K → F̃ , the base change of S
along τ is split. Since S is R-smooth, it follows that we have a closed immersion of
OK-group schemes

S → ResOF̃ /OKSOF̃ ,

where S (resp. SOF̃ ) is the lft Néron model for S (resp. SF̃ ).
Applying ResOK/OF we obtain a closed immersion

ResOK/OF S → ResOF̃ /OF SOF̃ .

Taking the product over all τ : K → F̃ we obtain a closed immersion

ResOK/OF S →
∏

τ :K→F̃

ResOF̃ /OF SOF̃
∼= ResOF̃ /OF TOF̃ .

Since ResOK/OF S is the lft Néron model T for T , it follows that T is the closure
of its generic fiber inside ResOF̃ /OF TOF̃ and hence T is R-smooth.

(2) We may assume F = F̆ . Assume we have an exact sequence

1 // T1
f
// T

g
// T2

// 1

where T1 and T2 are R-smooth. Since T1 is R-smooth, f extends to a closed
immersion of lft Néron models T1 → T , by Lemma 2.4.4. The quotient T /T1 is
a smooth group scheme with generic fiber T2, and by Steinberg’s theorem it has
the same OF̆ -points as the lft Néron model T2 for T2. Thus by [BT84, Proposition
1.7.6], T /T1

∼= T2 and we have an exact sequence of group schemes

1 // T1
// T // T2

// 1 .

Let F̃ /F be a finite Galois extension over which T1, T2 and T split. We obtain
a commutative diagram with exact rows:

1 // T1
//

��

T //

j

��

T2

��

// 1

1 // ResOF̃ /OF T1,OF̃
// ResOF̃ /OF TOF̃ // ResOF̃ /OF T2,OF̃

// 1
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Let T c be the Zariski closure of T in ResOF̃ /OF TOF̃ . By R-smoothness of T2 and
T1, the two outer vertical maps in the diagram above are closed immersions. Hence,
T1 is closed in T c, and the composite

T2 ' T /T1 → T c/T1 → ResOF̃ /OF T2,OF̃

is a closed immersion. Thus, T /T1 is closed in T c/T1. As these are two OF -flat
schemes with the same generic fiber, it follows that T /T1 ' T c/T1, and hence
T ' T c. Hence j is a closed immersion and T is R-smooth. �

2.4.7. The previous results have the following consequences for Bruhat–Tits group

schemes. Let G be a reductive group over F and G̃ a Bruhat–Tits stabilizer scheme
corresponding to x ∈ B(G,F ). Let β : G ↪→ G′ be a closed immersion of reductive
groups over F, which induces an isomorphism on derived groups. As in [KP18,

§1.1.3], x determines a point x′ ∈ B(G′, F ) and we write G̃′ for the corresponding

stabilizer scheme of G′; then β extends to a group scheme morphism β : G̃ → G̃′.

Proposition 2.4.8. Assume that there exists a maximal F̆ -split torus in G whose

centralizer is an R-smooth torus. Then β : G̃ → G̃′ is a closed immersion.

Proof. As all maximal F̆ -split tori are F̆ -conjugate, the centralizer of any maximal
F̆ -split torus is R-smooth if there exists one such centralizer which is R-smooth.
Therefore we may assume that all such centralizers are R-smooth. Moreover, since
the construction of Bruhat–Tits stabilizer schemes is compatible with unramified
base extensions, it is enough to prove the result in the case F = F̆ .

Let S be a maximal F̆ -split torus in G such that x lies in A(G,S, F̆ ). Let T
be the centralizer of S which by assumption is an R-smooth torus. Let S′ be a
maximal F̆ -split torus of G′ such that S′ ∩G = S and T ′ the centralizer of S′.

By the construction of Bruhat–Tits stabilizer schemes in [BT84, §4.6], the Zariski

closure of T (resp. T ′) inside G̃ (resp. G̃′) can be identified with the finite type
Néron model Tft (resp. T ′ft). By Lemma 2.4.4, the natural map T → T ′ extends to
a closed immersion Tft → T ′ft of finite type Néron models.

For any relative root α, the map G → G′ induces an isomorphism between the
root subgroups Uα and U ′α. If we let Uα and U ′α denote the corresponding schematic

closures, then by the construction of G̃ and G̃′ in [BT84, §4.6], the map G→ G′ also
induces an isomorphism Uα → U ′α. Thus as in [BT84, Theorem 2.2.3] the schematic

closure Ĝ of G in G̃′ contains the smooth big open cell∏
α

U−α × Tft ×
∏
α

Uα;

hence by [BT84, Corollary 2.2.5], Ĝ is smooth. Since Ĝ(OF̆ ) = G(F̆ ) ∩ G̃′(OF̆ ), it

follows that Ĝ ∼= G̃, and hence we obtain a closed immersion G̃ ↪→ G̃′ as desired. �

2.4.9. Now let K/F be a finite separable extension. There is a natural embedding
of buildings B(G,F ) → B(G,K) and the image of x in B(G,K) determines a

Bruhat–Tits stabilizer scheme G̃0 over OK . Then by [Pra01, p. 172], there is an
identification of buildings B(G,K) ∼= B(ResK/FGK , F ) and the stabilizer scheme for

ResK/FGK corresponding to x can be identified with ResOK/OF G̃0 (see eg. [HR20,

§4.2]). By [BT84, §1.7.6], we obtain a natural morphism i : G̃ → ResOK/OF G̃0 of
OF -group schemes. A similar argument to Proposition 2.4.8 gives the following
proposition which generalizes [KP18, Prop. 1.3.9] (cf. [FHLR, Cor. 5.26]).
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Proposition 2.4.10. Assume p > 2 and that the centralizer of a maximal F̆ -split

torus in G is R-smooth. Then i : G̃ → ResOK/OF G̃0 is a closed immersion.

Proof. We may assume F = F̆ . It suffices to prove the result for K a field over

which G splits. Indeed, if K ′/K is an extension over which G splits and G̃′0 is the

Bruhat–Tits stabilizer scheme over OK′ corresponding to x, then G̃ → ResOK/OF G̃0

is a closed immersion if the composition G̃ → ResOK/OF G̃0 → ResOK′/OF G̃
′
0 is a

closed immersion.
The same argument as in Proposition 2.4.8 shows that we can reduce to proving

the following two statements:

(1) i|Tft
is a closed immersion, where T is the centralizer of a maximal F̆ -split

torus S whose apartment contains x.
(2) i|Uα is a closed immersion, where α is a relative root for G and Uα is the

schematic closure of the root subgroup Uα inside G̃.

The first follows from Lemma 2.4.4 (2) applied to the map T → T ′, where T ′ is the

centralizer in ResK/FGK of a maximal F̆ -split torus containing S.
For the second statement, let α be a relative root and let Gα denote the simply-

connected cover of the subgroup of G generated by the root subgroups correspond-
ing to relative roots which are proportional to α. Then Gα is isomorphic to either

(1) ResL/FSL2 for L/F a finite separable extension.
(2) ResL/FSU3, where SU3 is the special unitary group over L associated to a

hermitian space over a separable quadratic extension L′/L.

Let G′α denote the subgroup of G generated by the image of Gα and T ; then

G′α contains the maximal F̆ -split torus S of G. By the main result of [Lan00],

the inclusion G′α → G induces a G′α(F̆ )-equivariant embedding of buildings, which

restricts to an identification of apartments A(G′α, S, F̆ ) ∼= A(G,S, F̆ ). The point

x ∈ A(G,S, F̆ ) corresponding to G̃ determines a Bruhat–Tits stabilizer scheme of
G′α, and sinceGα andG′α have the same adjoint group, we obtain a stabilizer scheme

G̃α of Gα via the choice of a lift xα ∈ B(Gα, F̆ ) of the image of x in B(G′ad
α , F̆ ).

We have a commutative diagram

G̃α //

��

ResOK/OF G̃α,0

��

G̃ // ResOK/OF G̃0,

where G̃α,0 denotes the parahoric for Gα,K corresponding to xα ∈ B(Gα,K). The

natural morphism G̃α → G̃ induces an isomorphism on the integral root subgroups

Uα and similarly for the morphism G̃α,0 → G̃0. It therefore suffices to prove the
result for G = Gα. Note that since we have assumed p > 2, Gα is the Weil-
restriction of a tamely ramified group. Thus it suffices to prove the proposition in
this case, which we now do.

We first consider the case that G itself splits over a tamely ramified extension

Kt/F . We may assume K contains Kt. Let G̃t0 denote the Bruhat–Tits stabilizer

scheme of GKt corresponding to G̃. Then i factors as

G̃ → ResOKt/OF G̃
t
0 → ResOK/OF G̃0.
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The first morphism is a closed immersion by [KP18, Proposition 1.3.9]. The second

morphism is obtained from G̃t0 → ResOK/OKt G̃0 by applying Weil-restriction. Since
GKt is split, we can reduce to the case GKt = SL2, as above, and this follows from
Lemma 2.4.11 below.

Now assumeG = ResL/FH whereH is a group which splits over a tame extension
of L and that K contains L. Then G→ ResK/FGK arises from Weil-restriction of a
morphism H → ResK/LGK , which is given by a product of the diagonal morphisms
H → ResK/LHK . Hence the result in this case follows from the tame case proved
in the previous paragraph. The proposition follows. �

Lemma 2.4.11. Let G = SL2. Then the morphism i : G̃ → ResOK/OF G̃0 is a
closed immersion.

Proof. We may assume G̃ corresponds to a point in the apartment for the diagonal
torus T ; let U be a root subgroup for T . Since T is split, hence R-smooth, it suffices
as above to show U → ResK/FUK extends to a closed immersion U → ResOK/OFU0,

where U (resp. U0) is the Zariski closure of U in G̃ (resp. UK in G̃0). The morphism
U → ResK/FUK can be identified with the diagonal morphism Ga → ResK/FGa.

Let $F (resp. $K) be a uniformizer for F (resp. K), and let e denote the
ramification index of K/F . By the construction of the stabilizer schemes in [BT84],

U0 is the OK-group scheme cordeoresponding to the OK-submodule $ne−k
K OK of

K = Ga(K), for some n ∈ Z and k ∈ {0, . . . , e − 1}, which depend on the choice
of x ∈ B(G,F ). Then U corresponds to the OF -submodule $n

FOF of F = Ga(F ).

We can extend $n
F to an OF -basis for $ne−k

K OK considered as an OF -module, and
this induces an identification ResOK/OFU0

∼= Am where m = [K : F ]. The map

U → ResOK/OFU0 is then identified with the closed immersion A1 → Am taking a
to (a, 0, . . . , 0). �

2.4.12. Now let β : G → G′ be a central extension between reductive groups with
kernel Z and G the parahoric group scheme associated to some x ∈ B(G,F ). We let
G′ denote the parahoric of G′ corresponding to G. As above, β extends to a group
scheme homomorphism G → G′.

Proposition 2.4.13. Assume Z is an R-smooth torus. Then the Zariski closure

Z̃ of Z inside G is smooth and there is an (fppf) exact sequence

(2.4.13.1) 0 // Z̃ // G
β
// G′ // 0

of group schemes over OF .

Proof. As before, it suffices to prove the proposition when F = F̆ . Let S be a
maximal F̆ -split torus of G such that x lies in A(G,S, F̆ ). Let T be the centralizer
of S and we let T ′ be the corresponding maximal torus of G′.

Assume there exists an fppf exact sequence

(2.4.13.2) 1 // Z̃ // T0
// T ′0 // 1

where T0 and T ′0 are the connected Néron models of T and T ′ respectively. Then
we may argue as in [KP18, Proposition 1.1.4] to obtain the desired exact sequence
(2.4.13.1).

It remains to exhibit the exact sequence (2.4.13.2); we follow the argument of
[PR08, Lemma 6.7]. By Lemma 2.4.4 we obtain a closed immersion between lft
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Néron models Z → T . We let Z̃ ′ denote the subgroup scheme of Z with generic
fiber Z, and special fiber corresponding to the connected components of the special

fiber of Z parameterized by ker(X∗(Z)I → X∗(T )I). Then Z̃ ′ is smooth and we

have a closed immersion Z̃ ′ → T0. It follows that Z̃ ′ coincides with Z̃ and we
obtain a closed immersion Z̃ → T0. As in [PR08, Lemma 6.7] we have an exact
sequence:

1 // Z̃(OF̆ ) // T0(OF̆ ) // T ′0 (OF̆ ) // 1

The quotient T0/Z̃ is a smooth affine commutative group scheme with the same
generic fiber as T ′0 and with the same OF̆ -points; hence by [BT84, Proposition

1.7.6] we have T ′0 ∼= T0/Z̃. The result follows. �

3. Deformation theory of p-divisible groups

In this section we prove the deformation theoretic results needed for the study
of integral models of Shimura varieties in §4. In §3.1, we discuss properties of local
models and their embeddings in Grassmannians. §3.2-§3.3 contains the results
needed to describe the formal neighborhood of Shimura varieties, and in §3.4, we
apply this to the case of µ-ordinary p-divisible groups to construct an analogue of
the Serre–Tate canonical lift.

3.1. Local models and good embeddings.

3.1.1. Let (G, {µ},G) be a local model triple over F as in [HPR20, §2.1]. Thus

• G is a reductive group scheme over F .
• {µ} is a geometric conjugacy class of minuscule cocharacters of G.
• G = Gx for some x ∈ B(G,F ) is a parahoric group scheme.

A morphism of local model triples (G, {µ},G) → (G′, {µ′},G′) is a morphism
G → G′ taking {µ} to {µ′}. We denote by E the reflex field of the pair (G, {µ}). It
is a subfield of F̄ containing F .

We consider local model triples which satisfy the following property.

Definition 3.1.2. A reductive group G over F is said to be acceptable if Gad ∼=∏r
i=1 ResKi/FH

ad
i where Ki/F is a finite extension and Had

i is an adjoint group

over Ki which splits over a tame extension of Ki.
3

A local model triple (G, {µ},G}) is said to be acceptable if G is acceptable.

Remark 3.1.3. If p > 3, there are no automorphisms of a connected Dynkin diagram
of order divisible by p, hence any such reductive group is acceptable. Moreover, for
p = 3, any reductive group which has no factors of type D4 is acceptable, as this is
the only connected Dynkin diagram with an automorphism of order 3.

Let (G, {µ},G) be a local model triple. An embedding ρ : G→ GL(V ) is called
a local Hodge embedding if the following conditions are satisfied:

• ρ(G) contains the scalars.
• ρ is a minuscule representation.
• ρ ◦ µ is conjugate to a standard minuscule cocharacter of GL(V ).

3In [PRb] and [KPZ], these groups are called essentially tamely tamified.
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We say that (G, {µ},G) is of local Hodge type if it admits a local Hodge embedding.
As explained in [KPZ, Remark 3.1.5], if (G, {µ},G) arises from completion at

p > 2 of a global Shimura datum (G, X) of Hodge type, then (G, {µ},G) will be
acceptable of local Hodge type.

3.1.4. In the rest of this section we assume p > 2. We write Mloc
G,{µ} for the local

model associated to the local model triple (G, {µ},G). By definition, Mloc
G,{µ} is

the unique, up to unique isomorphism, proper flat OE-scheme with G-action, with
generic fiber G/Pµ and reduced special fiber, which represents the v-sheaf Mv

G,µ
over Spd(OE) defined in [SW20] (this is denoted by GrG,Spd(OE),µ in [SW20, Lect.
21]).

The existence of Mloc
G,{µ} was conjectured by Scholze-Weinstein [SW20, Conj.

21.4.1] and is shown in [AGLR] under mild assumptions, and in general in [GL24]. If
(G, {µ},G) is acceptable and of local Hodge type, which is our main case of interest,
a simpler proof of the existence of is given in [KPZ, Theorem 3.2.15]. Under these
assumptions, the construction of Mloc

G,{µ} in [KPZ, §3.2.12] shows that it is identified

with the scheme MG′,{µ′} constructed in [Lev16] for an auxiliary local model triple

(G′, {µ′},G′) with p - |π1(G′der)| and G′ad ∼= Gad. In particular, Mloc
G,{µ} ⊗OE k

admits a stratification indexed by the µ-admissible set Adm({µ})J , where J is
the set of affine reflections corresponding to G, and its irreducible components are
normal and Cohen–Macaulay; see [KPZ, Theorem 3.2.9].

3.1.5. The following notion will be needed for applications in §4.

Definition 3.1.6. Let (G, {µ},G) be an acceptable local model triple of local Hodge
type.

(1) An integral Hodge embedding for (G, {µ},G) is a closed immersion ρ : G̃ →
GL(Λ), where G̃ is a stabilizer scheme for G with associated parahoric G and
Λ ⊂ V is an OF -module in a finite dimensional vector space V , such that
the induced map G→ GL(V ) on generic fibers is a local Hodge embedding.

(2) An integral Hodge embedding ρ : G̃ → GL(Λ) is said to be good if there is
a closed immersion of local models

Mloc
G,{µ} ↪→ Gr(Λ)⊗OF OE

extending the natural map on the generic fiber. Here Gr(Λ) is the smooth
Grassmannian of subspaces F ⊂ Λ of rank d, where d ∈ Z≥0 is such that

{ρ ◦ µ} is the conjugacy class of a 7→ diag(1(n−d), (a−1)(d)).

A local Hodge embedding G → GL(V ) is good, if it extends to a good integral

local Hodge embedding G̃ → GL(Λ) for some G̃ and Λ ⊂ V .

Remark 3.1.7. If we assume in addition that G̃ = G, then Definition 3.1.6 (2)
recovers the definition of a strongly integral local Hodge embedding for (G,Mloc

G,{µ})

as in [Pap22, §3.1.4].

3.1.8. The following result gives a strengthening of [KPZ, Theorem 3.3.25].

Proposition 3.1.9. Let p > 2 and (G, {µ},G) an acceptable local model triple of

local Hodge type. Assume p - |π1(Gder)| and that the centralizer of a maximal F̆ -
split torus in G is R-smooth. Then (G, {µ},G) admits a good local Hodge embedding
ρ : G→ GL(W ).
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Proof. Let K/F be a finite extension over which G splits and let ρ′ : G → GL(V )
be a local Hodge embedding. We let W denote the underlying F vector space of
VK := V ⊗F K. Then we have a faithful embedding ρ : G→ GL(W ) given by the
composition

(3.1.9.1) G→ ResK/FGK → ResK/FGL(VK)→ GL(W )

where the morphism ResK/FGK → ResK/FGL(VK) arises from Weil restriction of
the morphism ρ′K : GK → GL(VK) given by the base change of ρ′ to K and the last
morphism is given by restriction of structure. Then ρ is (geometrically) isomorphic
to a direct sum of the representations ρ′ and hence is also local Hodge embedding.

Let {µK/F } denote the conjugacy class of cocharacters of ResK/FGK induced by

{µ}. Let G0 (resp. G̃0) denote the parahoric (resp. stabilizer) group scheme over
OK corresponding to the image of x in B(G,K). We set

GK/F = ResOK/OF G0, G̃K/F = ResOK/OF G̃0.

Then we obtain an acceptable local model triple (ResK/FGK , {µK/F },GK/F ) and
we let E′ be its local reflex field. The morphism

ResK/FGK → ResK/FGL(VK)→ GL(W )

obtained above is a local Hodge embedding for (ResK/FGK , {µK/F },GK/F ) and
satisfies the assumptions in [KPZ, Theorem 3.3.25]. Thus by loc. cit., upon possibly
replacing x by a different point and ρ by a direct sum, we obtain a good integral

local Hodge embedding G̃K/F → GL(Λ) for Λ ⊂ W an OF -module. Note that

our assumption that p - |π1(Gder)| implies that the scheme MGK/F ,µK/F in [KPZ,

Theoremn 3.3.25] is isomorphic to Mloc
GK/F ,{µK/F }, cf. [KPZ, Proof of Theorem

3.2.15]. We obtain closed immersions:

G̃K/F → GL(Λ), Mloc
GK/F ,{µK/F } → Gr(Λ)⊗OF OE′ .

By Proposition 2.4.10 and Lemma 3.1.10 below, we have closed immersions

G̃ → G̃K/F , Mloc
G,{µ} →Mloc

GK/F ,{µK/F } ⊗OE′ OE ,

and hence composing with the above, we obtain a good integral local Hodge em-

bedding G̃ → GL(Λ).
�

Lemma 3.1.10. With the notation and assumptions of the previous proposition,
there is a closed immersion

(3.1.10.1) Mloc
G,{µ} →Mloc

GK/F ,{µK/F } ⊗OE′ OE .

Proof. This follows from [FHLR, Lemma 5.27] and [AGLR, Theorem 7.21]. More
precisely, [AGLR, Theorem 7.21] shows that the models constructed in [FHLR,
Lemma 5.27] agree with our Mloc

G,{µ}. [FHLR, Lemma 5.27] then shows the existence

of the closed immersion noting that Hypotheses 2.1 and 5.24 of loc. cit. are satisfied
by our assumptions of acceptability and that p > 2. �
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3.1.11. We prove a slight variant of Proposition 3.1.9 in the presence of an alternat-
ing form. Let ρ : G → GSp(V ) be a faithful symplectic representation where V is
a 2n-dimensional vector space over F equipped with a perfect alternating bilinear
form Ψ. We assume that ρ ◦ µ is conjugate to the standard minuscule coweight
a 7→ diag(1(n), (a−1)(n)) and that ρ(G) contains the scalars. We call such an em-
bedding a local symplectic Hodge embedding. We say ρ is good if the corresponding
representation G→ GL(V ) is good.

Proposition 3.1.12. Let p > 2 and (G, {µ},G) an acceptable local model triple

of local Hodge type. Assume p - |π1(Gder)|, the centralizer of a maximal F̆ -split
torus in G is R-smooth and that G admits a local symplectic Hodge embedding
ρ : G→ GSp(V ). Then (G, {µ},G) admits a good local symplectic Hodge embedding
ρ′ : G→ GSp(W ).

Proof. We apply the construction in Proposition 3.1.9 to obtain a good Hodge
embedding G → GL(W ). By construction, there is a finite extension K/F such
that W ∼= V rK considered as an F -vector space. Let Ψ : V × V → F be the
alternating form on V . We define Ψ′ : V rK × V rK → F to be the alternating form
given by Ψ′ =

∑r
i=1 TrK/F ◦ (Ψ⊗F K). Then G→ GL(W ) factors through a good

local symplectic Hodge embedding ρ′ : G→ GSp(W ) as desired. �

3.1.13. Now let (G, {µ},G) be an acceptable local model triple of local Hodge type

and ρ : G̃ → GL(Λ) a good integral local Hodge embedding extending ρ : G →
GL(W ). We assume that G̃ = G. We finish this section by giving a more explicit
description of the embedding Mloc

G,{µ} → Gr(Λ) ⊗OF OE on the level of k-points

which will be needed in §3.4. We assume G is a standard parahoric corresponding
to a subset J ⊂ S.

As explained in [Zho20, §3.6], we may identify the k-points of Gr(Λ) with a

subset of GLW (F̆ )/GLW (OF̆ ), where GLW := GL(Λ). The convention in loc. cit.

is that g ∈ GLW (F̆ )/GLW (OF̆ )∩Gr(Λ)(k) corresponds to the subspace of Λ⊗OF k
induced by the reduction mod $F of the lattice $F gΛ. We thus obtain an inclusion
Mloc
G,{µ}(k) ⊂ GLW (F̆ )/GLW (OF̆ ).

Proposition 3.1.14. Assume p > 2 and G̃ = G. Let g ∈ G(F̆ ) with

g ∈ G(OF̆ )ẇG(OF̆ )

for some w ∈ WJ\W/WJ . Then the image of ρ(g) in GLW (F̆ )/GLW (OF̆ ) lies in

Mloc
G,{µ}(k) if and only if w ∈ Adm({µ})J .

Proof. By [AGLR, Theorem 7.23], the inclusion Mloc
G,{µ}(k) ⊂ GLW (F̆ )/GLW (OF̆ )

lifts to an inclusion Mloc
G,{µ}(k) ⊂ G(F̆ )/G(OF̆ ) which identifies Mloc

G,{µ}(k) with the

µ-admissible locus inG(F̆ )/G(OF̆ ) (i.e. elements of the form G(OF̆ )ẇG(OF̆ )/G(OF̆ )

for w ∈ Adm({µ})J). By our assumption that G = G̃, the morphismG(F̆ )/G(OF̆ )→
GLW (F̆ )/GLW (OF̆ ) induced by ρ is injective, and the result follows. �

Remark 3.1.15. The reason for the convention in [Zho20, §3.6] is as follows. Let µ
be the standard minuscule cocharacter of GLn given by a 7→ diag(1(n−d), (a−1)(d)).
Then on the generic fiber, µ corresponds to the subspace of W where it acts by
weight −1. The specialization of this point in Gr(Λ)(k) is the subspace of Λ⊗OF k
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given by the reduction mod$F of$Fµ($F )Λ. Thus with this convention, Gr(Λ)(k)

is identified with the µ-admissible locus of GLW (F̆ )/GLW (OF̆ ).

3.2. The versal deformation space with tensors.

3.2.1. We assume p > 2 and we work over the base field Qp so that Q̆p = W (k)[ 1
p ],

where W (k) denotes the Witt vectors of k. For any ring R and an R-module M , we
let M⊗ denote the direct sum of all R-modules obtained from M by taking duals,
tensor products, symmetric and exterior products. If R is a complete local ring
with residue field of positive characteristic and G is a p-divisible group over R, we
write D(G ) for its (contravariant) Dieudonné crystal.

3.2.2. Let G0 be a p-divisible group over k and set D := D(G0)(Z̆p). We write ϕ for
the Frobenius on D and D1 ⊂ D the preimage of the filtration on D(G0)(k). Let
(sα,0) ⊂ D⊗ be a collection of ϕ-invariant tensors whose image in D(G0)(k)⊗ lie in

Fil0. We assume that there exists a Zp-module U and an isomorphism

(3.2.2.1) U ⊗Zp Z̆p ∼= D

such that sα,0 ∈ U⊗. Write G̃ ⊂ GL(U) for the pointwise stabilizer of {sα,0}α so

that G̃Z̆p can be identified with the stabilizer of sα,0 in GL(D). We assume that

the generic fiber G := G̃⊗Zp
Qp is a reductive group and that G̃ = G̃x for some

x ∈ B(G,Qp). We write G for the associated parahoric group scheme.
Let P ⊂ GL(D) be a parabolic subgroup lifting the parabolic P0 corresponding to

the filtration on D(G0)(k). Write Mloc = GL(D)/P and SpfA = M̂loc the completion

of Mloc at the identity; then A is isomorphic to a power series ring over Z̆p. Let

K ′/Q̆p be a finite extension and y : A → K ′ a continuous map such that sα,0 ∈
Fil0D⊗ ⊗Z̆p K

′ for the filtration induced by y on D⊗ ⊗Z̆p K
′. By [Kis10, Lemma

1.4.5], the filtration corresponding to y is induced by a G-valued cocharacter µy (by
convention µy has weights (0, 1)). Let G.y be the orbit of y in Mloc ⊗Z̆p K

′ which

is defined over a finite extension Ĕ/Q̆p, and we write Mloc
G for the closure of this

orbit in Mloc.

3.2.3. Let R be a complete local ring with maximal ideal m and residue field k. We
let W (R) denote the Witt vectors of R. Recall [Zin01] we have a subring

Ŵ (R) = W (k)⊕W(m) ⊂W (R),

where W(m) ⊂ W (R) consists of Witt vectors (wi)i≥1 with wi ∈ m and wi → 0 in

the m-adic topology. The Frobenius of W (R) induces a map ϕ : Ŵ (R) → Ŵ (R),

and we write IR for the kernel of the projection Ŵ (R)→ R. We recall the following
definition, which is [Zho20, Definition 4.6] in the case that G splits over a tamely
ramified extension of Qp.

Definition 3.2.4. Let K/Q̆p be a finite extension. Let G be a p-divisible group

over OK whose special fiber is isomorphic to G0. We say G is (G̃, µy)-adapted if the

tensors sα,0 extend to Frobenius invariant tensors s̃α ∈ D(G )(Ŵ (OK))⊗ such that
the following two conditions hold:

(1) There is an isomorphism D(G )(Ŵ (OK)) ∼= D⊗Z̆p Ŵ (OK) taking s̃α to sα,0.
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(2) Under the canonical identification

D(G )(OK)⊗OK K ∼= D⊗Z̆p K

given by [KP18, Lemma 3.1.17], the filtration on D⊗Z̆p K is induced by a

G-valued cocharacter conjugate to µy.

3.2.5. Consider the local model triple (G, {µ−1
y },G) with reflex field E. We assume

in addition that the following conditions are satisfied:

(A) (G, {µ−1
y },G) is acceptable and of local Hodge type.

(B) The embedding ρ : G̃ → GL(U) is a good local integral Hodge embedding.

Under assumption (B), property (3) of Definition 3.1.6 implies that the definition

of Mloc
G above agrees with the local model Mloc

G,{µ−1
y }
⊗OE OĔ . We write M̂loc

G
∼=

SpfAG̃ for the completion of Mloc
G at the point y ∈ Mloc

G (k) corresponding to the
identity element. Then AG̃ is normal and we have a natural surjective map A⊗Z̆p
OĔ → AG̃ corresponding to the closed immersion M̂loc

G ⊂ M̂loc ⊗Z̆p OĔ .

We also make the following assumption

(C) The embedding G̃ → GL(U) is very good at the point y ∈ Mloc
G (k) in the

sense of [KPZ, Definition 5.2.5].

We briefly recall this notion, which was erroneously omitted in [KP18] and previous

versions of this manuscript. We set M = U ⊗Zp Ŵ (A). Let M1 ⊂M/IAM be the

universal direct summand of M̂loc
G and M1 ⊂M the preimage of M1. Let M̃1 denote

the image of the map

M1 ⊗Ŵ (A),ϕ
Ŵ (A)→M ⊗

Ŵ (A),ϕ
Ŵ (A).

By the argument of [KP18, Corollary 3.2.11], we have sα,0 ∈ M̃⊗1 ⊗Ŵ (A)
Ŵ (AG̃),

and the scheme

(3.2.5.1) T = Isomsα,0
(M̃1 ⊗Ŵ (A)

Ŵ (AG̃),M ⊗
Ŵ (A)

Ŵ (AG̃))

of isomorphisms which preserve the tensors sα,0 is a trivial G̃-torsor.
Let mAG̃ denote the maximal ideal in AG̃ and set aG̃ := m2

AE
+πEAE , where πE ∈

E is a unifomizer. We also let U1 ⊂ U ⊗Zp Z̆p denote the preimage of the filtration
corresponding to y (this corresponds to the submodule D1 under the identification

with U ⊗Zp Z̆p), and we let Ũ1 denote the image of ϕ∗(U1) → ϕ∗(U ⊗Zp Z̆p). By
[KPZ, Lemma 5.1.3] (cf. [KP18, Corollary 3.1.9]), there is a canonical isomorphism

c : Ũ1 ⊗Z̆p Ŵ (AG̃/aG̃)
∼−→ M̃1 ⊗Ŵ (A)

Ŵ (AG̃),

and the embedding G̃ → GL(U) is said to be very good at y if we can choose a

collection of sα,0 cutting out G̃ ⊂ GL(U) such that c(sα,0 ⊗ 1) = sα,0 ⊗ 1. This

is equivalent the condition that c defines an isomorphism of G̃-torsors and hence
is independent of the choice of sα,0. More generally, we say that the integral local

Hodge embedding G̃ → GL(U) is very good, if it is very good at all points of
Mloc
G (k).
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3.2.6. With the corrected assumptions above, we may now apply the construction
in [KP18, 3.2]; the following is essentially [KP18, Proposition 3.2.17].

Proposition 3.2.7. There exists a versal p-divisible group GA over SpfA⊗Z̆p OĔ
deforming G0 such that for any K/Q̆p finite, a map $ : A ⊗Z̆p OE → K factors

through AG̃ if and only if the p-divisible group G$ given by the base change of GA

along $ is (G̃, µy)-adapted.

Proof. Under our assumptions and using [Ans, Proposition 10.3] (see also [PRb,
Proposition 5.3.2] for a different proof which applies in our setting) in place of
[KP18, Proposition 1.4.3], we find that the conditions (3.2.2)-(3.2.4) of [KP18] are
satisfied; we may thus apply the construction in [KP18, §3.2] to obtain GA. We
briefly recall the construction.

Recall the trivial G̃-torsor T = Isomsα,0
(M̃1⊗Ŵ (A)

Ŵ (AG̃),M ⊗
Ŵ (A)

Ŵ (AG̃)) of

tensor-preserving isomorphisms from the previous paragraph. We let

ΨAG̃
: M̃1 ⊗Ŵ (A)

Ŵ (AG̃)
∼−→M ⊗

Ŵ (A)
Ŵ (AG̃)

be a section of T which is constant mod aE in the sense of [KP18, §3.1.11]; such a
section exists by assumption (C). We then lift ΨAG̃

to an isomorphism

Ψ : M̃1 ⊗Ŵ (A)
Ŵ (A⊗Z̆p OĔ)

∼−→M ⊗
Ŵ (A)

Ŵ (A⊗Z̆p OĔ)

which is constant mod aE . By [KP18, Lemma 3.1.5], this gives rise to a Dieudonné
display over A⊗Z̆pOĔ , and hence to a p-divisible group GA over SpfA⊗Z̆pOĔ which

is versal by [KP18, Lemma 3.1.12].
By construction, the base change GAG̃ := GA ⊗A⊗Z̆pOĔ

AG̃ is equipped with

Frobenius invariant tensors sα,0,AG̃ ∈ D(GAG̃ )(Ŵ (AG̃))⊗. It is then clear that for
$ : AG̃ → K, the tensors sα,0 extend to

s̃α ∈ D(G$)(Ŵ (OK))⊗

so that Definition 3.2.4 (1) is satisfied. Indeed the tensors s̃α are obtained from
sα,0,AG̃ via base change. The argument in [Zho20, Proposition 4.8] shows that

condition (2) is also satisfied, so that G$ is (G̃, µy)-adapted.
The converse is [KP18, Proposition 3.2.17]. �

3.3. Deformations with étale tensors.

3.3.1. LetK/Q̆p be a finite extension and G a p-divisible group overOK with special
fiber G0. We write TpG for the p-adic Tate-module of G and TpG ∨ its linear dual.

We let sα,ét ∈ TpG ∨⊗ be a collection of tensors whose stabilizer G̃ has reductive

generic fiber G and G̃ = G̃x for some x ∈ B(G,Qp). We write D := D(G0)(Z̆p) and
we let

sα,0 ∈ Dcris(TpG
∨ ⊗Zp Qp)⊗ ' D⊗ ⊗Z̆p Q̆p

denote the ϕ-invariant tensors corresponding to the image of sα,ét under the p-adic
comparison isomorphism.

Proposition 3.3.2. (1) We have sα,0 ∈ D⊗ ⊂ D⊗ ⊗Z̆p Q̆p. Moreover the sα,0

extend canonically to tensors s̃α ∈ D(G )(Ŵ (OK))⊗ and there exists an
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isomorphism

(3.3.2.1) TpG
∨ ⊗Z̆p Ŵ (OK) ∼= D(G )(Ŵ (OK))

taking sα,0 to s̃α.
(2) There exists a G-valued cocharacter µy such that

(i) Under the canonical isomorphism

γ : D⊗Z̆p K
∼= D(G )(OK)⊗OK K,

the filtration is induced by a G-valued cocharacter conjugate to µy.
(ii) The filtration on D⊗Z̆pK induced by µy lifts the filtration on the module

D(G0)⊗Z̆p k.

Here we consider GQ̆p ⊂ GL(D⊗Z̆p Q̆p) via base change of (3.3.2.1) to Q̆p.

Proof. The argument is the same as [KP18, Proposition 3.3.8, Corollary 3.3.10],
where again we are using [Ans, Proposition 10.3] in place of [KP18, Proposition
1.4.3]. �

3.3.3. The isomorphism (3.3.2.1) induces an isomorphism

TpG
∨ ⊗Zp Z̆p ∼= D

taking sα,ét to sα,0 which we now fix. Taking TpG ∨ to be U , we place ourselves in

the setting of §3.2.2. Therefore we have a notion of (G̃, µy)-adapted lifting where
µy is as in Proposition 3.3.2. Moreover it follows from the same proposition that

G itself is a (G̃, µy)-adapted lifting. The next proposition then follows immediately

from Proposition 3.3.2 and the definition of (G̃, µy)-adapted liftings (cf. [KP18,
Proposition 3.3.13]).

Proposition 3.3.4. Let K ′/Q̆p be a finite extension and let G ′ be a deformation
of G0 to OK′ such that

(1) The filtration on D ⊗Z̆p K
′ corresponding to G ′ is induced by a G-valued

cocharacter conjugate to µy.
(2) The tensors sα,0 ∈ D⊗ correspond to tensors sα,ét ∈ TpG ′∨⊗ under the

p-adic comparison isomorphism.

Then G ′ is (G̃, µy)-adapted lifting.

�

3.4. Canonical liftings for µ-ordinary p-divisible groups.

3.4.1. We now study the deformation theory of µ-ordinary p-divisible groups. The
results in this subsection will be used in §4.4 to prove our main result on CM
(special) liftings for Shimura varieties.

We return to the setting of §3.2. Thus G0 is a p-divisible group over k equipped
with sα,0 ∈ D⊗. We fix a Z̆p-linear isomorphism

(3.4.1.1) U ⊗Zp Z̆p ∼= D(G0)

as in (3.2.2.1) so that sα,0 ∈ U⊗ and assume that (A) and (B) are satisfied. In

§3.4, we will assume in addition that G = G̃, so that we have a closed immersion
G → GL(U). Since the sα,0 are ϕ-invariant, the Frobenius is given by bσ for an

element b ∈ G(Q̆p), and modifying (3.4.1.1) by an element h ∈ G(Z̆p) modifies b
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by b 7→ h−1bσ(h). Therefore b is well-defined up to σ-conjugation by an element of

G(Z̆p) and in particular we obtain a well-defined class [b] ∈ B(G).

We choose a maximal Q̆p-split torus S of G defined over Qp such that x ∈
A(G,S, Q̆p) and we let T be its centralizer. We fix a σ-stable alcove a ⊂ A(G,S, Q̆p)
such that x lies in the closure of a; this determines a set of simple reflections S for
W , and G corresponds to the subset J ⊂ S of reflections which fix x. We follow the
notation of §2 and let µ̃ ∈ X∗(T ) denote the dominant (with respect to a choice of

Borel defined over Q̆p) representative of the conjugacy class {µy}; we write µ for
its image in X∗(T )I . We have a closed immersion of local models

Mloc
G,{µ−1

y }
↪→ Gr(U)⊗Zp OE ,

where Gr(U) classifies submodules of U of rank dimkFil1D ⊗Z̆p k. By definition,

the filtration on D ⊗Z̆p k corresponds to an element of Gr(U)(k) which lies in

Mloc
G,{µ−1

y }
(k). This filtration is by definition the kernel of ϕ. Thus its preimage

in D is given by {v ∈ D|bσ(v) ∈ pD}, which is just the Z̆p-lattice σ−1(b−1)pD.

It follows from Corollay 3.1.14 that σ−1(b−1) ∈ G(Z̆p)ẇG(Z̆p) for some element
w ∈ Adm({µ−1

y })J , and hence that

b ∈ G(Z̆p)σ(u̇)G(Z̆p)

for some u ∈ Adm({µy})J . In particular we have [σ−1(b)] ∈ B(G, {µy}) by [He16,
Theorem 1.1].

3.4.2. Now assume the existence of [b]µ ∈ B(G, {µy}) as in Definition 2.2.4, and

that σ−1(b) ∈ [b]µ. We will construct a (G, µy)-adapted (recall G̃ = G) deformation
of G0 which will be the analogue of the Serre–Tate canonical lift in this context.

By Proposition 2.3.3 applied to σ−1(b), there exists an element h ∈ G(Z̆p) such
that h−1bσ(h) = σ(ṫµ′) for some µ′ ∈ W0 · µ with tµ′ σ-straight. Upon modifying
the isomorphism (3.4.1.1), we may assume b = σ(ṫµ′); we fix this choice of (3.4.1.1)
from now on. Let M be the semistandard Levi subgroup of G corresponding to
νtµ′ = νσ(tµ′ )

; then tµ′ is central in WM by Lemma 2.1.7. Let w ∈ W0 such that

w · µ = µ′ and write λ̃ := (w · µ̃); then by Lemma 2.1.9, λ̃ is central in M .
Let

M(Z̆p) := M(Q̆p) ∩ G(Z̆p),

which is the Z̆p-points of a parahoric group schemeM of M defined over Zp. Explic-

itly, we have an identification of apartments A(G,S, Q̆p) ∼= A(M,S, Q̆p) and hence

we may consider x as an element of A(M,S, Q̆p) which determines the parahoric

M =Mx. Since M(Z̆p) is stable under σ, M is defined over Zp.
The kernel of the map π1(M) → π1(G) is freely generated by a subset of the

roots of G which are not roots of M , and which are stable under the action of
Γ. Hence ker(π1(M) → π1(G)) is an induced module for the action of Γ and

π1(M)I → π1(G)I has torsion-free kernel. Since G̃ = G, it follows from this fact

that the image of M̃(Z̆p) in π1(M)I is trivial, and hence M̃ =M.

Lemma 3.4.3. Let K be the field of definition of λ̃. The filtration induced by λ̃ on
D⊗Z̆p K specializes to Fil1D⊗Z̆p k.
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Proof. The cocharacter λ̃−1 determines a K-point sλ̃−1 of Mloc
G,{µ−1

y }
and whose

image in Mloc = Gr(U)⊗Zp Z̆p corresponds to the filtration induced by λ̃.
By [SW20, 21.3.1], applied to the torus T , the point sλ̃−1 reduces to the point

ṫ−1
µ′ ∈Mloc

G,{µ−1
y }

(k) ⊂ G(Q̆p)/G(Z̆p). By construction of the embedding

Mloc
G,{µ−1

y }
(k) ↪→ GLU (Q̆p)/GLU (Z̆p)

in §3.1.13, the filtration on D ⊗Z̆p k corresponding to the image of this element is

given by the mod p reduction of ṫ−1
µ′ pD = σ−1(b−1)pD. The proposition follows. �

3.4.4. We extend the tensors sα,0 ∈ U⊗ to a set of tensors tβ,0 ∈ U⊗ whose stabilizer

is M. Viewed in D ' U ⊗Zp Z̆p, the tβ,0 are ϕ-invariant as b = σ(ṫµ′) ∈ M(Q̆p).
Since λ̃ is an M -valued cocharacter, we may apply the construction in §3.2 to M and

the tensors tβ,0. In particular we have a notion of (M, λ̃)-adapted liftings of G0. It

is clear from the definition that any (M, λ̃)-adapted lifting is also a (G, µy)-adapted
lifting.

Let Jb denote the σ-centralizer group for b. It is a reductive group over Qp such
that

Jb(R) := {g ∈ G(Q̆p ⊗Qp R)|g−1bσ(g) = b}

for any Qp-algebra R. There is an action of Jb(Qp) on G0 in the isogeny category.

Since νg−1bσ(g) = g−1νbg for any g ∈ G(Q̆p), it follows that for b = σ(ṫµ′), we have

Jb(Qp) ⊂M(Q̆p).

Theorem 3.4.5. Assume we are in the setting of §3.4.2 so that b = σ(ṫµ′). Let

K/Q̆p be an extension over which λ̃ is defined, and suppose G̃ = G. There exists a
(G, µy)-adapted lifting G to OK such that the action of Jb(Qp) on G0 lifts to G in
the isogeny category.

Proof. Suppose there exists an (M, λ̃)-adapted lifting G of G0; from the above
discussion, we have that G is also a (G, µy)-adapted lifting. By Definition 3.2.4
(2), the filtration on the weakly admissible filtered ϕ-module associated to TpG ∨

is induced by an M -valued cocharacter conjugate to λ̃, hence by λ̃ itself since it is
central in M . Since Jb(Qp) ⊂ M(Q̆p), the action of Jb(Qp) respects the filtration
and hence lifts to an action on G in the isogeny category.

It suffices to show the existence of an (M, λ̃)-adapted lifting. This follows from
the same argument as [Zho20, Proposition 4.9]; we briefly recall the construction
for the convenience of the reader.

We set S := Z̆p[[u]] and we let σ : S → S be the map given by the usual

Frobenius on Z̆p and u 7→ up. We define M := D ⊗σ−1,Z̆p S, so that σ∗(M) ∼=
D⊗Z̆p S, and we let F ⊂ σ∗(M) denote the preimage of the filtration induced by λ̃

on D⊗Z̆pOK ; here the map S→ OK is induced by sending u to a uniformizer $ in

OK . Then F is a free S-module and tβ,0 ∈ F⊗; this follows from the argument in
[KP18, Lemma 3.2.6] using [Ans, Proposition 10.3] in place of [KP18, Proposition
1.4.3]. Moreover the scheme of S-linear isomorphisms Isomtβ,0

(F , σ∗(M)) taking

tβ,0 to tβ,0 is a trivial M-torsor. Then arguing as in [Zho20, Proposition 4.9], we
may construct a morphism ϕ : σ∗(M)→M satisfying the following properties:
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• The map ϕ gives M the structure of an element of BTϕ (see [Zho20, §4.1]
for the definition of BTϕ).
• The canonical identification σ∗(M/uM) ∼= D is an isomorphism of F -

crystals.
• ϕ preserves the tensors tβ,0.

By [Kis10, Theorem 1.4.2], M corresponds to a p-divisible group G overOK , and the

argument of [Zho20, Proposition 4.9] shows that G is an (M, λ̃)-adapted lifting. �

4. Integral models of Shimura varieties and canonical liftings

In this section we establish the main geometric properties of integral models for
Shimura varieties that are needed for later applications. These include a version of
the local model diagram and the existence of canonical liftings over the µ-ordinary
locus which are proved in some special cases in §4.1. In §4.2–4.4, these results are
extended to the main cases of interest, certain Shimura varieties which we term
strongly acceptable, see Definition 4.2.2.

4.1. Integral models.

4.1.1. For the rest of this paper we fix an algebraic closure Q, and for each place
v of Q (including v = ∞) an algebraic closure Qv together with an embedding
iv : Q → Qv (here Q∞ ∼= C). Let G be a reductive group over Q and X a
GR-conjugacy class of homomorphisms

h : S := ResC/RGm → GR

such that (G, X) is a Shimura datum in the sense of [Del71].
Let c be complex conjugation. Then S(C) = (C⊗R C)× ∼= C× × c∗(C×) and we

write µh for the cocharacter given by

C× → C× × c∗(C×)
h−→ G(C).

We set wh := µ−1
h µc−1

h .
For the rest of this section, we fix a prime p > 2 and we set G := GQp . Let

Af denote the ring of finite adeles and Apf the ring of prime-to-p adeles which we

consider as the subgroup of Af with trivial p-component. Let Kp ⊂ G(Qp) and
Kp ⊂ G(Af ) be compact open subgroups and write K := KpK

p. Then if Kp is
sufficiently small (in fact if Kp is neat, see [Mil92, p. 34]), the set

(4.1.1.1) ShK(G, X)C = G(Q)\X ×G(Af )/K

can be identified with the complex points of a smooth algebraic variety. The theory
of canonical models implies that ShK(G, X)C has a model ShK(G, X) over the reflex
field E ⊂ C, which is defined to be the field of definition of the conjugacy class {µh}.
We may consider E as a subfield of Q via the embedding i∞ : Q ↪→ C and we write
OE for the ring of integers of E. For a general compact open subgroup K, we take
a sufficiently small compact open subgroup Kp

1 which is normal in Kp and define
the Shimura stack ShK(G, X) to be the quotient ShKpKp1

(G, X)/(Kp/Kp
1); it is a

smooth algebraic stack over E.
We also define

ShKp(G, X) := lim
←Kp

ShKpKp(G, X)

ShK(G, X) := lim
←K

ShK(G, X);
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these are pro-varieties equipped with actions of G(Apf ) and G(Af ) respectively.

4.1.2. We now assume that there is an embedding of Shimura data

ι : (G, X)→ (GSp(V ), S±).

Here GSp(V ) is the group of symplectic similitudes of a Q-vector space V equipped
with a perfect alternating bilinear form Ψ, and S± is the Siegel double space. Such
an ι is called a Hodge embedding and we say (G, X) is of Hodge type.

Let v|p be a prime of E; upon modifying ip : Q → Qp, we may assume v is
induced by this embedding. We let OE(v)

denote the localization of OE at v, and
we write E for the completion of E at v. We let kE denote the residue field at v and

we fix an algebraic closure k of kE . We let G̃ := G̃x for some x ∈ B(G,Qp) and we
write G for the associated parahoric. We obtain a local model triple (G, {µh},G)
and the base change ιQp gives a local (symplectic) Hodge embedding (note that
ι(G) contains the scalars since it contains the image of wh). Thus (G, {µh},G) is
acceptable and of local Hodge type (see [KPZ, Remark 3.1.5]). Then we have the
attached local model Mloc

G,{µh} from §3.1. The Hodge embedding ι is said to be good

if the corresponding local Hodge embedding ιQp : G→ GSp(VQp) is good.

4.1.3. For the rest of §4.1, we make the following assumptions, cf. §3.2.5.

(A’) (G, X) of Hodge type and G̃ = G.
(B’) ι : (G, X)→ (GSp(V ), S±) extends to a good integral local Hodge embed-

ding G → GL(VZp) where VZp ⊂ VQp is a Zp-lattice.

The following lemma gives sufficient conditions for the existence of an ι as in (B’).

Lemma 4.1.4. Let (G, X) be a Shimura datum of Hodge type and G a parahoric

for G. Assume that p - |π1(Gder)| and that the centralizer of a maximal Q̆p-split
torus in G is R-smooth. Then (G, X,G) admits a good Hodge embedding.

Proof. Our assumptions imply that ιQp satisfies the conditions in Proposition 3.1.12.
The construction there provides us with a good local symplectic Hodge embedding
ρ′ which is easily seen to come from a global Hodge embedding. �

4.1.5. We set Kp := G(Zp), and we let K := KpK
p. Upon scaling, we may assume

VZp is contained in the dual lattice V ∨Zp . Let VZ(p)
= VZp ∩ V . We write GZ(p)

for

the Zariski closure of G in GL(VZ(p)
); then GZ(p)

⊗Z(p)
Zp ∼= G. Let K′ = K′pK

′p

where K′p is the stabilizer in GSp(VQp) of the lattice VZp and K′p ⊂ GSp(Apf ) is
a compact open subgroup. The choice of VZ(p)

gives rise to an interpretation of

ShK′(GSp, S±) as a moduli stack of abelian varieties up to prime-to-p isogeny and
hence an integral model SK′(GSp, S±) over Z(p), see [KP18, §4] and [Zho20, §6].

Assume that Kp is a neat compact open subgroup. By [Kis10, Lemma 2.1.2], we
can choose K′p such that ι induces a closed immersion

ShK(G, X) ↪→ ShK′(GSp, S±)⊗Q E.

Let SK(G, X)− be the Zariski closure of ShK(G, X) inside SK′(GSp, S±) ⊗Z(p)

OE(v)
, and SK(G, X) the normalization of SK(G, X)−. We also define the pro-

scheme
SKp(G, X) := lim

←Kp
SKpKp(G, X).

The G(Apf )-action on ShKp(G, X) extends to SKp(G, X). Hence we may define

SKpKp(G, X) for a general (not necessarily neat) compact open subgroup Kp ⊂
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G(Af ) as the quotient stack SKp(G, X)/Kp. Alternatively, we may take a compact
open subgroup Kp

1 ⊂ Kp which is neat and normal in Kp, and define SK(G, X) as
the quotient of SKpKp1

(G, X) under the action of the finite group Kp/Kp
1.

4.1.6. In order to understand the local structure of SK(G, X), we introduce Hodge
cycles. By [Kis10, Proposition 1.3.2], the subgroup GZ(p)

is the stabilizer of a

collection of tensors sα ∈ V ⊗Z(p)
. Let h : A → SK(G, X) denote the pullback of

the universal abelian scheme on SK′(GSp, S±) and let VB := R1han,∗Z(p), where
han is the map of complex analytic spaces associated to h. Since the tensors sα
are G-invariant, they give rise to sections sα,B ∈ V ⊗B . We also let V = R1h∗Ω

•

be the relative de Rham cohomology of A. Using the de Rham isomorphism, the
sα,B give rise to a collection of Hodge cycles sα,dR ∈ V⊗C , where VC is the complex
analytic vector bundle associated to V. By [Kis10, Corollary 2.2.2], these tensors
are defined over E.

Similarly for a finite prime ` 6= p, we let V` = V`(A) = R1hét∗Q` and Vp =
Vp(A) = R1hη,ét∗Zp where hη is the generic fiber of h. Using the étale-Betti
comparison isomorphism, we obtain tensors sα,` ∈ V⊗` and sα,p ∈ V⊗p .

For T an OE(v)
-scheme and x ∈ SK(G, X)(T ), we write Ax for the pullback of

A to x, and for ∗ = ` or dR, we write sα,∗,x for the pullback of sα,∗ to x. Similarly,
for T an E-scheme (resp. C-scheme) and x ∈ SK(G, X)(T ), we write sα,p,x (resp.
sα,B,x) for the pullback of sα,p (resp. sα,B) to x.

For T an OE(v)
-scheme, an element x ∈ SK(G, X)(T ) corresponds to a triple

(Ax, λ, εpK′), where λ is a weak polarization (cf. [Zho20, §6.3]) and εpK′ is a section

of the étale sheaf Isomλ,ψ(V̂ (Ax), VApf )/K′p; here

V̂ (Ax) = lim←−
p-n
Ax[n]

is the adelic prime-to-p Tate module of Ax. As in [Kis10, §3.4.2], εpK′ can be pro-
moted to a section

εpK ∈ Γ(T, Isomλ,ψ(V̂ (Ax), VApf )/Kp)

which takes sα,`,x to sα for ` 6= p.

4.1.7. Recall that k is an algebraic closure of kE and Q̆p = W (k)[1/p]. Let x ∈
SK(G, X)(k) and x̃ ∈ SK(G, X)(OK) a point lifting x, where K/Q̆p is a finite
extension.

Let Gx̃ denote the p-divisible group associated to Ax̃ and Gx its special fiber;
we let D := D(Gx)(Z̆p). Then TpG ∨x̃ is identified with H1

ét(Ax̃,K ,Zp) and we obtain

Gal(K/K)-invariant tensors sα,p,x̃ ∈ TpG ∨⊗x̃ whose stabilizer can be identified with

G. Let sα,0,x̃ ∈ D[ 1
p ]⊗ denote the tensors corresponding to sα,p,x̃ via the p-adic

comparison isomorphism. By [KPS, Proposition 1.3.7], sα,0,x̃ are independent of
the choice of lifting x̃ ∈ SK(G, X)(OK). We may therefore denote them by sα,0,x.

By Proposition 3.3.2, we have sα,0,x ∈ D⊗ and there is a Z̆p-linear bijection

(4.1.7.1) V ∨Zp ⊗Zp Z̆p ∼= TpG
∨
x̃ ⊗Zp Z̆p ∼= D⊗Z̆p Z̆p

taking sα to sα,0,x. The filtration on D ⊗Z̆p K corresponding to Gx̃ is induced by

a G-valued cocharacter conjugate to µ−1
h . By a result of Blasius and Wintenberger

[Bla91], sα,dR,x̃ ∈ x̃∗(V)⊗ ∼= D(Gx̃)(OK)⊗ corresponds to sα,p,x̃ via the p-adic
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comparison isomorphism. Hence sα,dR,x̃ may be identified with the image of the

elements s̃α ∈ D(Gx̃)(Ŵ (OK))⊗ of Proposition 3.3.2 inside D(Gx̃)(OK)⊗. The same
Proposition implies that there is an OK-linear bijection

D(Gx̃)(OK) ∼= D⊗Z̆p OK

taking sα,dR,x̃ to sα,0,x and which lifts the identity over k. Thus there is a G-

valued cocharacter µy which is G-conjugate to µ−1
h and which induces a filtration

on D⊗Z̆p OK lifting the filtration on D⊗Z̆p k. We may therefore define the notion

of (G, µy)-adapted liftings as in §3 and it follows from Proposition 3.3.2 that Gx̃ is
a (G, µy)-adapted lifting.

4.1.8. Note that G ⊂ GL(VQp) contains the scalars. It follows that under our
assumptions, conditions (A) and (B) of §3.2.5 are satisfied. We let P ⊂ GL(D) be

a parabolic lifting P0 as in §3.2. We obtain formal local models M̂loc = SpfA and

M̂loc
G = SpfAG ∼= M̂loc

G,{µh}, and the filtration corresponding to µy is given by a point

y : AG → OK . Let y ∈Mloc
G,{µh}(k) correspond to the closed point of M̂loc

G,{µh}(k).

Proposition 4.1.9. Assume Kp is neat and that the embedding G → GL(VZp) is

very good at y ∈Mloc
G,{µh}(k). Let Ûx be the completion of SK(G, X)− at the image

of x.

(1) Ûx can be identified with a closed subspace of SpfA ⊗Z̆p OĔ containing

SpfAG.
(2) A deformation G of Gx corresponds to a point on the irreducible component

of Ûx containing x̃ if and only if G is (G, µy)-adapted.
(3) Let x′ ∈ SK(G, X)(k) whose image in SK(G, X)−(k) coincides with that

of x. Then sα,0,x′ = sα,0,x ∈ D⊗ if and only if x = x′.

Proof. Since the conditions (A)–(C) of §3.2.5 are satisfied, we may apply the con-
struction of Proposition 3.2.7; this allows us to view SpfA as a versal deformation

space for Gx and hence we obtain a map Θ : Ûx → SpfA ⊗Z̆p OĔ such that the

universal p-divisible group over SpfA⊗Z̆p OĔ pulls back to the one over Ûx arising

from the universal abelian scheme over Ûx. The map Θ is a closed immersion by
the Serre–Tate theorem.

Let Z ⊂ Ûx denote the irreducible component of Ûx containing x̃. Let K ′ be
a finite extension of Ĕ and let x̃′ ∈ Z(K ′). Then the tensors sα,p,x̃′ correspond
to sα,0,x under the p-adic comparison isomorphism. Moreover the filtration on
D ⊗Z̆p K

′ corresponding to Gx̃′ is induced by a G-valued cocharacter conjugate to

µ−1
h , and hence conjugate to µy. By Proposition 3.3.4, Gx̃′ is a (G, µy)-adapted

deformation of Gx and hence x̃′ corresponds to a point of SpfAG . Since this is true
for any x̃′, it follows that Θ|Z factors through SpfAG . Since Z and SpfAG have the
same dimension, it follows that Z ∼= SpfAG . We thus obtain (1) and (2).

One direction of (3) is clear. For the other direction, let x̃′ ∈ SK(G, X)(OK′)
be a lift of x′. Then by Proposition 3.3.2, sα,0,x′ arises from the specialization of

tensors s̃α ∈ D(Gx̃′)(Ŵ (OK)). By assumption, we have sα,0,x′ = sα,0,x. It follows
that Gx̃′ corresponds to a (G, µy)-adapted lifting and hence to a point of SpfAG .
By what we have seen, x̃′ corresponds to a point in the same irreducible component

Z ⊂ Ûx containing x̃ and hence x = x′. �
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4.1.10. We use the above to construct the analogue of the Serre–Tate canonical lift
in this setting. Let x ∈ SK(G, X)(k) and we fix an isomorphism

(4.1.10.1) V ∨Zp ⊗Zp Q̆p ∼= D⊗Z̆p Q̆p,

taking sα to sα,0,x. Then the Frobenius on D ⊗Z̆p Q̆p is given by bσ for some b ∈
G(Q̆p). By [KPS, Lemma 1.3.9], we have [b] ∈ B(G, {µ−1

h }). We write SK for the

special fiber of SK(G, X) over the residue field kE . The map SK(k)→ B(G, {µ−1
h })

sending x to the σ-conjugacy class [b] of the associated element b induces the Newton
stratification of SK,k := SK ⊗kE k. For an element [b] ∈ B(G, {µ−1

h }), we write
SK,[b] ⊂ SK,k for the corresponding stratum; if Kp is neat, it is a locally closed

subscheme of SK,k. If there is a class [b]µ ∈ B(G, {µ−1
h }) as in Definition 2.2.4,

then we define the µ-ordinary locus of SK,k to be SK,[b]µ .
For x ∈ SK(G, X)(k), define AutQ(Ax) to be the Q-group whose points in a

Q-algebra R are given by

AutQ(Ax)(R) = (End(Ax)⊗Z R)×

By functoriality, AutQ(Ax) acts on T`Ax⊗Z` Q` for ` 6= p and on D⊗Z̆p Q̆p, and we

write Ix for the closed subgroup of AutQ(Ax) consisting of automorphisms which
preserve sα,`,x and sα,0,x. There is a canonical inclusion Ix ⊗Q Qp ⊂ Jb, where Jb
is the σ-centralizer group for b ∈ G(Q̆p).

Theorem 4.1.11. Let x ∈ SK,[b]µ(k) and assume G → GL(VZp) is very good at

y ∈ Mloc
G,{µh}(k). Then x admits a lifting to a special point x̃ ∈ SK(G, X)(K) for

some K/Q̆p finite such that the action of Ix(Q) on Ax lifts to an action (in the
isogeny category) on Ax̃.

Remark 4.1.12. Recall that x ∈ ShK(G, X)(C) is said to be special if there exists
a torus T ⊂ G such that under the identification

ShK(G, X)(C) ∼= G(Q)\X ×G(Af )/K,

the point x corresponds to an element (h, g) ∈ G(Q)\X×G(Af )/K, with h(C×) ⊂
T(R). More generally, if K is a field of characteristic 0 which contains E and
x ∈ ShK(G, X)(K), we say x is a special point if for some (equivalently any) E2-
algebra embedding K ↪→ C, the induced C-point of ShK(G, X) is a special point.

Proof. Since the definition of Ix is independent of the prime-to-p level, it suffices
to consider the case of neat Kp. Applying the construction in §3.4, we obtain a

parahoric model M of a Levi subgroup M ⊂ G, and an M -valued cocharacter λ̃

lying in the G-conjugacy class of µh and such that λ̃ is central in M . Let G be the

(M, λ̃)-adapted deformation to OK constructed in Theorem 3.4.5. By Proposition
4.1.9, G corresponds to a point x̃ ∈ SK(G, X)(OK) lifting x and hence to an
abelian variety Ax̃ over K. By Theorem 3.4.5, the action of Jb(Qp) on Gx lifts to
G . Since Ix(Q) ⊂ Jb(Qp), by the Serre–Tate theorem, the action of Ix lifts to Ax̃
in the isogeny category.

We now show x̃ is a special point. Since Ix fixes the tensors sα,0,x, it also fixes
sα,p,x̃, and hence it fixes sα,B . Thus we may consider Ix as a subgroup of G. By
[KPS, Theorem 6], the absolute rank of Ix is equal to the absolute rank of G.
Let T be a maximal torus of Ix, which is therefore a maximal torus of G. The
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Mumford–Tate group of Ax̃ is a subgroup of G which commutes with T hence must
be contained in T. Therefore x̃ is a special point. �

Remark 4.1.13. For x ∈ SK,[b]µ(k), the corresponding y lies in the stratum of

Mloc
G,{µh} corresponding to tµ′ ∈ Adm({µ})J , with µ′ ∈ W0 · µ as in §3.4.2. It is

possible to show that this stratum lies inside the smooth locus of Mloc
G,{µh} ⊗OE k

and hence the embedding G → GL(VZp) is automatically very good at y by [KPZ,
Corollary 4.3.9].

4.1.14. The description of the local structure of SK(G, X) in Theorem 4.1.15 can
be globalized. For this we introduce the following assumption, cf. §3.2.5.

(C’) The embedding G → GL(VZp) is very good at all points of Mloc
G,{µh}(k).

Theorem 4.1.15. Under the assumptions (A’)–(C’), the schemes SK(G, X) sat-
isfy the following properties.

(1) For R a discrete valuation ring of mixed characteristic (0, p), we have a
bijection

lim←−
Kp

SKpKp(G, X)(R) = ShKp(G, X)(R[1/p]).

(2) There exists a local model diagram

S̃K(G, X)OE
q

&&

π

ww

SK(G, X)OE Mloc
G,{µh}

where π is a G-torsor and q is G-equivariant and smooth of relative dimen-
sion dimG.

Proof. This follows from [KPZ, Theorem 7.1.3] which proves the result for neat level
structure Kp. In general, we take a normal neat compact open subgroup Kp

1 ⊂ Kp,
and take the quotient of the diagram by the finite group Kp/Kp

1. �

Remark 4.1.16. (1) By [PRb, Theorem 4.5.2] and our assumption that G̃ =
G, the integral model SK(G, X) is independent of the choice of Hodge
embedding ι.

(2) Formally, Theorem 4.1.15 and Theorem 4.1.11 are all that are needed to
prove our main results on `-independence in §5 and §6. In the next three
subsections, we will extend these theorems to the required generality needed
for these applications.

4.2. Strongly acceptable Shimura varieties. For later applications, we need
to consider integral models for certain Shimura varieties of Hodge type with the
conditions (A’)–(C’) relaxed. To do this we will view the Shimura variety as one of
abelian type and we may construct an integral model using an auxiliary Shimura
variety of Hodge type as in [KPZ, §7.2].



34 MARK KISIN AND RONG ZHOU

4.2.1. Let (G, X) be a Shimura datum of Hodge type. Then the center ZG of G
splits over a CM field, and so the maximal compact subtorus ZG,0 is defined over
Q. We let ZcG denote the subgroup of G generated by ZG,0 and the center ZGder

of the derived group Gder. We let ZcG denote the base change of this group to Qp.
We will now focus on Shimura data satisfying the following property.

Definition 4.2.2. Let (G2, X2) be a Shimura datum and set G2 := G2,Qp . Then
(G2, X2) is said to be strongly acceptable if the following conditions are satisfied:

• (G2, X2) is of Hodge type.
• Gder

2
∼=
∏r
i=1 ResFi/QpHi, where Fi/Qp is finite and Hi is a split reductive

group over Fi.
• ZcG2

is a product of induced tori.

If G2 is a parahoric group scheme for G2, we say the triple (G2, X2,G2) is strongly
acceptable if (G2, X2) is strongly acceptable and G2 is a very special parahoric (recall

that a parahoric G2 is very special if G2(Z̆p) is a special parahoric of G2(Q̆p), which
exists by [Zhu14, Lemma 6.1]).

Proposition 4.2.3. Let (G2, X2,G2) be a strongly acceptable triple. Then there
exists a Shimura datum (G, X) together with a central isogeny Gder → Gder

2 which
induces an isomorphism (Gad, Xad) ∼= (Gad

2 , Xad
2 ). Moreover, (G, X) may be cho-

sen to satisfy the following properties.

(1) π1(Gder) is a 2-group and is trivial if (Gad
2 , Xad

2 ) has no factors of type DH.
(2) Any prime v2|p of E2 splits in the composite E′ := E.E2.
(3) There exists a Hodge embedding ι : (G, X)→ (GSp(V ), S±) which extends

to a good integral local Hodge embedding G → GL(VZp), which is very good

at all points of Mloc
G,{µh}(k). Here G is the parahoric group scheme for G

which is associated to G2.
(4) ZG is an R-smooth torus and ZcG is a product of Weil restrictions of tame

tori.
(5) X∗(G

ab)I is torsion.

Proof. We let (G, X) be the Shimura datum constructed in [KPZ, Proposition
7.2.14] which is equipped with a central isogeny Gder → Gder

2 inducing an isomor-
phism (Gad, Xad) ∼= (Gad

2 , Xad
2 ). Then (G, X) satisfies (1), (2), (4), and property

(5) follows since our assumptions imply that Gad
2 does not have a simple factor

of the form ResF/QpPGLm(D), where D is a division algebra over F with index
divisible by p.

Note that if Gad
2
∼=
∏s
i=1 ResFi/QHi for some Fi/Q totally real and Hi abso-

lutely simple over Fi, then Gder ∼=
∏s
i=1 ResFi/QH]

i , where H]
i is defined in [KPZ,

§7.2.1]. In particular G satisfies the first assumption in Lemma 4.2.4 below. Thus

by that lemma, we have G̃x = Gx for any x ∈ B(G,Qp) lifting the image of x2

in B(Gad
2 ,Qp) = B(Gad,Qp). Property (3) then follows from the corresponding

property in [KPZ, Proposition 7.2.18] using this fact. �

Lemma 4.2.4. Let G be a reductive group over Qp and G a parahoric of G corre-
sponding to x ∈ B(G,Qp). We assume the following conditions are satisfied.

• Gder ∼=
∏r
i=1 ResFi/QpHi where Hi is a split group over Fi.

• X∗(Gab)I is torsion-free
• G is a very special parahoric.
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Then we have G̃ = G.

Proof. Let xad ∈ B(Gad,Qp) denote the image of x and G̃ad (resp. Gad) the asso-
ciated stabillizer scheme (resp. parahoric group scheme). Then Gad is of the form∏r
i=1 ResOFi/ZpH

ad
i for Had

i a special (equivalently hyperspecial) parahoric of Had
i ,

and hence we have G̃ad = Gad.
There is a natural map G̃ → G̃ad = Gad and a commutative diagram

G̃(Z̆p) //

κ̃G

��

Gad(Z̆p)

κ̃
Gad

��

π1(G)I // π1(Gad)I .

It follows that G̃(Z̆p) maps to ker(π1(G)I → π1(Gad)I) and it suffices to show this
group is torsion-free.

We have a commutative diagram with exact rows.

π1(Gder)I //

��

π1(G)I //

��

X∗(G
ab)I //

��

0

0 // π1(Gad)I
∼ // π1(Gad)I // {1} // 0

Since π1(Gder)→ π1(Gad) is injective and these are induced modules, it follows that
π1(Gder)I → π1(Gad)I is injective. Thus ker(π1(G)I → π1(Gad)I) is torsion-free by
the snake Lemma. �

4.2.5. We use the previous proposition to extend the construction of integral models
to strongly acceptable triples.

Theorem 4.2.6. Let (G2, X2,G2) be a strongly acceptable triple with reflex field
E2 and set K2,p = G2(Zp). Then for any prime v2|p of E2 with corresponding
completion E2, there is a G2(Apf )-equivariant OE2-scheme SK2,p(G2, X2) extending

ShK2,p
(G2, X2)E2

satisfying the following properties:

(1) SK2,p
(G2, X2) is étale locally isomorphic to Mloc

G2,{µh2
}.

(2) For any discrete valuation ring R of mixed characteristic the map

SK2,p
(G2, X2)(R)→ SK2,p

(G2, X)(R[1/p])

is a bijection.
(3) There exists a diagram

(4.2.6.1) S̃ ad
K2,p

(G2, X2)

q

&&

π

ww

SK2,p(G2, X2) Mloc
G2,{µh2

}

where π is a G2(Apf )-equivariant Gad
2 -torsor and q is Gad

2 -equivariant, smooth

of relative dimension dim Gad, and G2(Apf )-equivariant, when Mloc
G2,{µh2

} is

equipped with the trivial G2(Apf )-action. Here Gad
2 is the parahoric group

scheme for Gad
2 associated to G2.



36 MARK KISIN AND RONG ZHOU

Proof. Let (G, X) be the Shimura datum of Hodge type from Proposition 4.2.3
which satisfies the assumptions in [KPZ, Proposition 7.1.14]. The result then follows

from loc. cit. noting that we have G̃ = G.
�

Remark 4.2.7. (1) The condition that ZcG2
is a product of induced tori in the

definition of strongly acceptable datum is not needed for this theorem. It
is used in the next subsection to prove certain functoriality properties for
integral modes.

(2) A key property in Theorem 4.2.6 that we need is that S̃ ad
K2,p

(G2, X2) in (3)

is a torsor for a smooth group scheme with connected special fiber and is
one of the reasons we restrict to considering strongly acceptable triples.

4.2.8. We recall some features of the construction in Theorem 4.2.6 which will be
needed in the next subsection. We let (G, X) denote the auxiliary Hodge type
Shimura datum from Proposition 4.2.3. This is equipped with a central isogeny
Gder → Gder

2 inducing an isomorphism (Gad, Xad) ∼= (Gad
2 , Xad

2 ). There is a Hodge
embedding (G, X) → (GSp(V ), S±) satisfying the assumptions (A’)–(C’) of §4.1,
and hence we may construct an integral model SK(G, X) for ShK(G, X) as before
by taking closure and normalization inside the Siegel Shimura variety.

Fix a connected component X+ ⊂ X. By real approximation, upon modifying
the isomorphism Gad ∼= Gad

2 by an element of Gad(Q), we may assume that the
image of X2 ⊂ Xad

2 contains the image of X+. We write X+
2 for X+ viewed as a

subset of X2. We denote by ShKp(G, X)+ ⊂ ShKp(G, X) and ShK2,p
(G2, X2)+ ⊂

ShK2,p
(G2, X2) the geometrically connected components corresponding to X+ and

X+
2 . These are defined over extensions of E and E′ respectively, which are unram-

ified at primes above p by [KPZ, Proposition 7.1.11]. We let SKp(G, X)+ denote
the connected component of SKp(G, X) corresponding to ShKp(G, X)+.

For a subgroup H ⊂ G(R), we write H+ for the preimage of Gad(R)+, the con-
nected component of the identity in Gad(R). We write Gad(Q)+ (resp. Gad(Z(p))

+)

for Gad(Q) ∩Gad(R)+ (resp. Gad
Z(p)

(Z(p)) ∩Gad(R)+) and we write Z = ZG for

the center of G. We let Z(Q)− and G(Q)−+ denote the closures of Z(Q) and

G(Q)+ in G(Af ), respectively. We let Z(Z(p))
− and G(Z(p))

−
+ denote the clo-

sures of ZZ(p)
(Z(p)) and GZ(p)

(Z(p))+ in G(Apf ), respectively. As in [KP18, §4.5.6],
we set

A (G) := G(Af )/Z(Q)− ∗G(Q)+/Z(Q) Gad(Q)+

A (GZ(p)
) := G(Apf )/Z(Z(p))

− ∗G(Z(p))+/Z(Z(p)) Gad(Z(p))
+,

and as in [KP18, §4.6.3], we set

A (G)◦ := G(Q)−+/Z(Q)− ∗G(Q)+/Z(Q) Gad(Q)+

A (GZ(p)
)◦ := G(Z(p))

−
+/Z(Z(p))

− ∗G(Z(p))+/Z(Z(p)) Gad(Z(p))
+.

We refer to loc. cit. §4.5.6 for the definition of the ∗ product. We obtain an
A (G)-action (resp. A (GZ(p)

)-action) on Sh(G, X) (resp. ShKp(G, X)). Here, the

fact that the center of G is an R-smooth torus implies that the A (GZ(p)
)-action on

ShKp(G, X) extends to an A (GZ(p)
)-action on SKp(G, X). As in [KP18, §4.6.12],

the natural map

(4.2.8.1) A (GZ(p)
)◦\A (G2,Z(p)

)→ A (G)◦\A (G2)/K2,p
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is an injection. We fix a set J ⊂ G2(Qp) which maps bijectively to a set of coset
representatives for the image of A (G2,Z(p)

) in A (G)◦\A (G2)/K2,p. A calculation

shows that J is a finite set. Then SK2,p
(G2, X2) is constructed as

(4.2.8.2) SK2,p
(G2, X2) =

[
[SKp(G, X)+ ×A (G2,Z(p)

)]/A (GZ(p)
)◦
]|J|

.

4.3. Some functorial properties of integral models. In this subsection we
prove some functorial properties of the integral models. The main result is Propo-
sition 4.3.6 which will be used to define the µ-ordinary locus in the next subsection.

4.3.1. Let f : (G, X) → (G′, X ′) be a morphism of Shimura data and let G and

G′ be parahorics of G and G′ respectively. We assume that G̃ = G and G̃′ = G′,
and that G→ G′ extends to a morphism G → G′. Let K = KpK

p, K′ = K′pK
′p, be

compact open subgroups of G(Af ) and G′(Af ) respectively, with Kp = G(Zp) and
K′p = G′(Zp). We fix a prime v|p of the reflex field E of (G, X), and write E = Ev.

We assume there are Hodge embeddings

ι : (G, X)→ (GSp(V ), S±) and ι′ : (G′, X ′)→ (GSp(V ′), S′±),

and Zp-lattices VZp ⊂ VQp and V ′Zp ⊂ V
′
Qp such that ι and ι′ extend to good integral

local Hodge embeddings G → GL(VZp), G′ → GL(V ′Zp). Thus (G, X) and (G′, X ′)

both satisfy assumptions (A’) and (B’) of §4.1.3.

Proposition 4.3.2. The morphism ShK(G, X) → ShK′(G
′, X ′)E induced by f

extends to a morphism of integral models over OE
fS : SK(G, X)OE → SK′(G

′, X ′)OE ,

associated to ι and ι′.
Moreover, if f induces an isomorphism of derived groups Gder ∼= G′der and the

parahorics G and G′ are associated, then for K and K′ neat and x ∈ SK(G, X)OE (k)
with image x′ ∈ SK′(G

′, X ′)OE (k), the morphism fS induces an isomorphism of

completions Ûx ∼= Ûx′ at x and x′.

Proof. We set (G′′, X ′′) = (G×G′, X ×X ′) and K′′ = K×K′. Then the product

S ′′ := SK(G, X)OE ×OE SK(G′, X ′)OE

is an integral model for the Shimura variety ShK′′(G
′′, X ′′) which satisfies the condi-

tions in [PRb, Conjecture 4.2.2]. Therefore there exists a unique map SK(G, X)→
S ′′ extending the diagonal morphism on the generic fiber by [PRb, Theorem 4.3.1],
and its composition with the projection S ′′ → SK′(G

′, X ′)OE gives the desired
morphism fS .

Now assume that Gder ∼= G′der and that G and G′ are associated. To show that
fS induces isomorphisms on completions, we follow the proof of [PRb, Theorem

4.2.4]. We let P and P ′ denote the shtukas over the p-adic completions ŜK(G, X)

and ŜK′(G
′, X ′) constructed in [PRb, Theorem 4.5.2]. Then by [PRb, Theorem

2.7.7], we have an isomorphism of G′-shtukas

P ×G G′ ∼= f∗S P ′

over ŜK(G, X), since they extend the same G′-shtuka over the generic fiber. Let

x ∈ SK(G, X)(k) with image x′ ∈ SK(G′, X ′)(k). Since Ûx and Ûx′ are normal, it

suffices to show fS induces an isomorphism of Û♦
x
∼= Û♦

x′ of the associated v-sheaves.
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We set µ = µh and µ′ = µh′ . Let bx ∈ G(Q̆p) the element corresponding to the G-

shtuka Px at x, which is well-defined up to σ-conjugacy by G(Z̆p). By construction,
this is the element corresponding to Frobenius on D given by the choice of a tensor
preserving isomorphism V ∨Zp ⊗Zp Z̆p ∼= D. Then bx′ = f(bx) ∈ G′(Q̆p) corresponds

to the G′-shtuka Px′ . Let Mint
G,bx,µ be the integral model for the local Shimura

variety associated to the local Shimura datum (G, bx, µ) and the parahoric G, cf.

[SW20, Definition 25.1.1], and let ̂Mint
G,bx,µ,x0

denote the v-sheaf completion at the

base point x0 . By [PRb, Theorem 4.5.2], there is an isomorphism:

Θx : ̂Mint
G,bx,µ,x0

∼−→ Û♦
x

such that Θ∗x(P) is isomorphic to the universal G-shtuka on ̂Mint
G,bx,µ,x0

. There is

a similar isomorphism Θx′ : ̂Mint
G′,bx′ ,µ′,x′0

∼−→ Û♦
x′ for (G′, bx′ , µ

′).

For r >> 0, we let S̃x be the v-sheaf over Ûx, classifying trivializations of P
as in [PRb, Proof of Theorem 4.2.4]. Explicitly, for S = Spa(R,R+) a perfectoid

space over k and y an S-point of Û♦
x , S̃x classifies trivializations

ir : GY[r,∞)(S)

∼−→ y∗(P)|Y[r,∞)(S)
,

where Y[r,∞) is as in [PRb, §2.1]. Then there is a natural map

nat : S̃x →Mint
G,bx,µ.

We define S̃ ′x over Ûx′ similarly as trivializations of the G′-shtuka P ′. Then we
have a commutative diagram

S̃x
nat //

��

Mint
G,bx,µ

��

S̃x′
nat //Mint

G′,bx′ ,µ′

where the vertical maps are obtained via pushout along G → G′. As in the proof of
[PRb, Theorem 4.2.4], upon modifying Θx by an element of the group Gbx(Qp) =

{g ∈ G(Q̆p)|g−1bxσ(g) = bx}, we have a commutative diagram

S̃x
//

%%
nat

��

Û♦
x

��
'
��

Mint
G,bx,µ

// ̂Mint
G,bx,µ,x0

,

and the right side of the diagram is determined by the left. Similarly, we obtain a

diagram for Ŝx′ and Û♦
x′ . It follows that the following diagram is commutative

Û♦
x

Θx //

��

̂Mint
G,bx,µ,x0

��

Û♦
x′

Θx′ // ̂Mint
G′,bx′ ,µ′,x′0

.
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Since the right vertical morphism is an isomorphism by [PRa, Theorem 5.2], it

follows that Û♦
x → Û♦

x′ is an isomorphism as desired. �

4.3.3. We now assume that f : (G, X) → (G′, X ′) induces an isomorphism of
derived groups and that the parahorics G and G′ are associated. As in §4.2.8, we fix
a connected component X+ ⊂ X which determines neutral connected components
SKp(G, X)+ and SK′p

(G′, X ′)+; for notational convenience we assume these are
base changed to OEur .

Corollary 4.3.4. The morphism fS induces an isomorphism of OEur-schemes.

SKp(G, X)+ → SK′p
(G′, X ′)+.

Proof. We will consider neat compact open subgroups K1,p,K2,p ⊂ G′(Apf ), and

we write K1 = K′pK
1,p and K2 = K′pK

2,p. Since the morphism G → G′ induces

an isomorphism of derived groups, the map ShKp(G, X)+ → ShK′p
(G′, X ′)+ is an

isomorphism. Thus for any sufficiently small neat compact open Kp ⊂ G(Apf ),

there exist K1,p,K2,p ⊂ G′(Apf ) such that f induces maps

(4.3.4.1) ShK2(G′, X ′)+ → ShK(G, X)+ → ShK1(G′, X ′)+.

Let S †K(G, X)+ be the normalization of SK1(G′, X ′)+ in ShK(G, X)+. Then
(4.3.4.1) extends to a sequence of morphisms

SK2(G′, X ′)+ → S †K(G, X)+ → SK1(G′, X ′)+

whose composite is finite étale. It follows that both maps in the sequence are finite,
and since all the schemes are normal, both maps are finite étale. Passing to the
limit with K2,p and Kp we obtain a commutative diagram

SK2
p
(G′, X ′)+ //

��

S †Kp(G, X)+

��

SK2(G′, X ′)+ // S †K(G, X)+

Since the map on the left is pro-finite étale, and the bottom map is finite étale, the
map on the right is pro-finite étale.

By Proposition 4.3.2 and the normality of SK(G, X)+, there is also a mor-

phism α : SK(G, X)+ → S †K(G, X)+, whose composite with S †K(G, X)+ →
SK1(G′, X ′)+ is étale, and hence α is étale. Again, passing to the limit with
Kp, we obtain a commutative diagram

SKp(G, X)+ //

��

S †Kp(G, X)+

��

SK(G, X)+ α // S †K(G, X)+

where the vertical maps are pro-finite étale. For any finite extensionK ofW (k)[1/p],

a point x† ∈ S †K(G, X)+(OK) lifts to a point of x̃† ∈ S †Kp(G, X)+(OK), and hence

to a point x̃ ∈ SKp(G, X)+(K). By Theorem 4.1.15 (2), x̃ extends to a point in
SKp(G, X)+(OK). This implies that α is surjective.
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Thus α is a surjective étale birational morphism between normal schemes, hence
an isomorphism. We thus obtain a morphism SK2(G′, X ′)+ → SK(G, X)+ which,
after taking the inverse limit, gives an inverse for the morphism

SKp(G, X)+ → SK′p
(G′, X ′)+

induced by fS . �

4.3.5. We now use the notation of §4.2. We let (G2, X2,G2) be a strongly acceptable
triple and we write K2,p = G2(Zp) a very special parahoric. Fix Kp

2 ⊂ G2(Apf ) a

compact open subgroup and set K2 = K2,pK
p
2. By Theorem 4.2.6, we may construct

an integral model SK2
(G2, X2) = SK2,p

(G2, X2)/Kp
2 over OE2

for ShK2
(G2, X2)

by viewing (G2, X2) as a Shimura datum of abelian type and using an auxiliary
Shimura datum (G, X) from Proposition 4.2.3 together with a choice of Hodge
embedding ι : (G, X) → (GSp(V ), S±) satisfying the assumptions (A’)–(C’) in
§4.1.1. We fix such a (G, X) and ι for the rest of this section.

Now let ι2 : (G2, X2)→ (GSp(V2), S±2 ) be any Hodge embedding. By the main
theorem of [Lan00], ι2 induces a G2(Qur

p ) and Gal(Qur
p /Qp)-equivariant embedding

of buildings. Upon replacing ι2 with a new Hodge embedding and applying Zarhin’s
trick we may assume there is a Zp-lattice V2,Zp ⊂ V2,Qp with V2,Zp = V ∨2,Zp such

that G2 → GSp(V2,Qp) extends to a morphism of Bruhat–Tits stabilizer schemes

G̃2 → GSP, where GSP is the group scheme stabilizer of V2,Zp in GSp(V2,Qp). We

set K′2,p := GSP(Zp) and K′2 = K′2,pK
′p
2 where K′p2 ⊂ GSp(V2,Apf ) is a compact

open subgroup containing Kp
2.

Proposition 4.3.6. There is a map of OE2
-stacks

(4.3.6.1) SK2(G2, X2)→ SK′2
(GSp(V2), S±2 )OE2

extending the natural map on the generic fiber.

4.3.7. To prove this proposition, we make use of the following auxiliary construc-
tion. Let G3 be the identity component of G2 ×Gad,Gm G, where the projections
onto Gm are given by composing ι, ι2 with the symplectic multipliers. There are
natural morphisms G3 → G2 and G3 → G, the latter of which induces an isomor-
phism Gder

3
∼−→ Gder. Let h ∈ X+. As in §4.2.8, we may choose the isomorphism

Gad ∼= Gad
2 in such a way that we may view X+ as a subset of X2, and we let

h2 ∈ X2 denote the element determined by h. The homomorphism

h3 := (h2, h) : S→ G2 ×G

factors through G3, and we denote by X3 the G3,R-orbit of h3. The pair (G3, X3)
forms a Shimura datum which is equipped with a Hodge embedding ι3 : (G3, X3)→
(GSp(V3), S±3 ) induced from (ι, ι2); here V3 = V ⊕ V2. The lemma below ensures
(G3, X3) satisfies the assumptions in Proposition 4.3.2. We set G3 = G3,Qp .

Lemma 4.3.8. Let G3 be the very special parahoric for G3 associated to G2.

(1) We have G̃3 = G3.
(2) (G3, X3) admits a good Hodge embedding (with respect to G3).

Proof. For (1), it suffices by Lemma 4.2.4 to show that X∗(G
ab
3 )I is torsion-free.

By [KPZ, Lemma 7.2.5], we have an sequence

1 // ZcG2
× ZcG // ZG3

// Gm // 1.
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By Proposition 4.2.3 (4) and Definition 4.2.2, ZcG and ZcG2
are both tori. It follows

that ZG3 is a torus with ZcG3

∼= ZcG2
×ZcG and the map ZGder

3
= ZGder → ZcG2

×ZcG
is given by the diagonal embedding. Thus we have an exact sequence of tori

1 // ZcG2

// ZcG3
/ZGder

3

// ZcG/ZGder
// 1.

Note that X∗(G
ab)I is an extension of Z by X∗(Z

c
G/ZGder)I ; hence X∗(Z

c
G/ZGder)I

is torsion-free by Proposition 4.2.3 (5). By assumption (see Definition 4.2.2),
X∗(Z

c
G2

)I is torsion-free. It follows that X∗(Z
c
G3
/ZGder

3
)I is torsion-free, and hence

X∗(G
ab
3 )I , which is an extension of Z by X∗(Z

c
G3
/ZGder

3
)I is torsion-free.

For (2), note that p - |π1(Gder
3 )| = |π1(Gder)| since p > 2. Thus by Lemma

4.1.4, it suffices to show that the centralizer of a maximal Q̆p-split torus in G3 is
R-smooth. The isomorphism ZcG3

∼= ZcG2
× ZcG implies that ZcG3

is a product of
Weil-restrictions of tame tori, and hence is R-smooth by Proposition 2.4.6. Then
ZG3 is an extension of Gm by an R-smooth torus and ZG3 is R-smooth. The result
then follows from [KPZ, Lemma 7.2.6].

�

Proof of Proposition 4.3.6. It suffices to construct a map

(4.3.8.1) SK2,p
(G2, X2)→ SK′2,p

(GSp(V2), S±2 )OE2

which is G2(Apf )-equivariant. Let SK2,p
(G2, X2)′ be the closure of

(4.3.8.2) ShK2,p
(G2, X2)→ SK2,p

(G2, X2)×SK′2,p
(GSp(V2), S±2 )OE2

Then the existence of (4.3.8.1) is equivalent to requiring that

SK2,p(G2, X2)′ → SK2,p(G2, X2)

is an isomorphism. We may check this over OE′ , where E′ ⊃ E2, is any complete,
discretely valued extension of E2. In particular, we may assume that the connected
components of SK2,p(G2, X2) are defined over OE′ .

Let S → S ′ be a map of connected components induced by (4.3.8.1). Then the
explicit description given by (4.2.8.2) shows that one may identify the diagrams

S [1/p] //

��

S ′[1/p]

��

S S ′

coming from different choices of S . Thus, it suffices to construct the map

(4.3.8.3) SK2,p(G2, X2)+
OE′ → SK′2,p

(GSp(V2), S±2 )+
OE′

where SK′2,p
(GSp(V2), S±2 )+

OE′ is the connected component corresponding to the

connected component of S±2 containing the image of X+
2 .

To do this we make use of the Shimura datum (G3, X3) constructed above. This
is equipped with morphisms of Shimura data

(G, X) (G3, X3) //oo (G2, X2) // (GSp(V2), S±2 ),

where the leftmost morphism induces an isomorphism on derived groups. Let G
and G3 denote the parahoric group schemes for G and G3 associated to G2, and set
Kp = G(Zp), K3,p = G3(Zp). We may construct an integral model SK3,p

(G3, X3)
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for ShK3,p
(G3, X3) as in §4.1 using a good Hodge embedding provided by Lemma

4.3.8.
By Lemma 4.2.4 and Lemma 4.3.8, we have G3 = G̃3 and similarly G̃ = G. Thus

we may apply Corollary 4.3.4 to the morphism (G3, X3) → (G, X). We assume
that E′ is large enough that the connected components of ShK3

(G3, X3) are defined
over E′. Thus we have an isomorphism

(4.3.8.4) SK3,p
(G3, X3)+

OE′
∼−→ SKp(G, X)+

OE′ .

By Proposition 4.3.2 and taking inverse limits, there is a morphism of integral
models

SK3,p
(G3, X3)OE′ → SK′2,p

(GSp(V2), S±2 )OE′ .

Restricting to neutral connected components, we obtain a morphism

(4.3.8.5) SK3,p
(G3, X3)+

OE′ → SK′2,p
(GSp(V2), S±2 )+

OE′ .

By the construction of SK2,p(G2, X2)OE′ (cf. (4.2.8.2)), we have

SK2,p
(G2, X2)+

OE′ = SKp(G, X)+
OE′/∆(G,G2) ∼= SK3,p

(G3, X3)+
OE′/∆(G,G2),

where ∆(G,G2) := ker(A (GZ(p)
)◦ → A (G2,Z(p)

)). The map (4.3.8.5) factors

through the action of ∆(G,G2), since it does so on the generic fiber. We thus
obtain a map SK2,p(G2, X2)+

OE′ → SK′2,p
(GSp(V2), S±2 )+

OE′ as desired. �

4.4. µ-ordinary locus and canonical liftings.

4.4.1. In this subsection, we study the µ-ordinary locus in the strongly acceptable
case and prove the existence of canonical liftings. As in the construction of the
local model diagram, the result will be deduced from the corresponding result in
the special Hodge type case given by Theorem 4.1.11.

Let (G2, X2,G2) be a strongly acceptable triple and Kp
2 ⊂ G2(Apf ) a compact

open subgroup. We have the integral model SK2(G2, X2) over OE2 which is con-
structed from an auxiliary Hodge-type Shimura datum (G, X) and a choice of good
Hodge embedding ι satisfying assumptions (A’)–(C’) of §4.1.3. Let ι2 : (G2, X2)→
(GSp(V2), S±2 ) be a Hodge embedding and V2,Zp ⊂ V2,Qp a self-dual lattice as in
§4.3.5. Then by Proposition 4.3.6, there is a morphism of integral models

(4.4.1.1) SK2
(G2, X2)→ SK′2

(GSp(V2), S±2 )OE2
.

Let h : A2 → SK2(G2, X2) denote the pullback of the universal abelian variety
along (4.4.1.1). Let sα ∈ V ⊗2 be a collection of tensors whose stabilizer is G2. Then
as in §4.1.6, these give rise to tensors sα,B ∈ VB := R1han∗Q, sα,` ∈ V`(A2) :=
R1hét∗Q` for all ` 6= p and sα,p ∈ Vp(A2) := R1hη,ét∗Qp. For any OE2

-scheme T
and x ∈ SK2

(G2, X2)(T ), we write A2,x for the pullback of A2 to x.

For K/Q̆p finite and x̃ ∈ SK2
(G2, X2)(OK) with special fiber x, we let sα,0,x̃ ∈

D(A2,x[p∞])[1/p]⊗ denote the images of sα,p,x̃ under the p-adic comparison isomor-
phism. As in §4.1.7, these tensors depend only on x and not on x̃; we thus write
sα,0,x for these tensors. Note that [KPS, Prop. 1.3.7] applies here since the mor-
phism SK2(G2, X2) → SK′2

(GSp(V2), S±2 )OE2
factors through the normalization

of its scheme theoretic image, and all objects are pulled back from this.
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4.4.2. Let x ∈ SK2
(G2, X2)(k), and set D := D(A2,x[p∞]). We fix an isomorphism

V ∨2,Zp ⊗Zp Q̆p ∼= D⊗Z̆p Q̆p,

taking sα to sα,0,x; such an isomorphism exists by Steinberg’s theorem (cf. [KPS,

1.3.8]). Then as in §4.1.10, we obtain an element b ∈ G2(Q̆p) with [b] ∈ B(G2, {µ2})
where {µ2} = {µ−1

h2
}. This induces the Newton stratification on the geometric

special fiber SK2,k (resp. SK2,p,k) of SK2
(G2, X2) (resp. SK2,p

(G2, X2)). We write
SK2,[b] ⊂ SK2,k for the strata corresponding to [b] ∈ B(G, {µ2}). We also write

SK2,p,[b] = lim
←Kp2

SK2,pKp2 ,[b]
,

which makes sense since SK2,[b] is compatible with the prime-to-p level. For the rest
of §4.4 we assume the existence of the class [b]µ2

∈ B(G2, {µ2}) in Definition 2.2.4.

Definition 4.4.3. We define the µ2-ordinary locus of SK2,k to be SK2,[b]µ2
.

The following is deduced easily from [KPS, Corollary 1.3.16].

Theorem 4.4.4. Assume Kp
2 is neat. Then

(1) SK2
is normal.

(2) The µ2-ordinary locus SK2,[b]µ2
is Zariski open and dense in SK2,k.

Proof. To show (1), it suffices by Theorem 4.2.6 to show that the special fiber of
Mloc
G2,{µh2

} is normal. Note that the geometric irreducible components of this special

fiber are normal (see §3.1.4), and hence it suffices to show that Mloc
G2,{µh2

} ⊗OE k
is integral. This follows from the argument in [PZ13, Corollary 9.4], noting that
as in loc. cit. the µ-admissible set Adm({µ})J has a single extremal element when

J ⊂ S corresponds to a very special standard parahoric of G(Q̆p).
(2) follows from (1) by [KPS, Corollary 1.3.16]. �

4.4.5. Let x ∈ SK2(G2, X2)(k). Then we can define Ix ⊂ AutQ(A2,x) to be the
subgroup preserving sα,0,` and sα,0,x as in §4.1.10. The goal of the rest of this
section is to prove the following generalization of Theorem 4.1.11.

Theorem 4.4.6. Let (G2, X2,G2) be a strongly acceptable triple. Let x ∈ SK2,[b]µ2
(k).

Then x admits a lifting to a special point x̃ ∈ SK2(G2, X2)(K) for some K/Q̆p fi-
nite such that the action of Ix(Q) on A2,x lifts to an action (in the isogeny category)
on A2,x̃.

We will deduce this theorem from 4.1.11 using the auxiliary construction from
Proposition 4.3.6. For notational convenience, we write (G1, X1) for (G, X) and
ι1 : (G1, X1) → (GSp(V1), S±1 ) for the Hodge embedding ι. Then G3 is defined
to be the identity component of G1 ×Gad

1 ,Gm G2. We obtain a Shimura datum

(G3, X3) together with morphisms (G1, X1)← (G3, X3)→ (G2, X2) and a Hodge
embedding ι3 : (G3, X3)→ (GSp(V3), S±3 ), where V3 = V1 ⊕ V2.

For i = 1, 2, 3, let Ei denote the reflex field of (Gi, Xi); then we have E3 ⊂ E′ :=
E1E2. We let vi (resp. v′) denote the place of Ei (resp. E′) induced by the embed-
ding ip and we let Ei (resp. E′) denote the completion. By construction, we have
E′ = E2. Set Gi := Gi,Qp , and let G1 (resp. G3) denote the parahoric group scheme
of G1 (resp. G3) determined by G2. For i = 1, 2, 3, we set Ki,p := Gi(Zp) and we fix
compact open subgroups Kp

i ⊂ Gi(Apf ) such that Kp
3 maps to Kp

1 and Kp
2. We set
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Ki := Ki,pK
p
i . We then have integral models SKi(Gi, Xi), where SK1

(G1, X1) is
constructed from the (very) good Hodge embedding ι1, SK2(G2, X2) is constructed
from SK1(G1, X1) by viewing (G2, X2) as a Shimura data of abelian type, and
SK3

(G3, X3) is constructed from a good Hodge embedding as in Lemma 4.3.8.

4.4.7. Let H denote the subgroup of GSp(V1) ×GSp(V2) consisting of elements
(g1, g2) such that c1(g1) = c2(g2). Then the natural map G3 → GSp(V1)×GSp(V2)
factors through H and we let SH denote the HR-conjugacy class of homomorphisms
S→ HR induced by X3. There are natural morphisms of Shimura data (H, SH)→
(GSp(Vi), S

±
i ) for i = 1, 2, 3.

We let V1,Zp ⊂ V1,Qp be a Zp-lattice such that ι1 extends to a good local integral

Hodge embedding G1 → V1,Zp which is very good at all points of Mloc
G1,µh1

(k), and

we set V3,Zp := V1,Zp⊕V2,Zp ⊂ V3,Qp . For i = 1, 2, 3, we let K′i,p denote the stabilizer
of Vi,Zp inside GSp(Vi,Qp) and let Hp denote the stabilizer of V3,Zp inside H(Qp).
We also fix compact open subgroups K′pi ⊂ GSp(Vi,Apf ) containing the image of Kp

i

for i = 1, 2, 3, Hp ⊂ H(Apf ) containing the image of Kp
3, and we set K′i = K′i,pK

′p
i ,

H = HpH
p. Then the Shimura variety ShH(H, SH) admits a moduli interpretation

as pairs of tuples (Ai, λi, εi), i = 1, 2, where Ai are abelian varieties of dim(Vi)/2, λi
is a weak polarization, and εi are level Im(Hp → GSp(Vi,Apf ))-structures which pre-

serve symplective pairings up to the same Ap×f -scalar (cf. [Zho20, 7.2]). This moduli

problem extends to Z(p), hence we obtain an integral model SH(H, SH)/Z(p).

Proposition 4.4.8. There is a commutative diagram of OE′-stacks
(4.4.8.1)

SK1
(G1, X1)OE′

i1

��

SK3
(G3, X3)OE′

j2 //

i3

��

j1oo SK2
(G2, X2)OE′

i2

��

SK′1
(GSp(V1), S±1 )OE′ SK′(H, SH)OE′

//oo SK′(GSp(V2), S±2 )OE′

.

Proof. It suffices to consider the case of neat prime-to-p level structure so that we
may assume all objects are schemes. The existence of the bottom row follows from
the moduli interpretations of the integral models. The morphism j1 is constructed
in Proposition 4.3.2 and j2 is constructed in a similar way to Proposition 4.3.6.

The morphism i1 exists by construction of SK1
(G1, X1)OE′ and i2 is constructed

in Proposition 4.3.6. For ι3, note that there is a finite morphism

SK′(H, SH)OE′ → SK′1
(GSp(V1), S±1 )OE′ ×SK′2

(GSp(V2), S±2 )OE′ .

The morphism

SK3(G3, X3)OE′ → SK′1
(GSp(V1), S±1 )OE′ ×SK′2

(GSp(V2), S±2 )OE′

induced by (i1 ◦j1, i2, ◦j2) factors through SK′(H, SH)OE′ on the generic fiber, and
hence lifts to a morphism i3 : SK3(G3, X3)OE′ → SK′(H, SH)OE′ as desired. �

4.4.9. Let Ai → SKi(Gi, Xi)OE′ , denote the pullback of the universal abelian

variety along SKi(Gi, Xi)OE′ → SK′i
(GSp(Vi, S

±
i )OE′ . For i = 3, this map factors

through SH(H, SH)OE′ and there is an identification

(4.4.9.1) A3
∼= j∗1A1 × j∗2A2.



INDEPENDENCE OF ` FOR FROBENIUS CONJUGACY CLASSES 45

Let x3 ∈ SK3
(G3, X3)(k) and write x1 ∈ SK1

(G1, X1)(k), x2 ∈ SK2
(G2, X2)(k)

for the image of x3 under j1 and j2. The isomorphism (4.4.9.1) implies we have an
isomorphism A3,x3

∼= A1,x1 ×A2,x2 . We let Ix3 ⊂ AutQ(A3,x3), Ix1 ⊂ AutQ(A1,x1)
denote the groups constructed in the same way as §4.4.5.

Proposition 4.4.10. There are natural exact sequences:

0 // C1
// Ix3

// Ix1
// 0

0 // C2
// Ix3

// Ix2
// 0

where C1 (resp. C2) is the kernel of the map f : G3 → G1 (resp. g : G3 → G2).

Proof. Since G3 ⊂ H, we may assume that the set of tensors defining G3 ⊂ GL(V3)
includes tensors corresponding to the projections of V3,Z(p)

onto the direct sum-
mands Vi,Z(p)

⊂ V3,Z(p)
for i = 1, 2. It follows that Ix3

respects the product de-
composition A3,x3

∼= A1,x1
× A2,x2

and hence we obtain a natural map Ix3
→

AutQ(A1,x1). Similarly, by considering the pullback to V3 of tensors defining G1,
one can show that Ix3 → AutQ(A1,x1) factors through Ix1 . We obtain a natural
map Ix3

→ Ix1
.

Let x̃3 ∈ SK3
(G3, X3)(OK) denote a lift of x3. Since C1 lies in the center of

G3, we have natural maps

C1 → AutQ(A3,x̃3
⊗K K)→ AutQ(A3,x3,k)

whose image lies in Ix3
.

We thus obtain a sequence C1 → Ix3 → Ix1 and it suffices to check the exactness
upon base changing to Q` for some prime ` 6= p. By [KPS, Theorem 6] there is a
semisimple element γ` ∈ G3(Q`) such that the natural inclusion Ix3

⊗QQ` ⊂ G3,Q`
(resp. Ix1

⊗QQ` ⊂ G1,Q`) identifies Ix3
⊗QQ` (resp. Ix1

⊗QQ`) with the centralizer
of γ` in G3,Q` (resp. f(γ`) in G1,Q`). We thus obtain the first exact sequence and
the argument for Ix2

is analogous. �

4.4.11. Proof of Theorem 4.4.6. It suffices to consider the case of neat prime-to-p
level structure. For i = 1, 2, 3, we write SKi for the special fiber of the integral
model SKi(Gi, Xi). Let x2 ∈ SK2,[b]µ2

(k). We first assume x2 = j2(x3) for some

x3 ∈ SK3
(k); by Lemma 2.2.8 we have x3 ∈ SK3,[b]µ3

(k). Let x1 ∈ SK1,[b]µ1
(k)

denote the image of x3. By Theorem 4.1.11 there exists K/Q̆p finite and x̃1 ∈
ShK1

(G1, X1)(K) lifting x1 such that the action of Ix1
(Q) lifts to A1,x̃1

. Then
we may consider Ix1

as a subgroup of G1 and we let T1 denote the connected
component of the center of Ix1

. The Mumford–Tate group of A1,x̃1
is a connected

subgroup of G1 which commutes with Ix1 , hence is contained in T1, as Ix1 and G1

have the same rank.
Let T3 ⊂ G3 denote the identity component of the preimage of T1 in G3 and

T2 the image of T3 in G2. By construction, the morphisms of integral models

SK1(G1, X1)OE′ ← SK3(G3, X3)OE′ → SK2(G2, X2)OE′

induce isomorphisms of completions at geometric points in the special fiber. Thus
let x̃3 (resp. x̃2) denote the point lifting x3 (resp. x2) corresponding to x̃1. Then
the Mumford–Tate group for A3,x̃3

(resp. A2,x̃2
) is contained in T3 (resp. T2). It

follows from Proposition 4.4.10 that Ix3 (resp. Ix2) is contained in the centralizer
of T3 in G3 (resp. T2 in G2), and hence the action of Ix2

(Q) lifts to one on Ax̃2
.
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Now let x2 ∈ SK2,[b]µ2
(k) be any point. It suffices to prove the result with

SK2,p
(G2, X2) in place of SK2

(G2, X2), and with x2 replaced by a lift to a point
of SK2,p,[b]µ2

(k), which we will again denote x2. Recall J ⊂ G2(Qp) is a set

mapping bijectively to a set of coset representatives for the image of (4.2.8.1).
Then by the construction of SK2,p(G2, X2) via SK1,p(G1, X1) in §4.2.8, there ex-
ists j ∈ J such that x2 ∈ [SK1,p

(G1, X1)+ × A (G2,Z(p)
)j]/A (G1,Z(p)

)◦. We let

x′2 ∈ [SK1,p(G1, X1)+×A (G2,Z(p)
)]/A (G1,Z(p)

)◦ be the point corresponding to x2

under the isomorphism induced by j. Then upon modifying x2 by an element of
G2(Apf ) which only changes the abelian variety A2,x2

up to prime-to-p isogeny, we

may assume x′2 = j2(x′3) for some x′3 ∈ SK3,p
(G3, X3)(k).

Let x̃′2 ∈ SK2,p
(G2, X2)(OK) be a lift of of x′2, for some finite extensionK/Q̆p. By

construction, corresponding to the element j, there is (after possibly increasing K)
a point x̃2 ∈ SK2,p

(G2, X2)(OK) lifting x2, and a p-power quasi-isogeny A2,x̃2
→

A2,x̃′2
taking sα,0,x2

to sα,0,x′2 (resp. sα,`,x2
to sα,`,x′2 for ` 6= p). By considering

the reduction of this quasi-isogeny one sees that x′2 ∈ SK2,p,[b]µ(k), and one also
obtains an induced isomorphism Ix2

∼= Ix′2 . From what we saw above, it follows
that we may choose x̃′2 such that the action of Ix′2 lifts to A2,x̃′2

. Then the action
of Ix2

∼= Ix′2 lifts to A2,x̃2
. �

4.4.12. We will use the above to deduce properties about the conjugacy class of
Frobenius as in [Kis17, §2.3]. Assume x ∈ SK2,[b]µ2

(k) arises from an Fq-point

x ∈ SK2
(G2, X2)(Fq) where Fq is a finite extension of kE2

. For ` 6= p a prime, let

γ` denote the geometric q-Frobenius in Gal(Fq/Fq) acting on the dual of the `-adic
Tate module T`A∨2,x. Since the tensors sα,`,x ∈ T`A⊗2,x are Galois-invariant, we may

consider γ` as an element of G2(Q`) via the level structure VQ`
∼= T`A2,x ⊗Z` Q`.

Corollary 4.4.13. Assume (G2, X2,G2) is a strongly acceptable triple. Suppose
x ∈ SK2,[b]µ2

(k) arises from x ∈ SK2(G2, X2)(Fq). There exists an element γ0 ∈
G2(Q), such that

(1) For ` 6= p, γ0 is conjugate to γ` in G2(Q`).
(2) γ0 is elliptic in G2(R).

Proof. The proof is the same as in [Kis17, Corollary 2.3.1]. Since A2,x is defined
over Fq, the q-Frobenius γ lies in Ix(Q). Let x̃ ∈ SK2

(G2, X2)(K) denote the lifting
constructed in Theorem 4.4.6. Then by considering the action of Ix(Q) on the Betti
cohomology of A2,x̃, we may consider Ix(Q) as a subgroup of G2(Q). Defining γ0

to be the image of γ inside G2(Q), we have that γ0 is conjugate to γ` in G2(Q`)
by the Betti-étale comparison isomorphism. If T is any torus in Ix containing γ0,
the positivity of the Rosati involution implies T(R)/wh2(R×) is compact. Hence
γ0 ∈ T(Q) is elliptic in G2(R). �

Remark 4.4.14. The elements γ` arise as the local Frobenii acting on the stalk of
a G2(Q`)-local system L` over SK2 ; see §5.1.1. Thus even though the proof of
Corollary 4.4.13 uses the Hodge embedding ι2 in order to define the abelian variety
A2,x̃, one can view it as proving a property of the local systems L` over SK2,[b]µ2

,

which is intrinsic to SK2
(G2, X2). In particular, the image of γ0 in ConjG(Q) is

independent of ι2.
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5. Independence of ` for Shimura varieties

We now apply the results of the previous section to prove `-independence for the
conjugacy class of Frobenius at all points on the special fiber of Shimura varieties.

5.1. Frobenius conjugacy classes.

5.1.1. Let p > 2 be a prime. We fix a strongly acceptable triple (G, X,G) and
set Kp = G(Zp). The associated Shimura variety has an integral model SK(G, X)
over OE constructed from an auxiliary triple (G1, X1,G1) and a (very good) Hodge
embedding ι1 as in Proposition 4.2.3. The auxiliary Shimura datum (G1, X1) plays
a minor role in what follows.

Let ` 6= p be a prime and suppose that in addition the compact open subgroup

K ⊂ G(Af ) is of the form K`K
`, with K` ⊂ G(Q`) and K` ⊂ G(A`f ). We let L̃`

denote the G(Q`)-local system on SK(G, X) arising from the pro-étale covering

SK`(G, X) := lim
←

K′
`
⊂K`

SK′`K
`(G, X)→ SK(G, X)

and we write L` for the induced local system on the special fiber SK over kE . If
ι : (G, X) → (GSp(V ), S±) is a Hodge embedding as in §4.4.1 then we have an
identification

(5.1.1.1) L` = Isom(sα,sα,`)
(VQ` ,V∨` )

where the scheme classifies Q`-linear isomorphisms taking sα to sα,`; here the no-
tation is as in §4.4.1.

5.1.2. Let y ∈ SK(Fq) and we write y for the induced geometric point of SK.
We let S0

K denote the connected component of SK containing y and x ∈ S0
K(k)

a fixed geometric point. Over S0
K, the G(Q`)-local system L` corresponds to a

homomorphism

ρ0
` : π1(S0

K, x)→ G(Q`).
We have a map

Gal(Fq/Fq)→ π1(S0
K, y)

∼−→ π1(S0
K, x),

where the isomorphism π1(S0
K, y)

∼−→ π1(S0
K, x) is well-defined up to conjugation.

We thus obtain a well defined conjugacy class in π1(S0
K, x) corresponding to the

image of the geometric q-Frobenius and we write Froby for a representative of this
conjugacy class.

5.1.3. For a reductive group H over a field F of characteristic 0, we write ConjH for
the variety of conjugacy classes in H. Explicitly, if H = Spec R, the action of H on
itself via conjugation induces an action of H on R, and we have ConjH = Spec RH .
Then ConjH is an F -variety which is a universal categorical quotient for this action,
and the set ConjH(F ) can be identified with the set of semisimple H(F ) conjugacy
classes in H(F ) (see [MF82, Chapters 0,1]). We write χH : H → ConjH for the
projection map. For example if H = GLn, ConjGLn is the variety An−1

F ×Gm,F and
the map χ takes an element of GLn to its associated characteristic polynomial.

In our setting, we thus obtain for each prime ` 6= p, a well-defined element
γy,` ∈ ConjG(Q`) corresponding to χG(ρ0

`(Froby)). Our main theorem concerning
the `-independence property of Shimura varieties is the following.
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Theorem 5.1.4. Let p > 2 and (G, X,G) a strongly acceptable triple. Let y ∈
SK(Fq) where Fq/kE is a finite extension. Then there exists an element γ0 ∈
ConjG(Q) such that γ0 = γy,` ∈ ConjG(Q`) for all ` 6= p.

Remark 5.1.5. A group theoretic argument shows that if we assume in addition
that Gder is simply-connected, γ can be lifted to an element of G(Q) (cf. Corollary
6.3.4). See also Remark 6.3.5 about the expectations surrounding liftability of γ.

The rest of §5 will be devoted to the proof of Theorem 5.1.4.

5.2. Explicit curves in the special fiber of local models.

5.2.1. We begin by recalling the local model diagram and properties of the Kottwitz–
Rapoport stratification. By Theorem 4.2.6 (3), there exists a diagram of stacks

(5.2.1.1) S̃ ad
K (G, X)

q

%%

π

xx

SK(G, X) Mloc
G,{µh}

where π : S̃ ad
K (G, X)→ SK(G, X) is a Gad-torsor.

Let M denote the special fiber of Mloc
G,{µh}; it is a scheme over kE . By the

construction of Mloc
G,{µh} in [KPZ, §3] (cf. [Lev16]), there is a reductive group

scheme G over Fp((t)) and a parahoric group scheme G for G such that M is
identified with a union of Schubert varieties inside the partial affine flag variety
FLG . By definition, FLG = LG/L+G is the fpqc quotient of the loop group LG

by the positive group L+G (see [PR08]). Let W denote the Iwahori Weyl group for
G. Fix an alcove a such that G is a standard parahoric and let J ⊂ S be the subset
of simple affine reflections corresponding to G. Then a determines an alcove a for
G, and we have an identification of simple reflections S ∼= S in a and a respectively
(see [Lev16, §3.3]). The parahoric G corresponds to the image J of J under this
identification.

Let WG denote the Iwahori Weyl group for G and let {µ} = {µh}. Then the
union of Schubert varieties appearing in M is naturally indexed by Adm({µ})J ,
under an order preserving embedding

Adm({µ})J →WJ\WG/WJ .

In particular the closure relations are given by the Bruhat order on Adm({µ})J .
Under our assumption that G is very special, this ordering has the following alter-
native description.

We let s ∈ B(G, Q̆p) denote the special vertex associated to G. Let S be a

maximal Q̆p-split torus of G defined over Qp such that s ∈ A(G,S, Q̆p) and T
the centralizer of S. Fix a Borel subgroup of G defined over Qp and assume we

have identified X∗(T )I ⊗Z R with A(G,S, Q̆p) via the choice of special vertex s.
We let µ ∈ X∗(T )I be the image of a dominant representative of {µ} in X∗(T ).
For λ, λ′ ∈ X∗(T )+

I , we write λ 2 λ′ if λ′ − λ is an integral linear combination of
positive coroots in the reduced root system Σ associated to G; we write λ ≺ λ′ if
in addition λ 6= λ′. Then there is an identification

WJ\W/WJ
∼= X∗(T )+

I ,



INDEPENDENCE OF ` FOR FROBENIUS CONJUGACY CLASSES 49

and the ordering 2 agrees with the Bruhat order on WJ\W/WJ under this identi-
fication (cf. [Lus83]). It follows that we have an identification

AdmG({µ})J = {tλ|λ ∈ X∗(T )+
I , λ 2 µ}.

For λ ∈ X∗(T )I , we write Mλ
k for the open stratum corresponding to tλ ∈

AdmG({µ})J . Then Mλ
k is the G(k[[t]])-orbit of an element ṫλ ∈ G(k((t))) rep-

resenting the image of tλ in WJ\WG/WJ . It follows formally from the existence

of the diagram (5.2.1.1) and the fact that Gad-orbits on Mk and G-orbits on Mk

agree, that SK,k admits a stratification by AdmG({µ})J . This is known as the
Kottwitz–Rapoport stratification and we write SλK,k for the stratum corresponding

to tλ ∈ AdmG({µ})J . From the definition of this stratification, for x ∈ SK(k) the
complete local ring of SλK,k at x is identified with the complete local ring at a point

x′ ∈ Mλ
k(k). Thus under our assumptions Mk and SK,k are normal schemes; cf.

Theorem 4.4.4. Since tµ ∈ AdmG({µ})J is the unique maximal element, it follows
thatMµ

k is contained in the smooth locus ofM and hence SµK,k is contained in the
smooth locus of SK,k.

The strata Mλ
k and SλK,k are both defined over the field of definition of λ ∈

WJ\W/WJ . In other words, if n is the smallest positive integer such that σn(λ) = λ,
thenMλ

k and SλK,k are both defined over Fpn ; we writeMλ and SλK for the models
over Fpn .

5.2.2. The key geometric property of the Kottwitz–Rapoport stratification on Mk

that we will need is the following.

Proposition 5.2.3. Let y ∈ Mλ(Fq) with λ ∈ AdmG({µ})J and λ 6= µ. There
exists a smooth, geometrically connected curve C over Fq and a map φ : C →MFq
such that

(i) There exists y′ ∈ C(Fq) such that φ(y′) = y.

(ii) φ−1(Mλ′

k ) is open and dense in C for some λ′ ∈ AdmG({µ})J with λ ≺ λ′.

Remark 5.2.4. Using an ampleness argument, it is easy to show that such a map
always exists if we replace Fq by its algebraic closure k. The key property is that
for M, this map exists without extending the residue field. By [Dri12, §6], there
are normal and Cohen–Macaulay schemes where this property fails.

Proof of Proposition 5.2.3. We first show using the G-action on M that it suffices
to consider the case

y = ṫλ ∈ G(k((t)))/G(k[[t]]).

Let σq denote the q-Frobenius; then since y ∈ Mλ(Fq), we have σq(λ) = λ.
Therefore we may choose the lift ṫλ ∈ G(Fq((t))) so that ṫλ ∈Mλ(Fq). By Lemma
5.2.5 below, there exists g ∈ G(Fq[[t]]) such that gṫλ = y in FLG . Therefore if C

satisfies the conditions (i) and (ii) for the point ṫλ, gC satisfies (i) and (ii) for the
point y. It therefore suffices to prove the case y = ṫλ; we make this assumption
from now on.

Now since λ ≺ µ, by Stembridge’s Lemma [Rap00, Lemma 2.3], there exists a
positive root α ∈ Σ such that λ+ α∨ 2 µ. Since λ, µ ∈ X∗(T )

σq
I , it follows that

λ+ σiq(α
∨) 2 µ
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for all i. If {α, σq(α), . . . , σm−1
q (α)} denotes the orbit of α under σq, it follows that

λ′ := λ+

m−1∑
i=0

σiq(α
∨) 2 µ,

and hence λ′ ∈ AdmG({µ})J . Now α determines a relative root α̃ of G over Fq((t))
which we always take to be the short root; then either 2α̃ is a relative root, or
no rational multiple of α̃ is a relative root. We let Uα̃ denote the relative root
subgroup corresponding to α̃ and Gα̃ the simply connected covering of the (semi-
simple) group generated by Uα̃ and U−α̃; it is a reductive group over Fq((t)). We
will identify Uα̃ with the corresponding unipotent subgroup of Gα̃. The parahoric
G determines a parahoric model Gα̃ of Gα̃ and there is a morphism

ια̃ : FLG
α̃
→ FLG,Fq

defined over Fq, where FLG
α̃

is the partial affine flag variety associated to Gα̃. Then
ια̃ factors as FLG

α̃
→ FLG′

α̃
→ FLG,Fq , where FLG′

α̃
is the corresponding partial

affine flag variety for the group generated by Uα̃ and U−α̃. The first map identifies
FLG

α̃
with the neutral connected component of FLG′

α̃
by [PR08, §6.a.1] and the

second is a proper monomorphism when restricted to a connected component. It
follows that ια̃ is a closed immersion. We write Uα̃ (resp. U−α̃) for the group
schemes over Fq[[t]] corresponding to Uα̃(Fq((t)))∩G(Fq[[t]]) (resp. U−α̃(Fq((t)))∩
G(Fq[[t]])). Then we claim that for each positive α, there exists a morphism

f : A1
Fq → FLGα̃

defined over Fq satisfying the following two conditions

(i’) f(0) = ė, where ė is the base point in FLG
α̃

.

(ii’) f(A1
Fq\{0}) ⊂ L

+Uα̃ṫα∨L+Gα̃/L
+Gα̃.

Assuming the claim we may prove the proposition as follows. We consider the
morphism

φ : A1
Fq → FLG , x 7→ ṫλ(ια̃ ◦ f)(x),

in other words we translate the composition ια̃ ◦f by ṫλ. Then condition (i) follows
from (i’) and condition (ii) follows from (ii’) using the fact that λ is dominant.

It remains to prove the existence of f satisfying (i’) and (ii’). We will construct f
explicitly using a presentation of the group Gα̃; it turns out that by [BT84, §4.1.4]
there are essentially three distinct cases to consider which we now describe.

If 2α̃ is not a relative root then there is an identification

Gα̃
∼= ResK/Fq((t))SL2

where K is some finite separable extension of Fq((t)) and the parahoric Gα̃ is char-
acterized by the property

Gα̃(k[[t]]) = SL2(OK ⊗Fq [[t]] k[[t]]).

If 2α̃ is also a relative root, then there is an identification

Gα̃
∼= ResK/Fq((t))SU3

where K/Fq((t)) is finite separable and SU3 is the special unitary group associated
to a hermitian space over a (separable)4 quadratic extension K ′/K. We recall the

4Since we have assumed p > 2, this is automatic.
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presentation of the K-group SU3 in [Tit79, Example 1.15]. We let τ ∈ Gal(K ′/K)
denote the non-trivial element and we consider the hermitian form on K ′3 given by

〈(x−1, x0, x1), (y−1, y0, y1)〉 = τ(x−1)y1 + τ(x0)y0 + τ(x1)y−1.

The group SU3 is the special unitary group attached to this form. For c, d ∈ K ′
such that τ(c)c+ d+ τ(d) = 0, we define u+(c, d),u−(c, d) ∈ SU3(K) by

u±(c, d) = I3 + (grs)

where I3 is the identity matrix and (grs) is the matrix with entries g∓1,0 = −τ(c),
g0,±1 = c, g∓1,±1 = d and grs = 0 otherwise. The root subgroups U±α̃ are then
given by

U±α̃(K) = {u±(c, d)|c, d ∈ K ′, τ(c)c+ τ(d) + d = 0}.
Then we may consider the parahoric

Gα̃(Fq[[t]]) = SU3(K) ∩GL3(OK′);

we call this the standard parahoric.
When K ′/K is unramified this is the only very special parahoric (up to conju-

gacy). WhenK ′/K is ramified, there is another conjugacy class of very special para-
horics in addition to the standard parahoric which we shall call the non-standard
parahoric. We let u′ be a uniformizer of K ′ such that τ(u′) = −u′ and we define
s ∈ GL3(K ′) to be the element diag(1, 1, u′). Then the non-standard parahoric Gα̃
is given by

Gα̃(Fq[[t]]) = SU3(K) ∩ sGL3(OK′)s−1.

We label the cases as follows.
Case (1): 2α̃ is not a root, Gα̃

∼= ResK/Fq((t))SL2 and Gα̃(Fq[[t]]) = SL2(OK).
Case (2): 2α̃ is a root, Gα̃

∼= ResK/Fq((t))SU3 and Gα̃ is the standard parahoric.
Case (3): 2α̃ is a root, Gα̃

∼= ResK/Fq((t))SU3 with K ′/K ramified and Gα̃ is the
non-standard parahoric.

We now proceed with the construction of f in each of the three cases.
Case (1). In this case the isomorphism Gα̃

∼= ResK/Fq((t))SL2 induces identifica-
tions

u± : ResK/Fq((t))Ga
∼−→ U±α̃.

Let u be a uniformizer of K; then we may define a map

f : A1
Fq → FLGα̃ , x 7→ u−(u−1x).

Clearly (i’) is satisfied, and a simple calculation in SL2 shows that for 0 6= x, we
have

u−(u−1x) ∈ u+(ux−1)ṫα∨L
+Gα̃

so that (ii’) also holds.
Case (2). Recall in this case, the parahoric Gα̃ is characterized by Gα̃(Fq[[t]]) =

SU3(K) ∩GL3(OK′). We define

f : A1
Fq → FLGα̃ , x 7→ u−(0, u′−1x),

where we recall that u′ ∈ K ′ is a uniformizer with τ(u′) = −u′. A calculation using
the presentation recalled above shows that for x 6= 0, we have

u−(0, u′−1x) ∈ u+(0, u′x−1)ṫα∨L
+Gα̃;

as in Case (1), it follows that (i’) and (ii’) are satisfied.
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Case (3). Recall K ′/K is ramified and Gα̃(Fq[[t]]) = SU3(K) ∩ sGL3(OK′)s−1.
We consider the map

A1
Fq → FLGα̃ , x 7→ u−(x,−x

2

2
).

Then in the presentation above, we have that ṫ−1
α∨u+(−2x−1, 2x−2)−1u−(x,−x2/2)

is equal to(
u′−1 0 0

0 −1 0
0 0 −u′

)(
1 −2x−1 −2x−2

0 1 2x−1

0 0 1

)(
1 0 0
x 1 0

−x2/2 −x 1

)
=

(
0 0 −u′−12x−2

0 1 −2x−1

u′x2/2 u′x −u′

)
.

This lies in the parahoric Gα̃, and hence we have

u−(x,−x
2

2
) ∈ u+(−2x−1, 2x−2)ṫα∨L

+Gα̃.

As in the previous two cases it follows that (i’) and (ii’) are satisfied. �

Lemma 5.2.5. Let y ∈ Mλ(Fq) and assume ṫλ ∈ G(Fq[[t]]). Then there exists
g ∈ G(Fq[[t]]) such that gṫλL

+G = y in FLG.

Proof. By definition, there exists h ∈ G(k[[t]]) such that hṫλ = y. We consider the
subgroup

G(k[[t]]) ∩ ṫλG(k[[t]])ṫ
−1
λ ⊂ G(k((t)));

it is the intersection of the kernel of the Kottwitz homomorphism κ̃G and the
stabilizer of a bounded subset of the building B(G, k((t))). Thus by [HR08, Prop.
3 and Remark 4], it arises as the k-points of a smooth group scheme Kλ defined
over Fq[[t]] with connected special fiber.

The element h is defined up to right multiplication by Kλ(k[[t]]); hence since
σq(y) = y, we have σq(h) = hk for some k ∈ Kλ(k[[t]]). By Lang’s theorem applied
to Kλ, there exists k1 ∈ Kλ(k[[t]]) such that g := hk1 is fixed by σq, and we have
gṫλ = y in FLG . �

5.2.6. Using Theorem 5.2.1.1, we may deduce the following result about the local
structure of the Shimura stack SK.

Corollary 5.2.7. Let x ∈ SλK(Fq) with λ ∈ AdmG({µ})J and λ 6= µ. There exists
a smooth, geometrically connected curve C ′ over Fq and a map φ′ : C ′ → SFq such
that

(i) There exists x′ ∈ C ′(Fq) such that φ′(x′) = x.

(ii) φ′−1(Sλ′K,k) ⊂ C ′ is an open dense subscheme for some λ′ ∈ AdmG({µ})J
with λ ≺ λ′.

Proof. We write

S̃K

qkE

  

πkE

~~

SK M
for the special fiber of (5.2.1.1). Since πkE is a torsor for the smooth group scheme

Gad,kE with connected special fiber, the point x lifts to a point x̃ ∈ S̃K(Fq) and we
write y for its image in M(Fq). By definition of the stratification on SK, we have
y ∈ Mλ(Fq). We apply Proposition 5.2.3 to y to obtain a map φ′ : C → MFq
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satisfying (i) and (ii) in Proposition 5.2.3 for some λ′ ∈ AdmG({µ})J with λ ≺ λ′;
we let y′ ∈ C(Fq) mapping to y.

Consider the pullback S̃K,Fq×MFq
C which is a smooth stack over Fq. By [LMB00,

Théorème 6.3], there exists a smooth scheme Y/Fq and a smooth map Y →
S̃K,Fq×MFq

C defined over Fq such that x̃ lies in the image of a point ỹ ∈ Y (Fq).
Now let Y λ

′
denote the preimage of Mλ′ in Y ; by the assumption on C, it is a

dense open subscheme of Y . By [Poo04, Corollary 3.4], there exists a smooth geo-

metrically connected curve C ′ ⊂ Y such that ỹ ∈ C ′(Fq) and C ′ ∩ Y λ′ 6= ∅ so that

the preimage of Y λ
′

in C ′ is open and dense. We write φ′ : C ′ → SK,Fq for the
composition

C ′ → Y → S̃K,Fq×MFq
C → S̃K,Fq → SK,Fq .

Then setting x′ = ỹ ∈ C ′(Fq), we have φ′(x′) = x, so (i) is satisfied, and property
(ii) follows by the construction. �

5.3. Compatible local systems and `-independence.

5.3.1. We recall the theory of compatible local systems. Let X be a normal scheme
over Fq where q is a power of p and let L` be a Q`-local system (lisse sheaf) on
X. For x ∈ X(Fqn), we write Frobx for the local Frobenius automorphism acting
on the stalk L`,x of L` at a geometric point x lying over x. Suppose that for every
closed point x ∈ X(Fqn) the characteristic polynomial det(1 − Frobxt|L`,x), has

coefficients in a number field E ⊂ Q` (this is conjectured to be the case if L` has
determinant of finite order). Let `′ be a prime not equal to p and λ′ : E ↪→ Q`′ an
embedding of fields. A Q`′ -local system K`′ is said to be λ′-compatible for L` if for
every closed point x ∈ X(Fqn), the characteristic polynomial det(1−Frobxt|K,`′,x)
has coefficients in E and there is an equality

det(1− Frobxt|L`,x) = det(1− Frobxt|K`′,x) ∈ E[t].

The existence of λ′-compatible local systems over smooth curves is due to Laf-
forgue [Laf02, Théorème VII.6] (under the assumption of finite determinant), and
the case of smooth schemes is due to Drinfeld [Dri12, Theorem 1.1].

5.3.2. We now continue with the notations of §5.1. For the rest of this section, it
will be convenient to fix a Hodge embedding ι : (G, X) → (GSp(V ), S±) as in
§4.4.1.

The element γy,` ∈ ConjG(Q`) arises as an element of ConjG(Q). Indeed the
image of γy,` in ConjGL(V )(Q`) under the map induced by ι lies in ConjGL(V )(Q)
since it corresponds to the action of Frobenius on the `-adic Tate module of an
abelian variety. Since ConjG → ConjGL(V ) is a finite map, γy,` ∈ ConjG(Q).

Similarly if `′ - p` is another prime, γy,`′ arises as an element of ConjG(Q).
We let F be a finite extension of Q such that γy,`, γy,`′ ∈ ConjG(F ); such an

extension exists since ConjG is a Q-variety. Let λ, λ′ be the two places over F
induced by the fixed embeddings i` : Q → Q` and i`′ : Q → Q`′ . We take ϑ :
GF → GLnF to be an arbitrary representation over F (not necessarily coming
from the Hodge embedding ι); then the G(Q`)-local system L` induces an Fλ-adic
local system L` over SK. Similarly we obtain an Fλ′ -adic local system L`′ .

Lemma 5.3.3. For any closed point x ∈ SK(Fq), the eigenvalues of Frobx acting
on L`,x are `-adic units.
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Proof. It suffices to prove this for a single faithful representation of G. For the
representation G→ GL(V ) induced by ι, the action of Frobx on L`,x corresponds
to the action of Frobenius on the `-adic Tate module of an abelian variety and
hence its eigenvalues are all `-adic units. �

5.3.4. We let ϑ(γy,`) ∈ ConjGLn
(F ) ⊂ ConjGLn

(Fλ) denote the image of the con-
jugacy class of Froby under ϑ and we similarly define ϑ(γy,`′) ∈ ConjGLn

(F ) ⊂
ConjGLn

(Fλ′).

Proposition 5.3.5. For any representation ϑ : GF → GLnF , we have

ϑ(γy,`) = ϑ(γy,`′)

in ConjGLn
(F ).

Proof. Let C be a smooth geometrically connected curve and ψ : C → SK,Fq a
morphism defined over Fq such that there exists a point x ∈ C(Fq) with ψ(x) = y.
We first show that if the proposition holds for the image under ψ of a Zariski open
and dense set U ⊂ C, then it holds for y.

We write LC` (resp. LC`′ ) for the pullback ψ∗L` of L` (resp. ψ∗L`′ of L`′) to
C. By Lemma 5.3.3, LC` satisfies the conditions in Chin’s refinement of Lafforgue’s

Theorem [Chi04, Theorem 4.6]. Thus upon enlarging F , there exists a Q`′ -local
system KC`′ over C which is λ′-compatible for LC` .

For any closed point x ∈ C(Fqs),

det(1− Frobxt|LC`,x̄) = det(1− Frobxt|KC`′,x̄) ∈ F [t].

By assumption, for any closed point x ∈ U(Fqs), we have

det(1− Frobxt|LC`′,x̄) = det(1− Frobxt|LC`,x̄) = det(1− Frobxt|KC`′,x̄).

Therefore, by the Chebotarev density Theorem, the semisimplifications of KC`′ and
LC`′ are isomorphic, and hence

ϑ(γy,`) = det(1− Frobyt|LC`,ȳ) = det(1− Frobyt|LC`′,ȳ) = ϑ(γy,`′)

as desired.
We now show that the Proposition holds for y ∈ SµK(Fq); we recall that SµK is

the open Kottwitz–Rapoport stratum and is smooth. Using the same argument as
in the proof of 5.2.7 (i.e. applying [LMB00, Théorème 6.3] and [Poo04, Corollary
3.4]), we may find a smooth geometrically connected curve C over Fq and a map
ψ : C → SµK,Fq defined over Fq such that there exists a point x ∈ C(Fq) with

ψ(x) = y and such that the preimage U := ψ−1(SK,[b]µ) ⊂ C of the µ-ordinary
locus is open and dense. By Corollary 4.4.13, the Proposition holds for points y′

lying in the image of U , and hence it holds for y by the above argument.
Finally we show that the Proposition holds for all y ∈ SK(Fq). We assume

y ∈ SνK(Fq) and we proceed by descending induction on ν; the case of the maximal
element ν = µ was proved above. Now suppose the result is true for all ν′ � ν. Let
ψ : C → SK,Fq be a map as in Corollary 5.2.7 where C is a smooth geometrically

connected curve over Fq. We let U ⊂ C denote the preimage of
⋃
ν≺ν′ Sν

′

K,Fq which

is Zariski open and dense. By induction hypothesis, the proposition holds for the
image of U , hence it holds for y.

�
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5.3.6. We may now prove Theorem 5.1.4.

Proof of Theorem 5.1.4. For all `, `′ 6= p, and ϑ as above, we have ϑ(γy,`) = ϑ(γy,`′)

by Proposition 5.3.5. This implies that γy,` = γy,`′ ∈ ConjG(Q), by a result of

Steinberg [Ste65, 6.6]. Hence, there exists γy ∈ ConjG(Q) such that γy = γy,` for
all ` 6= p. It suffices to show γy is defined over Q.

Since ConjG is a Q-variety, the residue field of the point γy is a finite extension
F/Q. Since γy ∈ ConjG(Q`) for all `, each finite prime of Q has a split prime in
F above it; hence the Chebotarev density theorem implies γy ∈ ConjG(Q). Indeed
let F ′/Q be the Galois closure of F. Then for every prime ` 6= p, there exists l a
prime of F ′ above ` such that the Frobenius Frobl lies in Gal(F ′/F ) ⊂ Gal(F ′/Q).
It follows that Gal(F ′/F ) intersects every conjugacy class of Gal(F ′/Q) and hence
these groups are equal. �

Remark 5.3.7. The application of [Ste65, 6.6] in the previous theorem is one of the
reasons we obtain γ as an element of ConjG(Q), as opposed to an element of G(Q).

6. Conjugacy class of Frobenius for abelian varieties

We apply the results of §5 to prove our main result concerning abelian varieties.

6.1. Mumford–Tate groups.

6.1.1. Let A be an abelian variety over a number field E. Recall we have fixed
an embedding i∞ : Q → C; using this we may consider E as a subfield of C. We
write VB for the Betti cohomology H1

B(A(C),Q) which is equipped with a Hodge
structure of type ((0,−1), (−1, 0)). This Hodge structure is induced by a morphism

h : S := ResC/RGm → GL(VB)

We write

µ : C× z 7→(z,1)−−−−−→ C× × c∗(C×)
h−→ GL(VB ⊗ C)

for the Hodge cocharacter.

Definition 6.1.2. The Mumford–Tate group G of A is the smallest algebraic
subgroup of GL(VB) defined over Q such that G(C) contains the image of µ.

The group G can also be characterized as the algebraic subgroup of GL(VB)
that stabilizes all Hodge cycles of type (0,0) on the tensor spaces V ⊗rB ⊗ (V ∨B )⊗r for
r ∈ Z≥0; it is known that G is a connected reductive group.

We remark that G depends on the embedding E ↪→ C; if G1 is the group
defined by a different embedding then there is a canonical inner twisting GQ

∼=
G1,Q induced by the torsor of tensor preserving isomorphisms between the Betti

cohomology groups (see [Del82, Proof of Theorem 3.8] for the construction of this
torsor).

6.1.3. For a prime number `, we write T`A for the Tate module of A. The action of
the absolute Galois group ΓE := Gal(E/E) on T`A

∨ gives rise to a representation ρ` :
ΓE → GL(T`A

∨) and the Betti-étale comparison gives us a canonical isomorphism

H1
B(A(C),Q)⊗Q Q`x ∼= T`A

∨ ⊗Z` Q`.
Deligne’s theorem that Hodge cycles are absolutely Hodge [Del82], implies that
upon replacing E by a finite extension, the map ρ` factors through G(Q`); see
[Noo09, Remarque 1.9]. In fact this condition does not depend on `.
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Lemma 6.1.4. The representation ρ` factors through G(Q`) for some prime `, if
and only if it factors through G(Q`) for all primes `.

Proof. The subgroup G ⊂ GL(VB) is the stabilizer of a collection of Hodge cy-
cles (sα)α. We consider the `-adic components (sα,`)`, as in §4.1.6. For σ ∈ ΓE,
(σ(sα,`))`, is again a Hodge cycle, by Deligne’s theorem [Del82, Theorem 2.11]. In
particular, if (σ(sα,`))`, and (sα,`)` have equal components at some prime `, then
they are equal. �

The lemma shows that the condition that ΓE fixes (sα,`)α pointwise does not
depend on `. This condition is equivalent to asking that ΓE maps to G(Q`).

6.1.5. We replace E by the smallest extension such that ΓE maps to G(Q`), and
we write ρG` for the induced map ΓE → G(Q`) and ι` for the inclusion G(Q`) →
GL(T`A

∨).
Let v be a prime of E lying above a prime p such that A has good reduction at

v. Upon modifying the embedding ip : Q→ Qp fixed in §4.1.1, we may assume that
v is induced by ip. We write E = Ev, and we let Fq denote the residue field of E
at v. For ` 6= p a prime, ρ` is unramified at v. Let Frv be a geometric Frobenius
element at v, we write γ`(v) = χG(ρG` (Frv)) ∈ ConjG(Q`) for the conjugacy class
of ρG` (Frv) which only depends on v and not the choice of Frobenius element. We
write Pv,`(t) for the characteristic polynomial of Frv acting on T`A

∨, which has
coefficients in Z and is independent of `.

6.1.6. We will make use of the following auxiliary construction. Let F/Q be a
totally real field, and let H′ := ResF/QGF. There is a canonical inclusion G ↪→ H′.
We let (V, ψ) be the symplectic space corresponding to H1(A(C),Q) where ψ is
a Riemann form for A and G → GSp(V ) is the natural map. We let W denote
the symplectic space over Q whose underlying vector space is V ⊗Q F and whose
alternating form ψ′ is given by the composition

W ×W ψ⊗QF−−−−→ F
TrF/Q−−−−→ Q.

Let cG : G → Gm denote the restriction of the multiplier homomorphism c :
GSp(V )→ Gm to G. We form the fiber product

H //

��

Gm

∆

��

H′
!ResF/QcG

// ResF/QGm
where the map ∆ is the diagonal map. Then H is an extension of Gm by the group
ResF/QGc

F, where Gc ⊂ G is the subgroup generated by Gder and the largest com-
pact subtorus of the center of G; see [KPZ, Lemma 7.2.5]. Thus H is a connected
reductive group over Q. The inclusion G ↪→ H′ factors through H and we let h′

denote the composition

S h−→ GR → HR.

Write X for the G(R)-conjugacy class of h and XH for the H(R)-conjugacy class
of h′.

Consider the composition

ι′ : H′
ResF/Qι−−−−−→ ResF/QGSp(V )

f−→ GL(W )
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where f is induced by the forgetful functor from F-vector spaces to Q-vector spaces.
It is easy to see that the restriction of ι′ to H factors through GSp(W ), and we also
denote by ι′ the induced map. We write S′± for the Siegel half space corresponding
to W . One checks easily that (G, X), and (H, XH) are Shimura data, and that we
have embeddings of Shimura data

(G, X) ↪→ (H, XH) ↪→ (GSp(W ), S′±).

6.2. The main theorem. We now prove our main theorem (cf. Theorem 1.1).
We need the following preliminary result.

Lemma 6.2.1. Let G be a connected reductive group over Qp. If g ∈ G(Qp) lies
in some compact open subgroup of G(Qp), then there exists a finite extension F/Qp
over which G splits and such that g lies in the parahoric subgroup of G(F ) associated
to a special vertex in the building B(G,F ).

Remark 6.2.2. Note that if G splits over F , the notion of special vertex, very special
vertex, and hyperspecial vertex in B(G,F ) all coincide.

Proof. Write g = gsgu for the Jordan decomposition of g so that gs is semisimple
and gu is unipotent. Since g lies in a compact open subgroup of G(Qp), g is power
bounded and hence gs and gu are power pounded. Let T ⊂ G be a maximal torus
defined over Qp such that gs ∈ T (Qp). We will take F to be the splitting field of
T .

Since gs ∈ T (F ) is power bounded, it is contained in TF,0(OF ) where TF,0 is the
connected Néron model for the base change TF . If we let A(G,T, F ) ⊂ B(G,F ) be
the apartment corresponding to TF , then gs acts trivially on A(G,T, F ).

Now gu ∈ U(F ) where U is the unipotent radical of some Borel subgroup B
of GF containing T . Let s ∈ A(G,T, F ) be any special vertex and we use this
vertex to identify A(G,T, F ) with X∗(T )⊗Z R. Since each affine root subgroup of
GF fixes a half apartment in A(G,T, F ), there exists a sufficiently dominant (with
respect to the choice of Borel B) special vertex s′ which is fixed by gu. It follows

that s′ is fixed by g. We write G̃ for the Bruhat–Tits stabilizer scheme over OF
corresponding to s′; by the above discussion we have g ∈ G̃(OF ). Since G is split

over F , G̃ is equal to the parahoric group scheme G associated to s′. �

6.2.3. We now return to the assumptions and notation of §6.1. Thus we have an
abelian variety A/E, such that ρ` : ΓE → GL(T`A

∨) factors through G(Q`) for all
`. Recall E = Ev and Fq is its residue field. The map ip : Q → Qp determines an
inclusion

(6.2.3.1) Gal(E/E)→ Gal(E/E).

We let σ̃q ∈ ΓE be the image under (6.2.3.1) of a lift of the geometric Frobenius in

Gal(E/E).

Proposition 6.2.4. Let p > 2. There exists a totally real field F such that if
(H, XH) denotes the Shimura datum of Hodge type coming from the construction
in §6.1.6, there exists a very special parahoric group scheme H for H = HQp such
that

(1) The image of ρGp (σ̃q) in H(Qp) lies in H(Zp).
(2) H ′ = H′Qp is a product of Weil restrictions of split groups.
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Proof. Let G = GQp . By Lemma 6.2.1 applied to the element ρGp (σ̃q) ∈ G(Qp),
there exists a finite extension F/Qp such that GF is split and there exists a special
parahoric G of GF such that the image of ρGp (σ̃q) in G(F ) lies in G(OF ). We let
F be a totally real field such that Fw ∼= F for all places w|p of F. By construction
H ⊂ H′ = ResF/QG and we have an isomorphism

H ′ := H′Qp
∼=
∏
w|p

ResFw/QpGFw
∼=
∏
w|p

ResF/QpGF

so that (2) follows.
We letH′ denote the parahoric group scheme ofH ′ corresponding to

∏
w|p G(OF ).

Then H′ ∼=
∏
w|p ResOF /ZpG, and since G splits over F , H′ is a very special para-

horic. It follows that H′(Zp) ∩ H(Qp) arises as the Zp-points of a very special
parahoric group scheme H for H. Since G(Qp) ⊂ H(Qp), the image of ρGp (σ̃q) in
H(Qp) lies in H(Zp) so that (1) is satisfied.

�

6.2.5. In order to apply the results of §5.1 we need to consider a modification of H
with connected center. Thus let T ⊂ H be the centralizer of a maximal Q̆p-split
torus in H. Then by an argument as in [Kis10, Proposition 2.2.4], we may choose
T a maximal torus in H such that TQp is H(Qp) conjugate to T and there exists
h ∈ X such that h factors through TR. We let Tc denote the maximal compact
subtorus of T which is defined over Q. Then T c = Tc

Qp is a product of induced

tori. We set H1 := H ×ZH T and let H1 denote the very special parahoric of H1

associated to H. We let X1 denote the conjugacy class of Deligne homomorphisms
for H1 determined by h× 1 so that (H1, X1) is a Shimura datum.

Lemma 6.2.6. (1) The triple (H1, X1,H1) is strongly acceptable.
(2) The inclusion G→ H1 induces a Gal(Q/Q)-equivariant injection

ConjG(Q)→ ConjH1
(Q).

Proof. (1) Let W ′ = HomZH
(W,W ) (Q-linear maps which are ZH-equivariant) and

we let H1 act on W ′ via (h, t)f(x) = hf(t−1x). Then as in [KP18, Lemma 4.6.22],
we may equip W ′ with an alternating form such that we obtain a Hodge embedding
(H1, X1)→ (GSp(W ′), S′±); thus (H1, X1) is of Hodge type.

Note that Hder
1 = Hder = H′der, and H1 is a very special parahoric. Moreover

ZcH1

∼= T c is a product of induced tori and hence the result follows.

(2) We first show that G→ H induces a Gal(Q/Q)-equivariant injection

(6.2.6.1) ConjG(Q)→ ConjH(Q).

Let g, g′ ∈ G(Q) such that there exists h ∈ H(Q) such that h−1gh = g. We consider
H as a subgroup of H′. Then under the identification

H′Q
∼=

∏
ι:F→Q

GQ,

g, g′ correspond to the elements (g, . . . , g), (g′, . . . , g′) respectively and we write
h = (h1, . . . , hn). Then h−1gh = g′ implies h1gh

−1
1 = g′. Thus g and g′ have the

same image in ConjG(Q). The Gal(Q/Q)-equivariance follows from the fact that
G→ H is defined over Q.



INDEPENDENCE OF ` FOR FROBENIUS CONJUGACY CLASSES 59

Now let h ∈ H(Q) and (h′, t) ∈ H1(Q) with h′ ∈ H(Q), t ∈ T(Q). Then we have

(h′, t)(h, 1)(h′, t)−1 = (h′hh′−1, 1),

and hence H→ H1 induces a Gal(Q/Q)-equivariant injection

ConjH(Q)→ ConjH1
(Q),

and the result follows by composing with (6.2.6.1). �

Theorem 6.2.7. Let p > 2 be a prime and v|p a place of E where A has good
reduction. Then there exists an element γ ∈ ConjG(Q) such that for all ` 6= p, we
have γ = γ`(v) in ConjG(Ql).

Remark 6.2.8. As remarked above, the group G depends on the embedding E ↪→ C
up to inner automorphism. If G′ is the group associated to a different embedding
E ↪→ C, the inner twisting GQ

∼= G′Q induces a canonical isomorphism ConjG
∼=

ConjG′ and it can be checked that the statement of the theorem is independent of
the choice of embedding.

Proof of 6.2.7. We may assume that G is not a torus as in this case A has complex
multiplication and the result is a theorem of Shimura–Taniyama. We choose a
totally real field F as in Proposition 6.2.4 and let (H, XH,H) denote the associated
triple. By construction, the image of ρGp (σ̃q) inside H(Qp) lies in Kp := H(Zp).
Hence, there exists a finite extension E′ of E such that ρGp |ΓE′ factors through Kp,
and such that there is a prime v′|v of E′ such that E′v′ has residue field Fq. We may
thus replace E by E′, without changing the statement of the theorem, and assume
that the image of ρGp in H(Qp) factors through Kp.

Now let (sα,`)` 6=p ∈ V̂ p(A)⊗ denote the `-adic realizations of the absolute Hodge

cycles for A. By our assumption on E, the representation ρp : ΓE → GL(V̂ p(A))
factors through G(Apf ) ⊂ H(Apf ), and hence through a compact open subgroup

Kp ⊂ H(Apf ). Write K := KpK
p.

We now define a point of ShK(H, XH) using the Hodge embedding

ι′ : (H, XH)→ (GSp(W ), S±).

Consider the abelian variety up to isogeny AF = A⊗Q F given by the Serre tensor

construction [Con04, §7], equipped with the isomorphism ε : V̂ (AF) ' V ⊗QAf⊗QF
induced by the identity on V . Since ρGp and ρp act via K, the K-orbit of ε is ΓE-

invariant. Thus, the triple (AF, λ ⊗ F, ε), defines a point x̃A ∈ ShK(H, XH)(E).
(Note that, since ψ is H-invariant, up to scalars, λ is defined over E as a weak
polarization).

Now let (H1, X1,H1) be the modification of (H, XH,H) given by the construc-
tion in 6.2.5. We set K1,p = H1(Zp), K1 = K1,pK

p
1 where Kp

1 ⊂ H(Apf ) is a compact

open subgroup containing the image of Kp. We let ỹA ∈ ShK1(H1, X1)(E) de-
note the image of x̃A. By Lemma 6.2.6 (1), the triple (H1, X1,H1) satisfies the
assumptions of Theorem 5.1.4. Thus we may apply it to the reduction yA ∈
SK(H1, X1)(Fq), where SK1

(H1, X1) is the integral model constructed from a
choice of auxiliary Hodge type Shimura datum. This implies that there exists
γ ∈ ConjH1

(Q) such that for all ` 6= p, we have γ = γ`(v) in ConjH1
(Q`). By

Lemma 6.2.6 (2), it follows that γ ∈ ConjG(Q) and γ = γ`(v) in ConjG(Q`). �

6.3. Refinements.
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6.3.1. We retain the notation introduced above. Write γ̃`(v) = ρG` (Frv). There are
a number of ways one might try to refine Theorem 6.2.7. For example one could ask
if γ lifts to a point γ̃ ∈ G(Q). When this is the case, one can also try to refine the
relationship between γ̃`(v) and γ̃. We will prove such a result when G has simply
connected derived group, and is quasi-split at p.

6.3.2. Let H,H ′ be connected reductive groups over a field K with algebraic closure
K̄. Suppose we are given an isomorphism H ' H ′ over K̄. Recall that an inner
twisting between H and H ′ is an isomorphism ψ : H ' H ′ over K̄ such that for
σ ∈ Gal(K̄/K), there exists gσ ∈ H ′(K̄) so that σ(ψ(h)) = gσψ(σ(h))g−1

σ for
h ∈ H(K̄). We say that a subgroup M ⊂ H transfers to H ′ via ψ, if ψ(M) ⊂ H ′

is defined over K, and ψ induces an isomorphism M ' ψ(M) over K. We say that
M transfers to H ′, if it transfers to H ′ via some ψ.

An element h ⊂ HR is called elliptic if it is contained in an elliptic maximal
torus, that is a maximal torus which is anisotropic modulo the center of H.

Lemma 6.3.3. γ ∈ ConjG(Q) lifts to an elliptic element γ̃R ∈ G(R).

Proof. The composite Gm
µ→ G

cG→ Gm is given by x 7→ xi for some i. Here,
as above, µ and cG are the Hodge cocharacter and multiplier homomorphism re-
spectively. For any lift γ̃ ∈ G(C) of γ, we have cG(γ̃) = qi [Del79, 2.2.3]. In
particular, cG(γ̃) ∈ R×,+. Hence there exists z ∈ ZG(R) with cG(z) = cG(γ̃). Set
γ1 = γz−1 ∈ ConjG(R). It suffices to show γ1 admits an elliptic lift in G(R).

Let γ̃1 ∈ G(C) be any lift. Under any representation of G (for example its
canonical symplectic one), the eigenvalues of the image of γ̃1 have absolute value 1.
Hence γ̃1 is contained in a maximal compact subgroup of G(C). Let Ḡ = G/w(Gm),
and denote by γ̃2 ∈ Ḡ(C) the image of γ̃1 Then γ̃2 is contained in a maximal
compact subgroup of Ḡ(C). Such a subgroup has the form Ḡc(R), where Ḡc is a
real form of Ḡ. Consider the canonical isomorphism ψ : Ḡc

C ' ḠC. As the center
of ḠR is anisotropic, ψ induces an isomorphism between the centers of Ḡ and Ḡc,
over R. Moreover, Gder is an inner form of its compact form, so this implies that ψ
is an inner twisting. Let T ⊂ Ḡc

R be a maximal torus containing ψ−1(γ̃2). Then T
transfers to Ḡ [LR87, Lem. 5.6], and ψ−1(γ̃2) ∈ T (R) ⊂ Ḡ(R) is elliptic. Any lift
of ψ−1(γ̃2) to G(R) yields the required lift of γ. �

Corollary 6.3.4. With the assumptions of Theorem 6.2.7, suppose that Gder is
simply connected and that GQp is quasi-split. Then γ lifts to an element γ0 ∈ G(Q)
such that

• γ0 ∈ G(R) is elliptic
• γ0 is conjugate to γ̃`(v) in G(Q`) for all but at most one prime ` 6= p.

Proof. Since γ lifts to an elliptic element by Lemma 6.3.3, this follows from the
argument of [Kot90, p188]. �

Remarks 6.3.5.

(1) When G is not quasi-split at p, there does not seem to be any reason to
believe that γ in the statement of Theorem 6.2.7 should lift to an element
of G(Q).

(2) When G is quasi-split at p, one expects the conclusion of Corollary 6.3.4
to hold without assuming that Gder is simply connected, and without ex-
cluding one prime ` 6= p. Indeed this follows when one can show that the
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isogeny class on the corresponding Shimura variety contains a point which
lifts to a special point. This is conjectured to hold in general [KPS22,
Conj. 2.3.8]. One way to motivate this conjecture would be to prove the
analogous statement for the admissible morphisms which appear in the
Langlands–Rapoport conjecture [LR87]. This is done in loc. cit when the
level at p is hyperspecial.

(3) It follows from the argument of [Kot90, p188] that the exceptional prime
in the statement of the corollary can actually be chosen in a set of positive
density. Of course the choice of this prime affects the choice of γ0.

(4) It is possible to prove a version of Theorem 6.2.7 and Corollary 6.3.4 which
includes ` = p, using the crystalline Frobenius. We aim to return to this in
a future work.

(5) In a paper in preparation [KZ], we extend our methods to prove a version of
Theorem 6.2.7 at a place v of E where A has bad reduction. This involves an
independence of ` statement for representations of the Weil–Deligne group.
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