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Fighter Problems

Invincible Fighter Bartroff et al (2010)

F(nat) = th(TL,t - 1) +ptk ?1&)( }{(I(/{) —|—F(TL - kat - 1)}
F(n,0) =0.
Frail Fighter Weber (1985)

F(n,t) = ¢F(n,t—1) —l—ptk max {a(k) +a(k)F(n —k,t —1)]}

)

General Fighter

F(n,t) = ¢F(n,t—1) —i—ptk I{nax {a(k) + c(k)F(n —k,t —1)}

yeey Tl

Might take c(k) = a(k) + u(1 — a(k)).



Monotonicity properties (A), (B) and (C)

.....

Let k(n,t) be the maximizing k in the above.

Intuitively obvious properties of an optimal policy are:
(A)  k(n,t) N ast
(B)  k(n,t) S asn N
(C) n—k(n,t) S asn
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(A) (B) (C) s of fighter problems

If
(i) {pt}t=1,.. is any sequence of probabilities;
(ii) a(k) is nondecreasing and concave in k, then
(A) holds for the invincible fighter, in the strong sense that

(A)*: k(n,pt—1,...,p1) is nonincreasing in each p;.

and for the frail fighter, nonincreasing in p;.

Does (A) hold for the general fighter?

(B) holds for the invincible fighter, but not frail fighter.
If also,
(iii) (k) is nondecreasing and log-concave in k, then

(C) holds for the general fighter.



Bomber Problem

Klinger and Brown (1968)

With discrete ammunition, and attacks occurring as a Poisson
process of rate 1, the continuous-time bomber problem (CBP) has
defining equations:

P(n,t) = P(survive to until time t)
t

=et 4 max  c(k)P(n—k,s)e” %) ds.
0 ke€{1,...n}

P(n,0) = 1.

Bernoulli model: a(k) = 1 — 6%, a concave function of k.



Doubly-discrete Bomber Problem (DBP)

Aim is to survive t periods. With s periods to go, an attack occurs
with probability ps (=1 — ¢s).
P(n,t) = @P(n,t —1)+p; max c(k)P(n—k,t—1)
ke{lvvn}
P(n,0) = 1.

Again we are interested in whether the following are true of false.
(A)  E(n,t) N\, ast ' proved
(C) n—k(n,t)  asn 7 proved
(B) k(n,t) S asn N ?



(A) (B) (C)s and open problems

F(n,t) = qF(n,t — 1)+ p; o Tax {a(k) + c(k)F(n — k,t —1)}
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(A) (B) (C)s and open problems
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0 Bernoulli | =u+ (1 —w)a(k) | =p ? no | yes | general fighter
0 concave | =u+ (1 —w)a(k) | =1 yes no | yes | general fighter
0 concave =4 (A)* | yes | yes | invincible fighter
0 concave = a(k) yes no | yes | frail fighter
1 0 Bernoulli = yes ? yes | bomber
1 0 log-concave =1 yes yes | yes | bomber
1 0 log-concave yes no | yes | bomber
1 0 log-concave =p yes no | yes | bomber
1 0 concave =p yes no | yes | bomber
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(A) (B) (C) s of the bomber problem

Theorem 1 (A) and (C) hold for the DBP (and CBP, CDBP and
CCBP) under generous assumptions that

(i) {pt}t=1,.. is any sequence of probabilities (i.e. nonstationary).

(iii) c(k) is any nondecreasing and log-concave function of k.

Is (B) true under these same generous assumptions?



Suppose c(k) is merely log-concave in k
(rather than concave in k)

(A) and (C) are true.
(B) is not true.

P = i—? for all t.

{c(0),¢(1),¢(2),¢(3),c(4),...} ={0,2,4,1,1,...}.
Note that ¢(i)? > ¢(i + 1)c(i — 1) for all 4 > 1.

{k(n, Dot ={1,1,1,2,2,3,2,...}.
ie. 3=Fk(6,4) > k(7,4) = 2.



Suppose c(k) is merely concave in k
(rather than of Bernoulli form c(k) = 1 — v6*)

(A) and (C) are true. (B) is not true.

Let ammunition be continuous (CDBP).
P(x,1) = g+ pe(z)
P(z,2) = ¢* + qpe(z) + man{qu(y) +pPey)e(z — y)}

We design c¢(+) so that it is not log-concave in the neighbourhood
of x = 3, and so that in this neighbourhood,

y(r,2) = argmas{e(y) Pz — y, 1)} = 5.




c(x) for which P(x,2) is not log-concave
in the neighbourhood of x = 3

— mind Lt 3 .17, 31 . 5 , 31
¢(z) = min {96 + 96 % 96 T 102% 12 T 381% 1}

;

wt+oss  re05]

o+ 1% T €[5 5

5+ aaT 7[5 5
1, x> 22

w
—



(B) is not true under generous assumptions

y(32,3) = arg max [c(y)F(SlA —y, 2)] = 14.0079
y€[0,5.24]

33,3) = F(31.5 —1,2)| = 13.9174.
y(33,3) argyer[rol%ga{dy) ( Y, )]
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(B) is not true under generous assumptions

y(32,3) = arg max [c(y)F(31.4 —y, 2)] = 14.0079
y€[0,5.24]

33,3) = F(31.5 —1,2)| = 13.9174.
y(33,3) argyer[rol%ga{dy) ( Y, )]

(B) fails because

3.4027 = [ P(6.39 — ,2]
arg max c(y)P( y,2)

3.3965 = [ P(6.40 — ,2].
arg max c(y)P( Y,2)

6.39 — 3.4027 = 2.9873
6.40 — 3.3965 = 3.0035
lie just either side of x = 3, where P(x,2) is not log-concave.



Discrete ammunition counterexample

min {1l T T . 371
c(z) = mm{24x, 18 T 288%s 1152 T 4320 ) 64 7+ 3841' 1}

10 20 30 40

{k(n,2)}20 | = {1,2,3,4,5,6,7,8,9,9,9,9, 10,10, 11, 11, 12, 12, 13, 13,

13,14, 14, 14, 14, 14, 14, 15, 15, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}
{k(n, 3)};110=1 =1{1,2,3,4,5,6,6,7,7,8,8,8,8,9,9,9,9,10, 11, 12,

13,13,13,13, 14, 14, 14, 14, 14, 14, 15, 14, 15,14, 14, 15, 15, 15, 15, 15}.

So k(31,3) = 15 > 14 = k(32, 3), in contradiction to (B).
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Log-concavity of P(n,t)

1. (A) follows from "Ht ) Aint.

2. (B) would follow from P};"g}tsﬂ N\ in 7,
i.e. if P(n,t) is log-concave in n.
P(n,1) = q+ pc(n) is concave in n.
P(n,2) is log-concave in n (for c(k) = 1 — 6% model).

P(n,t) is not necessarily log-concave when ¢ > 3.
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Log-concavity of P(n,t) can fail in DBP

P(n,t) fails to be log-concave when

_ P(n+1,t) P(n,t)
At =—pa s~ Pm—1p "

for some n,t and some p, 6.
p=0.58, 0 =06, A(8,3) = 5aos2l00617500 - — (0.0001402.
Simons and Yao (1990)

p = 0.7207, 6 = 0.7254, A(8,3) = 0.0004779.
(most positive A found)




Regions of Log-concavity in DBP

P(8,3)? — P(7,3)P(9,3) as a function of p and 6.
The region where this quantity is negative lies in the central
trench, where p is a bit less than 6.
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Log-concavity of P(n,t) can fail in DBP

. | know of no example where A(n,t) > 0 for n < 8.

. Log-concavity can fail for arbitrarily large n.

Eg. 0=p=299/100, A(n,3) > 0 for n = 16,22, 28,34, ... .

. Log-concavity can fail for arbitrarily large t.
Take p a bit less than 6 and both approaching 1.

. Continuous time is the limit as p — 0.
So what about small p?

For p = 0.01, 6 = 0.01000048, A(8,3) = 4.58768 x 10715,
(This really is positive; checked in exact arithmetic).
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No examples have (yet!) been found in CBP for which P(n,t) is
not log-concave (continuous time, discrete ammunition).



Log-concavity in CBP

No examples have (yet!) been found in CBP for which P(n,t) is
not log-concave (continuous time, discrete ammunition).

However, for a slightly different model P(n,t) fails to be
log-concave (and nonetheless (B) appears to hold).

We take c(k) = 1 — (7/8)* and make the restriction that only 1, 2
or 3 missiles may be fired.



Log-concavity in CBP

0.30
0.25
0.20
0.15
0.10

0.05

Figure: —A(n,t) = P(n,t)/P(n—1,t) — P(n+1,t)/P(n,t), for the
continuous-time bomber problem with § = 1/2, for 0 < ¢ < 20 and
n=2,...,8 (reading left to right across the asymptotes). Although we
see that P(n,t) is log-concave in n, the fact that these functions are not
monotone increasing, in either n or t, means that it is probably difficult
to prove that P(n,t) is log-concave in n by some sort of induction on n,
or using differential equations in ¢.



Continuous ammunition

CDBP and CCBP (continuous ammunition)

P(2,t) = qP(e,t — 1) + p max c(y)P(z — y,t — 1)
O<y<z

or

d
h@t) = Jnax. c(y)P(z —y,t)

1. P(z,t) is log-concave in © <= (B) is true.

P(z,t)P"(z,t) — P'(z,t)? < 0.



Towards an iterative approach to proof of (B)

Consider iterating, from a start of Py(n,t) = 1, with

t
Pi(n,t) =e '+ max c(k)Pi_1(n—k,s)e" "% ds
o ke{l,...n}

Might we inductively show that P;(n,t) is log-concave?
This poses a problem of maximizing the probability of surviving

until time ¢, or until the first ¢ attacks have been repelled.
Discrete time equivalent problem is

Pi(n,t)=q +Zkel{?,ax, P i(n—k,s)¢%p
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Towards an iterative approach to proof of (B)

Discrete time equivalent problem is

Pi(n,t) =q +Zke?11,ax, Pi_i(n—k,s)¢ 1 %p

Denote the maximizer of ¢(k)P;(n — k,s — 1) as k;(n, s).

With p = 1/2, ¢(k) = 1 — (3/5)*, we find
ks (7,18) = 2 > kg(8, 18) =
So (B) does not hold for kg(n, 18).

Also, rather surprisingly, k7(7,17) = 1 and kg(7,17) = 2.



Varying the final missile's miss probability (B)

Suppose that if the last missile is fired in a volley of k then
alk) =1—-yo*t wvelh 1]

Might we find k(n,t,1) nonincreasing in 1 so that
k(n,t) = k(n,t,0) > k(n,t,1) = k(n — 1,t)?

No counterexample to this has (yet) been found.
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Another variation in which (B) fails
Suppose the boundary condition P(n,0) = 1 is changed to

Pn,0)=1+X n=12...

Then k(n,t) — k(n —1,t) as A — oo.

But with p = 6 = 3/5, we find p(8, 3, \) is not nonincreasing in A,
and indeed

k(8,3,0.6) =4 and k(9,3,0.6) = 3.

So (B) fails, with this slight change of boundary condition.

Interestingly, for a boundary condition of P(n,0) = n, we find no
counterexample to P(n,t) being log-concave.
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Special cases when (B) is true

1. DBP: k(n+1,t) > k(n,t) for t <3 orn < 3.

2. DBP: k(n+1,t) =1 = k(n,t) = 1.



Conclusions

1. Proofs of (A) and (C) make no special use of c(k) = 1 — 6.
In discrete-time models they do not need p; = p.
They need only that ¢(k) be log-concave.
Yet (B) does not hold under such generous assumptions.



Conclusions

1. Proofs of (A) and (C) make no special use of c(k) = 1 — 6.
In discrete-time models they do not need p; = p.
They need only that ¢(k) be log-concave.
Yet (B) does not hold under such generous assumptions.

2. Experimental evidence still suggests the following are true (in
the doubly discrete versions of the problems):

(A) in the general fighter problem, when p, is nonstationary
and a(k) =1 — 0%, c(k) =1 — vo*.

(B) in the bomber problem, when p; is nonstationary and
c(k) =1 -6~
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