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Abstract 

We consider a queuing system with several identical servers, each with its own 
queue. Identical customers arrive according to some stochastic process and as 
each customer arrives it must be assigned to some server's queue. No jockeying 
amongst the queues is allowed. We are interested in assigning the arriving 
customers so as to maximize the number of customers which complete their 
service by a certain time. If each customer's service time is a random variable 
with a non-decreasing hazard rate then the strategy which does this is one which 
assigns each arrival to the shortest queue. 

QUEUING; SHORTEST LINE; STOCHASTIC ORDER; MULTI-SERVER 

1. Introduction 

Consider a queuing system having m identical servers, each with its own 
queue. Identical customers arrive according to some arbitrary stochastic process 
and upon arrival each customer must be assigned to some server's queue. No 
jockeying amongst the queues is allowed. Each server serves its queue according 
to a first-in first-out (FIFO) discipline and the time taken to serve any customer is a 
random variable with a non-decreasing hazard rate. This means that the longer a 
customer has been in service the more likely it is to complete service shortly. 
We are interested in assigning the arriving customers so as to maximize the 
number of customers that complete their service by a certain time. S* is the 
strategy of assigning customers to queues which puts each arriving customer at 
the rear of the queue for which the expected time until it will begin service is 
least. It is the result of this paper that amongst all possible assignment strategies, 
S* is optimal in the sense of stochastic order. It maximizes for all k and s the 
probability that k or more customers complete service by time s. 

Winston (1977) suggested this problem and proved the optimality of S* in the 
case where the servers are identical exponential and the customer arrival process 
is Poisson. We begin by giving a quick proof of the result for exponential servers 
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while making no assumption about the arrival process. We then treat the more 

general case of a service distribution which has a non-decreasing hazard rate. It 
is this last case which best models situations of parallel servers found in 

supermarket checkouts and highway toll stations. 

2. Optimality of S *: exponential servers 

Theorem 1. Assume that the servers are identical exponential. Then S* is 

optimal in that it maximizes for all initial states, k and s the probability that k or 
more customers complete service by time s. 

Proof. The proof is by induction on k. Clearly the theorem is true for k = 1. 
Assume it is true for k = 1, - - -, k'- 1. By the inductive hypothesis it must be 

optimal to assign arrivals according to S* after the time of the first service 

completion. So we only need to show that S* is optimal prior to that time. Note 
that there is no difference between queues with the same number of customers. 
S* is the strategy which assigns each arriving customer to a queue with the least 
number of customers. 

Suppose at the start that queue 1 contains more customers than queue 2. 

Suppose that during the time prior to the first service completion strategy S, 

assigns the first arrival to queue 1. Let S2 be a strategy which instead assigns that 
first arrival to queue 2 and then up to the time of the first service completion 
assigns each arrival to the same queue as it would have been assigned had S, 
been followed, except that the first arrival, if any, which would have been 

assigned by S, to queue 2 is assigned instead by S2 to queue 1. We also assume 
that up to the time of the first service completion we do not service queue 2 as 

long as queue 2 would be empty had S, been followed. Then just after the first 
service completion occurs, irrespective of when and in which queue it takes 

place, we find either that the states of the queues reached by S, and S2 are 

identical, or that the state reached by S2 has one less customer in queue 1 and 
one more customer in queue 2 than the state reached by S,. So at the time of the 
first service completion the effects of S, and S2 will have been either identical or 
so as to cause a difference in the placement of one customer. If the latter is the 
case then S2 is at least as good as S,. For imagine that the one customer 

differently placed had been an arrival just after the time of the first service 

completion. Using the inductive hypothesis for k = k'- 1 we see that to have 

placed this customer in queue 2 is at least as good as having placed it in queue 1, 
since prior to its placement queue 1 was no shorter than queue 2. So S2 is a 
strategy at least as good as S,. If we drop the assumption that the service of 
queue 2 is delayed as long as it would be empty had S, been followed, then S2 is 
even better. Hence it is optimal to assign the first arrival (and by similar 
arguments all subsequent arrivals) to a queue with the least number of 
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customers. The theorem is thus true for k = k' and the proof by induction is 

complete. 

3. Optimality of S*: servers of non-decreasing hazard rate 

In considering the case where the service distribution has a non-decreasing 
hazard rate we work in discrete time using the following model. Time proceeds 
in discrete periods t (t = 1, 2, 3, - - ). During period t all arriving customers are 
first assigned to queues and then the customers at the front of queues are each 
given one period of service. An age is associated with each customer. A 
customer which has received no service has age 0. A customer at the front of a 
queue with age x at the start of period t completes service that period with 
probability p(x). If it does not complete service that period then its age at the 
start of period t + 1 is x + 1. Although in the usual course of events customers 
will have integer ages we shall allow starting states in which the ages take any 
values in [0,oo). We assume that p(x) is non-decreasing, continuous and 
differentiable in x and that p (x) = 1 for all x > some N. S* assigns each arriving 
customer to a queue which amongst those with the least number of customers 
has a front customer who has been in service the longest. 

A state of the queues is specified by (n; x) = (ni, - - -, n; xl,, -, ), where n, 
is the number of customers in queue i and x, is the age of the customer at the 
front of queue i. We shall denote by (n; x; i) the state which is derived from the 
state (n; x) by the addition of exactly one more customer to queue i. Similarly 
(n; x; i, j) denotes the state which is derived from the state (n; x) by the addition 
of exactly one customer to each of the queues i and j. Given the customer arrival 
process we shall denote by P ,.,(n; x) the probability that k or more customers 
complete service by the end of period s - 1 given that we start at the beginning 
of period t in state (n; x) and apply assignment strategy S. We shall write 

Pk,,, (n; x)for Pf,',,(n;x), and Pk,,,s(nl, n, n, nm;*,x2,x', m) for Pk-,,s(n, - 1, 
n2, n, m; 0, 

X2,'' , X *). 

Theorem 2. S* is optimal in that for any other strategy S, Pk, ,(n; x) 
- 

P,,,s(n; x) for all (n;x), k, t and s. 

Proof. The proof is by induction on. t. Clearly the theorem is true for t = s. 
Assume it is true for t = t' +1, 

-., 
s. By the inductive hypothesis it must be 

optimal to apply S* from period t'+ 1 onwards. So we only need to show that it 

is optimal to apply S* at period t'. We say that 1 is longer than 2 for (n; x) when 

queue 1 has a greater expected service time than queue 2. This occurs if n1 is 

greater than n2 or if n1 equals n2 with x1 less than x2. 
Consider the assignment at t' of the customers which arrive that period. 

Suppose that by assigning all but one of the arrivals we reach state (n; x) for 
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which 1 is longer than 2, and that by assigning the one remaining arrival we can 
reach either of the states (n; x; 1) or (n; x; 2). Now for any state (n; x) we shall 
define: 

Dk,,,s(n; x) = Pk,,,s(n; x; 2)- Pk,,,5(n; x; 1). 

It is the result of Theorem 3 that if 1 is longer than 2 for (n; x) then 

Dk,,,(n; x) 0 for all k, t and s. Applying this result for t = t' to a problem in 

which there are no arrivals at t' but otherwise the same arrivals as in our original 
problem, we deduce that it is at least as good to assign the arrivals at t' so as to 
reach the state (n; x; 2) as to assign them so as to reach the state (n; x; 1). From 
this it is clear that it is optimal to assign arrivals according to S * at period t' and 
the inductive proof is complete. 

Theorem 3. For all k, t and s the derivatives in (1), (2) and (5) exist and 

(1) d2/dx dx2{Pk,,s (n ; x)} - 0, 

(2) d/dx2{Pk,,s(n; *," , , xm)- Pk,,s(n ; N,..., x, )} 
5 0, 

(3) {Pk,s(n;*, *, ..., x)- Pk,ts(n; *, N, - - -, xm)} 
- 

{Pk,,,,(n; N, *, - -, xm) - Pk:,,,s(n; N, N, 
" 

, x,)} -0, 

and with 1 longer than 2 for (n; x), 

(4) Dk,,,,(n; x ) 0, 

(5) d/dx,{Dk,,,s(n ; x)} 0 

and 

(6) 
Dk,,,,s(n; 

*, --, x, )- Dk,,.,s(n; N,.--, x,) 
-<0. 

Proof. All of (1)-(6) are proved by induction on t. Clearly they are true for 
t = s. Assume that they hold for t = t'+ 1, - - -, s. The steps by which we show 
that (1)-(6) are true for t = t' are routine but lengthy. So we will explain the 
inductive step in detail for only (1) and (5) and just indicate the check of the 
inductive step for the others. Let pi = 1- q, and p' denote respectively p (x,) and 
dldx, {p (x,i )}. 

I. Inductive step for (1). It is enough to consider the case m = 2 where there 
are no arrivals at t': 

Pk,,,, (n;x) = pp.P(*, *)+pq2.P(*,x+ 1) 

+ qp2 P(x + 1, *)+ qq2 P(x + 1, x2 + 1), 

where for simplicity we have omitted the suffices k, t' + 1, s and the argument n 
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from the four P's on the right-hand side. By the inductive hypothesis for 
t = t'+ 1 the right-hand side is differentiable and 

d 
2/dxdx2{Pk,,,,s(n; x ) 

(7) = qq2 . d2/dxidx2{P(x + 1, x2 + 1)} 

(8) + p'q2. d/dx2P(*, x2 + 1)- P(X1 + 1, x2 + 1)} 

(9) + qip'. d/dx,{P(x, + 1, *)- P(x, + 1, x2 + 1)} 

(10) + P 
' 

[{P(*, *)- P(*, X2 + 1)x - {P(X1 + 1 P(XI + 1,X2 + 1)]. 

Now by the inductive hypothesis for (1) we have (7) _-0. By the inductive 

hypothesis for (1) and (2) we have, 

0 d/dx2{P(*, x2 + 1)}- P(N, x + 1) by (2) 
(11) 

Sd/dx2{P(*, x2 + 1)- P(x, + 1, x2 + 1)} by (1). 

So noting that 
p'- 

0 we have (8) 
5-0 

and similarly (9) 5 0. By the inductive 

hypothesis for (1) and using (11) above we have, 

0 - {P(*, *) - P(*, N)} - {P(N, *) - P(N, N)} by (3) 

(12) - {P(*, *)- P(*, N)}- {P(xl + 1, *)- P(xi + 1, N)} by (11) 

S{(P(*, )- P(*, x2 + 1)- P(x + 1, )- P( + 1, X2 + 1)} by (11). 

So we have (10) - 0 and the inductive step showing that (1) is true for t = t' is 

complete. 
Note that (2) and (3) are difference versions of (1) in which differentiation is 

replaced by differencing between x, taking the values * and N. Since the states 

(n; *, x2) and (n; N, x2) which appear in (2) are nearly the same we can choose S* 
to assign arrivals to exactly the same queues in both states. A similar remark 

applies to the four states appearing in (3). So once again arrivals are irrelevant to 
the checking of the inductive step for (2) and (3) and the check follows similar 
lines as that for (1). 

II. Inductive step for (5). We begin by showing that we can disregard arrivals 
at t'. The two states appearing in the definition of D(n; x) are (n; x; 2) and 

(n; x; 1). As 1 is longer than 2 for (n; x) an arriving customer will be assigned by 
S* to the queues in these two states so that they result as one of the following 
pairs: 

(a) (n;x;2,1) (n;x; 1,2), 
(b) (n; x;2, 2) (n; x; 1, 2), where 1 is longer than 2 for (n; x;2), 
(c) (n; x;2, j) (n; x; 1,j), some j > 2 where 1 is longer than 2 for (n; x; j), or 
(d) (n; x;2, j) (n; x; 1, 2), some j >2 where 1 is longer than j for (n; x;2). 
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If the assignments occur as in (a) then the two states become identical and D = 0. 
If they occur as in (b), (c) or (d) the pair of states which results is still of the type 
appearing in the definition of D, provided that in case (d) we interchange the 
labels on queues 2 and j. But since the derivative of interest is with respect to x, 
such an interchange of labels on 2 and j is of no consequence. So it is enough to 
check the inductive step when m = 2 and there are no arrivals at t'. We treat 

separately the cases of n2 > 0 and n2 = 0. 
Suppose first that n2 >0. Then 

dldxl{Dk,,S,,(n; x)} 

(13) = qq2 . dldxl{D(x, + 1,x2 + 1)} 

(14) + qlp2. dldx,(D(x, + 1, *)} 

(15) + pq2 . {D (*,x2 + 1)-- D (x + 1, x2+ 1)} 

(16) +PIp2 .{D(*, *)- D(x + 1, *)}, 

where we have abbreviated the notation on the right-hand side as in I. Now by 
the inductive hypothesis for (5) we have (13) 1 0 and (14) 0. When n, $ n2 then 
by the inductive hypothesis for (5) and (6) we have 

0 D(*, x2 + 1)- D(N, x2 + 1) by (6) 

= 
D(*, x2 + 1)- D(x1 + 1, x2 + 1) by (5). 

So we have (15) 5 0 and similarly (16) - 0. When n, = n2 then 1 will not be longer 
than 2 at t' + 1 if the customer at the front of queue 1 completes service at t'. But 
then each of the terms in (15) and (16) is i 0 and so (15) and (16) are 0. 

Suppose now that n2 = 0. Using the result (1) which is true for t = t' by I above 
we have 

d/dx,{Dk,, s(n;x)}= d/dx,{Pk,,t(nl, 1; x1,0)- 
Pk,,,,rs(nl 

+ 1,0; xx,0)} 

< dldxl{Pk+l, ,5(nh, 2; xl, N) 
- 

Pk,,,, (n + 1, 0; xl, 0)} by (2) 

(17) = qi. 
dldxl{D(ni, 

0; x, + 1, 0)} 

(18) + p'{D(n, 0; *, 0)- D(ni,0; x, + 1, 0)}. 

By the inductive hypothesis for (5) we have (17) X0 and by the inductive 
hypothesis for (6) we have (18) 0. This completes the inductive step which 
shows that (5) is true for t = t'. Note that (6) is a difference version of (5) and the 
inductive step for (6) can be checked similarly. We deduce (4) from (5) and (6) by 
observing that for n1 = n2 and x = x2 we have D(n;x)=O 0 and that D is 
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increasing as the length of queue 1 increases. This concludes the proof of 
Theorem 3. 

4. Extensions and related results 

The results of Section 3 can be extended by letting N -- oo. We can also deduce 
that S* is the optimal strategy in a continuous-time formulation. In continuous 
time the probability that a customer at the front of a queue with age x completes 
service in the next small interval St is h (x). St, where the hazard rate h (x) is 

non-decreasing, continuous and differentiable in x. For a distribution on service 
times with density f(x) and distribution function F(x) we have that h(x)= 

f(x)/{1 - F(x)}. Suppose we wish to maximize the probability that k or more 
customers complete service by time s. It is enough to consider the case where no 

queue initially contains more than k customers and where the total number of 
future arrivals and customers initially present is exactly mk. Assume customer i 

requires a service time si which has distribution function Fi(si)= 
{F(ai + si) - F(ai)}/{1 - F(ai)} if the customer begins its service with age ai. 
Unless the customer is one which is initially at the front of a queue it begins 
service with age 0. Customer i arrives at time t, where t, is 0 if the customer is 

present initially and where the t,'s have a joint distribution function 

G(t, .. ", temk). Let S be a strategy which assigns arrivals to queues knowing 
only the F,'s, G, and the past history of the system. Define 

AS(n; x; s, - - , ,Smk; tn ' l, , tmk) to be 1 or 0 as S does or does not achieve k 
service completions by time s when the initial state is (n; x) and the service and 
arrival times are si, 

" 
S, Sk and t1, 

? . 
, temk Under S the probability of k or more 

service completions by time s is given by the multiple integral 

. 

f,.• 
" 

.. 

f- 

As 
(')dFi(si)" 

...dFmk 
(Smk)dG(t,,'7 ", 

tk), 

where A s(.)dF1 ... dFmkdG is Riemann integrable. This integral may be approx- 
imated by a Riemann sum in which [0, s) is divided into M segments of length 
s/M. Such a Riemann sum is just the probability of k or more service 

completions by the end of interval M in a discrete-time formulation of the 

problem and is maximized for all M by the strategy S*. The multiple integral is 
the limit of Riemann sums as M --+oo. So S* must be optimal for the 
continuous-time problem. 

There are several further claims which are true for S*. 
(i) If we must assign arrivals without knowing the ages of the customers at 

the fronts of the queues, so that we must assign at random amongst queues with 
the same number of customers, then S* is still optimal. 

(ii) If a reward 1 is earned every time a customer completes service and 
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rewards are discounted over time at discount rate a, then S* maximizes the total 
discounted reward. 

(iii) S* minimizes the expected value of the mean customer waiting time. 

(iv) S* maximizes the probability that no server is idle at time t. 
The method of proof used in Section 3 can also be applied to other stochastic 

multi-server assignment problems. In Weber and Nash (1978) we find the 

optimal strategy for the problem considered by Glazebrook and Nash (1976) of 

scheduling stochastically failing components in a piece of machinery so as to 
minimize the number of components which fail by a certain time. 
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