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We consider a flexible manufacturing facility that can be operated in any of m different modes. While running in mode 
k certain intermediate products are consumed and other intermediate or finished products are created. There may be 
variability in the manufacturing process, as well as random arrivals of raw materials and orders for finished products. 
We establish conditions that ensure demands can be satisfied while maintaining bounded levels of inventories. These 
results that may be viewed as generalizing to the flexible manufacturing context the notion of stability for a queueing 
system. 

The aim of a manufacturing system is to transform 
raw materials, parts, and subassemblies into 

other parts, subassemblies, and finished products. In 
this paper, we consider a model of a flexible manu- 
facturing facility (FMS) in which production can take 
place in any of m different modes or configurations. 
There is no cost or delay in changing modes. When 
production takes place in mode k certain intermediate 
products are consumed and other intermediate or fin- 
ished products are created. We suppose that in total 
the system is concerned with n different products. 
Here we use the word product to refer to any unit of 
order, raw material, component, subassembly, work 
in progress, or finished product. Suppose that running 
production for one period in mode k changes the 
inventory level of product i by Sk,i units. It is a key 
idea in this paper that Sk,i may be a random variable. 
This reflects the fact that unpredictable variations in 
both the demand and production processes are usu- 
ally major sources of difficulty in managing a manu- 
facturing facility. It is often the case that inventories 
of intermediate products or raw materials are required 
to cope with these variations. However, there is usu- 
ally a cost to carrying inventories and it is desirable 
that inventories remain small, even zero. Other re- 
searchers have considered such questions. For exam- 
ple, Kimemia and Gershwin (1983) and Gershwin, 
Akella and Choong (1985) considered the problem of 
how parts should be dispatched into an FMS to meet 
production requirements when machines are 

unreliable and subject to breakdown. They imagine 
that production surplus is penalized by a quadratic 
cost function and propose a hierarchical policy for 
determining a near-optimal part-loading scheme. 
Bielecki and Kumar (1988) also considered a model 
with unreliable manufacture and found that even with 
uncertainty it may sometimes be optimal to aim for 
zero inventory. 

In this paper, we do not try to model a cost function 
or determine an optimal policy. Rather, we address a 
more basic question: Given certain demands, produc- 
tion capacity and flexibility, is it possible to operate 
the system so that inventory levels are kept under 
control? Can we ensure that the inventory level is not 
arbitrarily large for long periods of time? The reader 
might view this paper as generalizing to the context of 
an FMS the notion that is familiar in queueing theory: 
That the mean queue length in a single-server queue 
is finite if the traffic intensity is less that 1. The cor- 
responding notion is less obvious and more complex 
in the manufacturing context. This is because there 
are many ways in which an FMS can be operated; 
how this is done will affect the rate at which existing 
inventories are depleted and the rate at which finished 
products are produced in response to a random 
demand. 

By allowing Sk,i to be a random variable we model 
the random arrival of raw materials and orders for 
finished products. We also model the variability 
in manufacture that can arise because of variability in 
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processing times or in the output itself. For example, 
in manufacturing crystal wafers that are used in mo- 
bile radio sets, one can set up the system for manu- 
facture of wafers of certain frequency, but because of 
variability in the process wafers with a range of fre- 
quencies around the target value will be produced. 
Those that are not within tolerance of the target value 
may be held in stock and used to meet future demands 
for other frequencies. A similar example arises in 
fabricating microprocessors; each chip is tested and 
different chips are certified for use at different clock 
speed. It can also happen that some output must be 
scrapped. 

Let the integer-valued random variablexi(t) denote 
the number of units of product i that are in the inven- 
tory at time t. This 'surplus production' satisfies 

xi(t + 1) =Xi(t) + Sk,i- (1) 

If Sk,i is negative, then manufacturing in mode k 
consumes units of product i. This means that if xi(t) 
is negative, then the backlog of product i is increased. 
A model in whichxi(t) may be negative is appropriate 
if it is possible to borrow units of product i from 
another factory and then manufacture replacement 
units at some later time. In this case, we think of xi(t) 
as the surplus of cumulative production of product i 
over cumulative demand at time t and allow a nega- 
tive surplus. Note that randomly arriving orders for a 
finished product of type i can be modeled by letting 
Sk,j equal the number of units of product i created by 
manufacturing in mode k for one period, minus the 
number of new orders for that item which are received 
(a number that is independent of k). In Section 3 we 
also consider a model in which backlogging is not 
allowed. 

It is convenient to imagine that at each discrete time 
t (t = 0, 1, ... ) one mode of manufacture must be 
selected and production take place in that mode for 
the next time period. We will discuss two require- 
ments that are necessary if costs of carrying inventory 
are to be kept finite. The first requirement is that 
P(Z=1 jxi(t)I -- o?) = 0. If this can be achieved by 
operating some policy, we say the system is weakly- 
stabilizable. If the inventory process converges to a 
stationary regime, then this implies that x(t) has a 
well-defined distribution. A stronger requirement is 
that the expected value of Si= 1 Ixi(t) J be bounded by 
a constant, uniformly in t. If this is possible we say 
that the system is stabilizable. Since, as observed 
above, some negative components of x(t) may denote 
the backlogs of unfilled orders for finished products of 
various types, these requirements are also certainly 
necessary if the manufacturing capacity is to be 

sufficient to meet all the demand placed upon it. Our 
aim is to give easily verifiable conditions under which 
the above model of a flexible manufacturing system is 
stabilizable or weakly-stabilizable. 

A similar stability question for a deterministic FMS 
model was studied by Perkins and Kumar (1989). 
They call a scheduling policy stable if the cumulative 
production under that policy lags the cumulative de- 
mand by no more than a constant, and they analyze 
the stability of a number of policies. This sort of 
stability is interesting because it guarantees that finite 
buffers are sufficient to operate the system. For sto- 
chastic models, finite buffers will not suffice in general 
but the desire is that the average work in progress 
should be small. There are results for on-line bin 
packing problems that are similar to ones in this pa- 
per. One can think of n types of items that randomly 
arrive to a bin packing system and can be packed into 
bins in various ways. For example, a bin might be 
fully packed either by one item of each of types 1, 2 
and 4, or by five items of type 3. The idea is to pack 
items in bins as they arrive, and ensure that the time- 
average number of partially full bins remains 
bounded. This is similar to the flexible manufacturing 
problem if we think of the spaces for items as arising 
from a production process and the demand for these 
spaces as being generated by randomly arriving or- 
ders. In Courcoubetis and Weber (1986a) we gave a 
necessary and sufficient condition for a bin packing 
system to be stabilizable when items arrive according 
to independent Bernoulli processes. In Courcoubetis 
and Weber (1986b) this was more fully developed for 
a variety of packing configurations. Courcoubetis and 
Rothblum (1991) considered models in which rewards 
are obtained when different packing configurations 
used. Rhee and Talagrand (1988) considered a model 
in which sizes of items are uniformly distributed over 
a subinterval [a,b] of [0,1] and a bin can contain any 
number of items whose sizes add to no more than 1. 
They characterized the choices of [a,b] for which the 
wasted space in partially full bins can be held finite in 
time average by using an off-line packing algorithm. 
Courcoubetis and Weber (1990) considered stabilizing 
systems when there are side constraints on the fre- 
quencies with which bins may be packed in different 
ways. A production model with batch arrivals was 
considered by Courcoubetis et al. (1989). 

In the present paper we consider a flexible manu- 
facturing model, but we assume far less than in other 
papers about the stochastic processes that describe 
production and demands. In previous papers, the pol- 
icies that were used to stabilize systems relied on 
artificially complicated representations of the state of 
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the system and required randomized actions. The 
policies constructed for the proofs in this paper are 
simpler. Section 1 presents an algorithm for stabiliz- 
ing a model of a flexible manufacturing system when 
the changes in inventory levels resulting from oper- 
ating the system in various modes are independent 
from period to period. In Sections 2-4 we consider 
more general processes and present sufficient condi- 
tions for systems to be weakly-stabilizable or stabili- 
zable. The necessity of these conditions is addressed 
in Section 5. 

1. STABILITY OF A SIMPLE MANUFACTURING 
SYSTEM 

Consider a model in which the changes in inventory 
due to running the system are independent from pe- 
riod to period. Specifically, consider a Bernoulli 
model in which Sk,i is a random variable, with mean 
0k,i, that in each period is distributed independently 
of all other random variables in the model. Let Sk = 

(Sk, 1, ..-. , Skn) and ok = (Ok, * *- -.. Ok,n)- We as- 
sume that the tails of the distribution of Sk,j are ex- 
ponentially bounded, which means that there is a t > 
0 such that P(ISkJi > a) < e -a for all a sufficiently 
large. This assumption will be met in any practical 
setting because there will be some absolute bound on 
how much inventories levels can change during one 
period of manufacture. The assumption is used in the 
proof of Theorem 1, in which the expectation of 
the Lyapunov function f (x (t)) = IIx(t) II is shown to 
be uniformly bounded for all t. The proof uses a 
criterion due to Hajek (1982), which states that if the 
incrementf(x(t + 1)) - f(x(t)) is bounded indepen- 
dently ofx(t) by a random variable whose distribution 
has an exponentially bounded tail, and there exists 8 
> 0 such that for all x outside a finite set the drift 
E[f(x(t + 1)) - f(x(t))Ix(t) = x] is less than -8, 
then the stochastic process f(x) is stable in the sense 
that there exists aB < oc such that E[f(x(t))] <B for 
all t. 

Theorem 1. Suppose that the convex cone generated 
by the vectors ok, k = 1, . . ., m, is the whole of an. 

Then the system is stabilizable. 

One can interpret the theorem as saying that the 
system is stabilizable if given any inventory position, 
sayx, it is possible to manufacture according to some 
mix of the possible modes such that after a time t, the 
expected level of all inventories will be reduced to 
zero, i.e.,x +tY>m=l akOk = 0, where YmZL ak= 1. 
It is easy to imagine circumstances in which the Oks do 
not span all of (k'n. Consider, for example, a chemical 

plant that is used to make two final products. Each 
unit that is manufactured of product 1 takes one pe- 
riod and results in 2 units of a certain by-product 3. 
One unit of by-product 3 is used to make each unit of 
product 2, which also takes one period. Suppose that 
the demand arising during a period is 0.5 unit of each 
product. Here we would have 01 = (0.5, -0.5, 2) and 
02 = (-0.5, 0.5, -1). Clearly, it is not be possible to 
operate the facility without scrapping some by- 
product or failing to meet all the demand for 
product 1. 

A small numerical example may further help the 
reader to understand the theorem. Suppose that 
n = 2 and 

S1 is equally likely to be (1, 1) or (-1, -1); 
S2 is equally likely to be (-1, -1), (-1, 5), (5, -1) or 

(5, 5); 
S3 is identically distributed to -S2; 
S4 is equally likely to be (-5, 5) or (3, -3); 
S5 is identically distributed to -S4. 

Then 01 = (0, ?), 02 = - 03= (2, 2), 04 =-05 =(-1, 1). 

For this example, we see that although production 
mode 1 has 01 = (0, 0), using this mode alone cannot 
stabilize the system. If only mode 1 is employed, xi(t) 
follows a symmetric random walk and E [ Ixi(t) ] - oo. 

There are sensible rules-of-thumb that might be 
applied in practice. One such rule is to find at each 
time t that i for which Ixi(t) is greatest and then run 
for one period the production mode that minimizes 
E[Ixi(t + 1)I]. However, as we will see in Section 5, 
this rule cannot stabilize the system, because it will 
only use modes 2 and 3, and the cone generated by 02 

and 03 is not all of k2. An alternative rule-of-thumb is 
to run at time t a production mode that minimizes 
E[Li Ixi(t + 1)1]. However, it is difficult to see 
whether or not such a rule-of-thumb will stabilize the 
system. The value of Theorem 1 is that it tells us when 
there exists a policy that will stabilize the system and 
whether a certain set of manufacturing modes is suf- 
ficient. In the example above, a stabilizing policy can 
be constructed using modes 2-5. It must use all these 
modes, because the cone generated by any strict sub- 
set of 02, ... , 05 would not be k2. 

We will prove Theorem 1 by constructing a policy 
that stabilizes the system. The simplest way to do this 
will be to use a randomized policy that chooses a mix 
of modes that will reduce the expected levels of the 
inventories to 0 in a certain time. In Section 2 we will 
show that a nonrandomized policy could also stabilize 
the system. 
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Proof of Theorem 1. Take as a Lyapunov function the 
L2 normf(x) = lix XI = (Ex2))2. We prove stability 
by verifying Hajek's criterion for f(x). 

Suppose that x(t) = x and consider the drift in 
[f(x)]2 = IIx(t)112 over one time period when the 
system is operated in mode k for period t. Let 

dk = E(Ilx + Sk 112)- 
_ |X|12 

n n 

= 2 0 k,iXi + E E(S2,i)h. 
i=1 i=1 

Now by the hypothesis of the theorem there exists a 
scalar 8(x) > 0 and probabilities ak, >Lkak = 1, such 
that 

m 

; ak Ok,J = -28(x)sign(xi), i = 1, n, 
k=1 

where sign(x) is defined to be -1 or 1 as x is or is not 
negative. Since 8(x) depends on x only through the 
values of sign(xi) we may assume that there are only 
finitely many 8(x). Let 8 be the minimum such 8(x). 
If we adopt a policy that chooses mode k with prob- 
ability ak, then the drift inf(x)2 is 

m n m n 

a akdk = -48(X) > lxi| + E >; akE(Sk2i) 
k=1 i=1 k=1 i=1 

m n 
< -48(x)ilxii + E E akE(Sk,2) 

k=1 i=1 

S -28(x)llxfl < -2811xll, 

where the second inequality holds for all llxll suffi- 
ciently large. It follows that for such x 

[E(Ilx(t + 1)iI)]2 S E(Ilx(t + 1)112) 

I [X1112 - 28Ilx I + 82, 

where the expectations above are over the distribu- 
tion of x(t + 1) conditional on x(t) = x. Taking 
square roots we have E( lIx(t + 1) I) <, lix II - 8. This 
verifies condition b of Hajek's criterion. To verify 
condition a note that the increment satisfies 

llx(t + 1)11 - llxll = llx + AII -I I h AIL, 

where A is a random variable and IIA II is stochastically 
smaller than >k=1 IISkII2. Thus 

P(Ilx(t + 1) 11 - llx(t) 11 > tlx(t) = x) 

m 

(1 2 11S 11 
> 

) 

m 
S 2 P( [[Sk 11 > tIm) 

k=l1 

m n 
1< I P(|Skj i| > tlm n), 

and because we have assumed that the distribution of 
Sk,j has exponentially bounded tails, it follows that 
the same is true for the increment inf(x(t)). Hence, 
both a and b of Hajek's criteria are satisfied and 
E[f(x(t))] is therefore bounded uniformly in t. 

Notice that the above proof does not use the fact 
that x(t) is Markov. Hence, the assumptions about 
the independence of the Sk,iS could be relaxed and the 
theorem would remain valid. 

2. STABILITY OF A SYSTEM WITH GENERAL 
ORDERS AND MANUFACTURING 
STATISTICS 

In this section, we consider a model in which the 
demand and manufacturing processes are more gen- 
eral than the Bernoulli processes considered above. 
Thus, as might occur in practice because of variation 
in raw materials or machine operators, there may be 
correlation between successive periods of operation 
in a given mode. Suppose that on the tth occasion that 
the system is operated -in mode k the change in the 
inventory of product i is Sk,i(t). Let Nk,i(t) = Xs- 1 
Ski(S) denote the cumulative change in the inventory 
of product i due to the first t periods of operation in 
mode k. Assume that the processes Nk,i(t) are inde- 
pendent. Let Nk(t) be the vector (Nk,l(t), ... 

Nkfl(t)). Let 02k(S) be the (X-field generated by the 
entire history of production in mode k up to the time 
mode k has been used for the sth time. We will prove 
the system is weakly-stable under the following as- 
sumption about the processes Nk,i(t). 

Assumption A. There is a function g(t) such that for 
all k, i, s and t > 0, 

E(INk,i(s + t) -Nk,i(S) - t k,i I KIk(S)) g(t), 

where g(t)/t -> 0 as t -* oo. 

This weak assumption simply states that the change 
to the inventory occasioned by t successive periods of 
operation in mode k will have an absolute deviation 
from its mean whose expected value grows more 
slowly than linearly in t. Note that assumption A 
implies that there exists a B < om such that 
E(INk,i(s + t) - Nk,i(s) - t6k,4|) 

< Bt for all k, i, 
s and t. One special case in which assumption A is 
satisfied is when Sk,i(t) is an ergodic Markov process 
for each k, i. Another is when Sk,i(t) is a second- 
order stationary process. Various kinds of renewal 
process also satisfy the assumption. The following 
theorem states a general condition on the demand and 
production processes under which the system can be 
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weakly-stabilized. The intuitive interpretation is the 
same as we gave following the statement of Theorem 
1. 

Theorem 2. Consider the model described in the 
above paragraph. Suppose that orders can be back- 
logged, assumption A holds, and the convex cone 
generated by 01, . . , Om is the whole of nf.tn Then the 
system is weakly-stabilizable. 

Proof. Suppose that at time s the system has been 
operated in mode k for Sk periods, s, + * * * + Sm = 
s. The inventory level is x(s) = >Lk Nk(Sk). As 
before, let llx(s) 11 be the L2 norm. We will prove that 
the system is weakly-stabilizable by showing that 
there exists an increasing sequence of random times 
{oi}, tending to infinity, such that both E(oi+1 - oi) 
and E( Ix(or) I) are uniformly bounded for all i. 
Clearly, the second of these ensures that P( lx(t) II 
om) = 0. Let H be the convex hull in 2Jn of the points 
01, . , ,m The origin must be in the interior of H, 
because as 01, ..., am are generators for 9ikn there 
must be points in H in every direction from the origin. 
Let 81 be chosen so that the ball of radius 81 about the 
origin lies within H. A sufficiently small 81 can be 
calculated by finding a nonnegative m x 2n matrix a 
such that (01 O* ) a = (In I -In) and taking 1 = 1 /Im 
maxj {>n 1,?}jkl If x is within a ball of radius 81, then 
X (61l ... {1m)a', where a' = a(x+ - X-)T and 
O a)j < 1/m for all] = 1, ..., m. Also, define 
82 = >Y=l1 IIkII. Let D = {x l|x|| L}, where 
L > m81 and suppose that x(s) is not in D. Choose 
nonnegative ,A1, ... m to minimize IT= Ik sub- 
ject to k= ImkOk = -x(s). Then -x(s)/(>1m=1 Ok) 

lies on the boundary of H, and hence km=. i'k 1 
IIx(s)jI/81. Now defining tk = ,Akl, we have 

m m 

X(S) + 2 tk/vk>6 = (tk - I-tk)k % 862. (2) 
k=1 k= 1 

We can also bound t = =l t in terms of IIx(s)II as 

m m 
t = tk 1< m + E Ak <, 211x(s)111/61. (3) 

k=l k=1 

The second inequality follows from the fact that x(s) 
is not in D and the definition of the ,uks. We also have 

m m 
IIX(S)|| = > IEykOk <1 X I-LkI6kl 

k=1 k=1 

m 

> E tIIOkII =t82 (4) 
k=s 

SO 

Next we define the sequence of observation times 
{uo-, o-1, . } with co- = 0. If x(o-i) is in D run the 
system for one period in any mode and let oi+1 = 
o-i + 1. If x(o-i) is not in D run the system for Ti = t 
periods with tk of these periods of manufacture in 
mode k, where the tks and t are calculated as above 
for s = o-,. In this case, let o-i>1 = o-i + Ti and note 
that for s = oQi and t = r we have that at time s + t, 
conditional on all the history up to time s, 

E(|x(t + s)||) 

x(s) + I (Nk(Sk +tk)-Nk (S k)) ) 
k=1 

(X(S) + k Oktk) + kE (Nk(Sk + tk) 

- Nk(Sk) - Oktk) ) 

<1 x(s 6k=tk + E E Nk(Sk + tk) 

Nk(Sk) -Oktk ) 

m 

= X(S)+ E Oktk +;(t)6 2+;(t), 
k=1 

where because each tk is less than t it follows that ;(t) 
is 0(t). 

It follows from the left-hand inequality in (5) that 
when Ijx(s) II is sufficiently large t will be large enough 
to imply ;(t)/t < 81/2; suppose that L is large enough 
to ensure this. Using the right-hand inequality in (5) 
we have jIx(s)Ij/(t81) ? 1 and thus 

E(jIx(t + s)jj) 852 + ;(t)jIx(s) 1/(t11) 

S 82 + (1/2)Ijx(s)JI < pjjx(s)jI 

for some p < 1 when Ijx(s) II is sufficiently large; again, 
suppose that L has been chosen large enough. 

From the above discussion we have that if x(o-) is 
not inD, thenE(j x(o-+1)jj) < pjjx(o-)j . On the other 
hand if x(o-i) is in D, then E( x(o-+1) j) is uniformly 
bounded byL + nB + 82, where B is as defined in the 
paragraph following the statement of assumption A. 
So for all observation times 

E(jlx(o-i+1)jl) < pE( jx(o-j)jj) + L + nB + 82. (6) 

Thus, if IIx(o-0)II < (L + nB + 82)/(1 - p) = M, 
then (6) implies E( jx(o- )j) l M for all i. This fact 
is sufficient to ensure that the system is weakly- 
stabilizable. 

A concluding remark is that 81t IIx(o-) II implies 
(oi+l - o(i) S JIx(o-)Hj/1j. One might think that by 
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an application of assumption A it would be possible 
to bound IIx(u)II in the range o-i < u < ocr,1 by 
IIx(o-J)I + (nB + 62)(0-i+l - oj). If this were valid it 
would imply E(IIx(u)||) < M(1 + (nB + 82)181) and 
the system would be stabilizable. However, this ar- 
gument is not valid because in applying assumption A 
it is not correct to replace t by the random variable 

-i + 1 oi 

To guarantee that a system is stabilizable an as- 
sumption is needed to ensure that there is little cor- 
relation between periods of operation that are not 
close together in time; if it holds then the average 
inventory level can be kept finite. Let Uk i(t) = 

Sk,i(t) - E[Sk,i(t)]. 

Assumption B. There exists a C > 0 such that for all 
k, 1i, Sli, S2i tl , t2, 

/ Si+tl S2 +t2 ) 

E I Uk(Ul) U0(2) - C(tl + t2). 
Ul =Si +1 U2 =52 +1 

Assumption B holds if the variance of Sk,i(t) is uni- 
formly bounded and the covariance (or autocovari- 
ance when k = 1) between Sk,i(s) and Sl,j(t) tends to 
zero sufficiently fast as It - sI -> om. For example, it 
is not hard to see that the assumption holds when the 
Sk,i(t)s are independent, irreducible, aperiodic 
Markov chains. 

Theorem 3. Suppose that assumption B and the con- 
ditions of Theorem 2 hold. Assume also that the 
production processes are such that by using the pol- 
icy described in the proof of Theorem 2 the process 
x(t) is stationary. Then the system is stabilizable. 

Proof. The stationarity assumption implies that both 
limt-0 EIIx(t)II and lim, 0(1/t)E[Y_`1 IIx(s)II] exist 
and have the same value. Using the observations times 
{fo-} constructed in the proof of Theorem 2, we have 

-t-1 - 10i+1 

E E 11x(s)II - E I I HIx(s)II 
,S=0 Ei:i <t S=o i 

1 I E[E( E +1x(s)jj I IS ) 
i:o v<t S=oi 

t-o [ (/'Ei+' X(S)11 lai, X(0i) 
i=O Ls=cr 

Now conditional on knowing o-i and x(ai), the value 
of ai + 1 is determined by the construction described in 
the proof of Theorem 2. So from time 0i to time o-i+ 1 
the value of E(IIx(s)jI) can increase by at most 
(nB + 8i2)(oi+1 - ai) and the above is 

t-1 
t E E[(-i+l -i )( flx(oj ) 1 

i=O 

+ (nB + 62)(oi+1 - v))] 

t-l1 

S E[jjx(or)-j2(1/8i + (nB + 82)181)], 
i=O 

where the final inequality follows from (oi+ 1 - ov) < 

Ijx(or)jI /8k. Hence, the system will be stabilizable if 
E Ix(or) 112 is uniformly bounded for all i. To see this 
is the case, consider 

E( jx(o-r)112) 
< (E x(o-)11)2 + E(I x(oj) - E[x(oi)]I2). 

(7) 

The first term on the right-hand side is uniformly 
bounded by Theorem 2. Let Sk be the number of times 
production mode k has been run by time oi- 1, and let 
tk be the number of times mode k is run between times 
o-i- and o-j. The second term on the right-hand side 
of (4) is 

E [E ( k= Ukk 2 Uk(t) 2 X _ ) 

F ( m m k S+tk Si +t 

L k=1 1=1 t=Sk t=si 

m m 

f CE , , (tk + tl) 
Lk=1 1=1 

m 2CE(oi - ovi-l) _ m 2CE jjx(_i_1 ) j/,6 1, 

which is uniformly bounded by Theorem 2. 

It is an assumption of Theorem 3 that x(t) is sta- 
tionary under the policy described in the proof of 
Theorem 2. This holds, for example, if the Sk,i(t)s are 
independent, irreducible, aperiodic Markov chains. 
In this case, Theorem 1 is covered by Theorem 3. 
Observe that the stabilizing policy in Theorem 3 is not 
randomized and is based on simple information about 
the state of the system. 

3. STABILITY WITHOUT BACKLOGGING 
In this section, we suppose that production is not 
allowed to fall behind orders for finished products. To 
do this we separate the notions of adding and sub- 
tracting from inventories. The system is said to be in 
a producing mode when any of modes r + 1, ... , m 
are used. Such modes only add to the inventories: 
That is, Sk,i(t) is nonnegative for each of these 
modes. The system is said to be in a request mode 
when one of modes 1, ... , r, is used. In such a mode 
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Sk,i(t) is nonpositive. If the requests arising from 
running the system in a request mode for one time 
period can be met from inventory, then this is done 
and the system is next run in a request mode without 
any further production. However, if requests arise 
for products which are not in the inventory then 
before allowing further requests the system is run 
in producing modes until all outstanding requests 
are satisfied. Only after satisfying all requests that 
arise from one period's operation in a request mode 
do we consider requests arising from the next period 
of operation in a request mode. For example, we 
might imagine there to be one period of a request 
mode at the beginning of each week. If the requests 
cannot be met from the inventory, then during the 
week the system is run in a producing mode, for as 
many periods as are needed, until all requests are 
satisfied. Notice that we do not allow orders to be 
rejected, but rather assume that arbitrarily many pe- 
riods of production may be inserted between two 
periods' operation in a request mode. In practice, 
there will be an upper limit on the rate of production 
and this will be reflected in the lead time. However, 
for fairly regular production and request processes 
it may be possible to guarantee that one period of 
requests can be met by, at most, a certain number 
of periods of production, or that a finite amount of 
buffer inventory will be sufficient to ensure zero lead 
time. As before, there is a choice among several 
producing and request modes. The choice among 
request modes might be realized by a marketing 
strategy that takes account of present inventory levels. 
There are two reasons why it is more difficult to stabi- 
lize the model just described. First, the choice between 
modes of operation is more restricted: Request and 
producing modes may not be interleaved arbitrarily. 
Second, during periods that the system runs in a 
producing mode to meet requests many unwanted prod- 
ucts may be added to the inventories. 

Prior to stating Theorem 4 we observe the following 
consequence of assumption A. Suppose that mode k 
has been run s times. Then there exists a constant T', 
that is independent of s and the history up to the sth 
time that mode k has been run, such that for all k, i, 
Ok,i > 0, the expected number of periods for which it 
is required to run mode k until one more product of 
type i is produced is less than T'. Again, this is a 
condition that is certainly fulfilled in practical circum- 
stances because it simply says that if mode k can pro- 
duce products of type k, then it only takes a finite time 
to do so on average. We see this because if tOk i > 1, 

P(Nki (S + t) - Nk, (S) < 1 1 0k (S)) 

= P(Nk,i(s + t) - Nk,i(S) -tOk,j < 1 

- tOk,ij k(S)) 

= P((Nk,i(S + t) - Nk,i(S) -tOk,i) - 0 tOk,i 

- 1 Ik(S)) 

> E((Nk,i (s + t) - Nk,i (S) 

- t0k,i) |Ik(s))/(t0k,i - 1) 

By assumption A the final term is less than 1/2 for all 
t greater than some integer T sufficiently large. Thus, 
for any history up to the sth time that mode k has 
been run the probability of producing at least one 
product of type i during the next T periods of use of 
mode k is at least 1/2. That is, 

P(Nk,i(S + T) -Nk,i(s) > 1|1;k(S)) ? 1/2. 

Since this holds for s = u, u + T, u + 2T, ,we 
see that the expected time until one product of type i 
is produced is less than T' = 2T. Clearly, we can take 
T large enough that this holds uniformly for all k 
and i. 

The following theorem is the natural generalization 
of Theorems 1-3 to backlogging. 

Theorem 4. Suppose that for the model described 
above assumption A holds for all Nk,i(T) and the 
convex cone generated by 01, *. .,a is the whole of 
WV. Then the system is weakly-stabilizable. If the 

assumptions of Theorem 3 hold, then weakly- 
stabilizable may be strengthened to stabilizable. 

Proof. The proof is a modification of the proof for 
Theorem 2. At every observation time o-i the inven- 
toryx(i) is nonnegative. As in the proof of Theorem 
2 we solve (1) and show that for IIx(o-i) sufficiently 
large t can be an integer with IIx(-)I I/(82V/n) < t < 
IIx(II) 11/1. As in the proof of Theorem 2 we choose 
tksuchthatlakt - tkl < 1 andt = t1 + + tm. If 
x(o-j) is in D we run any producing mode for one 
period and set ri+1 = o-i + 1. If x( o) is not in D we 
first run each producing mode k for tk periods, k = 
r + 1, . . ., m and then run each request mode for tk 

periods k = 1, . . . , r. Ignore for the moment the fact 
that in doing this some components of x(t) may go 
negative. In a similar manner as in the proof of 
Theorem 2, we have that for s = o-i and t = Tj, 
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However, inventories are not allowed to go negative. 
So suppose that the effect of these t periods is to 
change the level of product k by Ck. The policy we 
will use is augmented by the proviso that if following 
any period during which the system is run in a request 
mode a productj is requested that is not in stock, then 
a producing mode k is chosen for which Ok,j > 0 and 
the system is run in mode k until one product of type 
j is produced. As demonstrated prior to the statement 
of the theorem, assumption A implies that the ex- 
pected number of periods of production required to 
produce one more product of typej is bounded for all 
i by some T' < o. The number of times we will have 
to initiate extra production periods because of short- 
falls in numbers of product j is at most (xj(o-i) + 

Cj)-. The result of all such additional production 
periods, say vi periods in total, due to shortages for all 
types of product, will be to produce some further 
number of type j products, say Zj. The next obser- 
vation time is taken as o-i+1 = o-i + Ti + vi. It follows 
from assumption A and (5) that 

n 

E(vi) S T' > E(xj(oi) + Cj) 
j=1 

T'E4 (X('Tj)+ E (Nk (s+t) -Nk (S))t) 

and therefore E(vi) is o(t). Thus, E(Zj) is also o(t). 
Let C and Z be the vectors with components Cj and 
Zj. The inventory at the next observation time will be 

X(0i+1) = (X(0i) + C)+ + Z - (X((i) + C) 

<'(x(0-) +C) + +Z. (9) 

Thus, IIx(o-,+1)II has an o(t) bound Of 52 + ;(t) + 

IIE(Z)11. The theorem is completed along the same 
lines as Theorem 2. Under the assumptions of 
Theorem 3, a similar proof shows that the system is 
stabilizable. 

Thus far, we have not considered optimization 
models, but only questions of stability. However, a 
first step in the direction of optimization questions is 
the problem of stability under a constraint. Suppose 
that each use of request mode k is rewarded by rk and 
each use of producing mode k costs Ck. Consider the 
problem of stabilizing the system while maximizing 
the rate at which profit is earned. To solve the prob- 
lem we need to know for what fk'S it is possible to 
stabilize the system while using mode k with a fre- 
quency f3k relative to other modes. One approach to 
this question is to augment the system by m dummy 
products, labeled n + 1, ... ., n + m. Let the action 
of mode Sk be extended to the dummy products by 

Sk,n +k = 1, and Sk,n+j = 0, j X k. Suppose that 
I3i, ... , IBm are rational numbers. Let there be an 
additional mode 0 for which SO,n+k = -Nf3k, where 
N is an integer chosen so that Nf3k is an integer for all 
k. Then by consideration of the inventory of dummy 
products, it is clear that if the system can be stabi- 
lized, then mode k > 0 must be used with a frequency 
f3k relative to the other modes. Theorem 4 may be 
applied to the augmented system to determine 
whether the system can be stabilized. 

Although this is an appealing use of the ideas in 
previous sections it suggests a condition for stability 
that is actually too strong. Consider, for example, a 
system with 01 = (1, 1), 02 = (-1, 0), and 03 = 

(0, -1). It is clearly possible to stabilize this system 
and use each mode 1/3 of the time, but that would not 
follow from the argument of the above paragraph, 
because (0, 0, -1, -1, -1), (1, 1, 1, 0, 0), (-1, 0, 0, 
1, 0), and (0, -1, 0, 0, 1) do not span k5. It is because 
the inventories of dummy products are altered in 
deterministic fashions that the condition can be weak- 
ened. A different necessary and sufficient condition 
can be established along the lines in Courcoubetis and 
Weber (1990). Although we do not prove it here, the 
conclusion is that the system can be stabilized if there 
exist blik 0 0 and yi > 0 such that {0: o0 = 

km=1 1IkOk, 1 = 1,.. ,k n} is a set of n linearly 
independent vectors whose nonnegative linear com- 
binations span (Fk?? and 17== 1yO = 0, >=1 Ylllk 

18k - 

4. A GENERAL MODEL FOR A 
MANUFACTURING SYSTEM 

In this section we present a general model for a man- 
ufacturing system and apply some of the ideas from 
previous sections. We think of a manufacturing sys- 
tem that may be modeled by n distinct queues. Some 
queues are queues of orders for finished products. 
Other queues are inventories of raw materials, parts, 
and subassemblies, or work-in-progress waiting for 
processing at a given machine. Items arrive to these 
queues from outside the system according to stochas- 
tic processes. The arriving items are supplies of raw 
materials and orders for finished products. As above, 
we let xi(t) be the number of items in queue i at time 
t. A mode of manufacture makes deterministic 
changes to the queues, subtracting items from some 
queues and adding items to others. Subtractions cor- 
respond to the consumption of raw materials or the 
use of intermediate subassemblies to build other sub- 
assemblies and finished products. A final assembly 
operation subtracts from certain queues the resources 
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required to build a finished product and then subtracts 
one unit from the queue of unfilled orders for that 
product. A limiting constraint in this model is that the 
queues are not allowed to assume negative values, 
corresponding to the case in which a manufacturing 
mode cannot be executed if the subassemblies or 
materials it needs are not already available. 

As in Section 3, suppose that the tth period of 
arrivals adds to x the vector So(t), which for this 
section is assumed to be nonnegative in every com- 
ponent. The effect of SO is to add to queues or orders 
and raw materials. Modes 1, ... , m are the manu- 
facturing modes and these make deterninistic 
changes to the queues by addition to x(t) of the vec- 
tors S1, ... , Sm; these may have both negative and 
nonnegative components. Again, we emphasize that 
these changes are deterministic, and hence in this 
section Oi = Si for k = 1, .. ., m. The above model 
corresponds to a Petri net if the terms items, modes of 
operations, and queues are translated to tokens, tran- 
sitions, and places, respectively. There is a random- 
ized transition corresponding to mode 0. This 
transition does not consume any tokens, and when 
fired for the tth time it adds a random number SO,i(t) 
of tokens to place i, i = 1, . . ., m. Note that if there 
is a nonnegative linear combination of Si, ..., Sm 
equal to 0, it is possible, given a large enough initial 
inventory, to construct a policy that stabilizes the 
system but never uses mode 0. Since this does not 
model a practical alternative we will only consider 
policies that select mode 0 infinitely often. We desire 
to stabilize the system by ensuring that for all i and t 
we have E(xi(t)) < B for some B. 

Assume without loss of generality that the first r 
components of 00 are the only ones that are nonzero. 
Thus, So(t) only adds items to the first r queues. 
These queues are called input queues; the remaining 
queues are called intermediate queues because they 
are queues of intermediate products, not queues of 
orders or raw materials. Let F = {x E An: x < 0 and 
xi = 0 for i > r}. Here F is the set of nonpositive 
vectors that are only nonzero in components corre- 
sponding to input queues. Let 

f m )m 
A = {x E F x = k akSk, ak a 0 

k=1 

where A is the set of vectors in F that can be repre- 
sented as E[Y nkSk] for some nonnegative integer- 
valued random variables {nk}. It contains all those 
random combinations of the manufacturing modes 
whose effect is not to increase the size of the input 
queues and to leave the sizes of intermediate queues 

unchanged. We provide a lemma and theorem to char- 
acterize stability. The lemma says that in considering 
what changes can be made to existing inventories by 
various combinations of the manufacturing modes it is 
sufficient to restrict attention to a finite number of the 
possible combinations. 

Lemma 1. The vector is a finitely-generated cone 
whose generators may be taken to be nonpositive 
integer-valued vectors, each of which can be written 
as a nonnegative integral combination of the vectors 
Sl, ,. , Sm. 

Proof. Since the vectors S1, ...S m are integer- 
valued they generate a cone that can be written as 
{x Ax A O} for some matrix A with integer coeffi- 
cients. Similarly, = f x Bx ? O} for some B with 
coefficients that are all -1, 0, or 1. Thus, A = {x: 
Ay > 0, Bx 3 0}. Since the generators of A must be 
rational vectors and they lie in the cone generated by 
S1, . .. , Sm, each can be expressed as a nonnegative 
linear combination of the SkS. There must be 
such linear combinations in which the multipliers of 
the SkS can be taken to be nonnegative rationals. It 
follows, by rescaling the generators, that there is a 
choice of generators for which the multipliers of the 
Sks are nonnegative integers. 

Let 0o and A' be the restrictions Of ok and A to their 
first r components, i.e., the nonzero components of 
00. The following theorem, while similar to those of 
previous sections, exhibits the fact that the condition 
for stability is now expressed only in terms of the 
flexibility that is required in expressing - 01 in terms 
of generators of F'. Since changes to intermediate 
queues are deterministic there is no danger of these 
queues becoming unstable provided that the mix of 
modes that is being used lies within F. 

Theorem 5. Suppose that the arrival process No(t) 
satisfies assumption A and - 01 lies in the interior 
of the convex cone A1. Then the system is 
weakly-stabilizable. Furthermore, there exists 
a weakly- stabilizing policy under which the interme- 
diate queue sizes are uniformly bounded. If the as- 
sumptions of Theorem 3 hold, then weakly- 
stabilizable may be strengthened to stabilizable. 

Proof. Using Lemmna 1, let S', ..., S' be the gen- 
erators of A such that S = >Lk I3kSk, 1 = 1, ... d, 
where the Alks are nonnegative integers. We can as- 
sociate with each S' a new manufacturing mode that 
corresponds to running mode k for Ilk times, k = 

1, . . . , m. Consider the new system where the arrival 
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mode is the same as before and the production modes 
are the ones corresponding to the S;, 1 = 1, ..., d. 
If we project the state of the system to one in which 
we watch only the input queues, then we can weakly- 
stabilize this system while keeping the input queues 
nonnegative. This follows from an application of 
Theorem 4 when there is a single producing mode 
corresponding to So and d request modes correspond- 
ing to the S;s. LetK = maXI{ ik ILlk} maXk 1,i{ISk,i }I 

One can see that if before running any mode S' the 
size xi of each intermediate queue is greater than K, 
then while running the SkS comprising Sl, this state 
will remain within the range xi + KS and at the end 
reassume the value xi. This implies that if the inter- 
mediate queues sizes are all at least K initially we can 
weakly-stabilize the projection of the system onto its 
input queues and thereby weakly-stabilize the com- 
plete system, while ensuring that the intermediate 
queue sizes are uniformly bounded. If we assume the 
conditions of Theorem 3 a similar proof shows the 
system is stabilizable. 

5. NECESSARY CONDITIONS FOR STABILITY 

In the previous sections we considered several vari- 
ations of a model for a flexible manufacturing system 
and gave sufficient conditions for the system to be 
weakly-stabilizable or stabilizable. In this section, we 
show that the sufficient condition is also necessary for 
Theorem 3 in the sense that if the cone generated by 
01, ... , 0,, is not the whole of (Fk then, apart from 
trivial cases, the system cannot be stabilized; the size 
of the inventory, or surplus production, will explode 
to infinity under any operating policy. Recall that in 
the model of Theorem 3 we run the system in one of 
k possible modes during each time period. Suppose 
that the {Sk,i(t)} are mutually independent random 
variables and {Sk,I(t)}7=l are identically distributed. 
Assumption A will hold. 

Without loss of generality assume that if any of the 
m modes are not available, then the process is no 
longer stabilizable. Assume also that the inventory 
level of each product is affected by at least one mode. 
Under the first assumption it is easy to see that to 
stabilize the system every mode must almost surely 
be used infinitely often. Suppose that there is such a 
policy, but the cone generated by 01, ... , 0,, is not 
the whole of W1R'. Then by Farkas' lemma there exists 
a ? q, which may be chosen to have integer coeffi- 
cients, such that qTOk ? 0 for all k. Choose such a q 
? 0 and consider the integer-valued process y(t) - 
qTx(t). Note that if the system is run in mode k during 
period t we have E[y(t + 1) - y(t)lx(t)] = q'Ok 3 

O and thus y(t) is a sub-Martingale and by the 
Martingale convergence theorem it tends to a limit on 
every sample path. Now this must almost surely be a 
finite limit, because ly(t) I < liq 11 lIx(t) 11, and E[x(t)] 
is uniformly bounded for all t because it is produced 
by a stabilizing policy. Sincey(t) is an integer, its limit 
on almost every sample path must be an integer and 
y(t) must be equal to this limit for all t sufficiently 
large. But because we have assumed that each mode 
is almost surely used infinitely often this is impossible 
unless on almost every sample path the incremental 
change in y when mode k is used for the tth time 
satisfies qTSk(t) = 0 for all t sufficiently large. Now 
if q has only one nonzero component, say i, this 
would imply that on almost every sample path no 
mode affects the inventory of product i for t suffi- 
ciently large, contradicting our second assumption. If 
q is nonzero in more than one component, say in all 
components i E I, then it is clearly impossible to have 
qTSk(t) = 0 unless the independent random variables 
Sk,i(t), i E I are almost surely constants for t suffi- 
ciently large. Therefore, except in the special case 
that some modes change the inventories of some 
products by deterministic amounts, the system can- 
not be stabilizable. 

The above argument demonstrates that the suffi- 
cient condition in Theorem 3 is necessary if the sys- 
tem is to be stabilizable for any Sk(t)s. The exception 
is when some of the Sks are deterministic and there is 
a positive linear combination of these modes whose 
sum is zero. The necessity argument for the other 
stability theorems in the paper is similar. 

6. DISCUSSION 

What implications do the above results have for the 
management of real-life flexible manufacturing sys- 
tems? We have seen that if the models in this paper 
are reasonable for a particular application and we can 
estimate the vectors ok, then Theorems 1-5 provide 
criteria by which to test whether the system can op- 
erated in a manner that keeps expected inventory 
levels uniformly bounded through time. For example, 
in Theorem 2 we have said how one could compute 
the time tk for which the system is to be run in mode 
k before the policy is next reviewed. Choosing 81 in 
the proof of Theorem 2 requires an estimate of the 
speed with which g(t)/t tends to 0 in assumption A. 
This could be estimated from observations of the 
Nk,i(t)s. The criteria of the theorems can be tested 
using simple algorithms. For example, in 
Theorems 1-4 we required that the cone generated by 
nonnegative linear combinations of 01, . . ., Gm be the 
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whole of Wk. This holds if and only if 01, . .. , 0,m span 
gfk and there exist yl, ..., ym such that yk > 1 for 
all k and >k Yk Ok = 0. This can be checked by a linear 
program in m variables. Theorem 5 required that - 00 
be in the interior of A1. An algorithm to check this can 
be based on the following ideas. Let Ql = {x E an: 

xi = 0 for i > r} and define I as the set of those indices 
i > 0 for which there exists {ak ? 0, k ? i} such that 
Oi + >Lk?i ak Ok E Ql. The condition of Theorem 5 is 
equivalent to requiring that the vectors {Qi, i E I} 
span Ql and there exist {yk > 1, k E I U {0}} such that 

>kCeIUfU{O} Ykk = 0- 

There are at least two important questions out- 
standing. First, one would like to identify practical 
policies that achieve stability. The policies described 
in the proofs of Theorems 1-5 can be implemented by 
relatively simple calculations, but they are wasteful in 
the use of inventory space and certainly not rules-of- 
thumb, or methods one would recommend in prac- 
tice. Clearly, it is important to minimize average 
inventory levels, not just to ensure that their expected 
values remain finite. One would really like to find 
policies that stabilize the system and require mini- 
mum average inventory levels to do so. Although the 
work-in-progress inventory is likely to be an impor- 
tant component of the total cost, one might also like 
to understand stability for a cost function depending 
on other factors, such as lost orders, or the frequency 
of switching production mode. Clearly, there are 
many such issues that might be investigated. 

Second, the maximum inventory size is likely to be 
constrained. Interestingly, we can say something 
about this sort of constraint when assumption A is 
replaced by 

Assumption C. There is a function g(t) such that for 
all k, i, s and t > 0 

INk,i(s + t) - Nk,i(s) - t0 ki| g(t), 

where g(t)/t -O 0 as t -> oo. 

Under this assumption it is straightforward to mod- 
ify the proofs of Theorems 2-5 to show stability in the 
sense that jxi(t)J is bounded by a constant uniformly 
in t. 

As we have explained at the end of Section 3, there 
may be constraints on the rates at which some of the 
manufacturing modes are used. For example, we might 
pose the problem of stabilizing the system subject to a 
constraint that a particular mode k be used at rate /k- 

This problem was considered in Courcoubetis and 

Weber (1990) in the bin packing context, and similar 
results can be obtained for the models in this paper. 
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