
Modern Statistical Methods
Rajen D. Shah r.shah@statslab.cam.ac.uk

Course webpage:
http://www.statslab.cam.ac.uk/~rds37/modern_stat_methods.html

The field of statistics has undergone profound changes in recent decades. Firstly, the types
of datasets that statisticians are asked to analyse have transformed dramatically. In the
past, we typically dealt with datasets containing many observations and a modest number
of carefully chosen variables. Today, by contrast, it is common to encounter datasets with
thousands of variables—sometimes even far exceeding the number of observations. For
instance, in genomics, we might measure the expression levels of several thousand genes
but only across a few hundred tissue samples. Classical statistical methods are often
simply not applicable in these “high-dimensional” settings. As the scale of data collection
has expanded, so too has the scope of the questions we seek to answer. Whereas statistics
was once primarily concerned with uncovering associations between variables, we are now
increasingly interested in understanding the causal structure of data. And rather than
focusing solely on prediction, we often aim to predict the effects of interventions. At the
same time, the rapid rise of machine learning has provided us with powerful new tools.
In this course, we will explore how these advances can be harnessed to tackle some of the
modern statistical challenges outlined above. The selection of material is heavily biased
towards my own interests, but I hope it will nevertheless give you a flavour of some of the
most important recent methodological developments in statistics.

The course is divided into 4 chapters (of unequal size). Our first chapter will start by
introducing ridge regression, a simple generalisation of ordinary least squares. Our study
of this will lead us to some beautiful connections with functional analysis and ultimately
one of the most successful and flexible classes of learning algorithms: kernel machines.
The second chapter concerns the Lasso and its extensions. The Lasso has been at the
centre of much of the developments that have occurred in high-dimensional statistics, and
will allow us to perform regression in the seemingly hopeless situation when the number
of parameters we are trying to estimate is larger than the number of observations. In
the third chapter we will study graphical modelling and provide an introduction to the
exciting field of causal inference. Where the previous chapters consider methods for relating
a particular response variable to a potentially large collection of (explanatory) variables, in
the third chapter, we will study how to infer relationships between the variables themselves
and answer causal questions using so-called double/debiased machine learning approaches.
In the final chapter, we will turn to the problem of multiple testing which concerns
handling settings where we may be performing thousands of hypothesis tests at the same
time.

Before we begin the main content of the course, we will briefly review two key classical
statistical methods: ordinary least squares and maximum likelihood estimation. This will
help to set the scene and provide a warm-up for the modern methods to come later.

i

http://www.statslab.cam.ac.uk/~rds37/modern_stat_methods.html

Classical statistics

Ordinary least squares

Imagine data are available in the form of observations (Yi, xi) ∈ R× Rp, i = 1, . . . , n, and
the aim is to infer a simple regression function relating the average value of a response, Yi,
and a collection of predictors or variables, xi. This is an example of regression analysis,
one of the most important tasks in statistics.

A linear model for the data assumes that it is generated according to

Y = Xβ0 + ε, (1)

where Y ∈ Rn is the vector of responses; X ∈ Rn×p is the predictor matrix (or design
matrix) with ith row x⊤

i ; ε ∈ Rn represents random error; and β0 ∈ Rp is the unknown
vector of coefficients.

Provided p≪ n, a sensible way to estimate β is by ordinary least squares (OLS). This
yields an estimator β̂OLS with

β̂OLS := argmin
β∈Rp

∥Y −Xβ∥22 = (X⊤X)−1X⊤Y, (2)

provided X has full column rank.
Under the assumptions that (i) E(εi) = 0 and (ii) Var(ε) = σ2I, we have that:

� Eβ0,σ2(β̂OLS) = E{(X⊤X)−1X⊤(Xβ0 + ε)} = β0.

� Varβ0,σ2(β̂OLS) = (X⊤X)−1X⊤Var(ε)X(X⊤X)−1 = σ2(X⊤X)−1.

The Gauss–Markov theorem states that OLS is the best linear unbiased estimator in
our setting: for any other estimator β̃ that is linear in Y (so β̃ = AY for some fixed matrix
A), we have

Varβ0,σ2(β̃)− Varβ0,σ2(β̂OLS)

is positive semi-definite.

Maximum likelihood estimation

The method of least squares is just one way to construct as estimator. A more general
technique is that of maximum likelihood estimation. Here given data y ∈ Rn that we take
as a realisation of a random variable Y , we specify its density f(y; θ) up to some unknown
vector of parameters θ ∈ Θ ⊆ Rd, where Θ is the parameter space. The likelihood function
is a function of θ for each fixed y given by

L(θ) := L(θ; y) = c(y)f(y; θ),

where c(y) is an arbitrary constant of proportionality. The maximum likelihood estimate
of θ maximises the likelihood, or equivalently it maximises the log-likelihood

ℓ(θ) := ℓ(θ; y) = log f(y; θ) + log(c(y)).

ii

A key quantity in the context of maximum likelihood estimation is the Fisher informa-
tion matrix i(θ) := Covθ(∇ℓ(θ)). It can be thought of as a measure of how hard it is to
estimate θ when it is the true parameter value. The Cramér–Rao lower bound states that
if θ̃ is an unbiased estimator of θ, then under regularity conditions,

Varθ(θ̃)− i−1(θ)

is positive semi-definite.
A remarkable fact about maximum likelihood estimators (MLEs) is that (under quite

general conditions) they are asymptotically normally distributed, asymptotically unbiased
and asymptotically achieve the Cramér–Rao lower bound.

Assume that the Fisher information matrix when there are n observations, i(n)(θ) (where
we have made the dependence on n explicit) satisfies i(n)(θ)/n → I(θ) for some positive
definite matrix I. Then denoting the maximum likelihood estimator of θ when there are
n observations by θ̂(n), under regularity conditions, as the number of observations n→∞
we have √

n(θ̂(n) − θ)
d→ Nd(0, I

−1(θ)).

Returning to our linear model, if we assume in addition that εi
i.i.d.∼ N(0, σ2), then the

log-likelihood for (β, σ2) is

ℓ(β, σ2) = −n

2
log(σ2)− 1

2σ2

n∑
i=1

(yi − x⊤
i β)

2.

We see that the maximum likelihood estimate of β and OLS coincide. It is easy to check
that

i(β, σ2) =

(
σ−2X⊤X 0

0 nσ−4/2

)
.

The general theory for MLEs would suggest that approximately
√
n(β̂−β) ∼ Np(0, σ

2(n−1X⊤X)−1);
in fact it is straightforward to show that this distributional result is exact.

iii

Chapter 1

Kernel machines

Let us revisit the linear model with

Yi = µ0 + x⊤
i β

0 + εi.

Note that here we have included an explicit intercept term, for reasons that will become
clear later. However, our interest will continue to centre on β0, which quantifies the
contributions of each of the predictors to the regression function. For unbiased estimators
of β0, their variance gives a way of comparing their quality in terms of squared error
loss. For a potentially biased estimator, β̃, the relevant quantity is the mean-squared error
(MSE),

Eβ0,σ2{(β̃ − β0)(β̃ − β0)⊤} = E[{β̃ − E(β̃) + E(β̃)− β0}{β̃ − E(β̃) + E(β̃)− β0}⊤]
= Var(β̃) + {E(β̃ − β0)}{E(β̃ − β0)}⊤,

a sum of squared bias and variance terms. A crucial part of the optimality arguments
for OLS and MLEs was unbiasedness. Do there exist biased methods whose variance is is
reduced compared to OLS such that their overall prediction error is lower? Yes—in fact the
use of biased estimators is essential in dealing with settings where the number of parameters
to be estimated is large compared to the number of observations. In the first two chapters
we will explore two important methods for variance reduction based on different forms of
penalisation: rather than forming estimators via optimising a least squares or log-likelihood
term, we will introduce an additional penalty term that encourages estimates to be shrunk
towards 0 in some sense. This will allow us to produce reliable estimators that work well
when classical MLEs are infeasible, and in other situations can greatly outperform the
classical approaches.

1.1 Ridge regression

One way to reduce the variance of β̂OLS is to shrink the estimated coefficients towards 0.
Ridge regression [Hoerl and Kennard, 1970] does this by solving the following optimisation

1

problem
(µ̂R

λ , β̂
R
λ) = argmin

(µ,β)∈R×Rp

{∥Y − µ1−Xβ∥22 + λ∥β∥22}.

Here 1 is an n-vector of 1’s. We see that the usual OLS objective is penalised by an
additional term proportional to ∥β∥22. The parameter λ ≥ 0, which controls the severity of
the penalty and therefore the degree of the shrinkage towards 0, is known as a regularisation
parameter or tuning parameter. We have explicitly included an intercept term which is not
penalised. The reason for this is that were the variables to have their origins shifted so
e.g. a variable representing temperature is given in units of Kelvin rather than Celsius, the
fitted values would not change. However, Xβ̂ is not invariant under scale transformations
of the variables so it is standard practice to centre each column of X (hence making them
orthogonal to the intercept term) and then scale them to have ℓ2-norm

√
n.

It is straightforward to show that after this standardisation ofX, µ̂R
λ = Ȳ :=

∑n
i=1 Yi/n,

and
β̂R
λ = (X⊤X + λI)−1X⊤Y.

In this form, we can see how the addition of the λI term helps to stabilise the estimator.
Note that when X does not have full column rank (such as in high-dimensional situations),
we can still compute this estimator. On the other hand, when X does have full column
rank, we have the following theorem.

Theorem 1. For λ sufficiently small (depending on β0 and σ2),

E(β̂OLS − β0)(β̂OLS − β0)⊤ − E(β̂R
λ − β0)(β̂R

λ − β0)⊤

is positive definite.

Proof. First we compute the bias of β̂R
λ . We drop the subscript λ and superscript R for

convenience.

E(β̂)− β0 = (X⊤X + λI)−1X⊤Xβ0 − β0

= (X⊤X + λI)−1(X⊤X + λI − λI)β0 − β0

= −λ(X⊤X + λI)−1β0.

Now we look at the variance of β̂.

Var(β̂) = E{(X⊤X + λI)−1X⊤ε}{(X⊤X + λI)−1X⊤ε}⊤

= σ2(X⊤X + λI)−1X⊤X(X⊤X + λI)−1.

Thus E(β̂OLS − β0)(β̂OLS − β0)⊤ − E(β̂ − β0)(β̂ − β0)⊤ is equal to

σ2(X⊤X)−1 − σ2(X⊤X + λI)−1X⊤X(X⊤X + λI)−1 − λ2(X⊤X + λI)−1β0β0⊤(X⊤X + λI)−1.

After some simplification, we see that this is equal to

λ(X⊤X + λI)−1[σ2{2I + λ(X⊤X)−1} − λβ0β0⊤](X⊤X + λI)−1.

2

Thus E(β̂OLS − β0)(β̂OLS − β0)⊤ − E(β̂ − β0)(β̂ − β0)⊤ is positive definite for λ > 0 if and
only if

σ2{2I + λ(X⊤X)−1} − λβ0β0⊤

is positive definite, which is true for λ > 0 sufficiently small (we can take 0 < λ <
2σ2/∥β0∥22).

The theorem says that β̂R
λ outperforms β̂OLS provided λ is chosen appropriately. To

be able to use ridge regression effectively, we need a way of selecting a good λ—we will
come to this very shortly. What the theorem doesn’t really tell us is in what situations
we expect ridge regression to perform well. To understand that, we will turn to one of the
key matrix decompositions used in statistics, the singular value decomposition (SVD).

1.1.1 Connection to principal components analysis

The singular value decomposition (SVD) is a generalisation of an eigendecomposition of a
square matrix. We can factorise any X ∈ Rn×p into its SVD

X = UDV ⊤.

Here the U ∈ Rn×n and V ∈ Rp×p are orthogonal matrices and D ∈ Rn×p has D11 ≥ D22 ≥
· · · ≥ Dmm ≥ 0 where m := min(n, p) and all other entries of D are zero. To compute
such a decomposition requires O(npmin(n, p)) operations. The rth columns of U and V
are known as the rth left and right singular vectors of X respectively, and Drr is the rth
singular value.

When n > p, we can replace U by its first p columns and D by its first p rows to produce
another version of the SVD (sometimes known as the thin SVD). Then X = UDV ⊤ where
U ∈ Rn×p has orthonormal columns (but is no longer square) and D is square and diagonal.
There is an analogous version for when p > n.

Let us take X ∈ Rn×p as our matrix of predictors and suppose n ≥ p. Using the (thin)
SVD we may write the fitted values1 from ridge regression as follows.

Xβ̂R
λ = X(X⊤X + λI)−1X⊤Y

= UDV ⊤(V D2V ⊤ + λI)−1V DU⊤Y

= UD(D2 + λI)−1DU⊤Y

=

p∑
j=1

Uj

D2
jj

D2
jj + λ

U⊤
j Y.

Here we have used the notation (that we shall use throughout the course) that Uj is the
jth column of U . For comparison, the fitted values from OLS (when X has full column
rank) are

Xβ̂OLS = X(X⊤X)−1X⊤Y = UU⊤Y.

1There is a slight abuse of terminology here as we are ignoring the contribution of µ̂R
λ .

3

Both OLS and ridge regression compute the coordinates (U⊤
j Y)pj=1 of Y with respect to the

basis of the column space of X given by the columns of U . Ridge regression then shrinks
these coordinates by the factors D2

jj/(D
2
jj + λ); if Djj is small, the amount of shrinkage

will be larger.
To interpret this further, note that the SVD is intimately connected with Principal

Components Analysis (PCA). Consider v ∈ Rp with ∥v∥2 = 1. Since the columns of X
have had their means subtracted, the sample variance of Xv ∈ Rn, is

1

n
v⊤X⊤Xv =

1

n
v⊤V D2V ⊤v.

Writing a = V ⊤v, so ∥a∥2 = 1, we have

1

n
v⊤V D2V ⊤v =

1

n
a⊤D2a =

1

n

∑
j

a2jD
2
jj ≤

1

n
D11

∑
j

a2j =
1

n
D2

11.

As ∥XV1∥22/n = D2
11/n, V1 determines the linear combination of the columns of X which

has the largest sample variance, when the coefficients of the linear combination are con-
strained to have ℓ2-norm 1. XV1 = D11U1 is known as the first principal component of
X. Subsequent principal components D22U2, . . . , DppUp have maximum variance D2

jj/n,
subject to being orthogonal to all earlier ones—see example sheet 1 for details.

Returning to ridge regression, we see that it shrinks Y most in the smaller principal
components of X. Thus it will work well when most of the signal is spanned by the large
principal components of X. We now turn to the problem of choosing λ.

1.2 The kernel trick

An alternative expression for the ridge regression solution is given by the following

X⊤(XX⊤ + λIn) = (X⊤X + λIp)X
⊤

(X⊤X + λIp)
−1X⊤ = X⊤(XX⊤ + λIn)

−1

(X⊤X + λIp)
−1X⊤Y = X⊤(XX⊤ + λIn)

−1Y = β̂R
λ . (1.1)

Two remarks are in order:

� Note while X⊤X is p×p, XX⊤ is n×n. Computing fitted values via the the LHS of
(1.1) would require roughly O(np2+p3) operations. If p≫ n this could be extremely
costly. However, the alternative formulation

Xβ̂R
λ = XX⊤(XX⊤ + λI)−1Y

would only require roughly O(n2p + n3) operations, which could be substantially
smaller.

4

� We see that the fitted values of ridge regression depend only on inner products
K = XX⊤ between observations (note Kij = x⊤

i xj).

Now suppose that we believe the signal depends quadratically on the predictors:

Yi = x⊤
i β +

∑
k,l

xikxilθkl + εi.

We can still use ridge regression provided we work with an enlarged set of predictors

xi1, . . . , xip, xi1xi1, . . . , xi1xip, xi2xi1, . . . , xi2xip, . . . , xipxip. (1.2)

This will give us O(p2) predictors. Our new approach to computing fitted values would
therefore have complexity O(n2p2 + n3), which could be rather costly if p is large.

However, rather than first creating all the additional predictors and then computing
the new K matrix, we can attempt to directly compute K. To this end consider

(1/2 + x⊤
i xj)

2 − 1/4 =

(
1

2
+
∑
k

xikxjk

)2

− 1

4

=
∑
k

xikxjk +
∑
k,l

xikxilxjkxjl.

Observe this amounts to an inner product between vectors of the form (1.2) Thus if we set

Kij = (1/2 + x⊤
i xj)

2 − 1/4 (1.3)

and plug this into the formula for the fitted values, it is exactly as if we had performed
ridge regression with an enlarged predictor matrix

Φ :=

ϕ(x1)
⊤

...
ϕ(xn)

⊤

 .

Now computing K using (1.3) would require only O(p) operations per entry, so O(n2p)
operations in total, compared to O(n2p2) for our earlier approach.

Predictions at a new x ∈ Rp may be computed similarly. From (1.1), we have

ϕ(x)⊤β̂R
λ = ϕ(x)Φ⊤(ΦΦ⊤ + λI)−1Y =

n∑
i=1

k(x, xi)α̂i

where α̂ := (K + λI)−1Y ∈ Rn.
This is a nice computational trick, but more importantly for us it serves to illustrate

some general points.

5

� Since ridge regression only depends on inner products between observations, rather
than fitting non-linear models by first mapping the original data xi ∈ Rp to ϕ(xi) ∈ Rd

(say) using some feature map ϕ (which could, for example introduce quadratic effects),
we can instead try to directly compute k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩.

� In fact rather than thinking in terms of feature maps, we can instead try to think
about an appropriate measure of similarity k(xi, xj) between observations. Modelling
in this fashion is sometimes much easier.

We will now formalise and extend what we have learnt with this example.

1.3 Kernels

We have seen how a model with quadratic effects can be fitted very efficiently by replacing
the inner product matrix (known as the Gram matrix) XX⊤ in (1.1) with the matrix in
(1.3). It is then natural to ask what other non-linear models can be fitted efficiently using
this sort of approach.

We won’t answer this question directly, but instead we will try to understand the sorts
of similarity measures k that can be represented as inner products between transformations
of the original data.

That is, we will study the similarity measures k : X × X → R from the input space X
to R for which there exists a feature map ϕ : X → H where H is some (real) inner product
space with

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩. (1.4)

Recall that an inner product space is a real vector space H endowed with a map ⟨·, ·⟩ :
H×H → R that obeys the following properties.

(i) Symmetry: ⟨u, v⟩ = ⟨v, u⟩.

(ii) Linearity: for a, b ∈ R ⟨au+ bw, v⟩ = a⟨u, v⟩+ b⟨w, v⟩.

(iii) Positive-definiteness: ⟨u, u⟩ ≥ 0 with equality if and only if u = 0.

Definition 1. A positive definite kernel or more simply a kernel (for brevity) k is a
symmetric map k : X ×X → R for which for all n ∈ N and all x1, . . . , xn ∈ X , the matrix
K with entries

Kij = k(xi, xj)

is positive semi-definite.

A kernel is a little like an inner product, but need not be bilinear in general. However,
a form of the Cauchy–Schwarz inequality does hold for kernels.

Proposition 2.
k(x, x′)2 ≤ k(x, x)k(x′, x′).

6

Proof. The matrix (
k(x, x) k(x, x′)
k(x′, x) k(x′, x′)

)
must be positive semi-definite so in particular its determinant must be non-negative.

First we show that any inner product of feature maps will give rise to a kernel.

Proposition 3. k defined by k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ is a kernel.

Proof. Let x1, . . . , xn ∈ X , α1, . . . , αn ∈ R and consider∑
i,j

αik(xi, xj)αj =
∑
i,j

αi⟨ϕ(xi), ϕ(xj)⟩αj

=

〈∑
i

αiϕ(xi),
∑
j

αjϕ(xj)

〉
≥ 0.

Showing that every kernel admits a representation of the form (1.4) is slightly more
involved, and we delay this until after we have studied some examples.

1.3.1 Examples of kernels

Proposition 4. Suppose k1, k2, . . . : X × X → R are kernels.

(i) If a1, a2 ≥ 0 then a1k1 + a2k2 is a kernel.

(ii) If limm→∞ km(x, x
′) =: k(x, x′) exists for all x, x′ ∈ X , then k is a kernel.

(iii) The pointwise product k given by k(x, x′) := k1(x, x
′)k2(x, x

′) is a kernel.

Proof. Let K,K1, K2, . . . be the corresponding kernel matrices and take α ∈ Rn.

(i) α⊤Kα = a1α
⊤K1α + a2α

⊤K2α ≥ 0.

(ii) α⊤Kα = α⊤ limm→∞Kmα = limm→∞ α⊤Kmα ≥ 0.

(iii) Let X and Y be independent random vectors with Var(X) = K1, Var(Y) = K2. The
the entrywise (Haddamard) procuct K = K1 ⊙K2 satisfies

Kij = E(XiXj)E(YiYj) = E(XiYi XjYj) = (Var(X ⊙ Y))ij,

and Var(X ⊙ Y) is positive semi-definite as a covariance matrix.

Linear kernel. k(x, x′) = x⊤x′.

7

Polynomial kernel. k(x, x′) = (1+x⊤x′)d. To show this is a kernel, we can simply note
that 1 + x⊤x′ gives a kernel owing to the fact that 1 is a kernel and (i) of Proposition 4.
Next (ii) and induction shows that k as defined above is a kernel.

Gaussian kernel. The highly popular Gaussian kernel is defined by

k(x, x′) = exp

(
− ∥x− x′∥22

2h2

)
.

For x close to x′ it is large whilst for x far from x′ the kernel quickly decays towards 0.
The additional parameter h > 0 known as the bandwidth controls the speed of the decay
to zero. Note it is less clear how one might find a corresponding feature map and indeed
any feature map that represents this must be infinite dimensional.

To show that it is a kernel first decompose ∥x−x′∥22 = ∥x∥22+∥x′∥22− 2x⊤x′. Note that
by Proposition 3,

k1(x, x
′) = exp

(
− ∥x∥

2
2

2h2

)
exp

(
− ∥x

′∥22
2h2

)
is a kernel. Next writing

k2(x, x
′) = exp(x⊤x′/h2) =

∞∑
r=0

(x⊤x′/h2)r

r!

and using (i) of Proposition 4 shows that k2 is a kernel. Finally observing that k = k1k2
and using (ii) shows that the Gaussian kernel is indeed a kernel.

First order Sobolev kernel. Take X to be [0, 1] and let k(x, x′) := x∧x′ = min(x, x′).
We have

k(x.x′) =

∫ 1

0

1[0,x](u)1[0,x′](u)du = ⟨1[0,x],1[0,x′]⟩

so k is a kernel by Proposition 3.

Second order Sobolev kernel. Take X to be [0, 1] and let

k(x, x′) :=

∫ x∧x′

0

∫ x∧y

0

(x− u)(y − u)du

Jaccard similarity kernel. Take X to be the set of all subsets of {1, . . . , p}. For
x, x′ ∈ X with x ∪ x′ ̸= ∅ define

k(x, x′) =
|x ∩ x′|
|x ∪ x′|

and if x ∪ x′ = ∅ then set k(x, x′) = 1. Showing that this is a kernel is left to the example
sheet.

8

1.3.2 Reproducing kernel Hilbert spaces

Recall that we wish to show that each kernel k admits a representation for the form
k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ for some feature map ϕ : X → H where H is an inner product
space. Before showing this, let us first consider the case where k : X × X → R for finite
X , so without loss of generality, X = {1, . . . , N} for some N ∈ N. Then K ∈ RN×N with
Kij = k(i, j) contains all the information about k. The eigendecomposition K = P⊤DP
then readily confirms what we want to show: taking ϕ(i) = D1/2Pi, we have

k(i, j) = Kij = P⊤
i DPj = (D1/2Pi)

⊤(D1/2Pj) = ϕ(i)⊤ϕ(j).

Note however that representation of k through an inner product is not unique. Consider
ϕ(i) = Ki and the weighted Euclidean inner product on the column space H′ of K given by
⟨u, v⟩ = u⊤P⊤D+Pu, where D+ has (D+)ij = D−1

ij when Dij > 0 and 0 otherwise. Then
for α ∈ RN ,

⟨ϕ(i), Kα⟩ = (P⊤DPei)
⊤P⊤D+PP⊤DPα = e⊤i Kα = (Kα)i,

so
⟨ϕ(i), ϕ(j)⟩ = (Kj)i = Kij

as required. Note also the interesting property that the inner product of ϕ(i) and Kα
extracts the ith component of Kα. It is this second representation that generalises most
fruitfully to the case where X may be infinite.

Consider now taking H0 to be the linear span of the functions {k(·, x) : x ∈ X}, i.e.
the vector space of functions of the form

f(·) =
n∑

i=1

αik(·, xi), (1.5)

where n ∈ N, xi ∈ X and αi ∈ R. Given another function

g(·) =
m∑
j=1

βjk(·, x′
j) (1.6)

we define their inner product to be

⟨f, g⟩ =
n∑

i=1

m∑
j=1

αiβjk(xi, x
′
j). (1.7)

We need to check this is well-defined as the representations of f and g in (1.5) and (1.6)
need not be unique. To this end, note that

n∑
i=1

m∑
j=1

αiβjk(xi, x
′
j) =

n∑
i=1

αig(xi) =
m∑
j=1

βjf(x
′
j). (1.8)

9

The first equality shows that the inner product does not depend on the particular expansion
of g whilst the second equality shows that it also does not depend on the expansion of f .
Thus the inner product is well-defined. We define our feature map ϕ : X → H0 to be

ϕ(x) = k(·, x). (1.9)

Theorem 5. For every kernel k, the space H0 above is an inner product space and the
feature map (1.9) satisfies

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩. (1.10)

Proof. First we check that with ϕ defined as in (1.9) we do have relationship (1.10). Observe
that

⟨k(·, x), f⟩ =
n∑

i=1

αik(xi, x) = f(x), (1.11)

so in particular we have

⟨ϕ(x), ϕ(x′)⟩ = ⟨k(·, x), k(·, x′)⟩ = k(x, x′).

It remains to show that (1.7) is indeed an inner product. It is clearly symmetric and
(1.8) shows linearity. We now need to show positive definiteness.

First note that
⟨f, f⟩ =

∑
i,j

αik(xi, xj)αj ≥ 0 (1.12)

by positive definiteness of the kernel. Now from (1.11),

f(x)2 = (⟨k(·, x), f⟩)2.

If we could use the Cauchy–Schwarz inequality on the right-hand side, we would have

f(x)2 ≤ ⟨k(·, x), k(·, x)⟩⟨f, f⟩, (1.13)

which would show that if ⟨f, f⟩ = 0 then necessarily f = 0; the final property we need
to show that ⟨·, ·⟩ is an inner product. However, in order to use the traditional Cauchy–
Schwarz inequality we need to first know we’re dealing with an inner product, which is
precisely what we’re trying to show!

Although we haven’t yet shown that ⟨·, ·⟩ is an inner product, we do have enough
information to show that it is itself a kernel. We may then appeal to Proposition 2 to
obtain (1.13). With this in mind, we argue as follows. Given functions f1, . . . , fm and
coefficients γ1, . . . , γm ∈ R, we have∑

i,j

γi⟨fi, fj⟩γj =
〈∑

i

γifi,
∑
j

γjfj

〉
≥ 0

where we have used linearity and (1.12), showing that it is a kernel.

10

To further discuss the space H0 we recall some facts from analysis. Any inner product
space B is also a normed space: for f ∈ B we may define ∥f∥2B := ⟨f, f⟩B. Recall that a
Cauchy sequence (fm)

∞
m=1 in B has ∥fm − fn∥B → 0 as n,m→∞. A normed space where

every Cauchy sequence has a limit (in the space) is called complete, and a complete inner
product space is called a Hilbert space.

Hilbert spaces may be thought of as the (potentially) infinite-dimensional analogues of
finite-dimensional Euclidean spaces. For later use we note that if V is a closed subspace
of a Hilbert space B, then any f ∈ B has a decomposition f = u+ v with u ∈ V and

v ∈ V ⊥ := {v ∈ B : ⟨v, u⟩B = 0 for all u ∈ V }.

Moreover, if V is finite-dimensional, then it is closed.
By adding the limits of Cauchy sequences to H0 (from Theorem 5) we can make create

a Hilbert space. If (fm)
∞
m=1 ∈ H is Cauchy, then since by (1.13) we have

|fm(x)− fn(x)| ≤
√

k(x, x)∥fm − fn∥H,

we may define function f ∗ : X → R by f ∗(x) = limm→∞ fm(x). We can check that all such
f ∗ can be added to H0 to create a Hilbert space.

In fact, the completion of H0 is a special type of Hilbert space known as a reproducing
kernel Hilbert space (RKHS).

Definition 2. A Hilbert space H of functions f : X → R is a reproducing kernel Hilbert
space (RKHS) if for all x ∈ X , there exists kx ∈ B such that it satisfies the reproducing
property

f(x) = ⟨kx, f⟩ for all f ∈ B.
The function

k : X × X → R
(x, x′) 7→ ⟨kx, kx′⟩ = kx′(x)

is known as the reproducing kernel of H.

Note that the reproducing kernel is well-defined: if kx and hx satisfy the reproducing
property above, then

∥kx − hx∥2H = ⟨kx, kx − hx⟩ − ⟨hx, kx − hx⟩ = (kx − hx)(x)− (kx − hx)(x) = 0.

To summarise what we have learnt, by Proposition 3, the reproducing kernel of any
RKHS is a (positive definite) kernel, and Theorem 5 shows that to any kernel k is associated
an RKHS that has reproducing kernel k. One can further show that this is the unique
RKHS with k as its reproducing kernel.

Examples

Linear kernel. Here H = {f : f(x) = β⊤x, β ∈ Rp} and if f(x) = β⊤x then ∥f∥2H =
∥β∥22.

11

First-order Sobolev kernel. Take H to be the class of almost everywhere differentiable
functions f : [0, 1] → R, with f(0) = 0 and

∫ 1

0
(f ′(u))2 du < ∞. This is an RKHS with

reproducing kernel k(x, y) = x ∧ y and inner product

⟨f, g⟩ :=
∫ 1

0

f ′(u)g′(u) du.

We can check

⟨f, k(·, x)⟩ =
∫ 1

0

f ′(u)1[0,x](u) du =

∫ x

0

f ′(u) du = f(x).

Second-order Sobolev kernel. Take H to be the set of differentiable functions f :
[0, 1] → R with f(0) = 0, f ′(0) = 0 and where f ′ is almost everywhere differentiable with∫ 1

0
(f ′′(u))2 du <∞. For f, g ∈ H define

⟨f, g⟩ :=
∫ 1

0

f ′′(u)g′′(u) du.

Recall (see Ex. sheet) that kx(y) := k(x, y) :=
∫ x∧y
0

(x−u)(y−u) du satisfies k′′
x(y) = (x−y)+

and for f ∈ H,

⟨f, kx⟩ =
∫ 1

0

f ′′(u)(x− u)+ du

= [f ′(u)(x− u)+]
1
0 +

∫ 1

0

f ′(u)1[0,x](u) du

= f(x).

1.3.3 The representer theorem

To recap, what we have shown so far is that replacing the matrix XX⊤ in the definition of
an algorithm byK derived form a positive definite kernel is essentially equivalent to running
the same algorithm on some mapping of the original data, though with the modification
that instances of x⊤

i xj become ⟨ϕ(xi), ϕ(xj)⟩. This corresponds to ridge regression on a
predictor matrix with ith row ϕ(xi) in the case where ϕ : X → H maps into a Euclidean
space, but the question remains as to how to interpret this when H is infinite-dimensional.

If H denotes the RKHS of the linear kernel, then

f̂ := argmin
f∈H

{ n∑
i=1

{Yi − f(xi)}2 + λ∥f∥2H
}

(1.14)

is the usual fitted regression function from ridge regression. The following theorem shows
in particular that kernel ridge regression (i.e. ridge regression replacing XX⊤ with K) with
kernel k is equivalent to the above with H now being the RKHS corresponding to k.

12

Theorem 6 (Representer theorem, [Kimeldorf and Wahba, 1970, Schölkopf et al., 2001]).
Let c : Rn ×X n ×Rn → R be an arbitrary loss function, and let J : [0,∞)→ R be strictly
increasing. Let x1, . . . , xn ∈ X , Y ∈ Rn. Finally, let f ∈ H where H is an RKHS with
reproducing kernel k, and let Kij = k(xi, xj) i, j = 1, . . . , n. Then f̂ minimises

Q1(f) := c(Y, x1, . . . , xn, f(x1), . . . , f(xn)) + J(∥f∥2H)

over f ∈ H iff. f̂(·) =
∑n

i=1 α̂ik(·, xi) and α̂ ∈ Rn minimises Q2 over α ∈ Rn where

Q2(α) = c(Y, x1, . . . , xn, Kα) + J(α⊤Kα).

Proof. Let U be the linear span of {k(·, xi), i = 1, . . . , n}. As U is finite-dimensional and
hence closed, we can decompose any f ∈ H as f = u+ v with u ∈ U and v ∈ U⊥. Then

f(xi) = ⟨f, k(·, xi)⟩ = ⟨u+ v, k(·, xi)⟩ = ⟨u, k(·, xi)⟩ = u(xi).

Meanwhile,
J(∥f∥2H) = J(∥u∥2H + ∥v∥2H) ≥ J(∥u∥2H),

with equality if and only v = 0. Thus in minimising Q1, we may restrict attention to those
f ∈ U , i.e., those

f =
n∑

i=1

αik(·, xi)

for some α ∈ Rn. But for such f ,

∥f∥2H =

〈 n∑
i=1

αik(·, xi),
n∑

i=1

αik(·, xi)

〉
= α⊤Kα,

and f(xi) = K⊤
i α so (f(xi))

n
i=1 = Kα. Thus Q1(f) = Q2(α).

Consider the result specialised the ridge regression objective. We see that (1.14) is
essentially equivalent to minimising

∥Y −Kα∥22 + λα⊤Kα,

and you may check (see example sheet 1) that the minimiser α̂ satisfies Kα̂ = K(K +
λI)−1Y . Thus (1.14) is indeed an alternative way of expressing kernel ridge regression.
The result also tells us how to form predictions: given a new observation x, our prediction
for f(x) is

f̂(x) =
n∑

i=1

α̂ik(x, xi).

The application of the result is however not limited to ridge regression and shows that
a whole host of algorithms can be ‘kernelised’. For example, recall that in the classification
setting where Yi ∈ {−1, 1}, standard logistic regression may be motivated by assuming

log

(
P(Yi = 1)

P(Yi = −1)

)
= µ0 + x⊤

i β
0

13

and picking (µ̂, β̂) to maximise the log-likelihood. This leads to the following optimisation
problem:

argmin
(µ,β)∈Rp

n∑
i=1

log{1 + exp(−Yi(µ+ x⊤
i β))}.

The kernelised version is then given by

argmin
µ∈R,f∈H

{ n∑
i=1

log[1 + exp{−Yi(µ+ f(xi))}] + λ∥f∥2H
}
,

where H is an RKHS (note that here we have included an unpenalised intercept term).

1.4 Kernel ridge regression

We have seen how the kernel trick allows us to solve a potentially infinite-dimensional
version of ridge regression. This may seem impressive, but ultimately we should judge
kernel ridge regression on its statistical properties e.g. predictive performance. Consider a
setting where

Yi = f 0(xi) + εi, E(ε) = 0, Var(ε) = σ2I.

We shall assume that f 0 ∈ H where H is an RKHS with reproducing kernel k. Let K be
the kernel matrix Kij = k(xi, xj) with eigenvalues d1 ≥ d2 ≥ · · · ≥ dn ≥ 0. We will see
that the predictive performance depends delicately on these eigenvalues.

Let f̂λ be the estimated regression function from kernel ridge regression with kernel k:

f̂λ = argmin
f∈H

{ n∑
i=1

{Yi − f(xi)}2 + λ∥f∥2H
}
.

Theorem 7. The mean squared prediction error (MSPE) may be bounded above in the
following way:

1

n
E
{ n∑

i=1

{f 0(xi)− f̂λ(xi)}2
}
≤ σ2

n

n∑
i=1

d2i
(di + λ)2

+
λ∥f 0∥2H

4n
(1.15)

≤ σ2

n

1

λ

n∑
i=1

min(di/4, λ) +
λ∥f 0∥2H

4n
.

Proof. We know from the representer theorem that(
f̂λ(x1), . . . , f̂λ(xn)

)⊤
= K(K + λI)−1Y.

You will show on the example sheet that(
f 0(x1), . . . , f

0(xn)
)⊤

= Kα,

14

for some α ∈ Rn, and moreover that ∥f 0∥2H ≥ α⊤Kα. Let the eigendecomposition of K be
given by K = UDU⊤ with Dii = di and define θ = U⊤Kα. We see that n times the LHS
of (1.15) is

E∥K(K + λI)−1(Uθ + ε)− Uθ∥22 = E∥DU⊤(UDU⊤ + λI)−1(Uθ + ε)− θ∥22
= E∥D(D + λI)−1(θ + U⊤ε)− θ∥22
= ∥{D(D + λI)−1 − I}θ∥22 + E∥D(D + λI)−1U⊤ε∥22.

To compute the second term, we use the ‘trace trick’:

E∥D(D + λI)−1U⊤ε∥22 = E[{D(D + λI)−1U⊤ε}⊤D(D + λI)−1U⊤ε]

= E[tr{D(D + λI)−1U⊤εε⊤UD(D + λI)−1}]
= σ2tr{D(D + λI)−1D(D + λI)−1}

= σ2

n∑
i=1

d2i
(di + λ)2

.

For the first term, we have

∥{D(D + λI)−1 − I}θ∥22 =
n∑

i=1

λ2θ2i
(di + λ)2

.

Now as θ = DU⊤α, note that θi = 0 when di = 0. Let D+ be the diagonal matrix with ith
diagonal entry equal to D−1

ii if Dii > 0 and 0 otherwise. Then∑
i:di>0

θ2i
di

= ∥
√
D+θ∥22 = α⊤KUD+U⊤Kα = α⊤UDD+DU⊤α = α⊤Kα ≤ ∥f 0∥2H.

By Hölder’s inequality we have

n∑
i=1

λ2θ2i
(di + λ)2

=
∑
i:di>0

θ2i
di

diλ
2

(di + λ)2
≤ max

i=1,...,n

diλ
2

(di + λ)2
≤ ∥f 0∥2Hλ/4,

using the inequality (a+ b)2 ≥ 4ab in the final line. Finally note that

d2i
(di + λ)2

≤ min{1, d2i /(4diλ)} = min(λ, di/4)/λ.

To interpret this result further, it will be helpful to express it in terms of µ̂i := di/n
(the eigenvalues of K/n) and γn := λ/n. We have

1

n
E
{ n∑

i=1

{f 0(xi)− f̂nγn(xi)}2
}
≤ σ2

γn

1

n

n∑
i=1

min(µ̂i/4, γn) + ∥f 0∥2Hγn/4 =: δn(γ). (1.16)

15

Here we have treated the xi as fixed, but we could equally well think of them as
random. Consider a setup where the xi are i.i.d. and independent of ε. If we take a further
expectation on the RHS of (1.16), our result still holds true (the µ̂i are random in this
setting). Ideally we would like to then replace Emin(µ̂i/4, γ) with a quantity more directly
related to the kernel k.

Mercer’s theorem is helpful in this regard. This guarantees (under some mild conditions)
an eigendecomposition for kernels, which recall are somewhat like infinite-dimensional ana-
logues of symmetric positive semi-definite matrices.

Given a random variable X taking values in X , we say a non-zero function e ∈ H is an
eigenfunction with eigenvalue µ ∈ R if

µe(x) = Ek(x,X)e(X).

Mercer’s theorem states the following under mild conditions, including that Ek(X,X) <∞:

� The set of positive eigenvalues is at most countable.

� The subspace spanned by the eigenfunctions corresponding to each positive eigenvalue
has a finite dimension known as the multiplicity of the eigenvalue.

� Writing (µj)j∈J (where J = {1, . . . ,m}, some m or J ∈ N) for the eigenvalues
counted with multiplicity, there exist corresponding eigenfunctions (ej)j∈J that are
orthonormal in the sense that

Eej(X)ek(X) = 1{j=k}

and satisfy

k(x, y) =
∑
j∈J

µjej(x)ej(y). (1.17)

Lemma 8. When (1.17) holds, we have for γ > 0,

E
(
1

n

n∑
i=1

min(µ̂i/4, γ)

)
≤ 1

n

∑
j∈J

min(µj/4, γ).

Theorem 9. Provided the eigendecomposition (1.17) holds, there exists γn such that for
fixed σ2 > 0,

1

n
E
{ n∑

i=1

{f 0(xi)− f̂γn(xi)}2
}

= o(n−1/2).

Proof. Let ϕ : [0,∞)→ [0,∞) be given by

ϕ(γ) :=
∑
j∈J

min(µj, γ).

16

Observe that ϕ is increasing and as
∑

j∈J µj <∞, limγ↓0 ϕ(γ) = 0 (this is clear when J is
finite; otherwise note that given an arbitrary ϵ > 0, there exists M such that

∑∞
j=M µj ≤ ϵ,

but then ϕ(γ) ≤ Mγ + ϵ→ ϵ as γ ↓ 0). Let γn = n−1/2
√

ϕ(n−1/2) so γn = o(n−1/2). Thus
for n sufficiently large ϕ(γn) ≤ ϕ(n−1/2), whence for such n we have

inf
γ>0
{ϕ(γ)/(nγ) + γ} ≤ ϕ(γn)

nγn
+ γn

≤ 2
√

ϕ(n−1/2)/
√
n = o(n−1/2).

In specific cases, we can get faster rates.

First-order Sobolev kernel. When k is the Sobolev kernel, and considering a uniform
distribution on X = [0, 1], an eigenvalue–eigenfunction pair (µ, e) must satisfy

µe(x) =

∫ 1

0

min(x, y)e(y) dy =

∫ x

0

ye(y) dy + x

∫ 1

x

e(y) dy,

so

µe′(x) = xe(x) +

∫ 1

x

e(y) dy − xe(x) =

∫ 1

x

e(y) dy, (1.18)

hence
µe′′(x) = −e(x).

This ODE has general solution e(x) = aµ sin(x/
√
µ) + bµ cos(x/

√
µ) and the boundary

condition e(0) = 0 gives bµ = 0. Also from (1.18), we see that µe′(1) = 0, so 1/
√
µ =

π/2 + kπ for some k = 0, 1, 2, Thus the jth eigenvalue satisfies

µj/4 =
1

π2(2j − 1)2
.

We therefore have

∞∑
i=1

min(µi/4, γn) ≤
γn
2

(
1√
π2γn

+ 1

)
+

1

π2

∫ ∞

{(π2γn)−1/2+1}/2

1

(2x− 1)2
dx

=
√
γn/π + γn/2 = O(

√
γn)

as γn → 0. Putting things together, we see that

Eδn(γn) = O

(
σ2

nγ
1/2
n

+ γn

)
.

Thus an optimal γn ∼ (σ2/n)2/3 gives an error rate of order (σ2/n)2/3.

17

1.5 Large-scale kernel machines

We introduced the kernel trick as a computational device that avoided performing cal-
culations in a high or infinite dimensional feature space and, in the case of kernel ridge
regression reduced computation down to forming the n × n matrix K and then inverting
K + λI. This can be a huge saving, but when n is very large, this can present serious
computational difficulties. Even if p is small, the O(n3) cost of inverting K+λI may cause
problems. What’s worse, the fitted regression function is a sum over n terms:

f̂(·) =
n∑

i=1

α̂ik(xi, ·).

Even to evaluate a prediction at a single new observation requires O(n) computations
unless α̂ is sparse.

In recent years, there has been great interest in speeding up computations for kernel
machines. We will discuss one exciting approach based on random feature expansions.
Given a kernel k, the key idea is to develop a random map

ϕ̂ : X → Rb

with b small such that E{ϕ̂(x)⊤ϕ̂(x′)} = k(x, x′). In a sense we are trying to reverse the
kernel trick by approximating the kernel using a random feature map. To increase the
quality of the approximation of the kernel, we can consider

x 7→ 1√
L
(ϕ̂1(x), . . . , ϕ̂L(x)) ∈ RLb

with each (ϕ̂l(x))
L
l=1 being i.i.d. for each x. Let Φ be the matrix with ith row given by

(ϕ̂1(xi), . . . , ϕ̂L(xi))/
√
L. We may then run our learning algorithm replacing the initial

matrix of predictors X with Φ. For example, when performing ridge regression, we can
compute

(Φ⊤Φ + λI)−1Φ⊤Y,

which would require O(nL2b2 + L3b3) operations: a cost linear in n. Predicting a new
observation would cost O(Lb).

The work of Rahimi and Recht [2007] proposes a construction of such a random mapping
ϕ̂ for shift-invariant kernels, that is kernels for which there exists a function g with k(x, x′) =
g(x − x′) for all x, x′ ∈ X = Rp. A useful property of such kernels is given by Bochner’s
theorem.

Theorem 10 (Bochner’s theorem). Let k : Rp × Rp → R be a continuous kernel. Then k
is shift-invariant if and only if there exists some c > 0 and distribution F on Rp such that
when W ∼ F

k(x, x′) = cEei(x−x′)⊤W = cE cos((x− x′)⊤W).

18

To make use of this theorem, first observe the following. Let u ∼ U [−π, π], x, y ∈ R.
Then

2E cos(x+ u) cos(y + u) = 2E{(cosx cosu− sinx sinu)(cos y cosu− sin y sinu)}.

Now as u
d
= −u, E cosu sinu = E cos(−u) sin(−u) = −E cosu sinu = 0. Also of course

cos2 u+ sin2 u = 1 so E cos2 u = E sin2 u = 1/2. Thus

2E cos(x+ u) cos(y + u) = cos x cos y + sinx sin y = cos(x− y).

Given a shift-invariant kernel k with associated distribution F , suppose W ∼ F and
let u ∼ U [−π, π] independently. Define

ϕ̂(x) =
√
2c cos(W⊤x+ u).

Then

Eϕ̂(x)ϕ̂(x′) = 2cE[E{cos(W⊤x+ u) cos(W⊤x′ + u)|W}]
= cE cos((x− x′)⊤W) = k(x, x′).

As a concrete example of this approach, let us take the Gaussian kernel k(x, x′) = exp{−∥x−
x′∥22/(2h2)}. Note that if W ∼ N(0, h−2I), it has characteristic function E(eit⊤W) =
e−∥t∥22/(2h2) so we may take ϕ̂(x) =

√
2 cos(W⊤x+ u).

19

Chapter 2

The Lasso and extensions

2.1 Model selection

Let us revisit the linear model Y = Xβ0 + ε where E(ε) = 0, Var(ε) = σ2I. In many
modern datasets, there are reasons to believe there are many more variables present than
are necessary to explain the response. Let S be the set S = {k : β0

k ̸= 0} and suppose
s := |S| ≪ p.

The MSPE of OLS is

1

n
E∥Xβ0 −Xβ̂OLS∥22 =

1

n
E{(β0 − β̂OLS)⊤X⊤X(β0 − β̂OLS)}

=
1

n
E[tr{(β0 − β̂OLS)(β0 − β̂OLS)⊤X⊤X}]

=
1

n
tr[E{(β0 − β̂OLS)(β0 − β̂OLS)⊤}X⊤X]

=
1

n
tr(Var(β̂OLS)X⊤X) =

p

n
σ2.

If we could identify S and then fit a linear model using just these variables, we’d obtain
an MSPE of σ2s/n which could be substantially smaller than σ2p/n. Furthermore, it can
be shown that parameter estimates from the reduced model are more accurate. The smaller
model would also be easier to interpret.

We now briefly review some classical model selection strategies.

Best subset regression

A natural approach to finding S is to consider all 2p possible regression procedures each
involving regressing the response on a different sets of explanatory variables XM where
M is a subset of {1, . . . , p}. We can then pick the best regression procedure using cross-
validation (say). For general design matrices, this involves an exhaustive search over all
subsets, so this is not really feasible for p > 50.

20

Forward selection

This can be seen as a greedy way of performing best subsets regression. Given a target
model size m (the tuning parameter), this works as follows.

1. Start by fitting an intercept only model.

2. Add to the current model the predictor variable that reduces the residual sum of
squares the most.

3. Continue step 2 until m predictor variables have been selected.

2.2 The Lasso estimator

The Least absolute shrinkage and selection operator (Lasso) [Tibshirani, 1996] estimates
β0 by β̂L

λ , where (µ̂L, β̂L
λ) minimise

1

2n
∥Y − µ1−Xβ∥22 + λ∥β∥1 (2.1)

over (µ, β) ∈ R× Rp. Here ∥β∥1 is the ℓ1-norm of β: ∥β∥1 =
∑p

k=1 |βk|.
Like ridge regression, β̂L

λ shrinks the OLS estimate towards the origin, but there is
an important difference. The ℓ1 penalty can force some of the estimated coefficients to be
exactly 0. In this way the Lasso can perform simultaneous variable selection and parameter
estimation. As we did with ridge regression, we can centre and scale the X matrix, so then
µ̂L
λ = Ȳ . As before, our target of interest is β0. Define

Qλ(β) =
1

2n
∥Y −Xβ∥22 + λ∥β∥1. (2.2)

Now the minimiser(s) of Qλ(β) will also be the minimiser(s) of

∥Y −Xβ∥22 subject to ∥β∥1 ≤ ∥β̂L
λ∥1.

Similarly, with the Ridge regression objective, we know that β̂R
λ minimises ∥Y − Xβ∥22

subject to ∥β∥2 ≤ ∥β̂R
λ ∥2.

Now the contours of the OLS objective ∥Y − Xβ∥22 are ellipsoids centred at β̂OLS,
while the contours of ∥β∥22 are spheres centred at the origin, and the contours of ∥β∥1 are
‘diamonds’ centred at 0.

The important point to note is that the ℓ1 ball {β ∈ Rp : ∥β∥1 ≤ ∥β̂L
λ∥1} has corners

where some of the components are zero, and it is likely that the OLS contours will intersect
the ℓ1 ball at such a corner.

21

2.2.1 Prediction error of the Lasso (slow rate)

A remarkable property of the Lasso is that even when p ≫ n, it can still perform well in
terms of prediction error. Suppose the columns of X have been centred and scaled (as we
will always assume from now on unless stated otherwise) and assume the normal linear
model

Y = µ1+Xβ0 + ε (2.3)

where ε ∼ Nn(0, σ
2I).

Theorem 11. Let β̂ be any Lasso solution when

λ = Aσ

√
log(p)

n
.

With probability at least 1− 2p−(A2/2−1)

1

n
∥X(β0 − β̂)∥22 ≤ 4Aσ

√
log(p)

n
∥β0∥1.

Proof. From the definition of β̂ we have

1

2n
∥Y − Ȳ 1−Xβ̂∥22 + λ∥β̂∥1 ≤

1

2n
∥Y − Ȳ 1−Xβ0∥22 + λ∥β0∥1.

Rearranging,
1

2n
∥X(β0 − β̂)∥22 ≤

1

n
ε⊤X(β̂ − β0) + λ∥β0∥1 − λ∥β̂∥1.

Now |ε⊤X(β̂ − β0)| ≤ ∥X⊤ε∥∞∥β̂ − β0∥1. Let Ω = {∥X⊤ε∥∞/n ≤ λ}. Lemma 15 below
shows that P(Ω) ≥ 1− 2p−(A2/2−1). Working on the event Ω, we obtain

1

2n
∥X(β0 − β̂)∥22 ≤ λ∥β0 − β̂∥1 + λ∥β0∥1 − λ∥β̂∥1,

1

n
∥X(β0 − β̂)∥22 ≤ 4λ∥β0∥1, by the triangle inequality.

2.2.2 Concentration inequalities I

The proof of Theorem 11 relies on a lower bound for the probability of the event Ω. A
union bound gives

P(∥X⊤ε∥∞/n > λ) = P(∪pj=1|X⊤
j ε|/n > λ)

≤
p∑

j=1

P(|X⊤
j ε|/n > λ).

Now X⊤
j ε/n ∼ N(0, σ2/n), so if we obtain a bound on the tail probabilities of normal

distributions, the argument above will give a bound for P(Ω).

22

Motivated by the need to bound normal tail probabilities, we will briefly discuss the
topic of concentration inequalities that provide such bounds for much wider classes of
random variables. Concentration inequalities are vital for the study of many modern
algorithms and in our case here, they will reveal that the attractive properties of the Lasso
presented in Theorem 11 hold true for a variety of non-normal errors.

We begin our discussion with the simplest tail bound, Markov’s inequality, which states
that given a non-negative random variable W ,

P(W ≥ t) ≤ E(W)

t
.

This immediately implies that given a strictly increasing function φ : R→ [0,∞) and any
random variable W ,

P(W ≥ t) = P{φ(W) ≥ φ(t)} ≤ E(φ(W))

φ(t)
.

Applying this with φ(t) = eαt (α > 0) yields the so-called Chernoff bound :

P(W ≥ t) ≤ inf
α>0

e−αtEeαW .

Consider the case when W ∼ N(0, σ2). Recall that

EeαW = eα
2σ2/2. (2.4)

Thus

P(W ≥ t) ≤ inf
α>0

eα
2σ2/2−αt = e−t2/(2σ2).

Note that to arrive at this bound, all we required was (an upper bound on) the moment
generating function (mgf) of W (2.4).

Sub-Gaussian variables

Definition 3. We say a random variable W is sub-Gaussian if there exists σ > 0 such
that

Eeα(W−EW) ≤ eα
2σ2/2

for all α ∈ R. We then say that W is sub-Gaussian with parameter σ.

Proposition 12 (Sub-Gaussian tail bound). If W is sub-Gaussian with parameter σ then

P(W − EW ≥ t) ≤ e−t2/(2σ2).

As well as Gaussian random variables, the sub-Gaussian class includes bounded random
variables.

23

Lemma 13 (Hoeffding’s lemma). If W takes values in [a, b], then W is sub-Gaussian with
parameter (b− a)/2.

The following proposition shows that analogously to how a linear combination of jointly
Gaussian random variables is Gaussian, a linear combination of sub-Gaussian random
variables is also sub-Gaussian.

Proposition 14. Let (Wi)
n
i=1 be a sequence of independent sub-Gaussian random vari-

ables with parameters (σi)
n
i=1 and let γ ∈ Rn. Then γ⊤W is sub-Gaussian with parameter(∑

i γ
2
i σ

2
i

)1/2
.

Proof. Wlog, we may assume EWi = 0 for all i. We have

E exp
(
α

n∑
i=1

γiWi

)
=

n∏
i=1

E exp(αγiWi)

≤
n∏

i=1

exp(α2γ2
i σ

2
i /2)

= exp
(
α2

n∑
i=1

γ2
i σ

2
i /2
)
.

We can now prove a more general version of the probability bound required for Theo-
rem 11.

Lemma 15. Suppose (εi)
n
i=1 are independent, mean-zero and sub-Gaussian with common

parameter σ. Note that this includes ε ∼ Nn(0, σ
2I). Let λ = Aσ

√
log(p)/n. Then

P(∥X⊤ε∥∞/n ≤ λ) ≥ 1− 2p−(A2/2−1).

Proof.

P(∥X⊤ε∥∞/n > λ) ≤
p∑

j=1

P(|X⊤
j ε|/n > λ).

But ±X⊤
j ε/n are both sub-Gaussian with parameter (σ2∥Xj∥22/n2)1/2 = σ/

√
n. Thus the

RHS is at most
2p exp(−A2 log(p)/2) = 2p1−A2/2.

2.2.3 Some facts from optimisation theory and convex analysis

In order to study the Lasso in detail, it will be helpful to review some basic facts from
optimisation and convex analysis.

24

Convexity

A set C ⊆ Rd is convex if

x, y ∈ C ⇒ (1− t)x+ ty ∈ C for all t ∈ (0, 1).

Given C ⊆ Rd, We say a function f : C → R is convex if C is convex and

f
(
(1− t)x+ ty

)
≤ (1− t)f(x) + tf(y)

for all x, y ∈ C and t ∈ (0, 1). It is strictly convex if the inequality is strict for all x, y ∈ C
with x ̸= y. If a strictly convex function has a minimiser, it must be unique. In the
following, C ⊆ Rd is a convex set.

Proposition 16. (i) Let f1, . . . , fm : C → R be convex functions. Then if c1, . . . , cm ≥
0, c1f1 + · · ·+ cmfm : C → R is a convex function.

(ii) If f : C → R, and A : Rm → Rd is an affine function (so A(x) = Mx + b for
M ∈ Rd×m and b ∈ Rd) then g : D → R, where D = {x ∈ Rm : A(x) ∈ C} given by
g(x) = f(A(x)) is convex.

(iii) If f : C → R is convex with C open and f is twice continuously differentiable on C,
then

(a) f is convex iff. its Hessian H(x) is positive semi-definite for all x ∈ C,

(b) f is strictly convex if H(x) is positive definite for all x ∈ C.

The Lagrangian method

Consider an optimisation problem of the form

minimise f(x), subject to g(x) = 0, x ∈ C ⊆ Rd, (2.5)

where g : C → Rb. Suppose the optimal value is c∗ ∈ R. The Lagrangian for this problem
is defined as

L(x, θ) = f(x) + θ⊤g(x)

where θ ∈ Rb. Note that

inf
x∈C

L(x, θ) ≤ inf
x∈C:g(x)=0

L(x, θ) = c∗

for all θ. The Lagrangian method involves finding a θ = θ∗ such that the minimising x = x∗

on the LHS satisfies g(x∗) = 0. This x∗ must then be a minimiser in the original problem
(2.5).

25

Subgradients

Definition 4. Given convex C ⊆ Rd, a vector v ∈ Rd is a subgradient of a convex function
f : C → R at x if

f(y) ≥ f(x) + v⊤(y − x) for all y ∈ C.

The set of subgradients of f at x is called the subdifferential of f at x and denoted ∂f(x).

In order to make use of subgradients, we will require the following two facts:

Proposition 17. Let f : C → R be convex, and suppose f is differentiable at x ∈ int(C).
Then ∂f(x) = {∇f(x)}.

Proposition 18 (Subgradient calculus). Let f, f1, f2 : Rd → R be convex. Then

(i) ∂(αf)(x) = {αg : g ∈ ∂f(x)} for α > 0,

(ii) ∂(f1 + f2)(x) = {g1 + g2 : g1 ∈ ∂f1(x), g2 ∈ ∂f2(x)}.

Also if h : Rm → R is given by h(x) = f(Ax+ b) where A ∈ Rd×m and b ∈ Rd, then

(iii) ∂h(x) = {A⊤g : g ∈ ∂f(Ax+ b)}.

The following easy (but key) result is often referred to in the statistical literature as the
Karush–Kuhn–Tucker (KKT) conditions, though it is actually a much simplified version
of them.

Proposition 19. Given convex f : C → R, x∗ ∈ argmin
x∈C

f(x) if and only if 0 ∈ ∂f(x∗).

Proof.

f(y) ≥ f(x∗) for all y ∈ C ⇔ f(y) ≥ f(x∗) + 0⊤(y − x) for all y ∈ C

⇔ 0 ∈ ∂f(x∗).

Let us now compute the subdifferential of the ℓ1-norm. First note that ∥ · ∥1 : Rd → R
is convex. Indeed it is a norm so the triangle inequality gives ∥tx + (1 − t)y∥1 ≤ t∥x∥1 +
(1− t)∥y∥1. We introduce some notation that will be helpful here and throughout the rest
of the course.

For x ∈ Rd and A = {k1, . . . , km} ⊆ {1, . . . , d} with k1 < · · · < km, by xA we will mean
(xk1 , . . . , xkm)

⊤. Similarly if X has d columns we will write XA for the matrix

XA = (Xk1 · · ·Xkm).

Further in this context, by Ac, we will mean {1, . . . , d}\A. Additionally, when in subscripts
we will use the shorthand −j = {j}c and −jk = {j, k}c. Note these column and component

26

extraction operations will always be considered to have taken place first before any further
operations on the matrix, so for example X⊤

A = (XA)
⊤. Finally, define

sgn(x1) =


−1 if x1 < 0

0 if x1 = 0

1 if x1 > 0,

and
sgn(x) = (sgn(x1), . . . , sgn(xd))

⊤.

Proposition 20. For x ∈ Rd let A = {j : xj ̸= 0}. Then

∂∥x∥1 = {v ∈ Rd : ∥v∥∞ ≤ 1 and vA = sgn(xA)}

Proof. We can write ∥x∥1 =
∑d

j=1 |e⊤j x| where ej is the jth standard basis vector. The
subdifferential of the function u 7→ |u| is [−1, 1] if u = 0 and {sgn(u)} otherwise. Thus
from Proposition 18(c) we see that the subdifferential of gj(x) =:= |e⊤j x| is

∂gj(x) =

{
{sgn(xj)ej} if xj ≥ 0

{tej : t ∈ [−1, 1]} otherwise.

Proposition 18(b) then gives the result.

2.2.4 Lasso solutions

Equipped with these tools from convex analysis, we can now fully characterise the solutions
to the Lasso. We have that β̂L

λ is a Lasso solution if and only if 0 ∈ ∂Qλ(β̂
L
λ), which is

equivalent to
1

n
X⊤(Y −Xβ̂L

λ) = λν̂,

for ν̂ with ∥ν̂∥∞ ≤ 1 and writing Ŝλ = {k : β̂L
λ,k ̸= 0}, ν̂Ŝλ

= sgn(β̂L
λ,Ŝλ

).

Lasso solutions need not be unique (e.g. if X has duplicate columns), though for most
reasonable design matrices, Lasso solutions will be unique. We will often tacitly assume
Lasso solutions are unique in the statement of our theoretical results. It is however straight-
forward to show that the Lasso fitted values are unique.

Proposition 21. Fix λ ≥ 0 and suppose β(1) and β(2) are two Lasso solutions. Then
Xβ(1) = Xβ(2).

Proof. Suppose β(1) and β(2) both give an optimal objective value of c∗. Now by strict
convexity of ∥ · ∥22,

∥Y −Xβ(1)/2−Xβ(2)/2∥22 ≤ ∥Y −Xβ(1)∥22/2 + ∥Y −Xβ(2)∥22/2,

27

