
MODERN STATISTICAL METHODS Part III
Example Sheet 4 (of 4) RDS/Michaelmas 2025

Questions 4 and 10 will be marked.

1. a

1 2 3

4 5 6

7 8

Write down:

(a) all sets S ⊆ [8] \ {1, 3} of variables that d-separate 1 and 3;

(b) all sets S ⊆ [8] \ {1, 4, 6} of variables that d-separate {1, 4} and 6.

2. The skeleton of a DAG G is the undirected graph obtained by ignoring the directions of
the edges in the DAG. A v-structure in a DAG is a triple j, l, k of nodes with j → l ← k
where j and k are not adjacent. Explain why if for a DAG G, we have j ⊥⊥Gk |S and we
have edges j − l and k − l in the skeleton with l /∈ S, then j, l, k must be a v-structure.

3. In this question we will outline an algorithm to compute the graphical Lasso.

(a) Let
Q(Ω) = − log det(Ω) + tr(SΩ) + λ∥Ω∥1

be the graphical Lasso objective with Ω̂ = argmin
Ω≻0

Q(Ω) assumed unique. Consider

the following version of the graphical Lasso objective:

min
Ω,Θ≻0

{− log det(Ω) + tr(SΩ) + λ∥Θ∥1}

subject to Ω = Θ. By introducing the Lagrangian for this objective, show that

p+ max
U :S+U≻0, ∥U∥∞≤λ

log det(S + U) ≤ Q(Ω̂).

Here ∥U∥∞ = maxj,k |Ujk|, A ≻ 0 means matrix A is positive definite and p is
the number of columns in the underlying data matrix X. [Hint: Use the fact that
∇ log det(Ω) = Ω−1 and write the additional term in the Lagrangian as tr(U(Ω−Θ)).]

(b) Suppose that U∗ is the unique maximiser of the LHS of the previous display. Show
that Ω̂ = (S + U∗)−1.

(c) Now consider
Σ̂ = argmin

W :W≻0, ∥W−S∥∞≤λ
− log det(W ). (1)
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By using the formula for the determinant in terms of Schur complements, show that
(Σ̂jj , Σ̂−j,j) = (α∗, β∗), where (α∗, β∗) solve the following optimisation problem over
(α, β):

minimise − α+ βT Σ̂−1
−j,−jβ,

such that ∥β − S−j,j∥∞ ≤ λ, |α− Sjj | ≤ λ.

Conclude that α∗ = Sjj + λ.

(d) Show that β∗ = Σ̂−j,−jθ
∗, where θ∗ ∈ Rp−1 is the unique minimiser of the Lasso-type

objective function

θ 7→ 1

2
θ⊤Σ̂−j,−jθ − θ⊤S−j,j + λ∥θ∥1

over Rp−1. (Thus, fixing Σ̂−j,−j , we may find optimal values for the remaining parts
of Σ̂, which suggests that by cycling through j we can perform a form of blockwise
coordinate descent.)

4. Assume the setup of Theorem 40.

(a) Show that∣∣ε̂2i ξ̂2i − ε2i ξ
2
i

∣∣
≤

{(
f̂(Zi)− f(Zi)

)2
+ 2

∣∣εi(f̂(Zi)− f(Zi)
)∣∣} {(

ĝ(Zi)− g(Zi)
)2

+ 2
∣∣ξi(ĝ(Zi)− g(Zi)

)∣∣}
+ ε2i

{(
ĝ(Zi)− g(Zi)

)2
+ 2

∣∣ξi(ĝ(Zi)− g(Zi)
)∣∣}

+ ξ2i
{(

f̂(Zi)− f(Zi)
)2

+ 2
∣∣εi(f̂(Zi)− f(Zi)

)∣∣}
=: Ii + IIi + IIIi.

(b) Show that

Ii ≤ 3
(
f̂(Zi)− f(Zi)

)2(
ĝ(Zi)− g(Zi)

)2
+ ε2i

(
ĝ(Zi)− g(Zi)

)2
+ ξ2i

(
f̂(Zi)− f(Zi)

)2
+ 4

∣∣εiξi(f̂(Zi)− f(Zi)
)(
ĝ(Zi)− g(Zi)

)∣∣.
(c) Show that

A2 :=
1

n

n∑
i=1

(
f̂(Zi)− f(Zi)

)2(
ĝ(Zi)− g(Zi)

)2 p→ 0.

(d) Show that

B2 :=
1

n

n∑
i=1

ε2i (ĝ(Zi)− g(Zi))
2 p→ 0.

(e) Complete the proof of Theorem 40 by showing that τD
p→
√
Var(εξ). [Hint: Appeal

to symmetry where possible, to avoid unnecessary calculations.]

5. Prove Theorem 41. [Hint: Define

τ̂
(k)
1 :=

1

n

∑
i∈Ik

(Yi − µ̂
(k)
1 (xi))Ti

π̂(k)(Xi)
+ µ̂

(k)
1 (Xi),

and τ̂
∗,(k)
1 as above, but with π̂(k) and µ̂

(k)
1 replaced by their targets π and µ1; and define

τ̂
(k)
0 and τ̂

∗,(k)
0 similarly. Argue that it suffices to show

√
n(τ̂

(k)
j − τ

∗,(k)
j ) for j = 0, 1, and

use the decomposition from lectures. ]
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In the following questions, suppose there are m null hypotheses being tested, H1, . . . ,Hm,
and let p1, . . . , pm be the associated p-values, and let p(1) ≤ · · · ≤ p(m) be the ordered
p values (so (i) is the index of the ith smallest p-value). Furthermore, unless otherwise
stated, let I0 be the set of true null hypotheses.

6. Show that the definition of Holm’s procedure as the closed testing procedure with the
local tests as the Bonferroni test is equivalent to the step-down procedure definition.

7. The Benjamini–Hochberg procedure allows us to control the FDR when the p-values of
true null hypotheses are independent of each other, and independent of the false null
hypotheses (though see also Qu 10). The following variant of the method, known as the
Benjamini–Yekutieli procedure allows us to control the FDR under arbitrary dependence
of the p-values, and works as follows. Define

γm = 1 +
1

2
+ · · ·+ 1

m
.

Let k̂ = max{i : p(i) ≤ αi/(mγm)} and reject H(1), . . . ,H(k̂). First show that the FDR of
this procedure satisfies

FDR =
∑
i∈I0

E
(
1

R
1{pi≤αR/(mγm)}1{R>0}

)
.

Now go on to prove that FDR ≤ αm0/m ≤ α. Hint: Verify that that for any r ∈ N we
have

1

r
=

∞∑
j=1

1{j≥r}

j(j + 1)
,

and use this to replace 1/R.

8. Consider the closed testing procedure applied to m hypotheses H1, . . . ,Hm. Let R be the
collection of all I ⊆ {1, . . . ,m} for which for all J ⊇ I, the local test ϕJ = 1. Now suppose
that (perhaps after having looked at the results of the ϕI), we decide we want to reject a
set of hypotheses indexed by B ⊆ {1, . . . ,m}. Let

tα(B) = max{|I| : I ⊆ B, I /∈ R}.

Show that {0, 1, . . . , tα(B)} gives a 1− α confidence set for the number of false rejections
in B. That is, show that

P(|B ∩ I0| > tα(B)) ≤ α,

and that this is true no matter how B is chosen. Hint: Argue by working on the event
{ϕI0 = 0}.

9. Let I be a non-empty subset of the set of subsets of [m], and consider a family of inter-
section hypotheses {HI : I ∈ I} that is hierarchical in the sense that for any I, J ∈ I, we
either have I ∩ J = ∅ or I ⊆ J or J ⊆ I. Suppose that for each HI with I ∈ I we have a
p-value pI . Define the adjusted p-value of HI to be

padjI := max
J∈I:J⊇I

m

|J |
pJ .

Meinshausen’s procedure rejects all hypotheses HI for which padjI ≤ α. Show that this
procedure controls the FWER.
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10. (a) A set D ∈ [0, 1]d is increasing if whenever x ∈ D and y ∈ [0, 1]d are such that xj ≤ yj
for all j ∈ [d], we have y ∈ D. Fix i ∈ [m]. Explain why the set of p-values in
[0, 1]m−1 resulting in at most r−1 rejections from the modified Benjamini–Hochberg
procedure introduced in the proof of Theorem 44 is an increasing set.

(b) Assume now that for each i ∈ I0 and any increasing set D ∈ [0, 1]m−1, we have that
x 7→ P(p−i ∈ D | pi ≤ x) is increasing on [0, 1]. Prove that the Benjamini–Hochberg
procedure controls the FDR. [Hint: Aim to use the given assumption to obtain a
telescoping sum.]
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