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Questions 2 and 7 will be marked. In all of the below, assume that any design matrices X are
n× p and have their columns centred and then scaled to have ℓ2-norm

√
n.

1. In the setting of Theorem 23, assume instead of the compatibility condition that for some
c ∈ (0, 1) there exists ϕ > 0 such that for all δ ∈ Rp with (1− c)∥δN∥1 ≤ (1 + c)∥δS∥1, we
have

∥δS∥21 ≤
s∥Xδ∥22
nϕ2

.

Let β̂ be a Lasso estimator with regularisation parameter λ > 0. Show that with proba-
bility at least 1− 2p−(c2A2/2−1), we have both

1

n
∥X(β̂ − β0)∥22 ≤ (1 + c)2λ2 s

ϕ2
and ∥β̂ − β0∥1 ≤ λ

2(1 + c)

1− c

s

ϕ2
.

[Hint: Start with the improved version of the basic inequality from Qu. 11 of Sheet 2.]

2. Let Y = µ01 + Xβ0 + ε and let S = {k : β0 ̸= 0}, N := {1, . . . , p} \ S. Without loss
of generality assume S = {1, . . . , |S|}. Assume that XS has full column rank and let
Ω = {∥X⊤ε∥∞/n ≤ λ0}. Show that, when λ > λ0, if the following two conditions hold

sup
τ :∥τ∥∞≤1

∥X⊤
NXS(X

⊤
S XS)

−1τ∥∞ <
λ− λ0

λ+ λ0

(λ+ λ0)∥{( 1nX
⊤
S XS)

−1}k∥1 < |β0
k| for k ∈ S,

then on Ω, there exists a Lasso solution that satisfies sgn(β̂L
λ ) = sgn(β0). Show moreover

that the Lasso solution is unique.

3. Consider the setup of Question 1 with c = 1/2 and write Ŝ := {j : β̂j ̸= 0} and set
ŝ := |Ŝ|.

(a) Show that on the event Ω, for any non-empty subset B of Ŝ, we have

1

n
sgn(β̂B)

⊤X⊤
BX(β0 − β̂) ≥ λ|B|

2
.

[Hint: Start with the KKT conditions.]

(b) Let κ2m be the maximum eigenvalue of X⊤
MXM/n over all M ⊂ {1, . . . , p} with

|M | ≤ m. Prove that on Ω, any B ⊆ Ŝ satisfies

|B| ≤ 9sκ2|B|/ϕ
2.

Let
m∗ = min{m ≥ 1 : m > 9κ2ms/ϕ2},

with m∗ = ∞ if there does not exist any m satisfying the condition defining the set
above. Deduce that on Ω, ŝ < m∗, and moreover that ŝ ≤ 9κ2m∗s/ϕ2.

4. (a) Show that

max
θ:∥X⊤θ∥∞≤λ

G(θ) =
1

2n
∥Y −Xβ̂L

λ∥22 + λ∥β̂L
λ∥1,

1



where

G(θ) =
1

2n
∥Y ∥22 −

1

2n
∥Y − nθ∥22.

Show that the unique θ maximising G is θ∗ = (Y −Xβ̂L
λ )/n. [Hint: Treat the Lasso

optimisation problem as minimising ∥Y − z∥22/(2n) + λ∥β∥1 subject to z −Xβ = 0
over (β, z) ∈ Rp × Rn and consider the Lagrangian.]

(b) Let θ̃ be such that ∥X⊤θ̃∥∞ ≤ λ. Explain why if

max
θ:G(θ)≥G(θ̃)

|X⊤
k θ| < λ,

then we know that β̂L
λ,k = 0. By considering θ̃ = Y λ/(nλmax) with λmax = ∥X⊤Y ∥∞/n,

show that β̂L
λ,k = 0 if

1

n
|X⊤

k Y | < λ− ∥Y ∥2√
n

λmax − λ

λmax
.

5. Suppose β̂ is a square-root Lasso solution from a regression of Y ontoX with regularisation
parameter γ > 0. Show that provided Y − Ȳ 1 ̸= Xβ̂, we have

1√
n

(Y − Ȳ 1)⊤(Y − Ȳ 1−Xβ̂)

∥Y − Ȳ 1−Xβ̂∥2
=

1√
n
∥Y − Ȳ 1−Xβ̂∥2 + γ∥β̂∥1.

6. The elastic net estimator in the linear model minimises

1

2n
∥Y −Xβ∥22 + λ(α∥β∥1 + (1− α)∥β∥22/2)

over β ∈ Rp, where α ∈ [0, 1] is fixed.

(a) Suppose X has two columns Xj and Xk that are identical and α < 1. Explain why
the minimising β∗ above is unique and has β∗

k = β∗
j .

(b) Let β̂(0), β̂(1), . . . be the solutions from iterations of a coordinate descent procedure to
minimise the elastic net objective. For a fixed variable index k, let A = {1, . . . , k−1}
and B = {k + 1, . . . , p} and find the form of β̂

(m)
k in terms of β̂

(m)
A and β̂

(m−1)
B .

7. Consider the model
Y = X(β0 + δ0) + ε,

where δ0 ∈ Rp represents a dense perturbation of the usual sparse linear model defined by
β0 ∈ Rp alone. The Lava estimator (β̂λ, δ̂λ) with tuning parameter λ = (λ1, λ2)

⊤ ∈ (0,∞)2

is defined by

(β̂λ, δ̂λ) := argmin
(β,δ)∈Rp×Rp

{
1

2n
∥Y −X(β + δ)∥22 + λ1∥β∥1 + λ2∥δ∥22

}
.

Find an expression for δ̂λ involving X, Y , β̂λ, λ2 and n. Deduce that β̂λ is the minimiser
of a Lasso objective with transformed design matrix X̃ := AX and transformed response
AY , where A := (I −XQX⊤)1/2 and Q := (X⊤X + 2nλ2I)

−1 ∈ Rp×p.

Now let Ω :=
{∥∥X̃⊤(X̃δ0 +Aε)

∥∥
∞/n ≤ λ1

}
. Show that on Ω, we have

1

n

∥∥X̃(β̂λ − β0)
∥∥2
2
≤ 4λ1∥β0∥1.
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Conclude that on Ω we have

1

n
∥X(β̂λ − β0)∥22 ≤

4λ1∥β0∥1
1− κ

when the maximum eigenvalue of XQX⊤ is κ < 1.

8. By using applications of the weak union and contraction properties or otherwise, answer
the following.

(a) Suppose X1, X2, . . . and Y1, Y2, . . . are sequences of random vectors satisfying

Yt ⊥⊥ Xt−1, . . . , X1 |Yt−1, . . . , Y1

for all t ∈ N. Show that for all r ∈ N, we also have

Yt, . . . , Yt+r ⊥⊥ Xt−1, . . . , X1 |Yt−1, . . . , Y1.

(b) Suppose (Xi, Yi, Zi)
n
i=1 are independent triples satisfying Xi ⊥⊥ Yi |Zi. Show that

X1, . . . , Xn ⊥⊥ Y1, . . . , Yn |Z1, . . . , Zn.

[Hint: Argue that it suffices to show the result for n = 2.]

9. Let Z ∼ Np(µ,Σ) with Σ positive definite. Show that for any A,B ⊂ [p],

ZA|ZB = zB ∼ N|A|(µA +ΣA,BΣ
−1
B,B(zB − µB), ΣA,A − ΣA,BΣ

−1
B,BΣB,A).

Here ΣA,B, for example, is the submatrix of Σ formed of those rows and columns indexed
by A and B respectively. [Hint: Find a matrix M ∈ R|A|×|B| such that ZA −MZB and
ZB are independent.]
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