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Questions 3 and 12 will be marked. Some notation: [m] := {1, . . . ,m}; a ∧ b and a ∨ b are the
the minimum and maximum of a and b respectively; a+ := a ∨ 0.

1. Consider minimising the following objective involving response Y ∈ Rn and design matrix
X ∈ Rn×p over (µ, β) ∈ R× Rp:

∥Y − µ1−Xβ∥22 + J(β).

Here J : Rp → R is an arbitrary penalty function. Suppose X̄k = 0 for k = 1, . . . , p.
Assuming that a minimiser (µ̂, β̂) exists, show that µ̂ = Ȳ . Now take J(β) = λ∥β∥22 so we
have the ridge regression objective. Show that

β̂ = (X⊤X + λI)−1X⊤Y.

From here onwards, whenever we refer to ridge regression, we will assume X has had its
columns mean-centred.

2. Let X ∈ Rn×p (n > p) be a centred data matrix with (thin) SVD X = UDV ⊤. We
saw in lectures that the first principal component was D11U1 = XV1. V1 is sometimes
known as the first principal direction. We may define the kth principal component u(k)

and principal direction v(k) for k > 1 inductively as follows.

v(k) maximises ∥Xv∥2 over v ∈ Rp with constraints

∥v∥2 = 1 and u(j)
⊤
Xv = 0 for all j < k;

u(k) := Xv(k).

Suppose that D11, . . . , Dpp are all distinct and positive. Show that v(k) = Vk and u(k) =
DkkUk (up to an arbitrary sign).

3. Consider performing ridge regression when Y = µ1 + Xβ0 + ε, where X ∈ Rn×p has
full column rank, and Eε = 0, Var(ε) = σ2I. Let the SVD of X be UDV ⊤ and write
γ := U⊤Xβ0. Show that
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Now consider varying β0 but fixing the size of the signal so ∥Xβ0∥22 = n (and keeping X
fixed). For what γ is the mean squared prediction error above minimised? For what γ is
it maximised?

4. In the following, assume that forming AB where A ∈ Ra×b, B ∈ Rb×c requires O(abc)
computational operations, and that if M ∈ Rd×d is invertible, then forming M−1 requires
O(d3) operations.

(a) Suppose we wish to apply ridge regression to data (Y,X) ∈ Rn × Rn×p with n ≫ p.
A complication is that the data is split into m separate datasets of size n/m ∈ N,

Y =

Y (1)

...

Y (m)

 X =

X(1)

...

X(m)

 ,
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with each dataset located on a different server. Moving large amounts of data be-
tween servers is expensive. Explain how one can produce ridge estimates β̂λ by
communicating only O(p2) numbers from each server to some central server. What
is the total order of the computation time required at each server, and at the central
server for your approach?

(b) Now suppose instead that p ≫ n and it is instead the variables that are split across
m servers, so each server has only a subset of p/m ∈ N variables for each observation,
and some central server stores Y . Explain how one can obtain the fitted values Xβ̂λ
communicating only O(n2) numbers from each server to the central server. What is
the total order of the computation time required at each server, and at the central
server for your approach?

5. Consider a high-dimensional regression setting where we have some prior information
on the potential relative importance of variables in the matrix of predictors X ∈ Rn×p,
with p ≥ 2, given by an ordering among the variables, so without loss of generality, Xj is
thought of as potentially ‘more important’ than Xj+1 for j ∈ [p−1]. (An example of when
this may occur is the setting where columns of X are known to have been observed with
varying degrees of measurement error.) In such a setting, we may consider performing
a sequence of p ridge regressions on those variables indexed by each of the nested sets
[p], [p − 1], . . . , [1] in turn (a final variable set could then be chosen via cross-validation,
though we do not consider that step here).

(a) Let A be a n× n non-singular matrix and let b ∈ Rn. Prove that if b⊤A−1b ̸= 1, then
A− bb⊤ is invertible with inverse given by

(A− bb⊤)−1 = A−1 +
A−1bb⊤A−1

1− b⊤A−1b
.

Explain why X⊤
j (XX⊤ + λI)−1Xj < 1 for all j whenever λ > 0.

(b) Assuming the complexity costs of matrix operations given in the previous exercise,
show that in the case p ≥ n, the computational complexity of the algorithm above
can be made to be O(np2).

(c) Now write X = UDV ⊤ for the SVD of X, with D ∈ Rp×p, and suppose that we have
computed DU⊤Y ∈ Rp and V ⊤x ∈ Rp for some x ∈ Rp. Given a grid of λ values
λ1 > λ2 > · · · > λL, explain how we may compute all ridge regression predictions
x⊤β̂R

λ1
, . . . , x⊤β̂R

λL
for a given x ∈ Rp in O(Lp) operations.

6. Suppose we have a matrix of predictors X ∈ Rn×p where p ≫ n. Explain how to obtain
the fitted values of the following ridge regression in O(n2p) operations using the kernel
trick:

Minimise over β ∈ Rp, θ ∈ Rp(p−1)/2, γ ∈ Rp,

n∑
i=1

(
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p∑
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+ λ1∥β∥22 + λ2∥θ∥22 + λ3∥γ∥22.

Note we have indexed θ with two numbers for convenience.

7. Let X = {x ∈ Rd : ∥x∥2 < 1}. Show that k(x, x′) = (1−x⊤x′)−α defined on X ×X , where
α > 0, is a kernel.
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8. (a) Let A be a (measurable) subset of R. Suppose that kτ : Rd × Rd → R is a kernel for
each τ ∈ A and that

k(x, y) :=

∫
A
kτ (x, y) dτ

is finite whenever x = y. Show that∫
A
|kτ (x, y)| dτ < ∞,

for all x, y ∈ Rd, and that k is a kernel.

(b) Show that the second-order Sobolev kernel k : [0, 1]× [0, 1] → R given by

k(x, y) :=

∫ x∧y

0
(x− z)(y − z), dz

is a kernel. Verify further that for x ∈ [0, 1], the function kx : [0, 1] → R given by

kx(y) :=

∫ x∧y

0
(x− z)(y − z) dz

satisfies k′′x(y) = (x− y)+.

(c) Show that the function k : Rd × Rd → R given by k(x, y) := (α + ∥x − y∥22)−1/2 is a
kernel for each α > 0.

9. (a) Let k : X ×X → R be a kernel with associated RKHS H such that the set of functions
K := {k(·, x) : x ∈ X} is linearly independent. Show that for any n ∈ N, any distinct
x1, . . . , xn ∈ X and any y1, . . . , yn ∈ R, there exists f ∈ H such that f(xi) = yi for all
i = 1, . . . , n.

[Hint: First show that the kernel matrix must be invertible.]

(b) Show that when k is a Gaussian kernel on R, the corresponding set K above is linearly
independent.

[Hint: Any matrix of the form

A =


1 a1 a21 · · · an−1

1

1 a2 a22 · · · an−1
2

...
...

...
. . .

...
1 an a2n · · · an−1

n

 ∈ Rn×n

is known as a (square) Vandermonde matrix, and satisfies det(A) =
∏

1≤i<j≤n(aj −
ai), so is invertible whenever a1, . . . , an are distinct.]

10. Let α̂ be a minimiser of ∥Y −Kα∥22 + λα⊤Kα over α, with K being a kernel matrix as
usual (i.e. symmetric positive semi-definite). Show that Kα̂ = K(K + λI)−1Y .

11. Let H be a RKHS of functions on X with reproducing kernel k and suppose f0 ∈ H. Let
x1, . . . , xn ∈ X and let K be the kernel matrix Kij = k(xi, xj). Show that(

f0(x1), . . . , f
0(xn)

)⊤
= Kα,

for some α ∈ Rn and moreover that ∥f0∥2H ≥ α⊤Kα.
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12. Consider minimising

c(Y,X, f(x1) + z⊤1 β, . . . , f(xn) + z⊤n β) + J(∥f∥2H)

over f ∈ H and β ∈ Rd, where H is an RKHS, x1, . . . , xn ∈ X and z1, . . . , zn ∈ Rd. Here c
is an arbitrary loss function and J is strictly increasing. Let k be the reproducing kernel
of H. Show that any minimiser ĝ(x, z) = f̂(x) + z⊤β̂ may be written as

ĝ(x, z) = z⊤β̂ +
n∑

i=1

α̂ik(x, xi)

where α̂i ∈ R for i = 1, . . . , n.

13. This question uses the following facts. Suppose k =
∑p

j=1 kj where k1, . . . , kp are kernels
with associated RKHS’s H1, . . . ,Hp having corresponding norms ∥ · ∥H1 , . . . , ∥ · ∥Hp . Then
the RKHS H with reproducing kernel k satisfies

H =

{ p∑
j=1

fj : fj ∈ Hj for all j = 1, . . . , p

}
with squared norm

∥f∥2H = inf

{ p∑
j=1

∥fj∥2Hj
:

p∑
j=1

fj = f, fj ∈ Hj for all j

}
.

It can be shown that the infimum is achieved uniquely, so given f ∈ H, there exists a
unique (f1, . . . , fp) ∈ H1 × · · · × Hp such that

∑p
j=1 fj = f and ∥f∥2H =

∑p
j=1 ∥fj∥2Hj

.

(a) For f ∈ H, let

Q1(f) = c(Y, x1, . . . , xn, f(x1), . . . , f(xn)) + λ∥f∥2H.

Suppose now that (f̂1, . . . , f̂p) minimises

Q2(f1, . . . , fp) = c

(
Y, x1, . . . , xn,

p∑
j=1

fj(x1), . . . ,

p∑
j=1

fj(xn)

)
+ λ

p∑
j=1

∥fj∥2Hj

over (f1, . . . , fp) ∈ H1 × · · · × Hp. Show that then Q2(f̂1, . . . , f̂p) = Q1(f̂) where

f̂ :=
∑p

j=1 f̂j . Show furthermore that f̂ minimises Q1(f) over f ∈ H.

(b) Finally show that f̂j(·) =
∑n

i=1 α̂ikj(·, xi) for all j, where α̂ ∈ Rn minimises

M(α) = c(Y, x1, . . . , xn,Kα) + λα⊤Kα

over α ∈ Rn.
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