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0 Introduction

In IB Statistics, you were introduced to the concept of an estimator of a parameter in a
statistical model, a key example of such being the maximum likelihood estimator (MLE).
But this study will have left several questions unanswered.

1. Is the MLE a good estimator? Is it the best estimator?

2. Or even before considering the above: what does it mean for an estimator to be
good?

3. Often we want more than just a point estimate of a parameter; we want to quantify
uncertainty in the form of confidence intervals (sets) or perform hypothesis tests.
Clearly understanding the distributions of estimators would be helpful to achieving
these goals: how can we do this in general?

These are questions of enormous practical significance. However, they are very difficult,
and in fact the ongoing task of Statistics to answer these is as much generality as possible.
This course will introduce some of the most important mathematical ideas involved their
study. More specifically, this course divides into 5 chapters:

Likelihood inference. Here we will study the distribution of maximum likelihood esti-
mators, and prove that they enjoy certain optimality properties. One very powerful idea
that we will use to do this, and which pervades much of the course, is that of an asymptotic
analysis of an estimator.

Bayesian inference. While the optimality of maximum likelihood estimators does pro-
vide some formal justification for their use, we shall see that there is nevertheless room to
improve on them in finite samples. The Bayesian approach provides a way of leveraging
prior information to potentially realise such an improvement.

Decision theory. We consider question 2 above in a general way, and derive perhaps
the most surprising result of the course concerning the optimality of estimating the mean
of Gaussian data, a result with far reaching consequences that has since shaped much of
the direction of modern statistics for the last 50 years.



Multivariate analysis. While toy examples where all data points are one-dimensional
scalars are useful to illustrate certain concepts, we typically have to handle data that has
multiple variables. These settings bring new questions about how to understand relation-
ships between variables or reduce their dimension to aid interpretability. Here we will
examine some methods for performing such tasks.

Nonparametric inference and Monte Carlo techniques. As datasets have become
larger in recent times, simple parametric models have become harder to defend (why should
the data be Gaussian?). Nonparametric statistics is the field devoted to analysing data
without making such restrictive assumptions on the data-generating process. A second
major change in the way we analyse data has been brought about through improvements in
computing power: computationally intensive simulation-based methods have revolutionised
Bayesian statistics and indeed inference more generally. We will introduce some of the most
important ideas involved in these developments.

1 Likelihood inference

1.1 Introduction

Recall that a random vector X € R? is a (measurabldl]) function X : © — R? where
is a probability space. The distribution P of X gives the probability that X lies in any
(measurable) set:

P(B):=P(X € B)=P{w: X(w) € B})  where B C R%

We write X ~ P to indicate it has distribution P. The distribution is completely deter-
mined by the multivariate distribution function F : R — [0, 1] given by

F(t) = B(X <),

where the inequality is to be understood elementwise. When X is a discrete random vector
with probability mass function (pmf) f, we have

PB) =Y f(a).

zeB

If X is continuous with probability density function (pdf)P| f, then

P(B) = /Bf(m) dz.

!The formal definition is covered in Probability and Measure; we will typically not refer to the measur-
ability of functions or sets, though sometimes we will make connections to the material in that course

20ften we will phrase results in terms of densities, with the understanding that the same result would
hold with pmfs after replacing associated integrals with sums.



Statistics is largely concerned with the following problem: given (data) X, infer something
about its distribution P. We often assume that the distribution comes from some family
of distributions, a so-called statistical model:

Definition 1. A statistical model is a family of distributions {P : 6 € ©} where O is a
parameter space. When these distributions have densities or pmfs f(-,6), we may write

this as {f(-,0) : 0 € ©}.

Example 1. (i) N(p,02%): (u,0) € R x [0, 00).
(i) Pois(f) : 6 € [0, 00).

(i) N(6,1):0 € [~1,1].

(iv) The (fixed design) normal linear model is the family of distributions for the random
vector Y = Zf + ¢ where Z € R™? is a deterministic matrix of predictors, § € RP is
an unknown vector of coefficients and £ ~ N,,(0, o2l ) with ¢ > 0. Thus the statistical
model is formally {N,,(Z3,0%I): 3 € RP, 0% € [0,00)}.

The model is well-specified for X if our assumption X ~ P, for some 6 € © holds, and
we will typically assume this is the case unless we mention otherwise. Thus if X ~ N(1,2),
then model (i) is well-specified, but (ii) and (iii) are misspecified. We denote expectations
and variances etc. under such a model by adding a subscript 6 e.g. E¢(X). In the case of
a correctly specified model, we will often write 6y to denote the “true value” of 6 where
X ~ Py, to distinguish it from other values of §. This notation implicitly assumes that
the following holds.

Definition 2. We say 6, is identifiable if whenever § € © satisfies Py = Fy,, we have
9 — 90.

Given a statistical model {f(-,0) : 0 € O}, mazimum likelihood estimation gives a
recipe for constructing estimators of the unknown parameter 6. It works by regarding the
joint density (or pmf) of the data under the postulated model as a function of § known as
the likelihood. Suppose x is a realisation of data X ~ f(-,6). Then the likelihood is given
by

L(8) == L(0;2) = (&) f(x,0),
where ¢(x) is an arbitrary constant of proportionality. The mazimum likelihood estimator
(MLE) maximises this, or equivalently the log-likelihood ¢, over 6 € ©.

We will mainly work in the setting where our data consist of i.i.d. random vectors
Xq,..., X, £ f(-,0) (though Example (iv) is an important case that falls outside this
scenario). In this context we often add a subscript n to the quantities involved. The
log-likelihood then takes the form

C,(0) = 0,(0; 21, ..., 2) = loge(xy, ... xn) + Zlog f(z:,0).
i=1
We often regard ¢(0) = ¢(0; X) and L(#) = L(0; X) as random functions of 6.
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Example 2. Consider the model X1,..., X, "~ Pois(#) where 6 € (0,00). Then

SO
0a(0) = —nf +log(6) Y _ X;.
i=1
Thus ¢,(0; X4,...,X,) = 0 when 6 = 0 = L3 Xi; = X, which one may check is a
maximiser and hence the MLE.

Example 3. Consider the fixed design normal linear model of Example [Ifiv). We have,
writing z; for the ¢th row of Z € R"*P,

150 =TT oo (a0 = 70,
i=1

SO

n 1
08,0%) = —Slog(o®) — IV — 25l

Thus the MLE J3 for 3 minimises the least squares term |Y — ZpB||3 and hence is given by
the ordinary least squares estimator: when Z has full column rank, 8 = (Z72)"1Z7Y.

_Note that the MLEs of 8 and ¢ above have the attractive property of being unbiased:
Egf = 0. This need not be true of MLEs in general: recall that the MLE of 2 in Example
is

N 1 ~
0% = —|lY = ZB|;,
n

which has Eg ,2(02) = 6%(n — p)/n and is thus (slightly) biased.

Maximum likelihood estimators are of course not the only possible estimators one could
consider. Recalling that if X; ~ Pois(#) then Var(X;) = 6, another (somewhat) natural
estimator for 6 is the unbiased sample variance

n

~ 1

0, = X2 - X%,
v n — 1 Zz:;( ) )
Indeed, regardless of the distribution of the X;, we have
S - - -1
EX? — EX? = Var(X;) + (EX;)* — (Var(X) + (EX)?) = D7 Var(X;).
n

Thus in the Poisson model, é\v is also an unbiased estimator of #. This observation raises the
question of which of the two estimators is the best unbiased estimator. To answer this, we
can for example compare the variances of each of these estimators. We will instead however
pursue a much more ambitious goal of understanding this sort of problem in generality.
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1.2 Information geometry and the Cramér—Rao lower bound

In order to determine the maximum likelihood estimator in Example [2| we differentiated
the log-likelihood and set it equal to zero. It turns out that this derivative plays an even
more fundamental role, so we give it a special name.

Definition 3. Suppose ¢ = (-, X) : © — R is differentiable on int © C RP. The random
function S : int © — RP given by

S(0) := Vyl(§) = ( a(zle(e) ,a%z(e))

is known as the score function or score. In the (special case) where we have i.i.d. data
X1,...,X,, we will notate this as S,,.

The key property of the score is the following.

Lemma 1. Let g : R — R. Under appropriate ‘reqularity conditions’ allowing integration
and differentiation to be exchanged (see Probability and Measure), we have that for 6 €
int ©,

Eq[S(0)g(X)] = VeEeg(X).

Proof. We have,

Remark 1. Taking g = 1 in the above, we see in particular that Eq[S(6)] = 0.

The property of the scord’| derived in Lemma [1] allows us to derive a fundamental lower
bound on the variance of estimators in parametric models. To introduce this remarkable
result, we first define the following.

Definition 4. The Fisher information matriz 1(0) € RP*P for § € int © is given by the
variance of the score: I(0) := Covy(S()) =E(S(8)S(0)T).

3There are some deep ideas at play here. The score can be thought of as the Reisz representer for the
linear functional g — VyEgg(X) (see Linear Analysis). This perspective shows (a) why we should expect
a function with this crucial property satisfied by the score function to exist and (b) that the score function
is unique in this regard.



Note that when X4,..., X, hRg f(-,0), the corresponding Fisher information tensorises:

I,,(0) = nl;(0). Indeed,

n n

By (Sn(0)Sn(0)") =Y > Ey(Volog f(Xi,0)Vlog f(X;,0)"),

=1 j=1

but the quantities (Vylog f(X;,0))", are are i.i.d. and mean-zero (recall Remark [I]), so
we obtain

Eg(S,(0)S,(0)") = ZEQ(W log f(Xi,0)Velog f(Xi,0)") = nly(6).

Theorem 2 (Cramér—Rao lower bound). Suppose the model { Py : 6 € ©} where © C RP is
sufficiently ‘reqular’ (such that appropriate integration and differentiation operations may
be interchanged). For a function ¢ : © — R, consider estimating ¢(0) with an estimator

¢. Then for any 0 € int © where I(0) is invertible,

~

Varg(¢) > ViEg(0) 1(0) " VoEy (o).

Remark 2. Suppose p = 1, ¢ is the identity function and g/g =fisa (potentially biased)
estimator of . Then we have following the bound

Varg(é\) > %.

Remark 3. Take ¢ to be the function ¢(6) = v 6 for some vector v € RP, and take qg 7
for some unbiased estimator 6 of . Then V4Eg(¢p) = Vg(Eg(0) "'v) = Vy(0"v) = v and we
thus obtain

~

v Covg(B)v > v 1(0) to.
Since v above was arbitrary, we see that
Covg(f) — I(6)~"
is positive semi-definite. Thus, for example, Varg(e ) > (1(6)™1);.
Proof of Theorem[3 Let v = 1(0)"'/%u forl an arbitrary unit vector u. We have
v VEo ()| = [0TEe(S(6))| applying Lemma 1]
= [Eo{v" S(0)(¢ — Eg(9))} by Remark I
N\ 1/2
< (Eo{(v"5(0)) })1/2 (Varg(gb)) by the Cauchy—Schwarz inequality.

41(0) is symmetric so 1(§) = UDU T for orthogonal and diagonal matrices U and D respectively. Then
I(6)~Y/2 := UD~'2UT where D~/ is the diagonal matrix with jth diagonal entry D 1/2
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~

Rearranging, squaring and writing b := VylEg(¢) for notational simplicity, we obtain

o (Wb’
Vare(¢) 2 vTI(0)v

Substituting v = I(0)~'/?u, we get
Varg(6) > (bT1(6)"/u)?.
This is true for all unit vectors u, so maximising over u by taking

I(6)~'/?p I1(6)~'/?p
O VA O
(if the denominator were zero, there would be nothing to prove), we finally arrive at
Varg(¢) > bTI(6) b,

as required. H

Example 2| continued. Recall that when Xi,..., X, B Pois(f), the MLE is b =X
and is unbiased. Note that Var(X) = 6/n. On the other hand, the Fisher information (for
a single observation) is [;(#) = Var(X/0) = 1/6, so the Cramér—Rao lower bound is 0/n.
We may thus conclude that (provided we are using the variance as our measure of quality),

in this case, the MLE is the best unbiased estimator of !

The following result gives an alternative representation of the Fisher information that
is often easier to work with.

Proposition 3. Under reqularity conditions, we have 1(0) = —Fy[Vilog(f(X,8))] for
0 €intO, i.e.

82
14(0) = ~Eo (o 81 CX,0) ).
Proof. We have

P ey - 2 (FI@O) w0 g O (6)
00;00,, g/ (x,0)) = 00; f(z,0) ~ f(z,0) (1,072 .
Now, interchanging differentiation and integration,
0? o2
Thus

& (., LX) =B ( 50 %0) )

9 0
=E, (3_6] log f(X, 0)8_&1% f(X, 9)) )

as required. H



Example [3| continued. In the normal linear model, the MLE 3 = (ZTZ)1ZTY for B

satisfies Varg ,2(8) = 02(Z " Z)~!, which is the p x p submatrix of I(8,0%)~! € RP+Dx@+1)
corresponding to f (see Example Sheet).

That the MLEs for 8 in the normal linear model and 6 in the Poisson model are unbiased
and achieve the Cramér—Rao lower bound is no accident: in fact, we shall see that such a
relationship holds ‘approximately’” in wide generality. To gain some intuition about why
this may be true, consider the simple case of Remark[2] where p = 1, but where additionally,
we have i.i.d. data Xq,..., X, S f(+,0) and the estimator is unbiased. You will show on
the Example Sheet that in this case, such an estimator 0 achieves the Cramér—Rao lower

bound if and only if _
0=0+171(0)- %Sn(Q).

Now typically, the MLE 0 solves Sn(g) = 0. Performing a Taylor expansion around 6, we
obtain

1 ~ 1 ~ 1d
0= =5.(0) = —5u(0) + (0 = 0) - ——55:(0).
Provided 245, (0) = 13" ©log(f(X,,0)) ~ —I,(0), we have

020+ 17(0) - £5.(0).

One requirement for this argument to go through is that the remainder in the Taylor
expansion above is ‘small’. This should occur provided 6 — 0 is ‘small’ when 6 is the true
parameter 6. R

As a first step towards arguing that this should hold, recall that an MLE # maximises
the (normalised) log-likelihood £, (+) := 1/,(+). The result below shows that #, maximises

T on

a population version of this quantity.

Theorem 4. Consider a model {f(-,0) : 6 € O} and suppose X ~ f(-,6y) where Oy is
identifiable. Then 0y is the unique mazimiser of]

0 — Eg, (log f(X,0) —log f(X,0h)) .

Proof. We make use of the fact that logu < u—1 for every u > 0 with equality if and only
ifu=1, so

Eg, (log f(X,0) — log f(X, 6y)) = Eg, log (%)

f(z,0)
§/Xf(x’00)f(a:,00)da:—1§0,

with equality if and only if f(-,0) = f(-,6p), which occurs if and only if § = 6, by identifi-
ability. O

®Minor technical point: The reason for subtracting log f(X,6p) rather than just considering 6 +
Eg, log f(X, 0) is that the latter may be infinite.




Remark 4. The quantity Eg,{log f(X,6y)/log f(X,0)} is the Kullback-Leibler (KL) diver-
gence KL(Py,, Pp) of Py from Py, where for distributions P, with densities p, ¢ for a

random variable X,
KL(P,Q) = / p(z) log (%) dz.

The theorem shows that KL(p,¢) > 0, with equality only if p and ¢ coincide.

A major requirement for the argument sketched out above for aapproximately achiev-
ing the Cramér-Rao lower bound is that certain empirical quantities are close to their
population counterparts. Clearly if n = 1, this seems unrealistic, but for large n this might
be more plausible. In the next section, we introduce some language and tools relating to
convergence of random variables that will provide us with the means to justify this sort of
claim formally.

1.3 Stochastic convergence

Recall that a random vector X is formally a function X : Q — R?, where Q is a probability
space. The interpretation is that ‘Chance picks an w €  and we the see the realisation
X (w)’. Formally we have that for any (measurable) set B C R,

P(X € B) :=P({w: X(w) € B}) = P(X"'(B))

and P(-) should be thought of as a sort of ‘area measure’ on . Sets of the form {X €
B} :={w: X(w) € B} C ) are known as events. If an event has probability 1, we say it
occurs almost surely.

Given that random vectors are functions, it is perhaps unsurprising that there are
several notions of stochastic convergence. In the below, for a vector x € RY, [|z]|o =
max; |x;|.

Definition 5. Let (X,,),eny and X be random vectors taking values in R?.

i) We say X,, converges to X almost surely as n — oo, and write X,, =3 X, if
(i) y g Y : :

P(w e Q: | Xn(w) — X(@)]lo — 0) = (| Xy — X]|o — 0) = 1.

(ii) We say X,, converges to X in probability, and write X,, = X, if for all € > 0,

P(|| X, — X||o > €¢) — 0.

(iii) We say X,, converges in distribution, and write X, 24X, if
P(X, <t) - P(X <t)

at all points where ¢ — P(X < t) is continuous.
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Remark 5. Note that if X, % X and X has a continuous distribution (most often we will
have that X is normally distributed), then

P(X, € B) - P(X € B)
for ‘mostﬁ sets B. In particular, if X is real-valued,
P(X, € [a,b]) — P(X € [a,b])

for all a,b € R.

The above definitions also apply to random matrices by concatenating their columns
and regarding them as random vectors. Ultimately, it is convergence in distribution that
is typically most useful to us. Nevertheless, the other forms of convergence are helpful,
partly because they are stronger forms of convergence:

Remark 6.
X, X =X, A X —= X, % X

None of the reverse implications are true in general, but if X, % ¢ for some deterministic
¢ € R%, then X,, % ¢ (see Example sheet).

The following two facts allow us to derive new convergences from old ones:

Remark 7. Given another sequence (Y},),en of random vectors taking values in R¥, we have
that

X, % X and
(X, Vo) B (X,Y) = o
Y, =Y,

the same also holds with all convergences replaced by almost sure convergence, but does
not hold for convergences in distribution (see Example Sheet).

Remark 8. We do however have that if ¢ € R is deterministic, then

X, X and

P

(X0, Y,) 5 (X, ¢) <= {
Y, = c.

Theorem 5 (Continuous mapping theorem (CMT)). Let g : R — R™ be continuous at
every point of a set C' such that P(X € C) = 1. Then

X, X = g(X) T g(x).

Combining this with Remark |8] yields the following useful result: if g : R? x R¥ — R™
is continuous on the set R? x {c} and X, % X and Y, B ¢, then 9(Xn, Yn) KN 9(X,c).
Some common applications of this are known as Slutsky’s lemma:

6*This holds for all measurable sets B for which P(X € 6B) = 0, where 6B := cl(B) \ int(B) is the
boundary of the set B.*
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Lemma 6 (Slutsky’s lemma). Suppose X, 4 X and Y, & ¢ where c is deterministic.
(1) If X,, and Y, are random vectors of the same dimension, X, + Yy, 4 x + c.

(i1) If Y, is real-valued, Y, X, AeX. Moreover, if ¢ # 0 then Y, ' X, ¢

(i1i) We also have a matriz version of (ii) above: if Y, is a matriz of appropriate dimen-
sion, then Y, X,, <5 cX. Moreover, if ¢ is invertible, then YIX, ¢

It is natural to ask whether the limit of the expectations of a sequence X, is equal to
the expectation of the limiting random variable X. This is not the case in general, but we
have the following result.

Theorem 7 (Dominated convergence theorem (DCT)). Suppose a sequence of real-valued
random variables (Wy,)nen satisfies W, LN W, and there exists a random variable V' that
dominates the W, in the sense that |W,(w)| < |V (w)| for all w € Q. Then E|W| < co and
EW, — EW.

Example 4. Suppose we wish to establish continuity of 6 — Eg, log f(X, 6) and we know
that Eg,V < co where V' = supyeg |log f(X,0)| and 6 — f(z,0) is continuous for all z.

Take any sequence (6,)neny C © with 6, — 6 € ©. Define W,, := log f(X,0,). Then
Wy (w) = log(f(X(w),0,) — log(f(X(w),0)) =: W(w). (Note this convergence holds for all
X(w) € {x: f(x,00) > 0}: we cannot have f(x,0) = 0 when f(z,6y) > 0 since EV < oc.
Thus in particular we have this convergence Py, -almost surely and hence in probability
too.) As V is a dominating function, by the DCT, EW,, — EW and so 6 — Eg, log f(X, 0)
is continuous.

1.4 Laws of large numbers and the central limit theorem

Many results in Statistics have at their heart, convergences of averages of i.i.d. random
variables.

Theorem 8 (Strong law of large numbers (SLLN)). Let X, Xo, ... be i.i.d. taking values
in R with E|| X1 ||s < 00. Ther|

_ I o as
X, = — X, S EX).
nZ "2 E(X)

"Note that the underlying probability space 2 needs to support not just any finite number X1, ..., X,
of independent random vectors, but the entire infinite sequence X1, X, ... of independent random vectors:
writing out the conclusion explicitly, we have

P({w e Q: X,(w) = E(X)}) = L.

(Showing that such a probability space exists takes some care: see Probability and Measure for more
details.)
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We shall show a weaker result known as the weak law of large numbers that is easier to
prove:

Theorem 9 (Weak law of large numbers). Let Xi,..., X, be i.i.d. real-valued random
variables with Var(X;) < co. Then

X, B EX)).

Note that the assumption Var(X;) < oo automatically includes the assumption E(| X1 |) <
00 so in this sense, the assumption of the WLLN is stronger than that of the SLLN.

Proof of Theorem[9 Applying Markov’s inequalityﬁ to {X,, — E(X})}?, we have

P({X, —E(X1)}* > €) < e ’E{X,, — E(X))}*.

o E{X, — E(X;)}* = Var(X,,) = Var(X;)/n,
SO
P(|X, — E(X})| > ¢€) < e *Var(X;)/n — 0
as n — oo. UJ
Example 5. Suppose X1, ..., X, are i.i.d. with mean yy and variance o2 > 0. We shall

show that the sample variance satisfies
1 n
= KK Bt
=

First note that we may subtract g from each X; and 2 is unchanged. Now

n

1 n - 1 B
~2 2 2 2 2
n n - i n n ( 0) ( 0)

=1
(.

~ ~ “$'0 by SLLN and CMT
%02 by SLLN

Thus by Slutsky, we have 52 2 o2.

In fact, we can characterise the limiting behaviour of the average of i.i.d. random
variables much more precisely. This turns out to be crucial for deriving inference results
for estimators.

8Recall that if Z is a non-negative random variable, then Z > tl{z>4, so taking expectations,
t7IE(Z) > P(Z > t).

13



Theorem 10 (Central limit theorem (CLT)). Let Xy, ..., X, be i.i.d. taking values in R?
with finite variance ©3. Then)

Vi{X, —E(X))} % Ny(0, %),

Example |5 continued The CLT can for example be used to construct confidence inter-
vals for p19 in the setting of Example [} We have by the CLT that

V(X — o) 5 N(0,02)

so by Slutsky,

X, —
M 4 N(0,1).
On
Write z, for the upper a/2 point of a N (0, 1) distribution, so if Z ~ N(0, 1), then P(Z €

[—Za, 2a]) = 1 — a. Then

~

On Vn Vn

is an asymptotically valid (1 — «)-level confidence interval, in the sense that

\/E(Xn - NO)

P(uo € C) =P ( = S [—za,za]> S P(Z €~z 2]) =1 -0

In the example above, we had an explicit expression for the estimators of the mean and
variance, and so we were able to apply the limit theorems above rather directly. Recall
however that our objective is to study the behaviour of maximum likelihood estimators in
generality, and the MLE may only be defined implicitly through a maximiser of the random
function 6 + £, (6). While for any given fixed 6, the SLLN can for example be used to
conclude that £, (0) “3 E/,(6), it does not offer any conclusions about the convergence of
the function /,(-) as a whole to its population counterpart. This is problematic since the
MLE may be sensitive to the entire function. Fortunately, there exist uniform versions of
the convergence results above. Known as uniform laws of large numbers, they can provide
sufficient conditions such that

sup
0cO

20, (1.1)

LS (., 0) — E(g(x.,0))

n <
1=

9Recall that a random vector X € R? with mean p and positive definite covariance matrix ¥ has a
normal distribution (and we write X ~ Ng(u, X)) if its pdf f is given by

1 1 1 »
flz) = (27)4/2 (det(3))1/2 eXp <—2(x —u)'E e~ M)) :
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where X1, ..., X,, are i.i.d. copies of a random variable X taking values in X C R?, © C R?
and g : X x © — R is a given function. The following is one example of such a result that
we will make use of. Its precise statement and proof are *non-ezaminable*.

Theorem 11 (Uniform law of large numbers). In the setting above, suppose © is compact
(i.e. closed and bounded) and that 0 — g(x, ) is continuous for all x € X. Suppose further
that there exists a function G(x) > supyeg |9(x,0)| satisfying EG(X) < oco. Then ({L.1)
holds.

*Proof*. Write B(#,0) for the open ball with radius 0 centred at § € ©. Fix 6, € © and
consider

As(X,00) == sup  {g(X,0) —Eg(X,0)}.
6€B(00,6)NO
We claim that EAs(X, 6p) — 0 as § — (% Indeed |As(X,0)| < G(X)+EG(X), so by the
DCT, this holds provided Ags(z,dp) — g(x,0y) — Eg(X,6y). This latter fact follows from
continuity of 0 — g(x,0) and the DCT (which shows that § — Eg(X, 6) is continuous—see
Example [4)).

Now fix € > 0. We know that for all § € O, there exists some 6(6) > 0 such that
EAs9) (X, 0) < €/2. The set {B(0,6(0)) : 0 € ©} forms an open cover of the compact set
©, so we can find a finite subcover © C U,i(:l B(0y,0(0y)). Let By := B(0y,0(0;)) N© and
Ag(z) := As,) (2, 0r). Then

sup (n Z{g X;,0) — Eg(X, 9)}) = max sup ( Z{g X;,0) —Eg(X, 6)})

966 7777 GEBk

< max _— su X;,0) —Eg(X,0
< mmax Zeeé{g ) — Eg(X,0)}

k=1,..K
1=1
Thus
1 — Lo
: oy e 1 o
e (s Bomn-saov) = e (o 3o
1 n
> - N <
—P(ﬁ?ﬁ?&( S M) EAkm\ < 6/2)

<e/2
—1

0For measure theory enthusiasts: As(X,6p) is a supremum over an uncountable set, and it is not clear
if it is measurable: technically this measurability should be an extra assumption in the statement.
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as n — 0o by SLLN (and Remark [6]). Applying a similar argument replacing g with —g,

sup |— > €
0co

{sup ( Z{g X;,0) — Eg(X, 9)}) > 6} +P {sup (n Z{Eg (X,0) — (Xi,ﬁ)}) > E}

- Z{g (X;,0) — Eg(X,0)}

0cOe 0cO

— 0,

as required. O

1.5 Consistency of the MLE

We now have in place all of the tools required to formalise the argument sketched out earlier
for connecting the MLE to the Cramér-Rao lower bound. Recall that our basic strategy
involved a Taylor expansion, and in order to make progress with this, a first requirement
was that the MLE 6,, be ‘close’ to the true parameter 6, (for large n). The appropriate
form of closeness here is convergence in probability. From herein, we will be working in
the setting where our data consist of i.i.d. copies X1,..., X, of a random vector X € R%.

Definition 6. We say an estimator 8, = 6,(Xy,...,X,) (not necessarily the MLE) is
consistent for estimating a parameter 6, (corresponding to the true distribution) if 6,, LN

We can thus re-express the first conclusion of Example 5[ as showing that the sample
variance is a consistent estimator of the population variance. Consistency is a very basic
requirement for an estimator: indeed, the strong law of large numbers shows that provided
E||X ||lo < 00, the sample average of the first logn data points (discarding all other data)
logn Zlogn X, is a consistent estimator of the mean. Nevertheless it is a good first start for
studying the MLE, and we present this now.

In the following we assume that the X; have a distribution from a statistical model
{f(-,0) : 0 € ©} where 0, € © denotes the true parameter, so X; NV f(-,60), and 6y is
identifiable. We will require several regularity conditions on our statistical model; note
that the precise form of these is *non-ezaminable*: on the example sheet or exam, these
will be referred to as the ‘usual regularity conditions’.

Regularity assumptions (R1). Let the statistical model be such that:
(1) © C R? is closed and bounded (compact);

(2) Writing X := {x : f(z,0y) > 0} for the support of f(-,6y), 0 — f(x,60) is continuous
for all z € X;

(3) Eg, supgee |log(f(X,0))| < oo.
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In particular, these assumptions are required for application of our ULLN. (3) and (2) imply
that 0 — Eg, log(f(X,0)) =: £(6) is continuous (see Example {4)). Note that a necessary
condition for (3) is that all the densities {f(+,0) : € ©} have support containing X'

Theorem 12. Suppose (R1) holds. An MLE exists (almost surely) and any MLE is con-
sistent.

Proof. First note that on the almost sure event {X1,...,X,, € X}, £,(6) is continuous, so
a maximiser on the compact set © exists. Also, the regularity assumptions accommodate
the following ULLN:

sup [£,(0) — £(0)] 2 0.

0co

Now fix e >0 and let ©_ :={0 € © : |0 — Oy||oc > €}. Note that for any MLE 0,,,

{(60) > sup £a(0)} € {160 — ol < e}
€0

so it suffices to show that the former event has probability converging to 1.

Now O_ is a closed and bounded (compact) set as the intersection of the compact set
© and the closed set {6 — 6p||oc < €}¢. Recall that £ is continuous, so there exists §_ € ©_
with £(6_) = supyeg £(6). Let us write § := £(6y) — £(6_) > 0 (recall Theorem W4 which

shows 6 is the unique maximiser of /).

Also,

sup £,(0) < sup £(8) + sup|Z,(6) — {(9)].
6cO_ 0cO_ 6co

Now

00 (B0) — sup £,(0) = £,(0) — £(6) + £(00) — £(60_) + 2(6_) — sup £,(6) .
0eO_ S——— 0cO_

:6 S 7
~\~

>—supgee |n(0)—£(0)|

But by ULLN, P(supyee [€.(0) — £(0)] < §/2) — 1, so P(£,(6y) > suppee_ ln(0)) — 1 as
required. ]

Remark 9. The proof extends to the following more general setting where we replace the
log-likelihood ¢,, maximised by the MLE, by another function

0 — M,(0) = zn:m(é, X;).

Let M(0) := Em(6, X) and suppose 6 is a maximiser of M: for example we could take
m(0,X) = —|X — 0|, in which case #, would be a population median. Provided the
appropriate regularity conditions are met, we may conclude that a maximiser @L of M, (0)
is consistent for estimating 6.
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1.6 Asymptotic normality of the MLE

We are finally ready to formalise the Taylor series-based argument sketched out earlier
concerning the MLE. We first re-state this argument for the case where p may be greater
than one. Define the observed information matriz J,(0) € RP*P with entries

(Recall that, under regularity conditions, EgJ,(#) = I1(); see Proposition [3}) We have

1 ~ 1 ~
0= \/—S n(On) = T Su(0o) = Ju(00) /(0 — bo).-
But by the CLT,

1

e Sult0) = Zve log f(Xi,0) % N(0, Li(60))

so if J,(6p) = I,(6o), by Slutsky, we should expect

(B, — 6) 5 N,(0, I, (6) 7).

That is, MLEs should not only enjoy a form of ‘approximate’ optimality by approximately
achieving the Cramer—Rao lower bound, but also have an approximately Gaussian dis-
tribution, a fact which allows one to quantify uncertainty in the estimation and perform
hypothesis tests. A sequence of estimators achieving this distributional convergence is said
to be asymptotically efficient or simply efficient. Such a sequence of estimators ‘asymp-
totically’ is unbiased and achieves the Cramér-Rao lower bound (but for example we are
not guaranteed that Egoé\n — 6o).

To prove the remarkable result hinted at above, we require some regularity conditions
in addition to (R1), which, as before, are *non-examinable*.

Regularity assumptions (R2). Let the statistical model be such that:
(1) 0y € int O;

(2) there exists an open neighbourhood N of 6y on which 6 — f(z,0) is twice continuously
differentiable for all z € X;

(3) 1(0y) exists and is invertible ;
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/ sup | Vglog f(x,0)|2 dz < 0o
X 0cO

E, <sup V2 log (X, 9)Hz) < o0
0cO

/ sup || V3 log f(x,0)|2 dx < oco.
X 6€6

(In fact the above can be weakened by replacing © above with any compact set K with
non-empty interior that contains 6.)

Theorem 13. Suppose regularity conditions (R1) and (R2) hold. Then any sequence of
MLEFEs 0,, satisfies
V(0 — 05) % N0, 1 (60) ).

Proof. As 6y € int O, there exists some € > 0 such that {6 : [|§ — 0|l < €} € intO. We
already know 6, = 6, (Theorem , so writing A,, := {6, € int©} D {||0, — Op|cc < €},
we have P(A,,) — 1. We henceforth work on this sequence of events['I| noting that it will
not affect the distributional convergence resultIE.A

Now fix j € {1,...,p} and define ¢(t) := S, (t6, + (1 —t)6y);. Then, by the mean value
theorem,

q(1) —q(0) = ¢'(t)

for some t € [0,1]. Thus there exists 09 L 0, Wit

p

~ —~ n o2
Sn(gn)j - Sn(QO)J = Z(en - QO)k’ Z aekae log f(XZa 9)‘925;1)-
i=1 J

k=1

Then, defining .J,, € RP*? with (jn)]k = (Jn(g(j)))jk, we have
1., -~ 1 ~ o~
—Sp(0n) — =Sn(0o) = —Jn (0, — 0p).
L5,(8.) — L Su(00) = ~T.(6. — 00

Now on A, Sn(an) = 0. Also J, 5 I,(6y) (see Lemma [14] below). Thus writing B, :=
{J, is invertible}, we have P(B,) — 1 (see Example Sheet 1, Question 11(i)). We now
work on A,, N B,, (and note that P(4,, N B,) — 1). We have

\/ﬁ(é\n - 90) = jnlﬁsn(e())

HMore explicitly, we understand every subsequent equation as being multiplied by 14, on the left and
right, or in other words, the equations only apply to those w € A,,.

PIndeed, if W,1q, 4 W for some W and events Q, with P(Q,) — 1, then (1 — 1o, )W, = 0, so

W, =W,lg +(1—1g,)W, > W.

13A technical difficulty arises with applications of the mean value theorem here and elsewhere as the
intermediate values 57(3 ) are not guaranteed to be measurable and hence are formally not necessarily random
variables to which the usual rules of stochastic convergence can be applied. See http://www.statslab.

cam.ac.uk/~nickl/Site/__files/stat2013.pdf|for example for how this issue can be circumvented.
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By the CMT, j;l 2 I,(6y)~" and by the CLT, \/LESR(HO) A N,(0,1(6y)). Thus by Slutsky,
we get the result. O

Lemma 14. Suppose that regqularity conditions (R1) and (R2) hold. Suppose that 0y L 6o
forj =1,....p. Then the matriz J, € RP*? with (J,)jx = (J.(09));1. satisfies J, 2>
I, (00).

Proof. Fix j,k € {1,...,p} and define g(X;,0) := —&oé—g&clog f(X;,0). The conditions
ensure that 6 — Eq,g(X,0) =: g(0) is continuous at 6, and that we have a ULLN of the
form

sup 20.

0cO

=3 (X 0) g0

=(Jn(0))jk

Now
(F)k = 11 (Bo)jr = <% > 9(X:, 00 - g@”)) + (309 - 3(60))

The first term converges to 0 in probability by the ULLN, and the second term converges
to 0 in probability by the CMT. Thus (J,);x — 11(6o)jx — 0 by Slutsky. O

1.7 Wald confidence intervals and tests

We can leverage the asymptotic normality of MLEs to quantify uncertainty through confi-
dence intervals (or regions). Although the asymptotic distribution of y/n(6,, — 6y) involves
the Fisher information I;(6y), which may be unknown as 6, is unknown, we may estimate

~ ~

LI (00) by I,(0,) or J,(6,). Provided 6 — I;() is continuous at 6y, since @Z % 0y, by the
CMT, we have I,(6,)) 2% I,(6y), and Lemma |14 shows in particular that J,(6,) 2> I,(6p).
One consequence of this is that by Slutsky’s lemma, for any given j € {1,...,p},

~

\/ﬁ(eni_ %) 4, x(0,1),
(Jn(0n) 1)
This leads to the Wald confidence interval for 6, ; given by

é\ L é\ Zay \/ (Jn ~ R \/ (‘]n(é\n)_l)jj
n - n,g \/ﬁ '

(é\n)_l)jj -
\/ﬁ y Un,j

By an analagous argument to that of Example , we have ]P)go(é\n € én) —1—o.
If, alternatively, we want to conduct inference for the whole parameter 6, we can base
this on the following result.
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Theorem 15 (Wald confidence region). Under regularity conditions,
Win(80) = 1(8 — 00) T Jn(82) (B, — 6o) > X2
Proof. We have
Wo(B0) = 10 — 00) " 11(80) (B — 00) + /1B — 00) T {(Ju(Br) — 11(00) }/n(Bry — ).

But we know Jn(é\n) — I,(Ay) 2 0, so by Slutsky, {(Jn(é’\n) - 11(00)}\/ﬁ(§n —6) 20, and
hence by Slutsky again, the second term above converges to 0 in probability.
For the first term, note that I1(6)/2\/n(8, — 6o) 5 N,(0,I) by the CMT, so by the

CMT again, {I1(60)"/2/n(0, — 60)}> > X3, so the result follows by a final application of
Slutsky. ]

This leads to an elliptical Wald confidence region of the form
an = {0 E @ : WT’L(9> S 5&}7

where &, is such that when Z ~ X?g» we have P(Z > ¢,) = a.
Exploiting the duality of confidence regions and tests, we can also use this approach to
test the null hypothesis Hy : = 6, for a given 6y: we reject when 6y ¢ C,,, that is when

(0, — 00)" Jn(60,) (0, — 0p) > &
Then the Type I error or size satisfies

Po, (n(6 — 00) T Jn(0,) (B — 6)) > £a) — .

~

Note that in all of the above, we may replace J,(6,) with I;(6y) to obtain alternative
versions of Wald tests and confidence regions and the conclusions remain unchanged.

1.8 Generalised likelihood ratio tests and score tests

The Wald approach is not the only way to perform hypothesis tests. Consider more gen-
erally the problem of testing

Hy:0 € ©g against Hy: 0 € 0\ O,.
where O is some subset of © C RP. Recall that the generalised likelihood ratio statistic

A, = A, (0,0)) is given by

A, (©,00) :=2log (_Supgeg L (0) )

SUPgeg, Ln(0)

where L, is the likelihood L, (0) = [[;-, f(X;,0). Note that A, > 0, and large values
should indicate deviation from the null.
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Theorem 16 (Wilks’ theorem: special case ©g = {6p}.). Consider the special case where
©¢ = {00}. Under regularity conditions, we have

A, LN X;.
Proof. Let 0, be the MLE. We have that
Ay = 2{0,(8,) — £, (6p)}.

We now Taylor expan (,,(6y) about §n using a mean-value form of the remainder. As in
the proof of Theorem , we work on the events A,, := {6,, € int ©}, which have probability
converging to 1. We have

~ ~ ~

0a(B0) = £(0,) + (60 — 6,) T Su(6,) —gwo —0,)T J(0,) (65 — 0,,)

where 5,1 is on the closed line segment between 6y and @\n, so in particular 5n 2 6. Thus
A =1l —0)7 x  Jul6)  xv/n(bo —6,).
—_—— ——
4N, (0,11(60)~1) B11(00) (Lem.[Td)
Just as in the proof of Theorem , we see that this converges in distribution to a X;2>- ]

The result shows that rejecting the null when A,, > &, gives a test with asymptotic size
a. Moreover, we obtain the following asymptotically valid (1 — a)-level confidence set for
0:
Cn:={0€0:A,(0,{0}) <&}

One advantage of this test compared to the Wald test is that it does not require compu-

-~

tation of J,(0,) or I1(6,): instead the test only involves evaluation of the likelihood at 6,
and computation of 6,. In fact, there is also a test that avoids computation of the MLE
altogether, which can be helpful in particular when p is large. The score test is based on

the simple observation that under the null,

%sn(eo) N0, 1 (6)),

so by the CMT,
1
An 1= ﬁSn(Ho)Tfl(eo)flsn(eo) 5 X

Both Wilks’ theorem and the score test can be generalised to settings with composite
null hypotheses. For the score test, we replace 6, above with the MLE #,, under the null
i.e. maximising ¢,, only over ©g. In this setting, the limiting distribution of both A, and
An become Xz_po where py < p is the “dimension” or “degrees of freedom” of ©,. For
example, if O fixes the values of k < p coordinates of #, we will have py = p — k.

4Note this is different from Theorem [13| where we instead expanded S, (6,,) about S, (6y).
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Informal summary: For simple nulls Hj : § = ,, we have the following test statistics:
Wald:  n(6, — 60) " 1(6,)(6,, — 6,)
Generalised likelihood ratio: 2{&((9\”) — 0, (60)}
Score: %Sn(QO)Tll(QO)‘lSn(QO).

Replacing I(6y) and I1(8,,) with any of J,(6,) or I;(6,) where 8, € {6;,8,} will all yield
the same asymptotic distribution under the null and may thus be used in the tests.
For composite nulls Hj : 6 € O, we have

Generalised likelihood ratio: 2{0,,(6,,) — £, (vestricted MLE)}
1
Score: — S, (restricted MLE) " I} (restricted MLE)™'S,, (restricted MLE).
n

The restricted MLE is argmaxycg ¢, (0). Again, for the score test, there are several options
that will yield the same asymptotic distribution under the null. These can be obtained
by replacing the argument of I (restricted MLE) with 6,, € {restricted MLE, 6,,}, or using
Jn(6,).
For the particular composite null Hy : 0; = 0y ;, we can also use a a-level Wald test
which rejects when R
|6n.5 — b0,

~

(12(6n) 1)

where as indicated above, I1(6,,) can be replaced by several other quantities to yield the
same asymptotic distribution under the null.

vn > @7 (1 —a/2),

1.9 The Delta method

Consider now the problem of estimating a certain function ¢(#) of the parameter 6 in
the model {f(-,0) : 0 € ©}. We first look at the special case where ¢(f) = 6, and
0 = (61,02) € ©1 x O3 = O. One option is to maximise the profile likelihood

L(p)(ﬁl) = sup L(61,0s).

6209

More generally, one can maximise the induced likelihood function L*(1)) := suPpeg.4(p)=y L(0)
over 1. A conceptually simpler approach is to compute the MLE 0 and report the so-called
plug-in MLE ¢(0). It turns out, these two approaches amount to the same thing.

Proposition 17. Let 6 be an MLE. Then ¢(8) mazimises L*(¥)) over ¢ € ¢(0) := {1 :
= ¢(0) for some 0 € O}.

Proof. Suppose for a contradiction there exists € ¢(0) with L*(@ > L*(¢(0)

~ ~

)
for some € > 0. Then there exists 0 such that L(0) > L*(¢) — e > L*(¢(6)) > L(0),
contradicting the optimality of 6. ]
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For example, if we reparametrise the {N (i, 0?) : p € R, 0% > 0} model as {N(u, 1/9?) :
p € R, 4% > 0}, the MLE for the precision «? will be the reciprocal of the MLE for o2

The Delta method, which is a general procedure for finding the limiting distribution of
a function of an estimator based on knowledge of the limiting distribution of the estimator
itself, can allow us to conduct inference on ¢(6).

Theorem 18 (Delta method). Let ¢ : © — R™ be continuously differentiable at 6.
Let 0,, be a sequence of random wvectors (estimators—not necessarily MLEs) such that

~ d . . Ny
Tn(0n —00) — Z where Z is some random vector and 1, — 00 is some deterministic scalar
sequence (e.qg. r, = v/n). Then

Vop1(6o)"

r((8,) — 6(60)) % Z.

V@Qbm:(@o)T

Proof. By the mean value theorem applied to each component,

V9¢1(§£L1))T

Tn(qs(é\n) - ¢(90)) = Tn(é\n - 00)7
V9¢m(9nm))T
:?Bn
for some 55{“), k=1,...,min the closed line segment between 6, and gn Now gn 2 0, (see

Example Sheet 1, Question 8(b)), so o) 2 9, also. But then by the CMT, Vggbk(g,(f)) LN
Voor(by) for each k so by Slutsky,

~ Vod1(00)"
Dy 1 (0, — ) : Z. O
d, Vodm(0o) "

Considering the case where gn is the MLE and m = 1, we have
Vi(9(6,) = 9(60)) % N(0, Voo (6) " 11(6) ' Vo (60)).
Recall that the Cramér-Rao lower bound for an estimator &5 with E9$ =¢(0) is

n~'Ved(6) " 11(60) "' Vod(6o),
so this ‘matches’” what we see in the asymptotic distribution of the plug-in MLE.

Example 6. Suppose we have i.i.d. data Xi,..., X,, with mean pg and variance 1 and we
wish to estimate p2. We have \/n(X,, — ) KN N(0,1) by the CLT, so by the Delta method

- d
V(X — ) = N(0, 4u5)-
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What happens if g = 07 Then we simply have convergence in probability to 0 above. To
obtain a more informative result, we should consider the limiting distribution of

2 2
_ ] — 1 — d
X2 = —§ X, = —E X; 2 (by the CMT).
nn n<ni1 ) (\/ﬁll ) _>X1 (y eC )

1.10 Beyond maximum likelihood

It may appear that maximum likelihood estimation has largely ‘solved’ the essential prob-
lem of learning from data that Statistics is concerned with: MLESs enjoy a form of optimality
in the form of efficiency, and the fact that they are asymptotically Gaussian means that
inferential questions can be answered with confidence statements and hypothesis tests that
have formal asymptotic justifications. What remains to be done?

Of course there are settings where the regularity conditions we have employed may fail
(such as when 6, is at the boundary of ©y or when the support of the distributions varies
with f—see the example sheet), but this is certainly not the biggest limitation.

The justification of MLEs relied on what turned out to be an extremely powerful idea:
we regard our estimator 6, applied to data Xi,..., X, as embedded within an infinite
sequence of estimators, and aimed to understand properties of 6, by understanding its
limiting behaviour. Therein however lies a fundamental weakness of our entire analysis.
We have not put forward any guarantees on the behaviour of MLEs at a finite sample size
n. This gap in our argument opens the door to other inference strategies that may be
superior, at least in some ways, in such finite samples. One possibility for improvement is
to leverage any vague prior information we may have about the parameter of interest.

2 Bayesian inference

Bayesian inference is an approach to inference based on regarding the parameter of interest
as random, and specifying a prior distribution for this. This prior distribution can represent
(subjective) beliefs about the parameter. A more broad perspective however would regard
the methods resulting from thinking in this way as precisely that: methods, which we can
assess in the same sort of way as other inference methods.

Example 7. Consider a simple model where © = {6;,60,}. We regard our target parameter
6 as a random variable taking values in © with prior probabilities 7; := P(f = 6;). Let
f; be the pmf of our data X € X (considered discrete here for transparency) given that
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¢ = 0;. Then if x is our realised data,

P(X =z and § = 6,)
P(X =x)
- P(X =0 =0,)P6 =96,
CP(X =x|0=01)P0=01)+P(X =2]0=0,)P(0 =0,)
_ i f(x)
T f1(x) + T fa(z)

Thus we should prefer the hypothesis Hy : § = 6, over Hy : 0 = 0y if

PO=06[X=2a) fl(w)_l
PO=0X=2) falo)m

PO =0;|X =) =

To justify this more formally, we can consider an arbitrary approach 6 : X — © for
deciding between #; and 6, based on data X which incurs a loss of 1 when we make the
wrong decision. We will return to this idea of measuring the quality of an estimator (or
more generally a decision making process) in the next chapter, but for now, note that the
expected loss satisfies

ELisx)20y = E (Lsx)=63 Lo=01} + Lis(x)=01} L{o=0s})
= E (E(15(x)=0,) Lio=0,} + Lsx)=01) Lio=s,) | X))
=K (:H_{(S(X)ZQQ}P(H = 01 |X) + IL{(;(X)ZQI}IP’(H = 02 | X)) .

To minimise this then §(X) should always pick the hypothesis preferred by the rule above.

In summary, we see that if the prior on 6 genuinely described our uncertainty about
0, then our inference on @ should be based on the posterior distribution given by {P(0 =
0| X =2),PO=0,|X =1z)}.

Let us put the ideas above in a more general setting. In the Bayesian context, specifying
a statistical model {f(-,0) : # € ©} means that the distribution of data X given 6 is

We also specify a prior density m which is the marginal density of . The posterior density

is given b
S X0
f@ f(x,0)m(0")do"

We also regard the posterior as a random probability density function II(6 | X )H As usual,
when either X or 6 are discrete, the densities above should be thought of as pmfs and the

01X ~1II(0|x) :

5Note that the randomness is coming from the data X (even though we are thinking of § as a random
variable). There is some abuse of notation here: usually for e.g. a random variable X with density f,
we would not also use X to denote a deterministic point where we might evaluate its density and would
instead write f(z). In the Bayesian context however, it is common to see with the parameter of interest 6.
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integrals replaced with sums. Typically, we will deal with settings where we observe copies
Xy, ..., X, of X where X |0 ~ f(-,0) that are conditionally i.i.d. given 6. We write this

as Xq1,...,X, 0 ~ S f(-,0). Note that the X3,..., X, will typically not be marginally
independent as they ‘share’ the same 6. Our posterior is

m(0) [Ty f (2, 0)
0| X1,...., Xy ~1(0|2q,...,2, =L ’
| 15 ( |$1 X ) f@ 0/ Hz . f(x“01> do
The expression above can be viewed as a reweighted version of the likelihood function
L,(0). Note that the denominator is simply a normalising factor and is constant in 6. It
can often be ignored in calculations by spotting the form of the distribution.

Example 8. Suppose Xi,..., X, |0 oy N(0,1) with prior # ~ N(0, 1). The numerator of

the posterior is proportional to (as a function of 0)
2 2

) (55 e
B nox M)

(

o (o 0
(
(

2 2
n@X—ﬂ—g—>

(O F - n;‘(/my)
2
(0 -nX/(n+ 1))2)
2/(n+ 1) '

Thus we see that

0 X,...,X, ~N )
| 1 ) <n+1z >

In the example above, both the prior and the posterior were in the same distributional
family (they were both normal). This motivates the following definition.

Definition 7. In a statistical model {f(-,0) : 6 € O}, if the prior 7(f) and the posterior
I1(0| X) belong to the same family of distributions, the prior is called a conjugate prior.

Other examples (see example sheet) of conjugacy include:

e Beta prior and binomial sampling;

e Gamma prior and Poisson sampling.

The posterior can be used in several ways for performing inference about 6:

e Estimation: We can use the posterior mean

d=0(X)=E0]X)= o] x) o

for example, or another summary of the posterior such as the mode or median.
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e Uncertainty quantification: Any subset C=C (X) € O such that
/AH(0|X)d0:IP>(HE ClX)=1-a
c

is a (1 — «a)-level credible set for 6.

e Hypothesis testing: As in Example 7], we can decide between hypotheses Hy : 0 €
Op and H, : 0 € ©; via the Bayes factor

PO €Oyl X) Jo, [(X,0)m(0)do

PO, |X) Jo f(X.0)n(0)dd

2.1 Uninformative priors

We motivated the Bayesian approach through a desire to leverage prior information for
inference. In many situations, such prior information cannot be easily summarised in the
form of a prior probability distribution over the parameter of interest. It is nevertheless
interesting to look at Bayesian methods in this context as well. What sort of prior would
be sensible to use in such a setting?

Consider the case where X |6 ~ Bern(f). It would appear that the only sensible
choice of ‘ignorant’ prior in this case is 6 ~ U|0,1]. However the principle to represent
ignorance by uniform priors on the parameter space is logically flawed. Indeed, we could
reparametrise our model via ¢ = 6'°°. The implied prior on 1) would then be

|dbw)| 1

_ % ;,—99/100
dw‘ 1001/}

T (y) = m(0(4))

)

which seems informative as it puts much more mass close to 0 than 1. Therefore the
principle of using uniform priors is not invariant to reparametrisations.
To achieve this form of invariance, we can use the Jeffreys prior:

Definition 8. The prior 7(6) proportional to y/det I(6) is called the Jeffreys prior.

Note that it may be the case that then f@ 7(0)df = oo: any such a prior is called
improper. Although the prior then would not represent a probability distribution, the

posterior
f(z,0)7(0)
Jo f(x,0")m(6") do’
may still be a well-defined probability density (though it cannot be interpreted as a condi-

tional density). To see how the Jeffreys prior restores the desired invariance, consider for
simplicity the case where p = 1 and observe that under regularity conditions, the Fisher
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information 1)(¢) in the ¢ parametrisation satisfies

2

W) = —E, (dd—wlog f(X,G(w)))

o (& (o)

~ 1(0() (%))

as E,(S(0(v)) = 0. Thus with the Jeffreys prior,
et 100 o w(6(0))| 52

dip
2.2 Frequentist analysis of Bayesian methods

Particularly when using an uninformative prior, it is hard to defend a dogma that all infer-
ence should be based on the posterior without other justification. This motivates studying
Bayesian methods from a ‘frequentist’ perspective, that is by studying their behaviour on
average over hypothetical repetitions of the ‘experiment’ used to produce the data. This
is just a fancy way of describing what we have been doing all along with e.g. checking
whether a given confidence region contains the true parameter at least 1 — « of the time
‘on average’.

Example [8 continued. Recall that when Xi,..., X, |6 eV N(0,1) with 6 ~ N(0,1),
we have that the posterior mean

n —

0 =E0| X1, X)) = —— X

This is not exactly the MLE gn := X, but is close. Consider now the setting where
Xi,..., X, EOY (Ap, 1) for a deterministic 6y € R. Under this sampling scheme, we have

V0, —0,) 5 0, so by Slutsky, their limiting distributions are identical. Moreover, a
credible set of the form R
én:: 010 —0] < 2=
GLELES 2
where R, is taken such that fén 0| Xy,...,X,)dd = 1 — a will share the frequentist

coverage guarantee Py, (0y € én) — 1—a of the standard (Wald) confidence interval centred
at the MLE (see Example Sheet). (Note that R, is a random variable that depends on the
data Xy,...,X,.)

In the above example, we observed a close relationship between likelihood-based and
Bayesian inference. Remarkably, this asymptotic equivalence persists across all sufficiently
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regular models and priors. To see why such a result could hold, suppose Xi,..., X, Lk

f(+,00) and that the prior 7 is continuous and positive at #y. Consider reparametrising the
posterior in terms of h = \/n(6 — 6,,). We obtain

I(h|Xy,...,X,)
Lo (B + 1/ /)7 (B + 1/ /)
T La(Bo + W) (B + W /)

L, (0, + h/v/n)
L) 70, + h//n).

Now, for any fixed h, we have, arguing as in the proof of Wilks theorem,

Lo(0n+h/v0)\ > 5
log ( Ln(gn) ) = ln(0, + h/v/n) — 0,(0,)

H(Q(h)le,...,Xn)% _

= —%hTJn(gn)h

where 0, = 0, + th/\/n, some t € [0,1]. By consistency of the MLE and Lemma
In (0 ) 5 I,(6y), so by the CMT, we see that

L0+ h/v/m)
Ly ()

B+ h/v/m) B exp (——h ]1(00)h) 7 (00).

If we could additionally show that the integrals over h of the two sides above converged
in probability, dividing by the normalising constants and appealing to Slutsky, we would
have

I(h|X1,...,X,) 5 é(h)
for each h, where ¢ is the N,(0,1;(0y) ") density. It turns out this can be strengthened to

X X0 = Gl s o
or, in the original parametrisation 6 = 6,, + h //n,
101X, X0 - G 0 5 o

where ¢, is the (random) Np(gn, I,,(60)~') density. This result, which holds under relatively
mild regularity conditions, is known as the Bernstein-von Mises theorem[l9)

16See http://www.statslab.cam.ac.uk/~nickl/Site/__files/stat2013.pdf for a detailed proof.
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Proposition 19. Consider the above setup (assuming the Bernstein-von Mises theorem

holds) with p = 1. Let
N . R
=10 |0, -0 < =%,
¢ { | = \/ﬁ}

where for a € (0,1), R, is chosen such that fén e | Xy,...,X,)d0 =1 —«. Then
Py, (6o € Cp) = 1 — av.

Proof. First observe that R, satisfies

Rn~
/ (h| Xy,...,X,)dh=1—a.
7Rn

B

ut
R, _ R, _ . .
—R,

—Rn

=0

by the Bernstein-von Mises theorem. Thus, writing
~ t ~
B(t) = [ ah)an.
—t

we have ®(R,,) “3 1 —a. Now @ : (0, 00) — (0, 00) is continuous and strictly increasing, so
it has a continuous inverse ®~! : (0,00) — (0, 00). Hence by the CMT, R, 3 ®~(1 — a).
By Slutsky,

11— a)

n

47

\/ﬁ(é\n - 90)

where Z ~ N(0,1,(6p)~"). Hence

Py, (60 € C,,) = Py, (-cfrl(l —a) < v/n(b, — QO)W <o '(1- a)>

SP(—d Y (1-a)<Z<d'(1-a)=1-a O

Overall we see that Bayesian methods enjoy the same favourable asymptotic properties
as likelihood based inference. Of course, as discussed at the end of the last chapter, optimal
asymptotic properties need not translate to optimal finite sample performance. In the next
chapter we therefore turn to the issue of finite sample performance of estimators and study
this from first principles.
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3 Decision theory

Given a statistical model {f(-,0) : § € O} and data X € X', we can cast many statistical
tasks as decision problems, where our goal is to find an appropriate decision rule 6 : X — A,
where A is a set of actions.

(i) Hypothesis testing: we can take A = {0, 1} with § a test function.
(ii) Estimation: A = © and §(X) = #(X) is an estimator.
To measure the quality of an action, we can use a loss function
L:Ax0O —][0,00).
For example:
(i) Hypothesis testing: for testing simple hypotheses we may take L(a, ) = Ls.q}.
(ii) Estimation: L(a,0) = (a — 0)? or L(a,f) = |a — 0| in one dimension.
To assess the performance of a decision rule, we can consider its average loss or risk:
R(6,0) :==Eg[L(0(X),0)] = /)(L(d(a:),&)f(a:,&) dz.
(i) Hypothesis testing: R(0,0) = Py(5(X) # ) is either the probability of a type I
error or a type Il error, depending on the value of 6.

(ii) Estimation: The quadratic risk is also known as the mean squared error (MSE)
R(8,0) = Eg(6 — 0)>.

Example 9. Consider estimating 6 in a Bin(n, §) model where 6 € [0, 1] under quadratic

~

risk. The MLE 0(X) = X/n satisfies

R(3.0) = Vary(@) = 20=9)

n

On the other hand, the (naive) estimator § = 1/2 has
R(0,0) = (0 —1/2)",

which is then apparently preferable when 6 is sufficiently close to 1/2.
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3.1 Bayes risk

One issue with using risk to compare the quality of two decision rules is that one must fix
a value of # € © at which the comparison is to be made. We can instead average this risk
over different 6 values.

Definition 9. Given a prior density 7 on © and model {f(-,0) : 0 € O}, the m-Bayes risk
of a decision rule ¢ is

Ra(6) = /@ R(5,0)7(6) db = E(L(5(X),6)),

where in the final equality both # and X are random, X |6 ~ f(-,60), and the marginal
density of 6 is m. Any minimiser of the m-Bayes risk is called a 7-Bayes rule.

Example @ continued. Consider the uniform prior 7 = 1jg;;. We have

~ 1 (! 1

On the other hand,

R (1/2)—/1(9—1/2)2(19—1xzxi—i
" —Jo 3 23 12

How can one find m-Bayes rules? Observe that
R (0) = E[E{L(0(X),0) | X}].

Thus to minimise the m-Bayes risk over ¢, it suffices to set 6(z) for each z € X to be the
minimiser of the posterior risk

E[L(6(z),0)| X = 2] = /@ L(3(x),0)I1(0 | z) db.

Writing 6y : & — A for this minimiser (assumed to be unique), we also have conversely
that any m-Bayes rule o must satisfy

P(5(X) = on(X)) = 1.

(Note that in the above, X follows its marginal distribution [ f(z,8)7(6)df.) Indeed, we
must have

.

Rx(0) = Br(0n) = EE{L(0(X), 0) | X} — B{L(0n(X), 0) | X}] = 0.

>0

But a fact from Probability and Measure tells us that if U is a non-negative random variable,
then EU = 0 if and only if P(U = 0) = 1.
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Example 10. The posterior quadratic risk is minimised by the posterior mean. Indeed,
fixing x € X and writing 6 = 6(z) for the posterior mean, we have

E[(0 -0 X =2]=E[(6—0+0—0)* X =]
=0 —0)2+E[(0—-0)?2 X =a].

The following result shows that the property of unbiasedness and that of being m-Bayes
for the quadratic risk, are largely incompatible.

Proposition 20. Suppose 0 = a(X) is an unbiased estimator of 0, so ]Eg(é\) = E(@\] 0)=0.

[fé\ 1s also w-Bayes, for some prior w in the quadratic risk, then

P = 0) = / U gy /(. 0 (0) O/ = 1.

Proof. Tt suffices to show that

~

E(0 — 6)> = E(6°) — 2E(60) + E(6%) = 0. (3.1)

But R R
E(00) = E{0E(0]0)} = E(6?),

and also § = E(6 | X) almost surely, so
E(09) = E{0E(0| X)} = E[E{0E(0 | X)| X}] = E(6°).

We therefore see that (3.1]) holds. O

3.2 Minimax risk

While the Bayes risk removes the ambiguity of fixing on a particular value of #, a criticism
of this approach for comparing estimators could be that it involves having to fix a prior
distribution, which may be just as problematic. An alternative is to consider the worst
case risk R(6,0) over all values of 6.

Example @ continued. Recall that when X ~ Bin(n, §), the MLE 0 = X/n. We have

o1—0) 1

sup R(@, 0) = sup

6€[0,1] 6€[0,1] n 4n

On the other hand,
1
sup R(1/2,0) = i

0€[0,1]
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Definition 10. The minimax risk is the infimum (over all possible decision rules) of the
maximal risk over the parameter space O:

inf sup R(J,0).
0 peo

A decision rule ¢ that has maximal risk supgeg R(d,0) attaining the minimax risk is said
to be minimax.

Perhaps surprisingly, Bayes rules can be helpful for finding minimax rules.

Theorem 21. Let w be a prior on © and suppose 0, is a decision rule such that

R, (0;) = sup R(d,,0).
0cO

(In particular this will occur if 0, has constant risk R(d,,0) in 0.) If 6, is a (unique)
m-Bayes rule, then it is a (unique) minimaz rule.

Proof. We have that for any decision rule ¢,

sup R(5,6) > / R(5,0)7(6) d6 = Ro(8) > Ra(5.) = sup R(6,6),

0O 0e©

so infssupgeg R(9,0) = supgee R(6x,0). If 0, is a unique m-Bayes rule, then the second
inequality above would be strict for d # d,, so no such ¢ can have maximal risk equal to
the minimax risk. O

A prior satisfying the hypothesis of the theorem is necessarily a ‘worst-case’ prior in
the following sense:

Definition 11. A prior 7 is least favourable if given a m-Bayes estimator ¢, for any other
prior A and A-Bayes estimator dy, we have Ry(9)) < R (d,).

Indeed, then
Ry (6)) < R)(67) <sup R(0,,0) = R:(d,),
0cO

with the last equality following by assumption.

Example |§| continued. One can show that_g is not minimax. Instead we may take a
Beta(a, b) prior m,, on 6 € [0,1] and writing 0, for the posterior mean, solve the set of
equations

R(0,4,0) = const. for all 6 € [0, 1].

This will yield a unique Bayes rule with constant risk, which is thus the unique minimax
rule (see Example Sheet).
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3.3 Admissibility

We motivated the notions of a m-Bayes risk and the maximum risk as ways of addressing
the fact that there is no clear way of ordering the risk functions 6 — R(J,6) of different
decision rules in order of preference. There is however a natural partial order among risk
functions:

Definition 12. A decision rule § is ‘nadmissible if there exists another decision rule ¢’
that dominates 6 in the sense that

R(6',0) < R(6,0) forall@€©®  and  R(5,0) < R(4,6) for some f € O.
Otherwise 6 is admissible.

An estimator being admissible does not necessarily mean it is a ‘sensible’ estimator.
Indeed any constant estimator is admissible. On the other hand, if an estimator is inad-
missible, any estimator that dominates it should always be preferred.

Note that a decision rule being minimax does not guarantee admissibility, a fact which
underlines how in summarising the risk function by taking the maximum value, some
information has been lost. However:

Proposition 22. If for a prior m the w-Bayes rule is unique, then it is admissible.

Proof. Let 0, be m-Bayes and suppose decision rule § satisfies R(6,0) < R(6.,0) for all
0 € ©. Then

R.(6) = /@ R(5,0)7(6) df < /@ R(5.,0)7(8) df = R (5.)

so ¢ is m-Bayes and hence § = d, by uniqueness. ]
The following provides a helpful connection between admissibility and minimaxity:
Proposition 23. If decision rule § is admissible and has constant risk, it is minimaz.

Proof. If § is not minimax, then there exists ¢’ with

sup R(8',0) < sup R(,0) = iIglf R(0,0),
0 0

contradicting admissibility of 9. ]

Together, Propositions 22| and [23| provide a convenient way of finding an estimator that
is both minimax and admissible: a unique 7m-Bayes rule with constant risk is guaranteed
to have this property. However not all estimators with this property arise in this way.
Below we show that the MLE in a N (6, 1) model is minimax and admissible (recall from
Proposition [20| the unbiased MLE cannot be a m-Bayes rule for any prior ﬂED To derive

"However in some sense it is a limit of the Bayes rules 6,2 for priors N(0,72) when 7 — co. A result
due to Wald shows that all minimax rules are limits of Bayes rules.
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this result, we will show admissibility directly from the Cramér-Rao lower bound: recall
that for any estimator 8, we have (under regularity conditions) writing b(6) := Eq(6) — 6,

_(#EA) o4y

Theorem 24. Consider the model X1, ..., X, = N(0,1) where 8 € © = R. Then

h= §(X1, ..., Xy) = X is admissible and minimax for estimating 0 in quadratic risk.

Proof. The MLE has constant risk R(0 ,0) = E¢(X — 6)? = 1/n. Thus it suffices to show
0 is admissible. Now for any estimator 9 we have the variance-bias decomposition

R(6,6) = b(6)? + Varg(d) > b(h)* + l(1 +V(6))?

n

using the Cramér—Rao lower bound for the final inequality (noting that the Gaussian model
satisfies the regularity conditions). Suppose now that R(6,0) < R(6,0), so

b(h)? + l(1 +V(0)* < = L (3.2)

n TL

We see that b is bounded from above and below, so by the mean value theorem, there exist
sequences 0 — oo and 6, — —oo with ¥/'(6) — 0 and ¥'(f;)) — 0. But from (5.1]) then
b(6) — 0 and b(6, ) — 0. Since from (5.1]) we know that b is nondecreasing (b’(@) <0),

this implies that b(f) = 0 for all § € R, so R(9 0)=1/n= (9 ) and § is admissible. [

3.4 The James—Stein estimator

Consider now the multivariate setting where we seek to estimate the mean vector 6 € RP
in a X ~ N,(0,I) model (we consider only one observation for simplicity). A natural loss

function here is L(a, #) = ||a — 0]|* with associated risk for an estimator  given by
R(0,0) = Eo{]|f(x) - 0]*} = ZEG

If given only X, the ‘best’ (in the sense of being admissible and minimax) way to estimate
6, is via X itself, surely the best way to estimate 6 is simply using the MLE a(X )= X7
This intuition is correct for p = 2, but, in a result that shocked the statistical world upon
its discovery, was shown to be false for p > 3: the MLE 0 is in fact inadmissible in this
case! Surprisingly, one can improve on the MLE uniformly by using all components of X
to estimate each individual component of 6.

Definition 13. The James—Stein estimator is given by

~ p— 2
s = (1 - )X.
X112
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Note that R(6,6) = Eo||X —6]||2> = p. To compute the risk of the James—Stein estimator,
we use the following lemma.

Lemma 25 (Stein’s lemma). Let Z ~ N(u,1) and let g : R — R be a bounded, differen-
tiable function such that E|¢'(Z)| < co. Then

E[(Z — n)g(Z)] = Elg'(2)].
Proof.

Bl2 - o2 = = [ " 93z - exp (—%u - u>2) =

——— [ (e (56— n2))
1 1 9 1 9
= [orew (56— w )] b [ e (56— w?)
=Ely(2)],
using the boundedness of g for the final equality. ]

Theorem 26. Let X ~ N,(6,1) for p > 3. The risk of the James—Stein estimator satisfies
R(055,0) < p for all 0, so in particular the MLE is inadmissible.

Proof. In the below, we drop the subscript 6 in the expectations for simplicity. We have

2
R(6ys,6) =E||fys — 0> = E HX - %X
_ —0;
—p+ (p— 2E|X| 7 2 ZE( T e

Consider the final term. We have, by the tower property,

=) == = (G b))

where X_; = (Xq,..., X1, Xj41,...,X,). We can write the RHS as E[(X;—6,)g,(X;) | X_;]

where
T

9i(7) = 553
! 2% 4[| X512
which is bounded provided || X_;||* # 0, which occurs almost surely. Also

X512 —
(22 + [ X5[1%)?

gi(x) =
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is similarly bounded, so applying Stein’s lemma (conditionally) we get

X))

(XX -60)\ < X7 —2X3\ _
Zﬁ( ) = () = 2m

Jj=1

E[(X; —0;)9:(X;) | X_;] = Elg;(X;) | X ]
g (HXH2 —2X7
| X

Thus

Returning to (3.3) we thus have
R(0ys.0) = p— (0 — 2)’E[| X||”* < p. O
Remark 10. One can show (see example sheet) that

(p—2)°

R(0)s.0) <p— —L—2
R R R Tk

so the improvement over the MLE is most substantial when [|@]]? is small and p is large.

3.5 Shrinkage

Given the surprising nature of Theorem it is natural to be sceptical: is this just a
quirk of Gaussianity? Not really (see below): what is crucial however is that the loss
involve all components of #. The intuition is that estimating all of 6§ when p is large, is
a hard problem and in such so-called ‘high-dimensional problems’ an estimator can do
well by sacrificing some bias if it results in an appreciable reduction in variance. To see
this, consider estimating 6 := EX given data X € RP where Cov(X) = I (this slightly
generalises the setting from earlier). Let 56 := (1 — ¢)X: the interpretation is that when
c € 10,1], 1 —cis a factor by which we are ‘shrinking’ the natural estimator X towards the
origin. (The James-Stein estimator uses the data-driven choice ¢ = (p — 2)|| X||72.) We
have

Ef. — 0] = E[[(1 - )X — (1— )0 — cf”
=(1-0%+ &)
—— =
variance square 1as

=p+p+0]*) — 2cp
2

2
p p
=(p+ 62(0— >— +p
A A T

p+ (0] p+[10]]?
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Thus using the optimal choice ¢* := p/{p + ||0]|*} gives a risk of

P
L+p/l0]*

which is a large improvement on the risk p realised by 6 = X when [|6]|? is small. This is
of course an unfair comparison as .- requires knowledge of ||6]|?>. However, we can try to

mimic this oracular choice by estimating ||0||%: this seems an easier task than estimating
all of § € R?. Note that E||X||? = p+ ||0]|*: using || X]|* to estimate ||0]|* gives the final

estimator
| X1l

the only difference with the James—Stein estimator is that p — 2 has been replaced by p
here. This heuristic argument suggests that the favourable properties of the James—Stein
estimator can extend beyond Gaussianity. R

Is the James—Stein estimator admissible? It turns out fjg is in turn dominated (in the
N,(0,I) model) by the positive-part James Stein estimatoﬁ

~ p—2
OJS = (1——) X,
" X112/

where (1) = ulj o) (u). This remedies an undesirable feature of the regular James—Stein

estimator whereby if || X ||? were small, 655 could have opposite signs to X.

Where does all this leave maximum likelihood estimation? While the MLE can be
beaten in finite samples, as we have seen, there is a fairly strong sense in which it is
asymptotically unbeatable (some indication of this is given on the Example Sheet, though
a general result is beyond the scope of this course). The main message is that when the
parameter to be estimated has high dimension, some modifications to the basic maximum
likelihood scheme to reduce variance are helpful; in fact a large part of modern statistics
has been and continues to be devoted to developing such strategies.

4 Multivariate analysis

4.1 Classification

One decision problem of great practical importance is the so-called (two-class) classification
problem. It is a form of regression problem where we have an input (or predictors) X € X
and a binary outcome (or class label) Y € {0,1} . We can characterise the joint distribution
of (X,Y) in two ways:

18In fact a]s+ is itself inadmissible: this comes as a consequence of a general result that all admissible
estimators in this model must be smooth functions of the observations.
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1. We first generate X according to its marginal distribution and then draw Y according
to the regression function

PY=1|X=2)=EY|X =2z =n(x).

2. First draw Y according to prior probabilities my := P(Y = 0), m; := P(Y = 1) and
next generate X via

Suppose for now that the joint distribution of (X, Y") is known to us. Our goal is to predict
Y given data X. To view this as a decision problem, observe that Y here plays the role of
0 previously. A natural loss function to use is

L(6(X),Y) = Lisx)#v}

where decision rule § is known in this context as a classifier. The corresponding m-Bayes
risk is

R (0) :=P(0(X) #Y).
To find a m-Bayes decision rule d,, in this context known as a Bayes classifier, for each
x € X, we can choose d,(x) to minimise the posterior risk P(d(z) # Y | X = z).

Proposition 27. A Bayes classifier is given by

- f1(z)m
On(x) = : Y D@~ :
0 otherwise.
If
P (fl(X)Wl _ ) _
fo(X)mo ’

then any Bayes classifier ¢ satisfies P(6(X) = 0,(X)) = 1.
Proof. See Example Sheet. [

When X |[{Y = j} ~ N,(uj, %), the Bayes classifier takes a particularly simple form.
We have

o (PP ) —tog (2] = 506 = i) TEX = )+ X = ) TS )

T 1 _ _ _
= log (W—;) +3 (1o X7 o — pd B71 1) + X T8 (1 — po)

We thus see the Bayes classifier only depends on X through the linear function X "3~ (p; —
o). It thus defines a linear decision boundary where d,(z) = 1 for 2 on one side of the
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boundary, and d,(x) = 0 otherwise. This method for classification is known as linear
discriminant analysis. Typically in practice, the prior probabilities 7y, 71, means pg, i
and covariance ¥ would be unknown. Instead, we would have available training data
(X1,Y1),...,(X,,Y,) formed of ii.d. copies of (X,Y) with which to estimate these un-
known quantities as follows:

nj =) Ly,
i=1

7Tj = nj/n,
- 1
Hj = o Z Xi
T iyi=j
~ 1 L R R
2= DY (X —m) X -y
7=0,14:Y;=j

Note that the 1/(n — 2) factor rather than 1/n in the covariance matrix estimate makes it
unbiased (see Example Sheet).

4.2 Correlation and partial correlation

Regression and classification problems involve learning aspects of the relationship between
an outcome variable and predictors. In other settings we may have multivariate data but
there may be no distinguished outcome variable. Instead we might seek to understand the
relationship between pairs of variables.

Consider a random vector X = (XM ..., X®) € R? with Cov(X) = ¥ and min; ;; >
0. As a first attempt to formalise the idea of variables being ‘related to one another’ we
might look at which pairs of variables are dependent. Recall that if X ~ N,(u, X), then

X9 L X® = Cov(XW XH) =¥y, =0.
A convenient measure of the strength of the dependence is then given by the correlation

Corr(X), X8 Cov (X, X ) Sk
5 = Corr , = : = .
Pik \/Var(X(J))Var(X(k)) \/Eijkk

Note that

[Cov(X9, XO)| = [E(XOD — 1) (X — )| < \JE[XO — ) PIE[(X®) — pi, )7

= |/ Var(X ) Var(X®),
by the Cauchy-Schwarz inequality, so pji € [—1,1]. We get

pix € {—1,1} <= XV — i = ¢(X® — 111.) as. for some ¢ € R
— XV =m+4cX® as. for some ¢,m € R.
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To estimate pj; given i.i.d. copies X,..., X, of X, we can use the sample correlation
given by

~

2 a 1 - _
Djk = = Jk’A where XY= — Z(XZ - X)(X; — X)T.
2055 2kk a3

One can show that when X ~ N, (i, ¥) with g € RP, and X lies in the set of positive definite
matrices, S is the MLE of X. Our result on plug-in MLEs (Proposition shows that the
above is then the MLE of the correlation pj;. Moreover, Question 9 of Example Sheet 1
and an application of Slutsky shows that pjj 2 p;r even when the data is non-Gaussian
(and additionally \/n(p;r — pjr) will have a Gaussian limiting distribution).

One issue with basing our idea of when variables are related to one another on de-
pendence or correlation is that many pairs of variables may exhibit dependence without
a very meaningful connection between them. For example, in human populations, height
and literacy levels are positively correlated. While this may at first appear interesting or
alarming, a little thought reveals that this fact is an expected consequence of babies not
knowing how to read! If we were to look only at the literacy levels of those individuals of a
given age a, then we would not expect to see such a relationship. The statistical property
of conditional independence captures this idea:

Definition 14. Given random vectors X, Y and Z, we say X is conditionally independent
of Y given Z, and write X 1L Y| Z, if
Ixviz(®,y)2) = fxiz(x]2) fyiz(y]2) whenever f;(z) > 0.

(Here, for example fxy|z(z,y|2) = fxv(z,y)/fz(2), fz(2) > 0 is the conditional density
of (X,Y) given Z.) If not we say X and Y are conditionally dependent given Z and write
X X Y| Z. Equivalently,

X AL Y|Z <~ fX|YZ(x|y7 Z) = m(xvz)

for some function m whenever fyz(y, z) > 0, and moreover this m will then be the condi-
tional density fx|z.

The interpretation of X 1 Y| Z is that ‘knowing Z makes X unimportant for learning
Y (and vice versa)’.

A key fact about jointly Gaussian random variables is that the conditional distributions
are also Gaussian:

Proposition 28. Suppose
H1 Y1 Yo
Y W)~ N, ,
= () G 20)
=3
where Y 1s positive definite. Then
Y ‘ W = w Nd(/fbl + 2122521(w — /LQ), 211 — 2122521221).
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Proof. Our idea is to write Y = MW + (Y — MW) for a matrix M € R™* such that
Y — MW 1L W. Since jointly Gaussian random vectors are independent if and only if they
are uncorrelated, this is equivalent to asking for

0=Cov(W,Y — MW) = %9, — S0y M ",

which occurs when we take M T = X5 %,,. Because Y — MW 1L W, the distribution of
Y — MW conditional on W = w is equal to its unconditional distribution. As a linear
transformation of the Gaussian random vector (Y, W), Y — MW is Gaussian and hence its
distribution is characterised by its mean and variance, which we now compute:

E(Y — MW) = j1 — X125 pa
Cov(Y — MW) = 311 + L1985 L9920 Yot — 2819855 g
= Y11 — B12%5 Yoy

On the other hand, MW is simply equal to Mw conditional on W = w. Putting things
together gives the result. ]

In the setting of the result above, suppose that Y € R and write W = (X, Z) € R x RP.
Then we may write

_ _ X
Y = — XS+ YY) (Z) +e
-~ ” ——

.

intercept coefficient vector

where € ~ N(0, Y11 — $15¥55 Ya1), independently of (X, Z). We thus have a normal linear
regression model with response Y on predictors (X, Z). Importantly, if the component of
the coefficient vector corresponding to X were zero, we would have that the conditional
distribution of Y | X, Z would not depend on X, i.e. Y I X |Z. Suppose we have data
(X;,Y:, Z;), formed of i.i.d. copies of (X,Y, 7). Let

X Y zt
X=|:]|eR, Y=|:]|eR", Z=| : | e RV
X, Y, Al
The above suggests measuring the strength of the conditional (in)dependency by examining
the coefficient corresponding to X after linearly regressing Y onto (1,X,Z) where 1 € R”
is a vector of ones (the intercept). This measure however does not reflect the symmetry in
X and Y of the conditional independence relationship.
The fact that the conditional distribution of (X,Y") | Z is Gaussian offers an alternative
to the regression approach above: we can instead examine the correlation of X and Y in
the conditional distribution (X,Y’)|Z. We have

Cov(X,Y | Z)
VVar(X | Z)Var(Y | Z)

XJJ_Y|Z<:>0: = pPXY|Z-
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The quantity on the right is the partial correlation of X and Y given Z. From Proposi-
tion 28] we know that Cov(X,Y | Z = z) is constant in z, and similarly for Var(X | Z) and
Var(Y | Z). Thus

vy = EUX CBX |2 B 2))
VERX —E(X|2)PIERY — E(Y [2)})

Let us write P € R™*" for the orthogonal projection onto the column space of (1,Z) €
R+ The sample version of the partial correlation is then given by
s UZPXI(U-PY)  XTU-P)Y
(I = P)X][[[(I = P)Y[ I/ = P)X|[I(/ = P)Y]|

Similarly to the sample correlation, one can show this is the maximum likelihood estimate
of pxy|z. In fact there is a close connection between the regression approach and partial
correlation:

Proposition 29. In the setting above, let Q € R™™ be the orthogonal projection matrix
onto the column space of W = (1,X,Z) € R™®+2)  qassumed to have full column rank
p+2. Then the F'-statistic for testing the significance of X in a normal linear model of Y
on (1,X,Z) is

— P)Y|? pA
Q=PI Fos
p—2 (I - Q)Y]| I Pxy|z
In particular, under the null Hy: X LY | Z,
~
Pxy|z
(n —p— 2)1_7' ~ Fl,nfpr'
Pxy|z

Proof. Recall (from IB Statistics)'’] that @ — P is an orthogonal projection with rank 1,
50 Q — P =wvv'/|v||? for some vector v € R™ with v # 0. Also since

I-P=(-Q)+(@-P)
and both @) and P have columns in the column space of W, (I — Q)(Q — P) =0, so
(I = P)Y|* = (I - QY+ I(Q — P)Y|*

Now v is the only eigenvector of @) — P (up to a multiplicative constant) and (Q — P)X =
(I — P)X, 50 (Q — P)(I — P)X = (I — P)X. Thus

(I - P)XXT(I - P)
I =P)X|* °

Q-P=

19See page 12 of https://www.statslab.cam.ac.uk/~rds37/teaching/statistical_modelling/
notes.pdf.
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SO (X7(I - P)Y)?

(@ - P)Y|* = = [(I = P)Y "Dz

I(1 = P)X|J?
Thus
|@-P)YIP _ Pz
I =Q)Y[*  1=7D%y,
which gives the result. O]

Remark 11. The result also holds when p = 0 i.e. there is no Z: If X 1L Y then writing p
for the sample correlation of X and Y,
-9

p

~ Fl,n—2-

Remark 12. While the correlation can make sense as an indicator of dependence even when
(X,Y) are not Gaussian in that we always have

X 1Y = Corr(X,Y) =0,

if (X,Y, Z) are not jointly Gaussian, it is possible to have X I Y| Z and pxy|z # 0.

4.3 Principal component analysis

Let X;,...,X, be ii.d. copies of a random vector X € RP. When the dimension p of
the data is large, it is often of interest to reduce the dimension in some way while trying
to retain as much ‘information’ as possible. The method of principal component analysis
(PCA) aims to maximise the variability of the compressed data. Given a target dimension
k < p, it works as follows:

1. Form the sample covariance matrix

1 _ _
Yo=Y (X, - X)(X; - X)T
§ 0 X)X -
2. Find k unit norm eigenvectors vy, ..., 0, corresponding to the k largest eigenvalues

of & (for simplicity, we assume the eigenvalues are unique, so the eigenvectors are
unique up to an arbitrary sign).

3. Writing V € RP** for the matrix with jth column v, set U; := Y/}TXi; Uy,...,U,
then forms the compressed data.

46



To understand the motivation for this, observe first that 3 estimates Cov(X) =: 2
(recall that it is for example the MLE in a X ~ N,(p, £) model, though we do not assume
this here). Thus v; estimate the corresponding population eigenvector v; given by the jth
column of V' defined through the eigendecomposition

Y =VAV'.

Here V' € RP*P is an orthogonal matrix and A € RP*? is a diagonal matrix with diagonal
entries given by (assumed unique) eigenvalues A\; > Ay > --- > X\, > 0.

Then v; can be interpreted as the unit vector w such that Var(w'X) is maximal.
Indeed, writing o := V Tw, note that ||a|| = 1. Then

P
Var(w' X) =w'Sw =a"VIVAV Va = Z afA; < g,

J=1

with equality if and only if a = (1,0,...,0)", i.e. W = v;. Similarly, one can show that
v; is the unit vector, orthogonal to {vi,...,v;_1}, upon which the projection of X has
maximal variance.

5 Nonparametric inference and Monte Carlo techniques

5.1 The Jackknife

Consider the following setting: we have i.i.d. data Xi,..., X, and have constructed an
estimator 0, = T,,(X1,...,X,) of a parameter of interest § € R. We would now like to
understand the statistical properties of é\n The approach we have seen so far in the course
for doing this involves applying various stochastic convergence results. However if 6,, is
very complicated, this may be difficult.

If instead of just a single dataset X,..., X,,, we had available multiple versions of this
dataset, we could apply 7}, to each to these and hence estimate e.g. the mean and variance
of 6, or indeed its entire distribution. Resampling techniques aim to mimic this setup
(roughly speaking): they involve forming multiple versions of the data from the original
dataset, and applying the estimator to each such copy of the data.

The jackknife leaves each observation X; out of the dataset in turn, to give n perturbed
versions of our original data. This approach can be used to estimate the bias of Ey 0,
where 6, is the true parameter, as follows.

Definition 15. Let 65 " := T},_1(X1,..., Xi—1, Xiz1,- .., Xn). The jackknife bias estimate

is defined as
~ 1~ o~
B, =(n-1)| — 6 g, | .
n >(z n )

The jackknife bias-corrected estimate of 6 is then

0, = gn - B,.
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Theorem 30. Suppose the bias By, := E90(§n> — Oy satisfies
B oy O(n™?) (5.1)
non

for some a,b € R. Then B
Bgy(Bn) = by + O(n™?).

Proof. Observe that 8, = nf, — D 65", Thus

Eg, (0n) = n(00 + By) — (n = 1)(00 + Bn-1)

=0 + (a+%> - (CH%) +0(n™?)

b
=0y — —— +0(n"?) =0 +0(n?). O
)= gy O =t O™
Example 11. For a concrete example of where the bias condition (5.1)) holds, suppose
E(X;) = p € R and we wish to estimate § = p? using 0, = X2. Then
S Var(Xl)

Eu(X5) = 1 = Bu(Xo — p+ p)* — p* = Var(X) = ——,

so the bias condition is indeed satisfied. R B
More generally, suppose now u € RP, § = g(u) and 6, = g(X,,) for some smooth
g : RP — R. Then from a Taylor expansion, we have

R _ 1 _ _
bn =0~ V() (Xn = p) + 5(Xn = 1) 'V2g(1) (X0 — ).
The first term has mean 0 and for the second term, we have

E[(Xn — 1) V2 g(u)(Xn — )] = E[tr{(X,, — 1) TV2g(p) (X — 12)}]
= Eltr{(X,, — 0)(X, — 1) " V2g(1)}]
_ tr{Cov(X;)V?g(u)}

n

Y

so the bias condition can be expected to hold (and one can show it is satisfied in even
greater generality than this).

5.2 The bootstrap

The bootstrap takes the idea of the jackknife of reusing the data to understand the distri-
bution of estimators even further. To introduce it, we make the following definition:
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Definition 16. Given i.i.d. data X7, ..., X,,, the empirical distribution P, is the (random)
discrete distribution that places a mass of 1/n at each observation X;, so for a set A,

P, (A) = % > 14X,

A sample X7, ..., X Xq,..., X, P, is known as a bootstrap sample. (Note here the X7
are conditionally i.i.d. given the data Xi,..., X,.) Thus X7, ..., X* is a random resample

of the X1,...,X,, with replacement.

Importantly P, is something we observe since it depends entirely on the data, whereas
the underlying distribution P of the data would typically be unknown to us. Given a
parameter § = §(P) (for example, this could be the mean or median of the distribution),
and corresponding estimator /Q\n = T,(X1,...,X,), suppose we wish to form a confidence
interval for 6 based on é\n Consider for simplicity the setting where § € R. The central

idea of the bootstrap procedure is to approximate the (unknown) distribution function £,
of

VIATL(X1, .., X,) ~0(P)} (5.2)

by the (random but in principle known) distribution function F\n of

V(T (X5, X0 =0,} | X1, X

J

-~

=:0

¥

To gain some intuition for why such an approximation may work, one should think of é\n
as playing the role of §(PP,), the parameter in the empirical distribution. The quality of
this approximation is often best when the quantity in (5.2)) is a so-called pivot, meaning
that its distribution is the same for all values of § under consideration.

In practice F,, will typically be infeasible to compute since there are n" possible values
(X7,...,X}) could take. We can however approximate F,, by first drawing independent

bootstrap samples (Xl(b), e ,Xflb)) for b=1,..., B with B large, and then forming

B
~ 1
(B)(4) .— —
E7(t) = B E :]l{\/ﬁ(:rn(xﬁb),...,Xflb>)—§n)§t}'
b=1

To see how the principle above may be used to construct a confidence interval for 6, fix

€ (0,1) and let 1, :== F,'(a/2) and u,, := F,;'(1 — a/2), where for simplicity we have

implicitly assumed F), is continuous and strictly increasing. Observe that a (1 — «)-level
confidence interval for 6 is given by

Cpi=1{0:1, < Vn(b, —0) < u,}.

To describe how we may approximate this, we need one more definition.
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Definition 17. Given a distribution function F' : R — [0,1], the quantile function F~' :
(0,1) > R is
F~(p) :=inf{t : F(t) > p}.

(Note that if F' is strictly increasing, then the quantile function is simply the inverse of F.)

Let [, := F'(a/2) and @, := F;'(1 — @/2). A bootstrap confidence interval is then
given by R R R
Cp:={0:1, <vn(0,—0) <u,}.

The validity of this approach rests on 2; and u, approaching [,, and wu,. This can be

expected when F), L Fand ﬁn approaches this limiting distribution F' (see Example Sheet
for details). To show this latter fact in full generality is beyond the scope of this course:
we shall study the special case where

6(P) is the mean of the distribution P and (5:3)
ﬁn = X, is the sample mean. '
We make use of the following ‘nonasymptotic central limit theorem’ whose statement is
*non-examinable*.

Theorem 31 (Berry—Esseen theorem). Suppose Z1, ..., Z, are i.i.d. with mean p € R and
variance . Then for any § € (0,1],

7 8E(|Z1 — N‘%é)
sup [P (Vn(Z, —p) < t) = 2(t/0)| < — S5

teR

Theorem 32. Suppose X1, Xo,... are i.i.d. with mean 0. In the setting of (5.3) suppose
that for some § > 0, E|X; — 0|*7° < oo and let 0% := Var(X;) > 0. Then

sup |F,(t) — ®(t/o)| &5 0.
teR

Proof. Write 02 := 3™ | (X;— X,,)? for the sample variance. Recall from Example 5| that

52 23 62 (the claim was stated with convergence in probability, but the argument therein

also yields the stronger almost sure convergence). We apply the Berry—Esseen theoremm

to X7,..., X} (conditional on X1,...,X,). We have 67 =L 5" X* =: X* and
E(X/|X1,...,X,) =X, Var(X/|X1,...,X,) =02

Thus

o o - 5 i [X — X[

Ap =sup |P(Vn(X; — X,) <t Xy,...,X,) —®(t/5,)] <8~ %mnm

teER N ~ J/
=Fn(t)

20Why wouldn’t a regular CLT work? The issue is that here we do not have i.i.d. data from a single
fixed distribution, but rather the distribution P,, is changing with n. There is a version of the CLT for
triangular arrays that can be used here, though the proof is slightly more involved. The upshot is that it
avoids the assumption E|X; — 0|27 that we have had to make here.
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Now |X; — 0 — (X,, — 0)| < 2max(|X; —0],]X,, —0]) so
1 < . 1 ¢ .
m Z |X’L . Xn’2+6 < 5 Z ’XZ o 9|2+5 + |Xn . 9’2+5 3 E|X1 . 9|2+5
i=1 i=1
by SLLN and CMT. Thus A4, %3 0. By the triangle inequality,

sup | F (1) — ®(t/0)| < A, + sup [®(t/0) — D(t/n)]

teR

4

~
=:B,

so it suffices to show B, “3 0. Note first that for a sequence a,, — a > 0, sup, |®(a,t) —
®(at)| — 0. Indeed, we have that for all n sufficiently large, a,, > a/2, so by the MVT, for
such n,

|@(ant) — (at)| < |an — allt|¢(at/2).

but sup, |t|¢(at/2) < 0o, so the above tends to 0. Now by the CMT, 5! “% o so from the
above, B, 3 0. O

Remark 13. The version of the bootstrap discussed above is sometimes known as the
nonparametric bootstrap to distinguish it from the parametric bootstrap. The latter works
in a setting where we have a parametric model {F, : § € ©}. Instead of estimating the
distribution P, by P,, we can form an estimate @\n of fp, and use P in place of P, so we

i.i.d.
draw X{,..., X | X1,..., X, X Py

5.3 Monte Carlo methods

We have seen how while the bootstrap resampling distribution function ﬁn is in principle
known to us, we nevertheless will typically need to approximate it through simulation.
Another large class of methods that require us to compute quantities relating to potentially
complex distributions are Bayesian methods: for example there may be no closed-form
formulas for the posterior mean or quantiles of the posterior distribution. In such situations,
numerical simulation techniques can be very useful, and we now study the general problem
of simulating from a known distribution.

As a starting point, we shall assume we can generat U, Us,... b Ul0,1]. If Fis a
distribution function on R, we can always then generate i.i.d. draws from F' via

F YUY, F Y (U),... & F

where F~! is the quantile function of F. Indeed, when F is strictly increasing and con-
tinuous, P(F~1(U,) < t) = P(U; < F(t)) = F(t); for the general case see the example

21Tn practice we would only be able to generate a pseudo-random uniform sample, but algorithms are
sufficiently advanced that to a large extent we can works as if we in fact have a uniform sample.
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sheet. With this, we can approximate, for example Eg(X) where X ~ F' by appealing to
the SLLN:

N

1 a.s.

oD gX) “ Bg(),
=1

where we have written X; := F~!'(U;). Sometimes however it is not possible to compute
F~1 explicitly, in which case we need to resort to other methods.

5.3.1 Importance sampling

Suppose f is a (potentially multivariate) density from which it is hard to simulate. Suppose
however there is a density h whose support includes that of f, from which we can simulate
easily. Observe that

Exen (300250 ) = [ o) 0) de = By lg(X)).
As a consequence, for X1, Xo, ... R h, we have
¥ g S B o(X))

5.3.2 Accept-reject algorithm
An alternative when f(x) < Mh(x) for all z € X is the following:

1. Generate X ~ h and independently U ~ U|[0, 1].

2. U< %, output Y = X; otherwise return to step 1.

Then Y ~ f (see example sheet). Note that here the computation required to generate a
single draw is random (and will tend to be lower if M is lower).
5.3.3 Markov chains and invariant measures

One very important class of procedures for generating samples from a density f involves
constructing a Markov chain which has f as its so-called invariant distribution. Recall that
a (discrete-time) Markov chain Xy, X7, Xo, ... is a sequence of random variables where for
any m > 1 and any (measurable) B C X,

]P)(Xm e B | X1 = t,Xm_Q =tm_2,... ,Xo = to) = P(Xm < B’Xm_l = t) =: K(t, B)

where K is the Markov transition kernel for the chain. The corresponding transition pdf
k (if it exists) satisfies

K(t,B) - / k(t, 5) ds
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for all (measurable) B C X. (We will later encounter a case where K is a mixture of a
discrete and a continuous distribution.) Note that if X,, 1 ~ f, then the distribution of

X, is given by
/ K(t

Definition 18. A pdf f on X is invariant or stationary for K if

/X K(t, B)f(t) dt — /B F(t) dt

Results in ergodic theory (see Probability and Measure) imply that, under certain
conditions on the Markov chain, the distribution of Xy converges to its unique invariant
distribution. (We will not concern ourselves with the detailed conditions in this course.)
Moreover, we also have

for all (measurable) B C X.

—Zg ) = Ex~s(9(X)).
We now look at some important examples of this key idea.

5.3.4 Gibbs sampler

The Gibbs sampler is a useful method for generating samples from a multivariate distribu-
tion. We illustrate the idea in the bivariate case. Suppose (X,Y) ~ f and we can simulate
from each of the conditionals fy|x(-|z) and fxy(-|y). As an illustration of when such a
situation could arise, consider the following example.

ii

Example 12. Recall (Example Sheet 2, Question 11) that when Xi,..., X, |p,0% =~
N(p,0?) with improper prior density (i, o) o< 02, the posterior

1 n
I X1,..., X, ~(n+2) ——— Y (X —p)?y.
(UJ :u| 1 ) ) xXo exp 20_2 ZZI( :U’>
Thus writing w := o~2 for the precision,

plw, Xq,..., X, ~ N(X,1/(wn))

n+l 1
W|M,X1,...,XRNG8JHIH1&< 9 7§Z<Xl_/’b>2> :

The Gibbs sampler takes the following steps. We initialise Xy = x and then for m =
1,2, ... iteratively perform:

L Y, ~ fY|X(‘ |X = Xm*1>7
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2. X ~ fxpy (1Y =Y5).
This generates a Markov chain (Y7, X1), (Y2, X3), ... where the joint density f is invariant.
To see this, we may argue as follows. The transition density here is
k((y1, 1), (2, 22)) = fyix (yal21) fxpv (z2y2),

SO

//fY|X(y2|$1)fX|Y(-T2\y2)fXY($1,?/1)dyl dry =fX|Y(ZU2|yz)/fyx(y2|9€1)fx(931)d951
=[xy (22[y2) fr (y2)
= [xv (22, y2)-

The method generalises to larger numbers of variables by cycling through each variable
in turn.

5.3.5 Metropolis—Hastings

The Gibbs sampler, while simple, has the issue that the full conditionals may often be
tricky to sample from. The Metropolis—Hastings algorithm is a powerful method that only
requires an auxiliary proposal conditional density ¢(-|t) from which we can simulate. Given
an initial Xy = x it proceeds as follows for m = 1,2, .. .:

1. Draw S, | Xon ~ q(+| Xim)-

2. Let Ay, | Xiny S ~ Bern(a(X,,, S,,)) where
t
a(t,s) ;== min <@M, 1) :
f() a(slt)
Set Xyt := ApSm + (1 — A,) X
Importantly, the Metropolis-Hastings algorithm only requires evaluation of the ratio f(s)/f(t),

rather than f(¢) itself. This is particularly useful when f is a posterior density since then
the normalisation factor does not need to be computed.

Theorem 33. In the setting above, suppose q(s|t) > 0 for all s,t € X, where X is
the support of f. Then f is invariant for the transition kernel K of the Markov chain
X1, Xo, ... generated by the Metropolis—Hastings algorithm.
Proof. We have

K(t,B) =P(X,41 € B| X;n =1t)
=P( X1 € B A, =1|X,, =t)+P(X;1 € BA,, =0 X, = 1)

P(A, =1|Sm =5, X =t)q(s|t)ds + Lp(t)P(A, = 0] X,,, = 1).
5 m /

a(t,s)
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Now

P(A,, = 0| X, = 1) :/P(Am:0|5m:s,Xm:t)q(s]t)ds
X

=1 —/Xa(t, s)q(s|t)ds

Also (interchanging the order of integration, which is always justified when the integrand
is non-negative),

// (t, 8)q(s[t) dsf(t) dt = //mln tls), F(t)q(s|t)) dt ds
/f / Ha(tls) dt ds

_ /Bf(s)IP’(Am 1| X, = 5)ds.

Thus

/K(t,B)f(t)dt—/f(s)IP’(Am—1|Xm—s)ds+/f(t)IP’(Am—O|Xm—t)dt
_ /B oL

as required. H

Example 13 ((Special case of) preconditioned Crank—Nicolson (pCN)). Consider a para-
metric model {f(-,0) : € RP} where we take a Bayesian approach with prior 6 ~ N, (0, I).
We wish to sample from the posterior

IH(0 ] X) oc f(X,0) exp(—||6]|*/2).

If we take q(-|t) ~ Ny(tv/1 —20,201) for a tuning parameter § € (0,1/2), then we see
a(t, s) has the particularly simple form (see example sheet)

- (153)

5.4 Introduction to nonparametric statistics

We have spent much of the course studying parametric statistical models {Fy : 0 € O},
where when such a model is well-specified, the goal of understanding the distribution of
the data Py, can be translated to estimating ¢, € ©. However, such a model can be
hard to defend when the sample size is large, and in such settings, it is often of interest to
estimate the distribution of the data without recourse to a potentially restrictive statistical
model. Tasks of this nature fall within the realm of nonparametric statistics. Here we only
provide the briefest introduction to this rich and exciting area by focusing on the problem
of estimating the distribution function F' based on i.i.d. data X;,...,X,, € R.
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Definition 19. The empirical distribution function J/T\n based on a sample Xi,..., X, is
given by

Bult) = Pul(=00,1) = 5 37 1 (X

The SLLN guarantees that for each fixed t € R, F\n(t) %% F(t). However, similarly to
the way our ULLN strengthened the SLLN, we have the following uniform convergence
result:

Theorem 34 (Glivenko-Cantelli).

sup |F,(t) — F(t)] “5 0.

teR

Proof. We only consider the case where F' is continuous for simplicity. Fix m € N and pick
—o0 =ty <t <-r <ty < t,, = oo such that F(tj)—F<t]_1) zl/mfor]: 1,....m
Now for all ¢t € R, there exists j € {1,...,m} such that t € [t;_1,t;], so

Thus

,,,,,

(

“$0 b;,SLLN
We therefore have that writing Q,, := {lim SUD,, 0 SUD; |F (t) — F(t)] < 1/m}, we have
P(Q,,) = 1. But Q Q, = {hmn_m sup, |F,(t) — F(t)| = 0} and

m=1
P(QS,) = P(Uy_,Qp) < > P(Q,) = O
m=1

While the above result is encouraging, it does not directly allow us to conduct inference
about the unknown F'. Observe however that when F' is continuous and strictly increasing,

Now {X; € (—oo, F7}(t)]} = {F(X;) < t} = (XZ) f (—o0,t]}. Moreover F(X;) ~

. Thus
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where Uy, ..., U, big U|0,1]. In particular, we see that the distribution of

sup |F,(t) — F(t)|

teR

is precisely the same for all continuous, strictly increasing F', and can be determined
through simulation! In fact:

Theorem 35 (Kolmogorov—Smirnov). If F' is a continuous distribution function, then
Visup |E,(t) — F(t)| 5 K,
t
where K has a so-called Kolmogorov distribution for all F'. Moreover the distribution
function of K is continuous.

This result can be used to construct asymptotically valid confidence bands for F' (see
example sheet), or test the null hypothesis X,..., X, big Fy for some known continuous
distribution function Fy,.
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