Part 1
Linear waves on Lorentzian manifolds

1 General techniques and basic statements

This section concerns the analysis of the covariant wave equation
Oy =F (1.1)

on a Lorentzian manifold (M, g). Here, ¢ and F are functions from M to R, also called scalar fields, and
O, is a differential operator defined by

1
Oy = VIV 0 = ——39,, (V—99"" 0, ) .
g I3 \/jg #( )
If F =0, we call (1.1) the homogeneous (scalar) wave equation on M. Three important examples of
inhomogeneous scalar waves arise from:

e adding a potential to the homogeneous wave equation:
(g =V =0 = Ogpp =V
e commuting the homogeneous wave equation with vector fields Z:
O, =0 = O,(Zy) =0y, Z1Y + Z(Oy) = [Z,04].
e nonlinearities: a general quasilinear wave equation
Og(p,00)% = N(, 0¢)
can be written as an inhomogenous wave equation
Dgow =F
with respect to the “background” metric go := g(0,0), where F' := N (3, 0) — (Qy(y,00) — Dgo)?-

The goal of the section is to examples of how, using an entirely geometric language, we can derive
analytical properties, like boundedness and decay in appropriate Sobolev (energy) spaces, of solutions to
(1.1).

1.1 Symmetries and commutators

We first show that symmetries of the background spacetime interact well with the covariant wave equa-
tion (1.1). Recall the following definition:

Definition 1.1. Let X be a vector field on (M, g). Then, we define its deformation tensor by
1 1
Xr = FLoX = X rv — S (VIXY 4+ V"X pr).
We say X is Killing if ()7 = 0 and conformally Killing if there exists a scalar field A such that )7 = \g.

Lemma 1.2. Let (M,g) be 4-dimensional, and It Z be a vector field on M. Assume ¥ satisfies (1.1) for
some given F'. Then, we have

O4(Z) = Z(F) + 2PV, Vo 1p + 2V, DtV o) — v, D iy ap,
In particular: if Z is Killing, we have
Oy(Z9) = Z2(0g¢) = Z(F);
if Z is conformally Killing, with (97 = \g, we have
O4(Z¢) = (Z +2X)(0g¢) — 2V AV = Z(F) +2AF 4+ (2 —n — 1)V AVTY.
Proof. We compute
Oy, Z1Y = VIV, (Z"NV ) — ZVN VIV 0 = VR (Z0V (N + YV, 28N ) — Z8VV VIV )
=VH*Z" (V, Voo +V Vb)) + VIV, Z'N b + Z7 (VEV V0 — YV, VIV 1))
= 2D N yip + VN, 2,V + ZY [V, Vo ]V



using the fact that [V, V, ]y = 0 for a scalar field. Now note that
(Vs VoI V# 9 = Ry, VA,
and, moreover, since (Z)TFZ’ = V*X,, we have
ovr D, = VIV L Z, + V VX + [V, VX! = VIV, Z, + V, D7l 4+ Ry, X
Combining these identities, we obtain
[Og, 21 = 2D 7V, V,1p + 2VH O, Ve — V, D ey, (1.2)
since Ry, (X”V)‘w — X)‘VV”(/J) = 0 by the symmetries of the Ricci tensor. O

1.2 Energy-momentum tensor and multipliers
The homogeneous wave equation comes from a Lagrangian structure:
0= Dngu¢ = V#Tm/[w]a (13)
where the energy-momentum tensor
1
T[] i= VbVt = 50 V6Vt (14)

leads to the action
L[y = /M 9wV 0V yipdvoly.

We will make use of this Lagrangian structure heavily through this notes. However, as we have already
seen, it is sometimes useful to think in terms of rescaled versions of 1, such as the radiation field. Thus, let
us introduce another function 8 on M, and define the rescaling ¢ := S~ 1).

Lemma 1.3. Let F be given and assume v solves the wave equation (1.1). Then ¢ satisfies
VH(B°V,ue) —Up=BF, U=-p""0,8.
Proof. We compute
Ogp = VAV, = V* (BV (87 1)) = VH(BV,.B719)

= BTIVH(BVu(B71)) — (BTIVEB)BVL(BTIY) + V(BT 19V )

=BTV (B2V,0) = VIV uo + VH(6V 1)

= BTIVH(B2V ) + Ogfd = 671 [VH (8°V ) —Ug],
which concludes the proof. O

Let us now generalize the definition in (1.4).

Definition 1.4. Take a scalar field ¥ on M. We define its twisted energy-momentum tensor by
. 1
T (9] == BV, (B719) BV, (B719) — 59w [BVE(B™ ) BV (B 1) + UB™24?]
1
= 3% |VuoV,9 — 59 (V¥Vad+ U | .

Next, we generalize the divergence identity (1.3):

Lemma 1.5. Let F be given and assume 1 solves (1.1). Then, its twisted energy-momentum tensor satisfies
VA T[] = BEVL6 + S, [, (1.6)

where we have set

S0 1= ~BVLAV 6V — 5V (UF)



Proof. We notice that
-~ 1
le[d)] = BQTMV [QZ)] - 59/WU¢2527

and thus, using (1.3), we compute

- 1 1
VI T[] = 80 (871 9) Vo + V(B T 9] — 5 Vi (UF%)9* — SV (¢*)US?
= B2 [0y 1+ 2VH BV + 1 0g9] Vg + 26VH BV 16V, — BV, BV ¢V 0
~ SVAUB)E — 6V, 6U
= BEFV, ¢+ 5,1 + [82 (80,871 = U) ¢ + 28V! B~ BV 1) + 28V AV 6] V., ¢
= BFV,¢ + S, [¥] + 82 (80,87 + 2V+BV,B7 = U) ¢V, ¢.
The term in round brackets vanishes; indeed,
6‘39571 = BVHVAA/B71 = vu(ﬂvuﬂil) - V#Bvuﬂ71 = *vﬂ(ﬂilvuﬂ) - VMBVWB71
= —B7IVIV,B - 2VHBV, B = —B70,8 - 2VHBY BT =U - 2VHFAV, AL
This concludes the proof. O

Remark 1.6. In practice, by multiplying (1.1) by V,¢ and integrating by parts, one can identify the
appropriate energy-momentum tensor 7'[¢)] and one-form S[¢] which allow for identity (1.6) to hold.

The energy-momentum tensor for a scalar field naturally induces a notion of current associated to vector
field on M. We jump ahead to introduce the most general form thereof that we will consider in these notes:

Definition 1.7. Take a scalar field ¢ and a vector field X on M. We define the twisted X-current of ¢ as
the one-form

TXW) = X" T [¥). (1.7)

Lemma 1.8. Let F' be given and assume ¢ solves (1.1). For any vector field X, the twisted X -current of
1 satisfies

VHIX ] = KX [] + EX Y], (1.8)

where we have set

f{XW] — (X)ﬂ—l“/ (TWW] B 6¢2vyvuﬂ) —B <VD(X)7TMVvu5 _ ;VV(X)WﬁVVﬂ) ¢2

1.
a 1 2 1 2 ( 9)
~ BX(B) (V6Va6 + 5U6? ) + 580,X (8) 6%
EX[Y] == BFX(9). (1.10)
In particular, if X is Killing and X(8) = 0, KX[y] = 0.
Proof. We compute
VAT = V(X T W]) = VX T ) 4+ X0V T 0] = S T, [0] + XYV T 4],
and then use (1.6) to obtain (1.8) with
- - ~ - 1
KX [) = S0m T[] + XS, [g] = e T[] = BX (8)V9Vad — 5 X (U
To simplify the last term, we recall that
X(UB?) = —X(B0,48) = X(B)UB — BO,X (B) + B0, X185,
and we apply (1.2), i.e.
[0y, X]8 =287V, v, 8+ 2v+ X7, v 3 — v, B nhvy s,
to rewrite the commutator term. O

Remark 1.9. Note that the one-form J*X[¢] and the scalar KX[¢)] only depend on the 1-jet of 1, i.e. ¢
and its first derivatives. For solutions of the homogeneous wave equation, EX[¥] = 0 and thus (1.8) imply
that JX[¢] is a compatible current in the sense of [5].



For later applications, it will also be convenient to define an auxiliary current:

Definition 1.10. Take a scalar field ¢ and a vector field X on M. We define the w-Lagrangian current of
1) as the one-form

5 1
Jsux,w[w] = 62 w¢vu¢ - §¢2v,uw . (1.11)

Lemma 1.11. Let F be given and assume ¢ solves (1.1). For any scalar field w, the w-Lagrangian current

of ¢ satisfies

vp,jzux,w[w] — Raux,w[d)] + gaux,w[,L/)], (1]_2)

where we have set
Ko ] o= 52 (wU ¢ + V"6V ) — %vaQvuw) (1.13)
gaux,w[w] = ﬂFwd) (114)

Proof. We compute
VHJEw ] = VH(3?) {ww,@ — ;ngVHw] + B2 [wvwvm +wpyd — %wmgw
= v“(ﬁz) |:w¢vu¢) - ;¢2vuw] + Bzwvﬂd)vuﬁb + w62¢(|:|9671¢ + 2vuﬂilvuw + Bilugw)

- SEVHET ) + V)V
= Ko [] 4 EW Y] 4 wBi [~Ue + BB ¢ — 2871 VHBBIV .0 + 287 VI AV 4]

where the term in square brackets vanishes by the same argument as in the previous lemma. O

Remark 1.12. In practice, by multiplying (1.1) by fw¢ and integrating by parts, one can identify the
appropriate one-form J*"*[¢)] and scalar K" [¢)] which allow for identity (1.12) to hold.

1.3 Stokes’ theorem and volume forms

Finally, we can integrate the identities in Lemmas 1.8 and 1.11. Let R C M be a smooth, time oriented,
subset of M with boundary
OR=TUSUN

where T is a timelike hypersurface (or unions thereof), S is a spacelike hypersurface (or unions thereof) and
N is a null hypersurface (or unions thereof).

Proposition 1.13 (Stokes’ theorem). Let F' be given, and ¢ be a solutions to (1.1). Let R C M be a
smooth, time oriented, subset of M with boundary OR. Then, we have

/ JOIntdvols + / JO[Intdvols + / JOWlnt dvoly

7 ] 7 ] N (1.15)

= / J2 [l dvolar = / (KO[wHEO[w})dvolR,
IR R

where () can be replaced by any vector field X, or by the notation aux,w for a scalar field w, and nydvolr,
nsdvols and nardvola are chosen as follows:

o nr is a spacelike vector field satisfying g(X,ny) = 0 for all vector fields X on T, which is normalized

so that g(ny,n7) =1 and outward-pointing with respect to int(R); dvolr = dvoly, ;

o ngs is a timelike vector field satisfying g(X,ns) = 0 for all vector fields X on S, which is normalized

so that g(ns,ns) = —1 and future-directed; dvols = dvoly|;

o we pickny to be a null generator of N, i.e. to be a future-directed null vector field satisfying g(X,nyr) =
0 for all vector fields X on N and tangential to the null geodesics on M; then, nyr is another future-
oriented null vector field normalized so that g(ny,na) = —1 and let dvolyr = —npradvoly.

Remark 1.14. The choice of signs in Proposition 1.13 implies that the integral over future-directed (past-
directed) causal boundary components comes with a positive (negative) sign and the integral over spacelike
boundary components has the usual sign convention.



