
Part I

Linear waves on Lorentzian manifolds
1 General techniques and basic statements

This section concerns the analysis of the covariant wave equation

⇤g = F (1.1)

on a Lorentzian manifold (M, g). Here, � and F are functions from M to R, also called scalar fields, and
⇤g is a differential operator defined by

⇤g := r
µ
rµ =

1
p
�g

@µ
�p

�ggµ⌫@⌫ 
�
.

If F ⌘ 0, we call (1.1) the homogeneous (scalar) wave equation on M. Three important examples of
inhomogeneous scalar waves arise from:

• adding a potential to the homogeneous wave equation:

(⇤g � V ) = 0 =) ⇤g = V  ;

• commuting the homogeneous wave equation with vector fields Z:

⇤g = 0 =) ⇤g(Z ) = [⇤g, Z] + Z(⇤g ) = [Z,⇤g] .

• nonlinearities: a general quasilinear wave equation

⇤g( ,@ ) = N( , @ )

can be written as an inhomogenous wave equation

⇤g0 = F

with respect to the “background” metric g0 := g(0, 0), where F := N( , @ )� (⇤g( ,@ ) �⇤g0) .

The goal of the section is to examples of how, using an entirely geometric language, we can derive
analytical properties, like boundedness and decay in appropriate Sobolev (energy) spaces, of solutions to
(1.1).

1.1 Symmetries and commutators

We first show that symmetries of the background spacetime interact well with the covariant wave equa-
tion (1.1). Recall the following definition:

Definition 1.1. Let X be a vector field on (M, g). Then, we define its deformation tensor by

(X)⇡ :=
1

2
LgX =) (X)⇡µ⌫ =

1

2
(rµX⌫ +r

⌫Xµ).

We say X is Killing if (X)⇡ = 0 and conformally Killing if there exists a scalar field � such that (X)⇡ = �g.

Lemma 1.2. Let (M, g) be 4-dimensional, and lt Z be a vector field on M. Assume  satisfies (1.1) for
some given F . Then, we have

⇤g(Z ) = Z(F ) + 2(Z)⇡µ⌫
rµr⌫ + 2rµ

(Z)⇡µ⌫
r⌫ �r⌫

(Z)⇡µ

µ
r
⌫ .

In particular: if Z is Killing, we have

⇤g(Z ) = Z(⇤g ) = Z(F );

if Z is conformally Killing, with (Z)⇡ = �g, we have

⇤g(Z ) = (Z + 2�)(⇤g )� 2r↵�r
↵ = Z(F ) + 2�F + (2� n� 1)r↵�r

↵ .

Proof. We compute

[⇤g, Z] = r
µ
rµ (Z

⌫
r⌫ )� Z⌫r⌫r

µ
rµ = r

µ (Z⌫rµr⌫ +rµZ
⌫
r⌫ )� Z⌫r⌫r

µ
rµ 

= r
µZ⌫ (rµr⌫ +r⌫rµ ) +r

µ
rµZ

⌫
r⌫ + Z⌫ (rµ

rµr⌫ �r⌫r
µ
rµ )

= 2(Z)⇡µ⌫
rµr⌫ +r

µ
rµZ⌫r

⌫ + Z⌫ [rµ,r⌫ ]rµ 
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using the fact that [rµ,r⌫ ] = 0 for a scalar field. Now note that

[rµ,r⌫ ]r
µ = R�⌫r

� ,

and, moreover, since (Z)⇡µ

µ
= r

↵X↵, we have

2rµ(Z)⇡µ⌫ = r
µ
rµZ⌫ +r⌫rµX

µ + [rµ,r⌫ ]X
µ = r

µ
rµZ⌫ +r⌫

(Z)⇡µ

µ
+R�⌫X

�

Combining these identities, we obtain

[⇤g, Z] = 2(Z)⇡µ⌫
rµr⌫ + 2rµ(Z)⇡µ⌫r

⌫ �r⌫
(Z)⇡µ

µ
r
⌫ , (1.2)

since R�⌫
�
X⌫

r
� �X�

r
⌫ 

�
= 0 by the symmetries of the Ricci tensor.

1.2 Energy-momentum tensor and multipliers

The homogeneous wave equation comes from a Lagrangian structure:

0 = ⇤g r⌫ = r
µTµ⌫ [ ], (1.3)

where the energy-momentum tensor

Tµ⌫ [ ] := rµ r⌫ �
1

2
gµ⌫r

↵ r↵ (1.4)

leads to the action

L[ ] :=

Z

M

gµ⌫rµ r⌫ dvolg.

We will make use of this Lagrangian structure heavily through this notes. However, as we have already
seen, it is sometimes useful to think in terms of rescaled versions of  , such as the radiation field. Thus, let
us introduce another function � on M, and define the rescaling � := ��1 .

Lemma 1.3. Let F be given and assume  solves the wave equation (1.1). Then � satisfies

r
µ
�
�2

rµ�
�
� U� = �F, U = ���1⇤g�.

Proof. We compute

⇤g = r
µ
rµ = r

µ
�
�rµ(�

�1 )
�
�r

µ(�rµ�
�1 )

= ��1
r

µ
�
�2

rµ(�
�1 )

�
� (��1

r
µ�)�rµ(�

�1 ) +r
µ(��1 rµ�)

= ��1
r

µ
�
�2

rµ�
�
�r

µ�rµ�+r
µ(�rµ�)

= ��1
r

µ
�
�2

rµ�
�
+⇤g�� = ��1

⇥
r

µ
�
�2

rµ�
�
� U�

⇤
,

which concludes the proof.

Let us now generalize the definition in (1.4).

Definition 1.4. Take a scalar field  on M. We define its twisted energy-momentum tensor by

T̃µ⌫ [ ] := �rµ(�
�1 )�r⌫(�

�1 )�
1

2
gµ⌫

⇥
�r↵(��1 )�r↵(�

�1 ) + U��2 2
⇤

= �2


rµ�r⌫��

1

2
gµ⌫

�
r
↵�r↵�+ U�2

��
.

(1.5)

Next, we generalize the divergence identity (1.3):

Lemma 1.5. Let F be given and assume  solves (1.1). Then, its twisted energy-momentum tensor satisfies

r
µT̃µ⌫ [ ] = �Fr⌫�+ S̃⌫ [ ], (1.6)

where we have set

S̃⌫ [ ] := ��r⌫�r
↵�r↵��

1

2
r⌫(U�

2)�2.
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Proof. We notice that

T̃µ⌫ [ ] = �2Tµ⌫ [�]�
1

2
gµ⌫U�

2�2,

and thus, using (1.3), we compute

r
µT̃µ⌫ [ ] = �2⇤g(�

�1 )r⌫�+r
µ(�2)Tµ⌫ [�]�

1

2
r⌫(U�

2)�2 �
1

2
r⌫(�

2)U�2

= �2
⇥
⇤g�

�1 + 2rµ��1
rµ + ��1⇤g 

⇤
r⌫�+ 2�rµ�rµ�r⌫�� �r⌫�r

↵�r↵�

�
1

2
r⌫(U�

2)�2 � �r⌫�U�
2

= �Fr⌫�+ S̃⌫ [ ] +
⇥
�2

�
�⇤g�

�1
� U

�
�+ 2�rµ��1�rµ + 2�rµ�rµ�

⇤
r⌫�

= �Fr⌫�+ S̃⌫ [ ] + �2
�
�⇤g�

�1 + 2rµ�rµ�
�1

� U
�
�r⌫�.

The term in round brackets vanishes; indeed,

�⇤g�
�1 = �rµ

rµ�
�1 = r

µ(�rµ�
�1)�r

µ�rµ�
�1 = �r

µ(��1
rµ�)�r

µ�rµ�
�1

= ���1
r

µ
rµ� � 2rµ�rµ�

�1 = ���1⇤g� � 2rµ�rµ�
�1 = U � 2rµ�rµ�

�1.

This concludes the proof.

Remark 1.6. In practice, by multiplying (1.1) by �r⌫� and integrating by parts, one can identify the
appropriate energy-momentum tensor T̃ [ ] and one-form S̃[ ] which allow for identity (1.6) to hold.

The energy-momentum tensor for a scalar field naturally induces a notion of current associated to vector
field on M. We jump ahead to introduce the most general form thereof that we will consider in these notes:

Definition 1.7. Take a scalar field  and a vector field X on M. We define the twisted X-current of  as
the one-form

J̃X

µ
[ ] := X⌫ T̃µ⌫ [ ]. (1.7)

Lemma 1.8. Let F be given and assume  solves (1.1). For any vector field X, the twisted X-current of
 satisfies

r
µJ̃X

µ
[ ] = K̃X [ ] + Ẽ

X [ ], (1.8)

where we have set

K̃X [ ] := (X)⇡µ⌫

⇣
T̃µ⌫ [ ]� ��2rµr⌫�

⌘
� �

✓
r⌫

(X)⇡µ⌫
rµ� �

1

2
r⌫

(X)⇡µ

µ
r
⌫�

◆
�2

� �X(�)

✓
r
↵�r↵�+

1

2
U�2

◆
+

1

2
�⇤gX (�)�2,

(1.9)

Ẽ
X [ ] := �FX(�). (1.10)

In particular, if X is Killing and X(�) = 0, K̃X [ ] = 0.

Proof. We compute

r
µJ̃X

µ
[ ] = r

µ

⇣
X⌫ T̃µ⌫ [ ]

⌘
= r

µX⌫ T̃µ⌫ [ ] +X⌫
r

µT̃µ⌫ [ ] =
(X)⇡µ⌫ T̃µ⌫ [ ] +X⌫

r
µT̃µ⌫ [ ],

and then use (1.6) to obtain (1.8) with

K̃X [ ] = (X)⇡µ⌫ T̃µ⌫ [ ] +X⌫ S̃⌫ [ ] =
(X)⇡µ⌫ T̃µ⌫ [ ]� �X(�)r↵�r↵��

1

2
X(U�2)�2.

To simplify the last term, we recall that

X(U�2) = �X(�⇤g�) = X(�)U� � �⇤gX (�) + �[⇤g, X]�,

and we apply (1.2), i.e.

[⇤g, X]� = 2(X)⇡µ⌫
rµr⌫� + 2rµ(X)⇡µ⌫r

⌫� �r⌫
(X)⇡µ

µ
r
⌫�,

to rewrite the commutator term.

Remark 1.9. Note that the one-form J̃X [ ] and the scalar K̃X [ ] only depend on the 1-jet of  , i.e.  
and its first derivatives. For solutions of the homogeneous wave equation, ẼX [ ] ⌘ 0 and thus (1.8) imply
that J̃X [ ] is a compatible current in the sense of [5].
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For later applications, it will also be convenient to define an auxiliary current:

Definition 1.10. Take a scalar field  and a vector field X on M. We define the w-Lagrangian current of
 as the one-form

J̃aux,w
µ

[ ] := �2


w�rµ��

1

2
�2rµw

�
. (1.11)

Lemma 1.11. Let F be given and assume  solves (1.1). For any scalar field w, the w-Lagrangian current
of  satisfies

r
µJ̃aux,w

µ
[ ] = K̃aux,w[ ] + Ẽ

aux,w[ ], (1.12)
where we have set

K̃aux,w[ ] := �2
�
wU�2 +r

µ�rµ�
�
�

1

2
r

µ(�2
rµw) (1.13)

Ẽ
aux,w[ ] := �Fw�. (1.14)

Proof. We compute

r
µJ̃aux,w

µ
[ ] = r

µ(�2)


w�rµ��

1

2
�2rµw

�
+ �2


wrµ�rµ�+ w�⇤g��

1

2
�2⇤gw

�

= r
µ(�2)


w�rµ��

1

2
�2rµw

�
+ �2wrµ�rµ�+ w�2�(⇤g�

�1 + 2rµ��1
rµ + ��1⇤g )

�
1

2
�2rµ(�2

rµw) +
1

2
�2rµ(�2)rµw

= K̃aux,w[ ] + Ẽ
aux,w[ ] + w�2�

⇥
�U�+ �⇤g�

�1�� 2��1
r

µ���1
rµ + 2��1

r
µ�rµ�

⇤
,

where the term in square brackets vanishes by the same argument as in the previous lemma.

Remark 1.12. In practice, by multiplying (1.1) by �w� and integrating by parts, one can identify the
appropriate one-form J̃aux,w[ ] and scalar K̃aux,w[ ] which allow for identity (1.12) to hold.

1.3 Stokes’ theorem and volume forms

Finally, we can integrate the identities in Lemmas 1.8 and 1.11. Let R ⇢ M be a smooth, time oriented,
subset of M with boundary

@R ⌘ T t S tN

where T is a timelike hypersurface (or unions thereof), S is a spacelike hypersurface (or unions thereof) and
N is a null hypersurface (or unions thereof).

Proposition 1.13 (Stokes’ theorem). Let F be given, and  be a solutions to (1.1). Let R ⇢ M be a
smooth, time oriented, subset of M with boundary @R. Then, we have

Z

T

J̃�

µ
[ ]nµ

T
dvolS +

Z

T

J̃�

µ
[ ]nµ

S
dvolS +

Z

N

J̃�

µ
[ ]nµ

N
dvolN

=

Z

@R

J̃�

µ
[ ]nµ

@R
dvol@R =

Z

R

⇣
K̃�[ ] + Ẽ

�[ ]
⌘
dvolR,

(1.15)

where � can be replaced by any vector field X, or by the notation aux, w for a scalar field w, and nT dvolT ,
nSdvolS and nNdvolN are chosen as follows:

• nT is a spacelike vector field satisfying g(X,nT ) = 0 for all vector fields X on T , which is normalized
so that g(nT , nT ) = 1 and outward-pointing with respect to int(R); dvolT = dvolg|T ;

• nS is a timelike vector field satisfying g(X,nS) = 0 for all vector fields X on S, which is normalized
so that g(nS , nS) = �1 and future-directed; dvolS = dvolg|S ;

• we pick n
N

to be a null generator of N , i.e. to be a future-directed null vector field satisfying g(X,n
N
) =

0 for all vector fields X on N and tangential to the null geodesics on M; then, nN is another future-
oriented null vector field normalized so that g(n

N
, nN ) = �1 and let dvolN = �nN ydvolg.

Remark 1.14. The choice of signs in Proposition 1.13 implies that the integral over future-directed (past-
directed) causal boundary components comes with a positive (negative) sign and the integral over spacelike
boundary components has the usual sign convention.
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