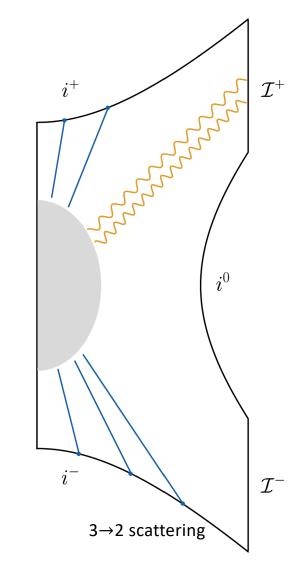
An asymptotic framework for gravitational scattering

Undergraduate Student: Hongji Wei, Advisor: Sam Gralla

Applying to graduate school this Fall! In collaboration with Geoffrey Compere

[arxiv: 2303.17124]

Motivation


Massive body scattering hasn't been formulated precisely Discrepancies in PM calculations of angular momentum Supertranslation dependence of Angular Momentum --Precise formulation may help solve the discrepancies in PM

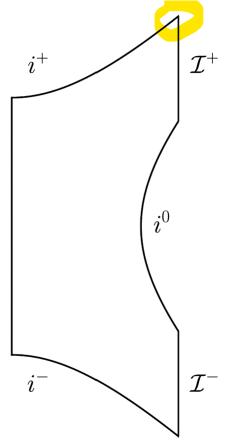
Standard Approach

Each infinity has its own symmetry group Each infinity has its own conserved charges

Goal

get single BMS group and associated charges for all five infinities (cf. Ashtekar, Strominger,...)

Step 1: obtain BMS and charges at all infinities (New for i^0 and i^{\pm}) Null infinity: Bondi coordinates: { u, r, x^A } Time-like/spatial infinity: Beig-Schmidt coordinates: { τ, ρ, y^A }

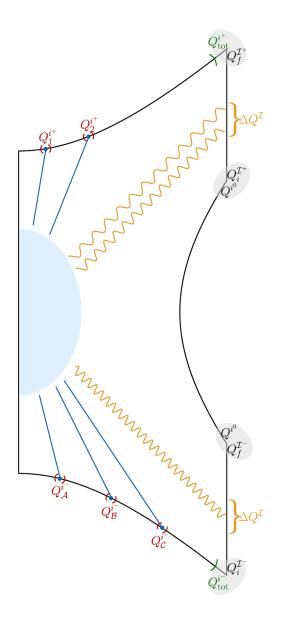

Step 2: find coordinate transformations relating Bondi to Beig-Schmidt

$$\begin{split} u &= \tau e^{-\rho} + \alpha(\rho, y^A) + \tau^{-1} A(\rho, y^A) + o(\tau^{-1}) \\ r &= \tau \sinh \rho + \beta(\rho, y^A) + \tau^{-1} B(\rho, y^A) + o(\tau^{-1}) \\ x^A &= y^A + \tau^{-1} p^A(\rho, y^A) + \tau^{-2} q^A(\rho, y^A) + \tau^{-2} \log \tau q^A_{\log}(\rho, y^A) + o(\tau^{-2}). \end{split}$$
 Bondi Beig-Schmidt

After finding the free functions \rightarrow obtain relations of Bondi and Beig-Schmidt quantities

 $Q^{i^+,\text{total}} = Q^{\mathcal{I}^+,\text{final}}.$

All BMS charges match consistently -- New


Results – After matching 5 infinities

conservation law (flux-balance law) over
whole spacetime – New – After 268 equations!

$$\sum_{n=1}^{N^+} Q_n^{i^+} + \Delta Q^{\mathcal{I}^+} = Q^{i^0} = \sum_{n=1}^{N^-} Q_n^{i^-} + \Delta Q^{\mathcal{I}^-}, \qquad (269)$$

- Definitions of Impact parameter and Spin
 - Spin is supertranslation invariant -- New
 - Impact parameter is not

Note that the final frame is supertranslated due to the memory effect. This must be taken into account during the post-Minkowskian calculations

