Non-linearities at black hole horizons

Béatrice Bonga - 13 October 20

Based on arXiv:2306.11142

Khera, Ariadna Ribes Metidieri, BB, Xisco Jiménez Forteza, ishnan Eric Poisson, Vaniel Pook-Kolb, Erik Schnetter, Huan

Radboud University

Sounds like my kind of day

Why care about horizons?

Observations are @ null infinity

Electromagnetic observations and their sources

are interesting because of their origin!

Corollary:

QNMs are interesting because they are emitted by black holes.

Perturbation theory on Kerr

$$egin{aligned} &\Psi^{(1)} \sim A^{(1)}_{\pm,lmn}(r) e^{-i\omega_{\pm,lmn}t+i\phi_{\pm,lmn}} {}_2Y_{lm}(heta,arphi) \ &\mathcal{O}\Psi^{(1)} &= 0 \ &\mathcal{O}\Psi^{(2)} &= \mathcal{S}ig(h^{(1)},h^{(1)}ig) \ &\Psi^{(2)} \sim A^{(2)}_{\pm,lmn}(r) e_2^{-i\omega^{(2)}_{\pm,lmn}t+i\phi_{\pm,lmn}}Y_{lm}(heta,arphi) \end{aligned}$$

$$\omega_{lmn imes l'm'n'}=\omega_{lmn}+\omega_{l'm'n'}$$

$$\mathcal{O}\Psi^{(2)}=\mathcal{S}(h^{(1)},h^{(1)})$$

$$\begin{array}{l} & \begin{array}{l} \text{background} & \text{initial data} \end{array} \\ A_{lmn}^{(2)} Y_{lm} \sim \Sigma f(r;M) A_{lmn}^{(1)} A_{l'm'n'}^{(1)} Y_{lm} Y_{l'm'} \\ & \sim G_{lm \times l'm'} Y_{lm} \end{array}$$

$$A^{(2)}_{lmn imes l'm'n'} = c_{lmn imes l'm'n'}(M,a) A^{(1)}_{lmn} A^{(1)}_{l'm'n'}$$

Non-linear model preferred @ infinity

Implications for observations:

$$h^{obs} = h^{linear} + h^{non-linear}$$

but frequencies are "finger-printed" with an order in perturbation theory!

Also true @ black hole horizon?

Horizon should be more non-linear, but not too crazy

 \rightarrow easier to find quadratic QNMs

Horizon is strong field regime →hopeless to try to find any QNMs

Disclaimer

All results are based on fitting observations. No theoretical derivations (yet)....

Two sets of simulations using the Einstein Toolkit

Shear at the horizon

Disclaimer: We simply use the simulation time.

Same issue at infinity!

Ringdown: Mass changes $\leq 1 \%$

Ne take
$$t_{ringdown} = 8.2 M$$

Two sets of simulations using the Einstein Toolkit

Equal mass \rightarrow I=2,4,6,... are only non-zero.

Notation: $\omega_{lmn} \rightarrow \omega_{ln}$

For I=2, possible quadratic modes are $\omega_{20 \times 20}$ and $\omega_{20 \times 40}$ + possible versions with overtones.

Mismatch S7 after fixing ω_{200} and ω_{201}

Mismatch S7 after fixing ω_{200} and ω_{201}

Stability amplitude

Relative variation of the optimal frequency

Amplitude relation

I=4 mode

Optimal frequency fixing ω_{40} and $\omega_{20\times 20}$

Amplitude relation

Data prefers model with fundamental tone + 2 quadratic modes!

Mode	$\omega_{ln imes l'n'}$	Boosted (α)	Unboosted (α)
l=2	$\omega_{20 \times 20}$	$1.51_{-0.04}^{+0.15}$	$6.21_{-1.15}^{+0.15}$
l = 4	$\omega_{20 \times 20}$	$0.73\substack{+0.06 \\ -0.33}$	2 - 1
	$\omega_{20 \times 40}$	$2.6\substack{+0.26 \\ -0.26}$	—
l = 6 *	$\omega_{20 \times 40}$	$1.78_{-0.74}^{0.53}$	
	$\omega_{20 imes 60}$	$2.52^{+1.29}_{-0.59}$	-
	$\omega_{20 \times 40}$	$1.78\substack{+0.44\\-0.65}$	-
	$\omega_{40 imes 40}$	$2.82^{+1.5}_{-0.62}$	

Connection horizon and infinity

- For I=4, same quadratic modes found at infinity
- For I=6, also $\omega_{200\times400}$ found at infinity

[Cheung et al, 2022 + private correspondence]

Conclusion

- ★ Quadratic QNMs fit the shear (and multipole) data at the horizon better than models with overtones
 - Iower mismatch
 - more stable amplitudes wrt changes in starting time
 - closer to the optimal frequency
 - amplitude relation is satisfied
- ★ Some of the same (quadratic) modes found at horizon and infinity
- ★ Puzzling: why is the amplitude relation for boosted and unboosted simulations different?

Open questions

- (1) All results based on fitting observations, are there better ways to do this?
- (2) Why are the slopes for boosted/unboosted simulations different?
- (3) Is there a well-motivated choice of slicing/time?
- (4) Can we link observations at infinity more directly to horizon properties?

ONE DOES NOT SIMPLY

SAY THANK YOU WITHOUT A MEME