

Non-linearities at black hole horizons

Béatrice Bonga - 13 October 2023

Based on arXiv:2306.11142

[Neev Khera, Ariadna Ribes Metidieri, Bo Xisco Jiménez Forteza,
Badri Krishnan, Eric Poisson, Daniel Pook-Kolb, Erik Schnetter, Huan
Yang]

Radboud University

Why care about horizons?

Observations are @ null infinity

Electromagnetic observations and their sources

Gravitational waves...

are interesting because of their origin!

Corollary:

QNMs are interesting because they are emitted by black holes.

Non-linearities?

Perturbation theory on Kerr

$$\Psi^{(1)} \sim A_{\pm,lmn}^{(1)}(r) e^{-i\omega_{\pm,lmn}t + i\phi_{\pm,lmn}} {}_2Y_{lm}(\theta, \varphi)$$

$$\mathcal{O}\Psi^{(1)} = 0$$

$$\mathcal{O}\Psi^{(2)} = \mathcal{S}(h^{(1)}, h^{(1)})$$

$$\Psi^{(2)} \sim A_{\pm,lmn}^{(2)}(r) e^{-i\omega_{\pm,lmn}^{(2)}t + i\phi_{\pm,lmn}} Y_{lm}(\theta, \varphi)$$

$$\omega_{lmn \times l'm'n'} = \omega_{lmn} + \omega_{l'm'n'}$$

Amplitude relation

$$\mathcal{O}\Psi^{(2)} = \mathcal{S}(h^{(1)}, h^{(1)})$$

$$A_{lmn}^{(2)} Y_{lm} \sim \Sigma \underbrace{f(r; M)}_{\text{background}} \underbrace{A_{lmn}^{(1)} A_{l'm'n'}^{(1)} Y_{lm} Y_{l'm'}}_{\text{initial data}} \\ \sim G_{lm \times l'm'} Y_{lm}$$

$$A_{lmn \times l'm'n'}^{(2)} = c_{lmn \times l'm'n'}(M, a) A_{lmn}^{(1)} A_{l'm'n'}^{(1)}$$

Non-linear model preferred @ infinity

So why do I think this is exciting?

Implications for observations:

$$h^{obs} = h^{linear} + h^{non-linear}$$

but frequencies are “finger-printed” with an order in perturbation theory!

Also true @ black hole horizon?

Horizon should be
more non-linear, but
not too crazy

→ easier to find
quadratic QNMs

Horizon is strong
field regime
→ hopeless to try to
find any QNMs

Disclaimer

*All results are based on fitting observations.
No theoretical derivations (yet)....*

Two sets of simulations using the Einstein Toolkit

Head-on collision
two black holes

- (1) Resulting BH is non-rotating
- (2) Axisymmetric simulations \rightarrow no $m=0$ modes
- (3) High resolution near horizon (but poor near infinity)

linear amplitudes 10x bigger

Shear at the horizon

Choice of time

Time

Definition of frequency

Disclaimer: We simply use the simulation time.

Same issue at infinity!

Ringdown: Mass changes $\leq 1\%$

Two sets of simulations using the Einstein Toolkit

S7: boosted

Equal mass $\rightarrow l=2, 4, 6, \dots$ are only non-zero.

Notation: $\omega_{lmn} \rightarrow \omega_{ln}$

For $l=2$, possible quadratic modes are $\omega_{20 \times 20}$ and $\omega_{20 \times 40} +$ possible versions with overtones.

Mismatch S7 after fixing ω_{200} and ω_{201}

Mismatch S7 after fixing ω_{200} and ω_{201}

Stability amplitude

Relative variation of the optimal frequency

Amplitude relation

Boosted

Unboosted

Puzzle: Why are these slopes different?

$|l|=4$ mode

Stability amplitudes

Optimal frequency fixing ω_{40} and $\omega_{20 \times 20}$

Amplitude relation

Data prefers model with fundamental tone + 2 quadratic modes!

Other l-modes

Mode	$\omega_{ln \times l'n'}$	Boosted (α)	Unboosted (α)
$l = 2$	$\omega_{20 \times 20}$	$1.51^{+0.15}_{-0.04}$	$6.21^{+0.15}_{-1.15}$
$l = 4$	$\omega_{20 \times 20}$	$0.73^{+0.06}_{-0.33}$	-
	$\omega_{20 \times 40}$	$2.6^{+0.26}_{-0.26}$	-
$l = 6$ *	$\omega_{20 \times 40}$	$1.78^{0.53}_{-0.74}$	-
	$\omega_{20 \times 60}$	$2.52^{+1.29}_{-0.59}$	-
	$\omega_{20 \times 40}$	$1.78^{0.44}_{-0.65}$	-
	$\omega_{40 \times 40}$	$2.82^{+1.5}_{-0.62}$	-

Connection horizon and infinity

- For $l=4$, same quadratic modes found at infinity
- For $l=6$, also $\omega_{200 \times 400}$ found at infinity

[Cheung et al, 2022 + private correspondence]

Conclusion

- ★ Quadratic QNMs fit the shear (and multipole) data at the horizon better than models with overtones
 - lower mismatch
 - more stable amplitudes wrt changes in starting time
 - closer to the optimal frequency
 - amplitude relation is satisfied
- ★ Some of the same (quadratic) modes found at horizon and infinity
- ★ Puzzling: why is the amplitude relation for boosted and unboosted simulations different?

Open questions

- (1) All results based on fitting observations, are there better ways to do this?
- (2) Why are the slopes for boosted/unboosted simulations different?
- (3) Is there a well-motivated choice of slicing/time?
- (4) Can we link observations at infinity more directly to horizon properties?

ONE DOES NOT SIMPLY

SAY THANK YOU WITHOUT A
MEME