Non-linear behavior (of black hole horizons) from different angles

L. Lehner

(Perimeter Institute/CIFAR)

Outline: *multiple angles*

"Using a term like nonlinear science is like referring to the bulk of zoology as the study of non-elephant animals." [S. Ulam]

- Full GR numerical simulations
- Perturbative analysis
- Analogies

- singling out particular scenarios that can shed light on underlying phenomenology

- Both within AF and asymptotically AdS boundary conditions

(from the point of view of 'non-linear couplings', cosmological constant does not change the picture in a crucial way)

how perturbed'?

What analogy & why?

What target?

Some 'oldies'

- Close-limit approximation: in head-on collisions: [Nicasio+ PRD '99] -> 1st+2nd order perts discernibly better at approximating post-merger
- Scattering of BHs: amplitude changes in impinging mode, resulting in a non-linear behavior off scattered radiation [Zlochower+ PRD '03]

Binary black hole collisions: *Linear from almost the peak?*

 reductio ad absurdum. If so, one can estimate the flux of energy through horizon → {M,a} change by a few %, hardly an 'unchanging background', what is its impact? timescales?

• What other phenomena might also indicate non-linear behavior?

[Also, talks/flash talks in this meeting!]

Perturbed BHs in AdS

• Perturbed boosted black brane in 3+1 dimensions, with a long-wavelength perturbation

 'Pure' mode, develops a complex structure, which extends throughout the spacetime, displaying 'vortices' of gravitational waves (a-la 'geons') from horizon to boundary of AdS

• Dynamically, energy flows to longer wavelengths

[Chesler,Adams,Liu PRL'14]

• AdS/CFT <->gravity/fluid correspondence [dictionary!]

[Bhattacharya,Hubeny,Minwalla,Rangamani; VanRaamsdonk; Baier,Romatschke,Son,Starinets,Stephanov]

$$ds_{[0]}^2 = -2u_{\mu}dx^{\mu}dr + r^2\left(\eta_{\mu\nu} + \frac{1}{(br)^d}u_{\mu}u_{\nu}\right)dx^{\mu}dx^{\nu}.$$

- $T_{ab} = T_{ab} = \frac{\rho}{d-1} (du_a u_b + \eta_{ab}) + \Pi_{ab}$
- Subject to :

$$-\mathbf{u}_{a}\mathbf{u}^{a} = -1 ; \mathsf{T}^{a}_{a} = 0; \Pi_{ab} = -2\eta\sigma_{ab} + \cdots$$
$$- \nabla_{a}\mathsf{T}^{ab} = 0.$$

- Do these eqns/eos give rise to turbulence?
 - Non-relativistic limit
 Navier-Stokes eqn. why wouldn't they?
 - If so, NS eqns have indirect cascade for 2+1 dimensions. Why? There exists a conserved quantity: enstrophy. Does it exist for these eqns/eos? Yes! [Carrasco+ '12]

[Carrasco,Green,LL PRX'13]

From the fluid's perspective

- Non-linearities naturally expected, the regime corresponds to Re>>1
- Energy flows primarily to longer wavelengths due to a topological 'constraint', *enstrophy conservation*— which restricts energy flow to shorter ones.

- 'Clean' duality in AdS, can we draw similar observations in asymptotically flat spacetimes? Can we unearth a phenomena describing it from GR?
 - Ultimately what mediated this non-linear behavior?
 - AdS 'trapping energy' -> slowly decaying QNMs & turbulence
 - Or `more slowly' decaying QNMs -> time for non-linearities to ``do something interesting''?

Parametric instabilities in BHs (AF)

- In AF spacetimes, claims of fluid-gravity as well.
 - NS from membrane paradigm on a timelike surface (80's)
 - Raychaudhuri/Damour equations on horizon (?)

However the first is potentially delicate, intuition but not a rigorous message. Let's try something else, taking a page from what we learnt from fluids.

- First, recall the behavior of parametric oscillators:
 - $q_{tt} + \omega^2 (1 + f(t)) q + \gamma q_t = 0$
 - Soln is generically bounded in time *except* when f(t) oscillates approximately with $\omega' \simeq 2\omega$. [e.g. f(t) = f $\cos(\omega' t)$]. If so, an unbounded solution is triggered behaving as $e^{\alpha t}$ with $\alpha = (f_{0}^{2} \omega^{2}/16 - (\omega' - \omega)^{2})^{1/2} - \gamma$
 - (referred to as *parametric instability* in classical mechanics and optics)

 As a simplification: consider a BH perturbed by single mode h₁ and take only an additional scalar perturbation over the resulting spacetime. One obtains:

[$Box_{kerr} + O(h_1)$] $\Phi = 0$. • With the solution having the form: $e^{t(\alpha - \omega_1)}$ with

$$\alpha = \pm \sqrt{|Hh_0(t)/Qm'|^2 - (\omega_R' - \omega_R/2)^2},$$

• So exponentially growing solution if:

$$h_0(t)/(m'\omega_I') - |Q/H|\sqrt{(\omega_R' - \omega_R/2)^2/{\omega_I'}^2 + 1} > 0$$

[Yang,Zimmerman,LL '15]

- if Φ has I, m/2 -> a parametric instability can turn on; an 'inverse cascade'.
- Further, one can find 'critical values' for growth onset.

(l,m)	l' = 1	l'=2	l'=3	l'=4	l' = 5	l'=6	l'=7	l' = 8
(2, 2)	0.287	0.163	0.130	0.122	0.117	0.115	0.113	0.111
(4, 2)	43.2	62.1	92.7	123	118	118	117	117
(4, 4)		3.62	0.00676	0.0114	0.0108	0.0104	0.0101	0.0100

• One can also define a 'separatrix' value as:

 $\text{Re}_{g} = h_{o}/(m \omega_{v})$

• identify $\lambda < -> 1/m$; v <-> h_o ; v/p <-> ω_v

$$\rightarrow \operatorname{Re}_{g} = \operatorname{Re}_{g}$$

Critical ``Reynolds'' number & instability consequence

a = 0.998, perturbation ~ 0.02%, initial mode *l*=2,*m*2

Could 'potentially' have observational consequences

Mode excitation and bh/spacetime response

Timescales: black hole response to 'arbitrary slow or fast' perturbations?
[Buchel+ '12]

– For arbitrary low, \rightarrow adiabatic regime, pure mode stays pure

– For arbitrary fast: 'quench' \rightarrow universal response

• But in between?

Non-linearities through accretion onto BH: AIME

- Modes propagate on a changing background as BH accretes, and the time-scale of such change is not adiabatic [Sberna+ PRD 105 '22]
- Secular effect, mass/angular momentum changes -> a mode will be 'projected' onto new ones. AIME: absorption induced mode excitation
- CAV: sims and thorough comparison for a scalar field in asymptotic AdS spacetimes

- Mode influence assuming no time offset in comparison
- BUT: basic mechanism is clear, and will take place in AF.

4

'Revisiting' some more...

[Bagchi]

And back to horizons, what happens 'there'

• Revisit 'membrane paradigm'

- (Horizon) null surface is a special surface. Brings a welcomed degree of robustness to MP → a unique surface
 - Raychaudhuri + Damour equations also describe ' hydrodynamics... but with Carrollian symmetry

[Donnay,Ciambelli,C.Marteau,Petkou,Petropoulos, Siampos,Freidel,Jai-akson,Jafari,Speranza,Adami,Grumiller,Zwickel...]

Null surfaces in GR & Carrollian hydrodynamics

$$ds^{2} = -Vdv^{2} + 2dvd\rho + 2\Upsilon_{A}dvdx^{A} + \gamma_{AB}dx^{A}dx^{B},$$
(1)

where v is the advanced null time, ρ parametrizes the distance to the surface, and x^A are the angular coordinates on the sphere, A = 2, 3. We expand the metric in powers of the distance to the surface

$$V = 2\kappa\rho + O(\rho^2), \quad \Upsilon_A = U_A\rho + O(\rho^2), \quad (2)$$

$$\gamma_{AB} = \Omega_{AB} - 2\lambda_{AB}\rho + O(\rho^2).$$

$$\theta^{(l)} - \kappa \theta^{(l)} + \frac{1}{2} \theta^{(l)2} + N_{AB}^{(l)} N^{AB(l)} = 0,$$

$$\dot{\mathcal{H}}_A + \theta^{(l)} \mathcal{H}_A - \nabla_A \kappa - \frac{1}{2} \nabla_A \theta^{(l)} + \nabla^B N_{AB}^{(l)} = 0,$$

$$\dot{e} + \theta^{(l)}e + \alpha(\hat{\nabla}_A + 2\varphi_A)\mathcal{J}^A + \left(N_{AB}^{(l)} + \frac{1}{2}\theta\Omega_{AB}\right)(\Pi^{AB} + p\Omega^{AB}) = 0,$$

$$\dot{\pi}_B + \theta^{(l)}\pi_B + \alpha\left(\hat{\nabla}_A + \varphi_A\right)(\Pi_B^A + p\delta_B^A) + \alpha\varphi_B e - \varpi^{AB}\mathcal{J}_A = 0.$$

$$e = \theta^{(l)}, \qquad p = -\kappa,$$

$$\Pi_{AB} = 2\eta N_{AB}^{(l)} + \zeta \theta^{(l)} \Omega_{AB}, \qquad \eta = \frac{1}{2}, \qquad \zeta = -\frac{1}{2},$$

$$\pi_A = -\frac{1}{\kappa} \left(\nabla_A \kappa - \mathcal{H}^B \dot{\Omega}_{AB} - \frac{1}{\kappa} \mathcal{H}_A \dot{\kappa} \right), \quad \Sigma^{AB} = \mathcal{J}^A = 0.$$

Under these identifications

$$\theta^{(l)} - \kappa \theta^{(l)} + \frac{1}{2} \theta^{(l)2} + N_{AB}^{(l)} N^{AB(l)} = 0,$$

$$\dot{\mathcal{H}}_A + \theta^{(l)} \mathcal{H}_A - \nabla_A \kappa - \frac{1}{2} \nabla_A \theta^{(l)} + \nabla^B N_{AB}^{(l)} = 0,$$

ightarrow

But what are N, k? both *gauge* and physics in them. Consider perturbing Schwarzschild (vacuum case)

$$\begin{split} \dot{\theta}^{(n)} + \kappa \theta^{(n)} + \theta^{(l)} \theta^{(n)} - (\nabla_A \mathcal{H}^A + \mathcal{H}_A \mathcal{H}^A) + \frac{R}{2} &= 0, \\ 2\dot{N}_{AB}^{(n)} - 4N_{(A}^{C\,(n)} N_{B)C}^{(l)} + \theta^{(n)} N_{AB}^{(l)} + (2\kappa - \theta^{(l)}) N_{AB}^{(n)} + \\ &+ R_{AB}^{\text{T-F}} - 2(\mathcal{H}_A \mathcal{H}_B)^{\text{T-F}} - 2(\nabla_{(A} \mathcal{H}_B))^{\text{T-F}} = 0, \end{split}$$

$$g_{ab}^{\rm Sch} = -\frac{\rho}{4m}dv^2 + 2dvd\rho + (4m^2 + 4m\rho)q_{AB}dx^A dx^B,$$
(19)

$$\kappa = \frac{1}{4m} (1 + \epsilon k + \epsilon^2 K)$$
$$U_A = -2(\epsilon h_A + \epsilon^2 H_A),$$
$$\Omega_{AB} = 4m^2 (q_{AB} + \epsilon c_{AB} + \epsilon^2 C_{AB}),$$
$$\lambda_{AB} = 2m(-q_{AB} + \epsilon s_{AB} + \epsilon^2 S_{AB}).$$

[Redondo-Yuste,LL '22]

Involve thing rest of EEs, which link horizon to bulk behavior. To 2nd order...

• {k,N} functions of (H,C,S, θ), and evoln eqn C_t=F(H,C,S, θ)

\rightarrow replacing:

$$-4m\dot{H}_{A} = \nabla^{2}H_{A} + \nabla_{B}\nabla_{A}H^{B}$$
$$+ m^{-1}\left(H_{A}\nabla^{B}H_{B} + H_{B}\nabla^{B}H_{A}\right) +$$
$$+ c^{BC}(\nabla_{C}\nabla_{A}H_{B} + \nabla_{C}\nabla_{B}H_{A}$$
$$- \nabla_{A}\nabla_{B}H_{C})$$
$$- \nabla_{A}C^{BC}\nabla_{B}H_{C} + \nabla^{B}C_{AB}\nabla^{C}H_{C}.$$

Which now bears some resemblance to Navier Stokes eqns $U_{,t}\simeq U\partial U+\eta/\rho\,\partial^2 U$

and...being very 'liberal' with dimensions, • Re \rightarrow H (L /mass +c)/(1+c) [recall, in NS, Re -> $\lambda u/(\eta/\rho)$] Does it make sense?

SUMMARY:

• Several identified interactions/mechanisms argue for non-linear behavior with discernible consequences throughout the spacetime

• Relevant time scales ~ decay time of (leading) mode

- Connection with hydrodynamics, interesting analogy for unearthing particular phenomena, and hinting of even deeper ones
 - In particular, 'inverse' cascade underlying simplicity of waveforms?