

Non-linear behavior (of black hole horizons) from different angles

L. Lehner

(Perimeter Institute/CIFAR)

Outline: *multiple angles*

"Using a term like nonlinear science is like referring to the bulk of zoology as the study of non-elephant animals." [S. Ulam]

- Full GR numerical simulations
- Perturbative analysis
- Analogies
 - singling out particular scenarios that can shed light on underlying phenomenology
 - Both within AF and asymptotically AdS boundary conditions
 - (from the point of view of ‘non-linear couplings’, cosmological constant does not change the picture in a crucial way)

how perturbed' ?

What analogy & why?

What target?

[LSC & 3G report]

[Romero]

[Novaes]

Some ‘oldies’

- Close-limit approximation: in head-on collisions: [Nicasio+ PRD ‘99] \rightarrow 1st+2nd order perts discernibly better at approximating post-merger
- Scattering of BHs: amplitude changes in impinging mode, resulting in a non-linear behavior off scattered radiation [Zlochower+ PRD ‘03]

Binary black hole collisions: *Linear from almost the peak?*

- *reductio ad absurdum*. If so, one can estimate the flux of energy through horizon $\rightarrow \{M,a\}$ change by a few %, hardly an ‘unchanging background’, what is its impact? timescales?
- What other phenomena might also indicate non-linear behavior?

[Also, talks/flash talks in this meeting!]

Perturbed BHs in AdS

- Perturbed boosted black brane in 3+1 dimensions, with a long-wavelength perturbation
- ‘Pure’ mode, develops a complex structure, which extends throughout the spacetime, displaying ‘vortices’ of gravitational waves (a-la ‘geons’) from horizon to boundary of AdS
- Dynamically, energy flows to longer wavelengths
- *[Chesler,Adams,Liu PRL’14] What drives such behavior?*

[Chesler,Adams,Liu PRL’14]

- *AdS/CFT <-> gravity/fluid correspondence [dictionary!]*

[Bhattacharya,Hubeny,Minwalla,Rangamani; VanRaamsdonk; Baier,Romatschke,Son,Starinets,Stephanov]

$$ds_{[0]}^2 = -2u_\mu dx^\mu dr + r^2 \left(\eta_{\mu\nu} + \frac{1}{(br)^d} u_\mu u_\nu \right) dx^\mu dx^\nu.$$

- $T_{ab} = T_{ab} = \frac{\rho}{d-1} (du_a u_b + \eta_{ab}) + \Pi_{ab}$
- Subject to :
 - $u_a u^a = -1$; $T^a_a = 0$; $\Pi_{ab} = -2\eta\sigma_{ab} + \dots$
 - $\nabla_a T^{ab} = 0$.
- Do these eqns/eos give rise to turbulence?
 - Non-relativistic limit \rightarrow Navier-Stokes eqn. why wouldn't they?
 - If so, NS eqns have indirect cascade for 2+1 dimensions. Why? There exists a conserved quantity: *enstrophy*. *Does it exist for these eqns/eos?* Yes! [Carrasco+ '12]

[Carrasco,Green,LL PRX'13]

From the fluid's perspective

- Non-linearities naturally expected, the regime corresponds to $Re \gg 1$
- Energy flows primarily to longer wavelengths due to a topological ‘constraint’,
–*enstrophy conservation*– which restricts energy flow to shorter ones.
- ‘Clean’ duality in AdS, can we draw similar observations in asymptotically flat spacetimes? Can we unearth a phenomena describing it from GR?
 - Ultimately what mediated this non-linear behavior?
 - AdS ‘trapping energy’ -> slowly decaying QNMs & turbulence
 - Or ‘more slowly’ decaying QNMs -> time for non-linearities to ‘do something interesting’?

Parametric instabilities in BHs (AF)

- In AF spacetimes, claims of fluid-gravity as well.
 - NS from membrane paradigm on a timelike surface (80's)
 - Raychaudhuri/Damour equations on horizon (?)

However the first is potentially delicate, intuition but not a rigorous message.
Let's try something else, taking a page from what we learnt from fluids.

- First, recall the behavior of parametric oscillators:
 - $q_{,tt} + \omega^2 (1 + f(t)) q + \gamma q_{,t} = 0$
 - Soln is generically bounded in time *except* when $f(t)$ oscillates approximately with $\omega' \sim 2\omega$. [e.g. $f(t) = f_0 \cos(\omega' t)$]. If so, an unbounded solution is triggered behaving as $e^{\alpha t}$ with $\alpha = (f_0^2 \omega^2/16 - (\omega' - \omega)^2)^{1/2} - \gamma$
 - (referred to as *parametric instability* in classical mechanics and optics)

- As a simplification: consider a BH perturbed by single mode h_1 , and take only an additional scalar perturbation over the resulting spacetime. One obtains:

$$[\text{Box}_{\text{kerr}} + \mathcal{O}(h_1)] \Phi = 0.$$

- With the solution having the form: $e^{\frac{t(\alpha - \omega)}{1}}$ with

$$\alpha = \pm \sqrt{|Hh_0(t)/Qm'|^2 - (\omega'_R - \omega_R/2)^2},$$

- So exponentially growing solution if:

$$h_0(t)/(m'\omega'_I) - |Q/H| \sqrt{(\omega'_R - \omega_R/2)^2 / \omega'^2_I + 1} > 0.$$

- if Φ has $l, m/2$ \rightarrow a parametric instability can turn on; an ‘inverse cascade’.
- Further, one can find ‘critical values’ for growth onset.

(l, m)	$l' = 1$	$l' = 2$	$l' = 3$	$l' = 4$	$l' = 5$	$l' = 6$	$l' = 7$	$l' = 8$
(2, 2)	0.287	0.163	0.130	0.122	0.117	0.115	0.113	0.111
(4, 2)	43.2	62.1	92.7	123	118	118	117	117
(4, 4)	—	3.62	0.00676	0.0114	0.0108	0.0104	0.0101	0.0100

- One can also define a ‘separatrix’ value as:

$$Re_g = h_o / (m \omega_v)$$

- identify $\lambda \leftrightarrow 1/m$; $v \leftrightarrow h_o$; $v/\rho \leftrightarrow \omega_v$

$$\rightarrow Re_g = Re$$

Critical ``Reynolds'' number & instability consequence

$a = 0.998$, perturbation $\sim 0.02\%$, initial mode $l=2, m=2$

Could 'potentially' have observational consequences

Mode excitation and bh/spacetime response

- Timescales: black hole response to ‘arbitrary slow or fast’ perturbations?
[Buchel+ ‘12]
- For arbitrary low, \rightarrow adiabatic regime, pure mode stays pure
- For arbitrary fast: ‘quench’ \rightarrow universal response
- But in between?

Non-linearities through accretion onto BH: AlME

- Modes propagate on a changing background as BH accretes, and the time-scale of such change is not adiabatic [Sberna+ PRD 105 '22]
- *Secular effect*, mass/angular momentum changes -> a mode will be ‘projected’ onto new ones. **AlME**: *absorption induced mode excitation*

- **CAV**: sims and thorough comparison for a scalar field in asymptotic AdS spacetimes

- Mode influence assuming no time offset in comparison

- **BUT**: basic mechanism is clear, and will take place in AF.

'Revisiting' some more...

And back to horizons, what happens 'there'

- Revisit 'membrane paradigm'

- (Horizon) null surface is a special surface. Brings a welcomed degree of robustness to MP → a unique surface
 - Raychaudhuri + Damour equations also describe 'hydrodynamics... but with Carrollian symmetry'

[Donnay,Ciambelli,C.Marteau,Petkou,Petropoulos, Siampos,Freidel,Jai-akson,Jafari,Speranza,Adami,Grumiller,Zwickel...]

Null surfaces in GR & Carrollian hydrodynamics

$$ds^2 = -Vdv^2 + 2dvd\rho + 2\Upsilon_A dvdx^A + \gamma_{AB}dx^A dx^B, \quad (1)$$

where v is the advanced null time, ρ parametrizes the distance to the surface, and x^A are the angular coordinates on the sphere, $A = 2, 3$. We expand the metric in powers of the distance to the surface

$$\begin{aligned} V &= 2\kappa\rho + O(\rho^2), & \Upsilon_A &= U_A\rho + O(\rho^2), \\ \gamma_{AB} &= \Omega_{AB} - 2\lambda_{AB}\rho + O(\rho^2). \end{aligned} \quad (2)$$

$$\begin{aligned} \dot{\theta}^{(l)} - \kappa\theta^{(l)} + \frac{1}{2}\theta^{(l)2} + N_{AB}^{(l)}N^{AB(l)} &= 0, \\ \dot{\mathcal{H}}_A + \theta^{(l)}\mathcal{H}_A - \nabla_A\kappa - \frac{1}{2}\nabla_A\theta^{(l)} + \nabla^B N_{AB}^{(l)} &= 0, \end{aligned}$$

$$\begin{aligned} \dot{e} + \theta^{(l)}e + \alpha(\hat{\nabla}_A + 2\varphi_A)\mathcal{J}^A + \left(N_{AB}^{(l)} + \frac{1}{2}\theta\Omega_{AB}\right)(\Pi^{AB} + p\Omega^{AB}) &= 0, \\ \dot{\pi}_B + \theta^{(l)}\pi_B + \alpha(\hat{\nabla}_A + \varphi_A)(\Pi_B^A + p\delta_B^A) + \alpha\varphi_Be - \varpi^{AB}\mathcal{J}_A &= 0. \end{aligned}$$

$$\begin{aligned} e &= \theta^{(l)}, & p &= -\kappa, \\ \Pi_{AB} &= 2\eta N_{AB}^{(l)} + \zeta\theta^{(l)}\Omega_{AB}, & \eta &= \frac{1}{2}, & \zeta &= -\frac{1}{2}, \\ \pi_A &= -\frac{1}{\kappa}\left(\nabla_A\kappa - \mathcal{H}^B\dot{\Omega}_{AB} - \frac{1}{\kappa}\mathcal{H}_A\dot{\kappa}\right), & \Sigma^{AB} &= \mathcal{J}^A = 0. \end{aligned}$$

Under these identifications

$$\begin{aligned}\dot{\theta}^{(l)} - \kappa\theta^{(l)} + \frac{1}{2}\theta^{(l)2} + N_{AB}^{(l)}N^{AB(l)} &= 0, \\ \dot{\mathcal{H}}_A + \theta^{(l)}\mathcal{H}_A - \nabla_A\kappa - \frac{1}{2}\nabla_A\theta^{(l)} + \nabla^BN_{AB}^{(l)} &= 0,\end{aligned}$$

- But what are N , κ ? both *gauge* and physics in them. Consider perturbing Schwarzschild (vacuum case)

$$\begin{aligned}\dot{\theta}^{(n)} + \kappa\theta^{(n)} + \theta^{(l)}\theta^{(n)} - (\nabla_A\mathcal{H}^A + \mathcal{H}_A\mathcal{H}^A) + \frac{R}{2} &= 0, \\ 2\dot{N}_{AB}^{(n)} - 4N_{(A}^{C(n)}N_{B)C}^{(l)} + \theta^{(n)}N_{AB}^{(l)} + (2\kappa - \theta^{(l)})N_{AB}^{(n)} + \\ + R_{AB}^{\text{T-F}} - 2(\mathcal{H}_A\mathcal{H}_B)^{\text{T-F}} - 2(\nabla_{(A}\mathcal{H}_{B)})^{\text{T-F}} &= 0,\end{aligned}$$

$$g_{ab}^{\text{Sch}} = -\frac{\rho}{4m}dv^2 + 2dvd\rho + (4m^2 + 4m\rho)q_{AB}dx^A dx^B, \quad (19)$$

$$\begin{aligned}\kappa &= \frac{1}{4m}(1 + \epsilon k + \epsilon^2 K) \\ U_A &= -2(\epsilon h_A + \epsilon^2 H_A), \\ \Omega_{AB} &= 4m^2(q_{AB} + \epsilon c_{AB} + \epsilon^2 C_{AB}), \\ \lambda_{AB} &= 2m(-q_{AB} + \epsilon s_{AB} + \epsilon^2 S_{AB}),\end{aligned}$$

Involve thing rest of EEs, which link horizon to bulk behavior.

To 2nd order...

- $\{k, N\}$ functions of (H, C, S, θ) , and evoln eqn $C_{,t} = F(H, C, S, \theta)$

→ replacing:

$$\begin{aligned}-4m\dot{H}_A = & \nabla^2 H_A + \nabla_B \nabla_A H^B \\ & + m^{-1} (H_A \nabla^B H_B + H_B \nabla^B H_A) + \\ & + c^{BC} (\nabla_C \nabla_A H_B + \nabla_C \nabla_B H_A \\ & - \nabla_A \nabla_B H_C) \\ & - \nabla_A C^{BC} \nabla_B H_C + \nabla^B C_{AB} \nabla^C H_C.\end{aligned}$$

Which now bears some resemblance to Navier Stokes eqns

$$U_{,t} \simeq U \partial U + \eta / \rho \partial^2 U$$

and...being very 'liberal' with dimensions,

- $\text{Re} \rightarrow H (L / \text{mass} + c) / (1 + c)$ [recall, in NS, $\text{Re} \rightarrow \lambda u / (\eta / \rho)$]

Does it make sense?

SUMMARY:

- Several identified interactions/mechanisms argue for non-linear behavior with discernible consequences throughout the spacetime
- Relevant time scales \sim decay time of (leading) mode
- Connection with hydrodynamics, interesting analogy for unearthing particular phenomena, and hinting of even deeper ones
 - In particular, 'inverse' cascade underlying simplicity of waveforms?