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• General relativity: gravity arises 
because spacetime is curved


• A black hole is a region of 
spacetime from which no signal 
can reach a “distant observer”


• The boundary of a black hole is 
its event horizon: a 3d surface in 
4d spacetime
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Figure 2. The diagram is based on Penrose’s paper from 1965 and shows the collapse of matter 
into a black hole. On a trapped surface all light cones are tipped inwards, and the formation of 
a singularity is inevitable.  
 
 
To visualize space-time, Penrose introduced a technique using conformal transformations 
(Penrose 1963). Such transformations can change the scale but they always retain angles. This 
means that points infinitely far away in space, and events in the infinite past or future, can be 
brought in from infinity to fit inside a diagram of finite size. If a light ray originally corresponds 
to a line at 45 degrees, it will remain at the same angle after the conformal transformation. Such 
diagrams are called Penrose diagrams, and they are indispensable tools in the study of curved 
space-times. A Penrose diagram where a star collapses to form a black hole is shown in figure 3. 
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• Every point on an event horizon 
lies on a null geodesic (light ray) 
lying within the event horizon. 
These are called generators of 
the horizon. 


• A generator cannot have a future 
endpoint: once in the horizon it 
cannot leave


• Generators can have past 
endpoints 

Event horizon
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• An event horizon is a continuous 
surface. But it is not smooth 
except in very special cases (We 
assume that spacetime is 
smooth)


• What is the nature of this non-
smoothness?

Properties of event horizons
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• There exist examples of spacetimes for which 
event horizon is non-differentiable on a dense 
set Chrusciel & Galloway 1996


• Theorem (Beem & Krolak 1997)


• Event horizon is differentiable at p if and only 
if p lies on exactly one generator


• A point lying on more than one generator is an 
endpoint (converse untrue)  


• So points where horizon is non-differentiable 
are endpoints
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Event horizon in 3d gravitational collapse spacetime

• In explicit examples of 
gravitational collapse or black 
hole mergers, set of endpoints 
consists of a 2d spacelike crease 
set where  generators enter 
horizon, together with its 
boundary, which is a line of 
caustic points (where 
“infinitesimally nearby generators 
intersect”) (Hughes et al 94, Shapiro et al 
95, Lehner et al 99, Husa & Winicour ’99, Hamerly 
& Chen 10, Cohen et al 11, Emparan & Martinez 
16, Bohn et al 16, Emparan et al 17) 

≥ 2

Examples

Endpoint set in 4d gravitational collapse spacetime



in fig. 2) that separates the crease-forming generators that
cross on z ¼ 0 (gray), from the creaseless ones that never
cross and asymptote to the Kerr horizon at t → −∞ (green).
The way in which the null geodesic flow maps the gray

region of the ðL;PÞ plane onto the crease strip is sketched
in Fig. 13. Generically, each pair of points with ðL;$PÞ
outside the disk is mapped to one crossover point of the
crease set. The points outside the disk along P ¼ 0 are
mapped to the edges of the strip, which are caustic lines. A
(reflection-symmetric) closed curve on the plane ðL; PÞ
outside the critical curve is mapped onto a segment in the
crease set made of crossover points. This mapping degen-
erates at the critical curve itself, P ¼ PcðLÞ, which is
mapped to points on the equatorial circle of the Kerr
horizon after winding an infinite number of times around it.
When the rotation decreases, the strip shrinks until, when

a ¼ 0, the configuration becomes axisymmetric and the
crease set becomes a line of caustics along the symmetry axis.
Let us now zoom in onto the spacetime region close to

the merger point. The crease set is shown in Fig. 14 (recall
that the crease set lies in the equatorial plane z ¼ 0).
Imagine now slicing this surface in constant-time cuts.
Then, we reproduce the evolution of the horizon that we
described earlier in Sec. VI A in which a transient toroidal
phase occurs. At early times, the surface is sliced into two
segments shaped like ⊂⊃. Then, at the instant at which the
blue lines (the caustic boundaries of the crease strip) reach a
maximum in time, the segments close to form the hole in

FIG. 10. Constant time slice of the event horizon at a time when
the two black holes are fusing. The inset shows a zoom in of the
thin (toroidal) region. In gray, we depict the Kerr horizon. Each
dot corresponds to the position of a generator at this given time.
For this case, with a ¼ m, the maximum size of the hole is about
0.1m in length and 0.01m in width (in the preferred time slicing
of this system).

FIG. 11. Generators of the event horizon for the orthogonal
collision, projected on the x, y, z space. The impact parameters of
the generators at x → ∞ are P in the z direction and L in the y
direction. The red line marks the crease strip, which winds around
the Kerr horizon; its thickness on the z ¼ 0 plane, not visible in
the plot, decreases to zero as x → −∞ and as the Kerr horizon is
approached. The blue and orange lines have L ¼ 0, whereas
green and yellow lines have P ¼ 0. The gray spheroid marks the
Kerr event horizon. For this case, a=m ¼ 1=2.

FIG. 12. Generators of the event horizon for the orthogonal
collision, projected on the t, x, y spacetime. The red line marks
the crease strip. Its thickness in the y direction, not visible in this
plot (but zoomed in Fig. 14), decreases to zero toward the
asymptotic past. Black lines correspond to generators that enter
the hypersurface through the caustic, whereas green lines are
generators that come from the Kerr horizon. For this case,
a=m ¼ 0.5.
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the horizon. Afterward, the hole closes up, faster than the
speed of light since its rim sweeps a spacelike surface in
spacetime. In the preferred Killing time, the toroidal phase
lasts for about a few percent of m (more precisely, 0.027m
in the a ¼ m example of Fig. 14).

VII. GENERIC ORIENTATIONS

Collisions with generic axis orientation, 0 < α < π=2,
turn out to be qualitatively similar to orthogonal collisions,
but it is somewhat harder to produce clear visualizations of

their properties. We have investigated the cases α ¼ π=8,
π=4, and 3π=8.
The numerical integration of the equations is unproble-

matic in any case, and the main issue in the construction is
the identification of crossovers [caustics are zero-measure
sets in the parameter space ðL; PαÞ, and hence numerically
they are not easily seen directly] It turns out that, even if in
the generic case the hypersurface does not have any
symmetry, there is a discrete Z2 symmetry associated to
the surface of crossovers which is inherited from the
symmetry of the Kerr geometry.
Specifically, we have found that the crossovers are

generated by geodesics that meet pairwise and that have
the same value of Lα and equal magnitude of Pα but
opposite signs. This can be seen in Fig. 15 where we
illustrate the event horizon for these collisions in a spatial
projection plot; it can be regarded as an intermediate
situation between Figs. 4 and 11. This symmetry is of
great help in locating the crease set, since it implies that it
lies on the surface of the cone defined by θ ¼ αþ π. The
two previous cases correspond to the two degenerate limits
in which the cone closes into a line (α ¼ 0) or opens into a
plane (α ¼ π=2). The crease strip narrows down monoton-
ically with α. For α ¼ π=4, it is approximately half the
width of the α ¼ π=2 crease strip. Other properties also
appear to vary monotonically with α.
Other than this, the mapping between the crease-forming

region outside the creaseless disk in the asymptotic plane
and the crease strip is qualitatively like in Fig. 13.

FIG. 13. Sketch of how the crease-forming generators map the
asymptotic ðL; PÞ plane to the crease strip (here widened for
better visibility) on the equatorial plane in an orthogonal merger.
This is like Fig. 11 but modified for clarity, with the same color
coding of Fig. 2. The crease strip winds around the Kerr horizon
an infinite number of times. The gray part of the plane, with
P ≠ 0, corresponds to generators that meet pairwise (with
opposite values of P) at crossover points of the crease set.
The horizontal blue lines along the P ¼ 0 axis on the plane map
to the edges of the crease set; these are caustic points. The vertical
red lines L ¼ 0 map to the center of the strip. The mapping is
reflection symmetric about the equatorial plane.

FIG. 14. Projection on the x, y, t coordinates of the crease
surface through which generators enter the event horizon. Gray
points are crossovers of generators with jPj ≠ 0. The central
red line is formed by the crossover points of the generators
with L ¼ 0; jPj ≠ 0, whereas the blue lines are formed by the
caustic points of the generators with P ¼ 0, Lþ

0 ≤ L < ∞ and
−∞ < L ≤ −L−

0 . This surface is a zoomed version of the top
portion of the red line in Fig. 12. When projected on the ðx; yÞ
plane, it is a zoomed portion of the crease strip in Fig. 13 near its
thickest part. For this case, a ¼ m.

FIG. 15. Generators of the event horizon for the collision with
α ¼ π=4, projected on the x, y, z space. We only show generators
with Lα ¼ 0. Those with the same magnitude of Pα but opposite
signs have the same color and intersect pairwise over the red line,
which corresponds to the (very thin) crease strip. This figure
represents an intermediate between Figs. 4 and 11.
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Event horizon of non-axisymmetric 
extreme mass ratio merger (Emparan et al 17)



• Choose a time function, i.e., a 
foliation of spacetime into 
“constant time” hypersurfaces  
labelled by t


• Intersection with the event 
horizon is “the horizon at time t”


• In examples, if hypersurface 
intersects crease set then the 
horizon at time t will exhibits 
“creases”: sharp edges, 
rounding off at caustic points

components increase. The average value of ! mainly
stretches the time scale, which increases with !.

V. DISCUSSION

In this paper we have introduced a class of solutions for
the intrinsic geometry of an event horizon. These solutions
provide generic models in the sense that the geometry does
not possess any continuous symmetries and the slicing de-
pendent features will remain stable under small perturbations
of the slicing. In contrast to the usual method of locating the
event horizon by tracing a null hypersurface "backwards for
a black hole—forward for a white hole# in a numerically
generated spacetime, the geometry here is constructed as one
part of the initial data in a double-null evolution problem.
The spacetime thus is determined a posteriori by evolution
of the full set of initial data.
Our method is based on a conformal transformation from

a null hypersurface in Minkowski spacetime. The conformal
factor is specified a priori in our approach. In order to satisfy
the projected Einstein vacuum equation, the affine parameter
is subject to an ODE along each ray, which has to be inte-
grated numerically in general. However, since all the numer-
ics is reduced to this reparametrization problem, and all
quantities have known explicit dependence on the original
affine parameter, our approach is essentially analytic in na-
ture. This renders possible a simple and clear understanding
of the geometry and in particular the structure of caustics and
crossovers.
The original aim of our approach is the construction of the

double-null initial data. The intrinsic geometry is given by
Eq. "3.23#. The extrinsic geometry will be studied in a forth-
coming paper. A characteristic evolution code to evolve
these data has been constructed by the Pittsburgh numerical
relativity group $26–28% and evolutions of these initial data
are currently under investigation.
The study of the geometry of crossovers and caustics is

particularly simple in our case, because it is equivalent to the

structure of the original null hypersurface in Minkowski
space. Numerical calculations are necessary only to study
slicing-dependent features of the curved space geometry.
Apart from the geometry of the horizon, it is also inter-

esting to look for foliation dependent phenomena associated
with the topology of the spatial slices. Starting with Hawk-
ing’s demonstration $29% that the event horizon of a station-
ary asymptotically flat spacetime has spherical topology, a
number of results have appeared in the literature, which
show that an event horizon has to exhibit spherical topology
on spacelike slices in the late stages of black hole evolution
$31–37%.
It thus came as a surprise when a toroidal event horizon

was found in numerical simulations of the collapse of rotat-
ing clusters $3%. In particular, this seemed to provide the
possibility of violating topological censorship $38%, as was
pointed out by Jacobson and Venkatarami $34%. However,
because the crossover surface is spacelike all causal curves
are homotopically trivial, even though the slices of the hori-
zon contain handles $16%. In effect, the hole in the torus
shrinks faster than the speed of light, in obedience to topo-
logical censorship. Moreover, it is possible to choose slicings
of the horizon which exhibit arbitrarily complicated topolo-
gies in the early phase of black hole formation. Where these
slices meet the spacelike crossover surface, i.e. where new
generators enter the horizon, they will in general not be
smooth. Some of the theorems which establish spherical to-
pology of the event horizon explicitly assume smoothness of
the horizon, or that no new generators enter.
The full interpretation of the results is difficult without a

better understanding of collapse physics, i.e. without addi-
tional information from the construction of the surrounding
spacetime. These models thus serve a twofold purpose: On
the one hand, they are hoped to serve as a guide to explore
new physical situations—in particular by setting up double-
null initial data. On the other hand, they make available a
class of essentially analytic models that can help to under-
stand phenomena that appear in the study of 3D collapse
with complementary methods. Examples are the spheroidal
case, where these models help to understand the results of
previous numerical simulations. The availability of such
simple models is likely to be even more important in the
more complicated generic case.
In order to model a generic binary collision we modified

the model used for the axisymmetric collision only mini-
mally; in particular, we retained the choice !!const. If in-
stead the function ! has strong ray dependence, in particular
if we choose !!const"&, a rich set of histories of topology
change can be produced with our simple choice of slicing.
This fulfills the expectation that the model is capable of

FIG. 8. Model BBH at time t!12.25, after the event horizon
has fissioned into two components.

FIG. 9. Highly prolate model BBH2 at time t!11.8 showing the
toroidal phase. In the axisymmetric prolate limit the hole in the
torus shrinks to zero.

FIG. 10. Highly prolate model BBH2 at time t!13.1 showing
two individual white holes. In the axisymmetric prolate limit the
pincers merge into ‘‘tips’’ of the ‘‘teardrops.’’
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• In examples of gravitational 
collapse or black hole mergers, 
for some choices of time 
function, there is a brief period 
when horizon has toroidal 
topology (Hughes et al 94, Siino 97, Lehner 
et al 98, Husa & Winicour 99, Cohen et al 11, 
Bohn et al 16) 


• The “hole in the torus” collapses 
superluminally


• Creases are present both around 
the ring of the torus and along 
the “edges of the bridge”

topology to times when future generators are still joining the
horizon. Therefore, it is critical to accurately identify the
time and location of caustics and crossover points.
In this paper, we find that the topology of the event horizon

for binary black hole systems does transition from two
spheres (2 × S2) to a single sphere (S2) in the gauge used
to merge the binary with the Spectral Einstein Code (SPEC)
[25–28], in agreement with previous results [14]. However,
the event horizon is a 2þ 1-dimensional hypersurface of
which the topology can depend on the foliation of the
spacetime [8,9]. When considering how future generators
join the event horizon, the set of crossover points is known to
live on a spacelike hypersurface that becomes asymptotically
null as this hypersurface approaches a set of caustics [11].
Therefore, there must exist a spacelike foliation that cuts a
hole out of the spacelike surface of crossover points, resulting
in a short-lived toroidal event horizon.We showexplicitly that
the event horizon topology can be toroidal (T 2) in a spacelike
foliation of the spacetime, as shown in Fig. 1, by applying a
coordinate transformation to the coordinate system used in
SPEC to evolve the binary. This confirms that merging black
hole event horizons have a spacelike hypersurface through
which a spacelike foliation of the spacetime can cut a hole,
reconciling the apparent disagreement between numerical
simulations and theoretical expectations. The holes through
these toroidal event horizons are both short lived and spatially
small, requiring significant temporal resolution of the event
horizon simulation and adaptive refinement of the placement
of event horizon generators. Overcoming these significant
computational challenges was required to find the toroidal
topology. We describe how this was done in our companion
paper [29].

The organization of this paper is as follows. In Sec. II, we
present a coordinate transformation designed to find a new
spacetime foliation where the event horizon has a toroidal
topology. We begin in Sec. III A by studying a toy model
horizon of a spherical wavefront in flat spacetime, where
there are no crossovers. In Sec. III B, we analyze a head-on
BBH merger and find a future generator structure similar to
the spherical wavefront model that prohibits the possibility
of a toroidal event horizon in any spacelike foliation of the
spacetime. However, in Sec. III C, we show a toy model
horizon of an ellipsoidal2 wavefront in flat spacetime
where the caustic and crossover distribution allows for a
torodial reslicing. Utilizing what we learn with the ellip-
soidal model, we are able to directly reslice an equal mass
inspiral EH into a short-lived torus in Sec. III D. Finally, in
Sec. III E, we show that a similar coordinate transformation
of the EH can produce a “baby” event horizon that appears
briefly during BBH mergers, before all three surfaces
connect.

II. RESLICING THE EVENT HORIZON

The binary black hole event horizons we simulated
for this work do not show a toroidal topology using the
SPEC time coordinate. However, the event horizon is a
2þ 1-dimensional hypersurface, and the simulation time
coordinate describes only one possible spacelike foliation
of the hypersurface. The generalized harmonic time slicing
of our binary black hole simulations [31] may not be
conducive to producing toroidal event horizons [14,22].
We specify in this section a coordinate transformation from
the coordinate system of the BBH evolution to a new
coordinate system to explore the possibility of another time
slicing yielding a toroidal event horizon.
In the companion [29] to this paper, we introduce a

complete replacement for the previous event horizon finding
code in SPEC [14,22]. The overall method is the same as
before, where we evolve a set of event horizon generators
backward in time to trace out the horizon surface. At each
time, we connect the generators together to form a polygon
approximating a smooth surface with the topology of a
sphere that may be self-intersecting. This surface does not
approximate the event horizon only but the union of the true
event horizon and the locus of the future generators [32]. The
new event horizon finder is fully adaptive and so can resolve
fine-scale features of the event horizon. This feature is
crucial to demonstrating the existence of a toroidal topology.
To make the discussion concrete, consider a head-on

equal mass binary black hole merger, shown in Fig. 2. We
see a spatial cross section of apparent horizon surfaces
shown in blue or green, event horizon surfaces shown in
orange, and the future generator surface shown in

FIG. 1. Event horizon with a toroidal topology, shown in a
different time slicing than the one used in the SPEC simulation.
The binary black hole simulation has a mass ratio of 1.25 and spin
parameters consistent with the first BBH system Advanced LIGO
detected [30]. The inset figure in the bottom left corner shows a
zoomed-in and slightly rotated viewpoint of the hole in the event
horizon. The horizon is colored by SPEC simulation time t, which
wewill show in Sec. II should have smaller values near the hole in
this slicing.

2Here “ellipsoidal” refers to an oblate ellipsoid that is not a
coordinate sphere.
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Toroidal horizons

Figure 16 shows up close what the hole in the horizon
looks like. The top and bottom rows are constant t and
constant t̄ slices. We are showing both the full generator
surface as well as the same spatial slice as seen in panel c of
Fig. 15. The constant t̄ slice shows clearly that there is a
hole in the event horizon surface, so the EH has a toroidal
topology. For the hole in the horizon, the EH surface
pinches off along a one-dimensional nonsmooth ring where
event horizon generators will continue to join through
crossover points. The left and right edges of the event
horizon surface shown in orange are also not smooth,
where generators continue to join through crossover points.
The final generators to join the event horizon surface do
so through caustic events, just as seen in the ellipsoidal
model (Fig. 12). This torus is seen in all three refinement
levels of the SPEC BBH evolution.
The coordinate transformation used does not guarantee

that constant t̄ hypersurfaces are spacelike. We therefore
must check that the new lapse ᾱ is well behaved by
evaluating Eq. (4) in the region where t̄ differs from t,
that is, whereGðxi; tÞ is non-negligible. We construct a grid
of points centered about ~r0 and t0 to evaluate the new lapse
in the range of

t ¼ t0 $ 4σt ð8aÞ

~x ¼ ~r0 $ 4σmajr̂maj $ 4σminr̂min 1 $ 4σminr̂min 2; ð8bÞ

where r̂min 1 and r̂min 2 are unit vectors perpendicular to
each other and perpendicular to r̂maj. Beyond this range,
the Gaussian function is vanishingly small [Gðxi; tÞ <
e−8 ¼ Oð10−4Þ] for our purposes.
We use a grid of points with Npts points distributed in

each dimension of the four-dimensional space defined by
Eq. (8b) to calculate the new lapse ᾱ and check that it is
real. Because the new lapse is a function of the metric in the
SPEC coordinate system, we must interpolate the metric gμν
to the location in space and time where ᾱ is to be calculated.
These interpolations are performed the same way as is done
during the generator evolution, described in the companion
paper [29].
Figure 17 shows the lapse squared in both the SPEC

coordinate system (α2) and in the new coordinate system
(ᾱ2) using a grid with 744 evenly distributed points over the
Gaussian. At each of the 74 times, we calculate the square

FIG. 15. Slices of the equal mass inspiral during the merger of Fig. 13, where the vertical direction in the figure is parallel to r̂maj,
and the slice is taken through the hole in the EH. The slices have the same character as those in Fig. 12.

FIG. 16. Zoomed-in figure of the hole in the horizon. The full
event horizon generator surface including future generators are
shown at time 7539.948M corresponding to panel c of Fig. 15.
Supplementary Material for this toroidal event horizon can be
found at the webpage [34].

FIG. 17. Confirmation that the lapse is well behaved for both
the t and the t̄ coordinate systems. The minimum and maximum
values of α2 are plotted as a function of time. Note that the large
jump in the minimum lapse squared is caused by the domain
regrid as SPEC transitions into the ringdown, and the coordinate
transformation has no effect on the jump.
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• What explains the simple structure of the set of horizon 
endpoints in these examples? 


• What other structures are possible?


• Key assumption: event horizon is smooth at late time - 
there exists a smooth “constant time” cross-section of the 
event horizon 



• Generalising some results from 
Riemannian geometry (Itoh & Tanaka 1998) 
we showed that


• Non-caustic points lying on exactly 2 
generators form a 2-dimensional spacelike 
surface: the crease submanifold


• All other endpoints form a set of 
(Hausdorff) dimension at most 1


• This explains the structure of the endpoint 
set seen in the examples



• Choose a time function, i.e., a 
foliation of spacetime into 
“constant time” hypersurfaces  
labelled by t


• A crease perestroika occurs when 
a surface of constant t is tangent 
to the crease submanifold


• We classified perestroikas using 
local inertial coordinates at the 
point of tangency, adapted to 
surface of constant t


• 3 distinct cases. Shift t so 
perestroika occurs at t=0

Perestroikas



• This perestroika describes the 
nucleation of an event horizon in 
generic gravitational collapse


• Length of elliptical crease and 
angle at crease scale as , 
area scales as 

t
t

Flying saucer



• Horizon can exhibit a short-lived 
phase of toroidal topology


• The “hole in the torus” collapses 
superluminally. This is described 
by a perestroika


• Length of crease and angle at 
crease scale as −t

Collapse of hole in horizon



• This perestroika describes the 
merger of two (locally) 
disconnected sections of horizon 
e.g. two merging black holes


• Angle at crease and width of 
bridge scale as , height of 
bridge scales as 

| t |
t

Black hole merger



• Bekenstein, Hawking: a black hole has an entropy 


• Old idea: some/all of this entropy arises from entanglement entropy of quantum 
fields across the black hole horizon (Bombelli et al 86, Srednicki 93, Susskind & Uglum 94)


• Entanglement entropy exhibits novel features in presence of a crease (Casini & 
Huerta 06, Hirata & Takayanagi 06, Klebanov et al 12, Myers & Singh 12)


• Suggests that a crease contributes to black hole entropy as  

where  is angle at crease with  and  as . Subleading 
compared to Bekenstein-Hawking.


• “Collapse of hole in the horizon” perestroika: this term is discontinuous but 
second law of thermodynamics is satisfied.

S = A/4Gℏ

1
Gℏ ∫ F(Ω)dl

Ω F < 0 F ∝ 1/Ω Ω → 0

Crease contribution to black hole entropy



• Which features of the event 
horizon are stable under small 
perturbations? 


• e.g. spherically symmetric 
gravitational collapse: single 
caustic point, unstable


• Siino & Koike 04: catastrophe 
theory classification of endpoints 
of horizon generators assuming 
a particular notion of stability


• Caustic points “of type ”A3

Stability and catastrophes
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Figure 2. The diagram is based on Penrose’s paper from 1965 and shows the collapse of matter 
into a black hole. On a trapped surface all light cones are tipped inwards, and the formation of 
a singularity is inevitable.  
 
 
To visualize space-time, Penrose introduced a technique using conformal transformations 
(Penrose 1963). Such transformations can change the scale but they always retain angles. This 
means that points infinitely far away in space, and events in the infinite past or future, can be 
brought in from infinity to fit inside a diagram of finite size. If a light ray originally corresponds 
to a line at 45 degrees, it will remain at the same angle after the conformal transformation. Such 
diagrams are called Penrose diagrams, and they are indispensable tools in the study of curved 
space-times. A Penrose diagram where a star collapses to form a black hole is shown in figure 3. 
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•  caustic points form spacelike lines in spacetime


• Constant time cross-section of horizon generically has isolated  caustic 
points


• A single generator enters the horizon at an  caustic

A3

A3

A3

Generic caustics: A3



Caustic perestroikas
• Occur when constant time slice is tangent to  line A3



• A black hole merger can be decomposed into a sequence of crease and 
caustic perestroikas


• The instant of merger is, generically, always a crease perestroika

Figure 11: Merger of two black holes through the formation of a “bridge”, with no holes in it.
The horizon cross-section �· fl H is shown “from above”, with the black hole regions to the left
and right of the curves in the first diagram. The creases are shown in green. The endpoints of the
creases are A3 caustics (blue points).

4.4 Elements of a black hole merger

We shall now discuss how the various perestroikas that we have studied arise during the
simplest kind of black hole merger that are generic enough to be described by the perestroikas
discussed in this paper.15 In simple examples of non-axisymmetric mergers [7, 9, 11, 12], the
crease submanifold is an infinite strip. The two asymptotic regions of the strip lie on the
two separate black hole horizons long before the merger. The two boundaries of this strip
are A3 lines. No corners are present in these simple examples.

Consider a time foliation which describes a merger, i.e., �· fl H is topologically a pair of
spheres for large negative · and a single sphere for large positive · . For large negative · ,
the intersection of �· with the crease submanifold is a pair of line segments (creases). The
endpoints of these lines are A3 points. So before merger, each black hole horizon exhibits a
“chisel-like” feature. We’ll now describe the simplest possibility for what happens next. See
Fig. 11, which shows (schematically) the local structure of a horizon cross-section �· flH. As
· increases, these intersection lines move towards each other within the crease submanifold
and eventually a crease perestroika occurs (top right diagram): the horizon cross-section
now becomes connected, so this is the “instant of merger”. After the merger, the horizon
is topologically spherical; there is a thin “bridge” connecting the two original black holes,
and a finite section of crease runs along each edge of this bridge (bottom left diagram).
These finite sections have A3 endpoints. Each of these sections of crease now shrinks. First
one vanishes in an A3 perestroika, then the second also vanishes in an A3 perestroika. The
horizon is now smooth. The black hole then settles down to equilibrium.

A di�erent choice of time function can lead to more complicated behaviour. For example,
15This section has significant overlap with Section V of Ref. [9]. We have included it in order to highlight

the role of perestroikas in a merger. We believe the observation at the end of this section is new.
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Elements of a black hole merger



Summary
• An event horizon exhibits non-smooth features where new 

generators enter the horizon: creases, caustics 

• We’ve determined the general structure of this endpoint set for a 

horizon that is smooth at late time

• We’ve classified perestroikas involving these structures, which play 

an important role in dynamical processes involving black holes

• We’ve argued that creases contribute to black hole entropy

• Other topics in our paper: corners, Gauss-Bonnet term in entropy, 

Bousso entropy bound, open questions concerning classification of 
caustics in curved spacetime


