Creases and caustics: nonsmooth structures on black hole horizons

Harvey Reall Department of Applied Mathematics and Theoretical Physics University of Cambridge

Black holes

- General relativity: gravity arises because spacetime is curved
- A black hole is a region of spacetime from which no signal can reach a "distant observer"
- The boundary of a black hole is its event horizon: a 3d surface in 4d spacetime

Event horizon

- Every point on an event horizon lies on a null geodesic (light ray) lying within the event horizon. These are called *generators* of the horizon.
- A generator cannot have a future endpoint: once in the horizon it cannot leave
- Generators can have past endpoints

Properties of event horizons

- An event horizon is a continuous surface. But it is not smooth except in very special cases (We assume that *spacetime* is smooth)
- What is the nature of this nonsmoothness?

- There exist examples of spacetimes for which event horizon is non-differentiable on a dense **Set** Chrusciel & Galloway 1996
- Theorem (Beem & Krolak 1997)
 - Event horizon is differentiable at p if and only if p lies on exactly one generator
 - A point lying on more than one generator is an endpoint (converse untrue)
 - So points where horizon is non-differentiable are endpoints

Examples

 In explicit examples of gravitational collapse or black hole mergers, set of endpoints consists of a 2d spacelike crease set where ≥ 2 generators enter horizon, together with its boundary, which is a line of caustic points (where "infinitesimally nearby generators intersect") (Hughes et al 94, Shapiro et al 95, Lehner et al 99, Husa & Winicour '99, Hamerly & Chen 10, Cohen et al 11, Emparan & Martinez 16, Bohn et al 16, Emparan et al 17)

Event horizon in 3d gravitational collapse spacetime

constre crease set

Endpoint set in 4d gravitational collapse spacetime

Event horizon of non-axisymmetric

Creases

- Choose a time function, i.e., a foliation of spacetime into "constant time" hypersurfaces labelled by t
- Intersection with the event horizon is "the horizon at time t"
- In examples, if hypersurface intersects crease set then the horizon at time t will exhibits "creases": sharp edges, rounding off at caustic points

Husa & Winicour 99

Toroidal horizons

- In examples of gravitational collapse or black hole mergers, for some choices of time function, there is a brief period when horizon has toroidal topology (Hughes et al 94, Siino 97, Lehner et al 98, Husa & Winicour 99, Cohen et al 11, Bohn et al 16)
- The "hole in the torus" collapses superluminally
- Creases are present both around the ring of the torus and along the "edges of the bridge"

Our work HSR & Maxime Gadioux 2023

- What explains the simple structure of the set of horizon endpoints in these examples?
- What other structures are possible?
- Key assumption: event horizon is smooth at late time there exists a smooth "constant time" cross-section of the event horizon

- Generalising some results from Riemannian geometry (Itoh & Tanaka 1998) we showed that
- Non-caustic points lying on exactly 2 generators form a 2-dimensional spacelike surface: the crease submanifold
- All other endpoints form a set of (Hausdorff) dimension at most 1
- This explains the structure of the endpoint set seen in the examples

Perestroikas

- Choose a time function, i.e., a foliation of spacetime into "constant time" hypersurfaces labelled by t
- A crease perestroika occurs when a surface of constant t is tangent to the crease submanifold
- We classified perestroikas using local inertial coordinates at the point of tangency, adapted to surface of constant t
- 3 distinct cases. Shift t so perestroika occurs at t=0

Flying saucer

- This perestroika describes the nucleation of an event horizon in generic gravitational collapse
- Length of elliptical crease and angle at crease scale as \sqrt{t} , area scales as t

Collapse of hole in horizon

- Horizon can exhibit a short-lived phase of toroidal topology
- The "hole in the torus" collapses superluminally. This is described by a perestroika
- Length of crease and angle at crease scale as $\sqrt{-t}$

- This perestroika describes the merger of two (locally) disconnected sections of horizon e.g. two merging black holes
- Angle at crease and width of bridge scale as $\sqrt{|t|}$, height of bridge scales as t

Crease contribution to black hole entropy

- Bekenstein, Hawking: a black hole has an entropy $S = A/4G\hbar$
- Old idea: some/all of this entropy arises from entanglement entropy of quantum fields across the black hole horizon (Bombelli et al 86, Srednicki 93, Susskind & Uglum 94)
- Entanglement entropy exhibits novel features in presence of a crease (Casini & Huerta 06, Hirata & Takayanagi 06, Klebanov et al 12, Myers & Singh 12)
 - Suggests that a crease contributes to black hole entropy as $\frac{1}{\sqrt{G\hbar}}\int F(\Omega)dl$ where Ω is angle at crease with F < 0 and $F \propto 1/\Omega$ as $\Omega \rightarrow 0$. Subleading
 - compared to Bekenstein-Hawking.
- "Collapse of hole in the horizon" perestroika: this term is discontinuous but second law of thermodynamics is satisfied.

Stability and catastrophes

- Which features of the event horizon are stable under small perturbations?
- e.g. spherically symmetric gravitational collapse: single caustic point, unstable
- Siino & Koike 04: catastrophe theory classification of endpoints of horizon generators assuming a particular notion of stability
- Caustic points "of type A₃"

Generic caustics: A_3

- A_3 caustic points form spacelike lines in spacetime
- Constant time cross-section of horizon generically has isolated A_3 caustic points
- A single generator enters the horizon at an A_3 caustic

Caustic perestroikas

• Occur when constant time slice is tangent to A_3 line

Elements of a black hole merger

- A black hole merger can be decomposed into a sequence of crease and caustic perestroikas
- The instant of merger is, generically, always a crease perestroika

Summary

- An event horizon exhibits non-smooth features where new generators enter the horizon: creases, caustics
- We've determined the general structure of this endpoint set for a horizon that is smooth at late time
- We've classified perestroikas involving these structures, which play an important role in dynamical processes involving black holes
- We've argued that creases contribute to black hole entropy
- Other topics in our paper: corners, Gauss-Bonnet term in entropy, Bousso entropy bound, open questions concerning classification of caustics in curved spacetime