Creases and caustics: nonsmooth structures on black hole horizons

Harvey Reall

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

Black holes

- General relativity: gravity arises because spacetime is curved
- A black hole is a region of spacetime from which no signal can reach a "distant observer"
- The boundary of a black hole is its event horizon: a 3d surface in 4d spacetime

Event horizon

- Every point on an event horizon lies on a null geodesic (light ray) lying within the event horizon. These are called generators of the horizon.
- A generator cannot have a future endpoint: once in the horizon it cannot leave
- Generators can have past endpoints

Properties of event horizons

- An event horizon is a continuous surface. But it is not smooth except in very special cases (We assume that spacetime is smooth)
- What is the nature of this nonsmoothness?

- There exist examples of spacetimes for which event horizon is non-differentiable on a dense set Chrusciel \& Galloway 1996
- Theorem (Beem \& Krolak 1997)
- Event horizon is differentiable at p if and only if p lies on exactly one generator
- A point lying on more than one generator is an endpoint (converse untrue)
- So points where horizon is non-differentiable are endpoints

Examples

- In explicit examples of gravitational collapse or black hole mergers, set of endpoints consists of a 2d spacelike crease set where ≥ 2 generators enter horizon, together with its boundary, which is a line of caustic points (where "infinitesimally nearby generators intersect") (Hughes et al 94, Shapiro et al 95, Lehner et al 99, Husa \& Winicour '99, Hamerly \& Chen 10, Cohen et al 11, Emparan \& Martinez 16, Bohn et al 16, Emparan et al 17)

Event horizon in 3d gravitational collapse spacetime

Endpoint set in 4d gravitational collapse spacetime

Event horizon of non-axisymmetric extreme mass ratio merger (Emparan et al 17)

Creases

- Choose a time function, i.e., a foliation of spacetime into "constant time" hypersurfaces labelled by t
- Intersection with the event horizon is "the horizon at time t"
- In examples, if hypersurface intersects crease set then the horizon at time t will exhibits
 "creases": sharp edges, rounding off at caustic points

Toroidal horizons

- In examples of gravitational collapse or black hole mergers, for some choices of time function, there is a brief period when horizon has toroidal topology (Hughes et al 94, Siino 97, Lehner et al 98, Husa \& Winicour 99, Cohen et al 11, Bohn et al 16)
- The "hole in the torus" collapses superluminally
- Creases are present both around the ring of the torus and along the "edges of the bridge"

Our work

HSR \& Maxime Gadioux 2023

- What explains the simple structure of the set of horizon endpoints in these examples?

- What other structures are possible?
- Key assumption: event horizon is smooth at late time there exists a smooth "constant time" cross-section of the event horizon
- Generalising some results from Riemannian geometry (Itoh \& Tanaka 1998) we showed that
- Non-caustic points lying on exactly 2 generators form a 2-dimensional spacelike surface: the crease submanifold
- All other endpoints form a set of (Hausdorff) dimension at most 1

- This explains the structure of the endpoint set seen in the examples

Perestroikas

- Choose a time function, i.e., a foliation of spacetime into "constant time" hypersurfaces labelled by t
- A crease perestroika occurs when a surface of constant t is tangent to the crease submanifold
- We classified perestroikas using local inertial coordinates at the point of tangency, adapted to surface of constant t

- 3 distinct cases. Shift t so perestroika occurs at $t=0$

Flying saucer

- This perestroika describes the nucleation of an event horizon in generic gravitational collapse
- Length of elliptical crease and angle at crease scale as \sqrt{t}, area scales as t

Collapse of hole in horizon

- Horizon can exhibit a short-lived phase of toroidal topology
- The "hole in the torus" collapses superluminally. This is described by a perestroika

- Length of crease and angle at crease scale as $\sqrt{-t}$

Black hole merger

- This perestroika describes the merger of two (locally) disconnected sections of horizon e.g. two merging black holes

- Angle at crease and width of bridge scale as $\sqrt{|t|}$, height of bridge scales as t

Crease contribution to black hole entropy

- Bekenstein, Hawking: a black hole has an entropy $S=A / 4 G \hbar$
- Old idea: some/all of this entropy arises from entanglement entropy of quantum fields across the black hole horizon (Bombelli et al 86, Srednicki 93, Susskind \& Uglum 94)
- Entanglement entropy exhibits novel features in presence of a crease (Casini \& Huerta 06, Hirata \& Takayanagi 06, Klebanov et al 12, Myers \& Singh 12)
. Suggests that a crease contributes to black hole entropy as $\frac{1}{\sqrt{G \hbar}} \int F(\Omega) d l$ where Ω is angle at crease with $F<0$ and $F \propto 1 / \Omega$ as $\Omega \rightarrow 0$. Subleading compared to Bekenstein-Hawking.
- "Collapse of hole in the horizon" perestroika: this term is discontinuous but second law of thermodynamics is satisfied.

Stability and catastrophes

- Which features of the event horizon are stable under small perturbations?
- e.g. spherically symmetric gravitational collapse: single caustic point, unstable
- Siino \& Koike 04: catastrophe theory classification of endpoints of horizon generators assuming a particular notion of stability
- Caustic points "of type A_{3} "

Generic caustics: A_{3}

- A_{3} caustic points form spacelike lines in spacetime
- Constant time cross-section of horizon generically has isolated A_{3} caustic points
- A single generator enters the horizon at an A_{3} caustic

Caustic perestroikas

- Occur when constant time slice is tangent to A_{3} line

Elements of a black hole merger

- A black hole merger can be decomposed into a sequence of crease and caustic perestroikas
- The instant of merger is, generically, always a crease perestroika

Summary

- An event horizon exhibits non-smooth features where new generators enter the horizon: creases, caustics
- We've determined the general structure of this endpoint set for a horizon that is smooth at late time
- We've classified perestroikas involving these structures, which play an important role in dynamical processes involving black holes
- We've argued that creases contribute to black hole entropy
- Other topics in our paper: corners, Gauss-Bonnet term in entropy, Bousso entropy bound, open questions concerning classification of caustics in curved spacetime

