
Dynamical Black Hole Entropy

Robert M. Wald

Work done with Stefan Hollands and Victor Zhang



Black Hole Entropy
As I showed with Iyer in 1994, in an arbitrary theory of gravity
obtained from a diffeomorphism covariant Lagrangian,
stationary black holes satisfy a “first law of black hole
mechanics,” thereby enabling one to identify a quantity
representing black hole entropy. However, our derivation
required evaluation of the entropy on the bifurcation surface, B,
of the black hole, thus restricting the validity of their formula
for entropy to stationary black holes and their linear
perturbations, evaluated at the “time” represented by B. It is
of considerable interest to obtain an expression for the entropy
of a non-stationary black hole in a general theory of gravity at a
“time” represented by an arbitrary cross-section C, since this
would allow one to investigate whether, classically, black hole
entropy satisfies a second law (i.e., whether it is non-decreasing
with time) and whether, semiclassically, black hole entropy
satisfies a generalized second law (i.e., whether the sum of black
hole entropy and a matter contribution to entropy is
non-decreasing).



Previous Work on Dynamical Black Hole Entropy

Iyer and I proposed a formula for dynamical black hole entropy,
but our formula was not field redefinition invariant, and we
retracted our proposal in a “note in proof” in the published
version of their paper. In 2013, Dong proposed a formula for
dynamical black hole entropy in theories whose Lagrangian is
an arbitrary function of curvature (but not derivatives of
curvature) based on holographic entanglement arguments. In
2015, Wall proposed a prescription for dynamical black hole
entropy, which he evaluated in the case of a Lagrangian that is
a function of curvature and obtained agreement with Dong’s
formula.



Our Approach and Results
We apply a new strategy to the definition of dynamical black
hole entropy—intended to be applied only at leading nontrivial
order in perturbation theory about a stationary black
hole—based upon the validity of a local, “physical process
version” of the first law of black hole mechanics. In the case of
general relativity, we obtain a nontrivial dynamical correction
to the Bekenstein-Hawking entropy formula, namely we obtain

SC =
A[C]
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4κ

∫
C
V ϑ

where A[C] is the area of the cross-section C (so A[C]/4 is the
usual Bekenstein-Hawking entropy), κ is the surface gravity of
the horizon Killing field in the stationary background, V is an
affine parameter of the null generators of the horizon (with
V = 0 corresponding to the bifurcation surface B), and ϑ is the
expansion of these generators. For general theories, our formula
differs from the Dong-Wall formula, but there is a close relation
between them.



Lagrangian Formalism

Lagrangian:

L = L(gab, Rabcd,∇a1Rbcde, · · · ,∇(a1 · · · ∇am)Rbcde;ψ)

Symplectic potential:

δL = Eδφ+ dθ

Symplectic current:

ω(φ, δ1φ, δ2φ) = δ1θ(φ, δ2φ)− δ2θ(φ, δ1φ)

Noether current associated to vector field χa:

J[χ] = θ(φ,Lχφ)− χ · L



Lagrangian Formalism (Continued)

Noether Charge:
J[χ] = dQ[χ] + χaCa

“Fundamental Identity”:

ω(φ, δφ,Lχφ) = χ · (Eδφ) + χaδCa + d[δQ− χ · θ(φ, δφ)]

If χa is a Killing field and the equations of motion are hold in
the background spacetime (E = 0), then the fundamental
identity reduces to

d[δQ− χ · θ(φ, δφ)] = −χaδCa



First Law of Black Hole Mechanics

Consider a source-free perturbation δCa = 0 of a stationary,
non-extremal black hole with horizon Killing field ξa. Integrate

d[δQ[ξ]− ξ · θ(φ, δφ)] = 0

over a hypersurface extending from the bifurcation surface B to
spatial infinity. Obtain

κ

2π
δS = δM − ΩHδJ

where

S ≡ 2π

κ

∫
B
Q[ξ]

Evaluation at B (where ξa = 0) was needed to get rid of the
ξ · θ that otherwise would have appeared in the horizon
boundary term. This restricts the validity of the formula to
“time” B.



Entropy on an Arbitrary Cross-Section C
We would like to define SC on a cross-section C of the event
horizon H so that

δSC =
2π

κ

∫
C

[δQ[ξ]− ξ · θ(φ, δφ)]

If, on H, the symplectic potential θ were of the form θ = δBH
for some quantity BH defined on H, then the desired quantity
SC could be defined by

SC =
2π

κ

∫
C

[Q[ξ]− ξ ·BH]

However, it is not possible for θ to be of the form of a total
variation δBH on H in general because such a form would
imply the vanishing of the symplectic current flux through the
horizon (since the symplectic current ω is the antisymmetrized
second variation of θ).



Analogous Example: ADM Mass
Want to define ADM mass, M , at spatial infinity with respect
to an asymptotic time translation ta so that it is the
Hamiltonian conjugate to ta, i.e., so that it generates
asymptotic time translations on phase space. This requires that

δM =

∫
∞

[δQ[t]− t · θ(φ, δφ)]

However, the symplectic current goes to zero sufficiently
rapidly that the symplectic current flux vanishes at spatial
infinity, so there is no obstruction to finding a quantity B∞
such that to leading asymptotic order

θ = δB∞

One may then define the ADM mass as

M =

∫
∞

[Q[t]− t ·B∞]

and there is no difficulty in obtaining an M that satisfies the
desired relation.



Closely Analogous Example: Bondi Mass
Would like to define Bondi mass, MB, so that on a cross-section
C of null infinity we have

δMB =

∫
C

[δQ[t]− t · θ(φ, δφ)]

However, this is not possible, since the symplectic flux does not
vanish at null infinity. Nevertheless, Zoupas and I found that
one could define a symplectic potential θ′(φ, δφ) at I + such
that θ′ = 0 in a stationary background φ. We then defined
BI + by

θ − θ′ = δBI +

and we defined the Bondi mass relative to an asymptotic time
translation ta on a cross-section, C, of I + by

MB =

∫
C

[Q[t]− t ·BI + ]



Dynamical Black Hole Entropy

We follow the same strategy that Zoupas and I used at null
infinity. We prove that for first order perturbations of a
stationary black hole, there exists a quantity BH defined on the
black hole horizon H that satisfies

θ = δBH

(This is equivalent to the requirement of the existence of an
alternative symplectic potential θ′ that vanishes for a stationary
background, since for a non-stationary background, one could
define θ′ = θ − δBH.) We then define the entropy on an
arbitrary cross-section C of H by

SC =
2π

κ

∫
C

[Q[ξ]− ξ ·BH]



Physical Process Version of the First Law
For vacuum perturbations of a stationary black hole, δSC = δS,
i.e., the entropy is “time independent” to first order. In order to
obtain nontrivial time variation of black hole entropy, we must
either work to second order in perturbation theory in the
vacuum case or allow an external stress-energy, δTab, to be
present in the first order perturbation. In the presence of δTab,
the fundamental identity on the black hole horizon becomes

d[δQ[ξ]− ξ · θ(φ, δφ)] = −ξaδCa

Integration over the region of the horizon bounded by
cross-sections C1 and C2 yields

κ

2π
[δSC2 − δSC1 ] = −

∫
ξaδCa =

∫
δTabξ

akb
√
hdV dn−2x

where ka is the tangent to the affinely parametrized generators
of the horizon. This has the form of the “physical process
version” of the first law

κ

2π
∆δS = ∆δE



Second Law

For first order perturbations with an external stress-energy
δTab, that satisfies the null energy condition, we have ∆δE ≥ 0.
Thus, the physical process version of the first law then
immediately implies that ∆δS ≥ 0, i.e., the second law holds to
first order for matter satisfying the null energy condition. For
vacuum perturbations, we have ∆δS = 0, so we have to work to
second order to see the change in entropy. We obtain,

κ

2π
∆δS =

∫
ω(δg,Lξδg)− d[ξ · (δθ − δ2BH)]

The integrand on the right side is what Hollands and I called
the “modified canonical energy” so the second law holds at
leading order for vacuum perturbations if and only if the
modified canonical energy is positive. This holds in general
relativity but would not be expected to hold in more general
theories of gravity.



Entropy of a Dynamical Black Hole in General
Relativity

For the case of general relativity, the additional term −ξ ·BH
in our entropy formula gives rise to a“dynamical correction
term” to the Bekenstein-Hawking entropy, namely,

SC =
A[C]
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Consequently, SC is smaller than the Bekenstein-Hawking
entropy. From the local form of the physical process first law, it
follows that, to first order, our entropy increases only when
matter crosses the horizon. This contrasts with the
Bekenstein-Hawking entropy, which increases before matter is
thrown into the black, since the event horizon moves outward in
anticipation of matter being thrown in at a later time. We have
shown that, to first order, our entropy is, in fact, the area of the
apparent horizon corresponding to “time” C, and thus can be
determined locally, without knowledge of the future behavior of
the spacetime.



Relationship to the Dong-Wall Entropy

Consider the entropy S[V ] evaluated on a cross-section of
constant affine time V . Then we have

S[V ] = SDW[V ]− V ∂

∂V
SDW[V ]

In particular, we have

∂

∂V
S = −V ∂2

∂V 2
SDW



Generalized Second Law

Quantum null energy condition (QNEC) applied to Killing
horizon:

∂2SvN
∂V 2

≤ 2π

∫
V=const

〈Tab〉kakb
√
hdn−2x

where
SvN = −trρ ln ρ

is the von Neuman entropy of the matter outside the black
hole. Since

ka =
1

κV
ξa

this is equivalent to

V
∂2SvN
∂V 2

≤ 2π

κ

∫
V=const

〈Tab〉ξakb
√
hdn−2x =

∂S

∂V



Generalized Second Law (continued)

where the semiclassical version of the local, physical process
first law was used. Define

Sdynmatter = SvN − V
∂SvN
∂V

Then
∂

∂V
Sdynmatter = −V ∂2

∂V 2
SvN

so QNEC takes the form of the generalized second law

∂

∂V
[S + Sdynmatter] ≥ 0



Generalized Second Law (continued)

Since we have
∂S

∂V
= −V ∂

2SDW

∂V 2

we may also express QNEC as

V
∂2SvN
∂V 2

≤ −V ∂
2SDW

∂V 2

Dividing by V , integrating from V to ∞, and setting
(∂SvN/∂V )|∞ = (∂SDW/∂V )|∞ = 0, we obtain

∂

∂V
[SDW + SvN] ≥ 0

Thus, the generalized second law using S and Sdynmatter is
equivalent to QNEC, whereas the generalized second law using
SDW and SvN is equivalent to an integrated form of QNEC.



Conclusions

We have proposed a new definition of the entropy of dynamical
black holes, intended to be valid to leading nontrivial order for
perturbations of stationary black holes.

I For general relativity, it gives a correction to the
Bekenstein-Hawking entropy that yields the area of the
apparent horizon rather than the area of the event horizon.

I The general definition satisfies a local version of the
physical process version of the first law.

I It satisfies the classical second law for first order for
perturbations with matter satisfying the null energy
condition, and it satisfies the second law for vacuum
perturbations if and only if the modified canonical energy
flux is positive.

I It satisfies a version of the generalized second law that is
equivalent to QNEC.

This should provide plenty of food for thought!


