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Introduction

quency spacetimes in general relativi



Einstein equations

Let (M, g) be a (3 + 1)-dimensional Lorentzian manifold.

m Einstein vacuum equations: Ric(g) = 0.
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Let (M, g) be a (3 + 1)-dimensional Lorentzian manifold.
m Einstein vacuum equations: Ric(g) = 0.
m Goal: describe “high-frequency limits” of vacuum solutions.

m Are the limits vacuum? Can we describe the effective matter field of
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Einstein equations

Let (M, g) be a (3 + 1)-dimensional Lorentzian manifold.
m Einstein vacuum equations: Ric(g) = 0.
m Goal: describe “high-frequency limits” of vacuum solutions.

m Are the limits vacuum? Can we describe the effective matter field of
the limiting spacetime metric?

m Describe the effective stress-energy-momentum tensor
= Ric(g) — R(g)g of the limits.
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Plane wave example

m For A € (0, \o], consider plane waves:

g\ = —2dudv + Hy(v)?(eM) (dy)? + e~ V) (dz)?).

m The only non-trivial component of Ricci is

1 2HY (v
Riea (8. 7) = ~3(G(v) - 75

m Prescribe Gy and solve Hy (locally) to get a vacuum solution.
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Plane wave example

m For A € (0, \o], consider plane waves:

g\ = —2dudv + Hy(v)?(eM) (dy)? + e~ V) (dz)?).

m The only non-trivial component of Ricci is

2HY (v
Rie (35 ) = ~3(GA(V))? — %7
m Prescribe Gy and solve Hy (locally) to get a vacuum solution.

m For k € C® non-zero, define
Gx(v) = Ak(v) sin(%).
m H(v) solves

2H(v) _
Hx(v)

(G2 () =1, H(©) =0
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Plane wave example

Go(v) = |im)\40 G)\(V) =0.

m H) admits a limit Hy which satisfies
2H(/)/(V) L , 1 2
— ——(G, = —(k 0.
H()(V) 2( O(V)) 4( (V)) 7£

g = —2dudv + Ho(v)*((dy)? + (dz)?)

is the non-vacuum(!) limit and in fact solves
1
Ric(g) = Z(k(v))2 dv®@dv, g Y(dv,dk)=0.

m This is a solution to the Einstein—null dust system.
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High frequency limits in general relativity

m Isaacson (1968), Choquet-Bruhat (1969), MacCallum-Taub
(1973), Burnett (1989), Ali-Hunter (1999), Green-Wald
(2011), etc.

m Suppose there is a sequence of smooth metric g, with
Ric(gn) = 0 and a smooth limit metric g such that for
An— 0,

||8k(gn - goo)HLOO 5 )\}1_k7 k = 07 1527 .

What can we say about g..?
B g, — g “has’ amplitude ~ \, and frequency ~ A- 1.

m Is goo vacuum? If not, what is the “effective matter”?
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Burnett's conjecture

The high-frequency limit in general relativity

Gregory A. Burnett
Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 S. Ellis Avenue, Chicago,

1llinois 60637
(Received 19 July 1988; accepted for publication 24 August 1988)
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Burnett's conjecture

The high-frequency limit in general relativity

Gregory A. Burnett
Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 S. Ellis Avenue, Chicago,
Illinois 60637

(Received 19 July 1988; accepted for publication 24 August 1988)

Conjecture (Burnett (1989))

Any high-frequency limit of vacuum solutions must be isometric to
a solution of the Einstein—massless Vlasov system.
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Burnett's conjecture

The high-frequency limit in general relativity

Gregory A. Burnett
Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 S. Ellis Avenue, Chicago,
Illinois 60637

(Received 19 July 1988; accepted for publication 24 August 1988)

Conjecture (Burnett (1989))

Any high-frequency limit of vacuum solutions must be isometric to
a solution of the Einstein—massless Vlasov system.

Conjecture (Burnett (1989))

Any solution to the Einstein—massless Vlasov system can locally be
achieved as a high-frequency limit of vacuum solutions.
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Burnett's conjecture

Conjecture: For any tensor field T, = (4 )(amyja ™" Ob-
tained from a one-parameter family of metrics satisfying
conditions (i)-(iv), there exists a scalar field a*(x,k) de-
fined on the null cotangent bundle, such that

Tp(x) = f Ak k, AV, @n

k™, a*(xk) =0, (28)

where xeM, (x,k) is a point of the null cotangent bundle,
and the integral is performed over the null cone.

Jonathan Luk

It would also be interesting to know if the converse of
the above conjecture is true: Given any metric g, on a fixed
manifold M, and a scalar field a>(x,k) defined on the null
cotangent bundle constructed from M, such that
k"V,,a*(x,k) =0and

G, 8] =J-a2(x‘k)k,,kb dv,,

then there exists a one-parameter family of metrics g, (1)
satisfying conditions (i)-(iv) with g,, (0) = g,,. If this is
true, we do not need to impose any restrictions on what fields
a*(x,k) and g,, we use, other than (27) and (28) above.
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Burnett's conjecture

Conjecture: For any tensor field T, = (4 )(amyja ™" Ob-
tained from a one-parameter family of metrics satisfying
conditions (i)-(iv), there exists a scalar field a*(x,k) de-
fined on the null cotangent bundle, such that

Tp(x) = f Ak k, AV, @n

k™, a*(xk) =0, (28)

where xeM, (x,k) is a point of the null cotangent bundle,
and the integral is performed over the null cone.

It would also be interesting to know if the converse of
the above conjecture is true: Given any metric g, on a fixed
manifold M, and a scalar field a>(x,k) defined on the null
cotangent bundle constructed from M, such that
k"V,,a*(x,k) =0and

G, 8] =J-a2(x‘k)k,,kb dv,,

then there exists a one-parameter family of metrics g, (1)
satisfying conditions (i)-(iv) with g,, (0) = g,,. If this is
true, we do not need to impose any restrictions on what fields
a*(x,k) and g,, we use, other than (27) and (28) above.

m The null dust equation above can be viewed as the massless
Vlasov equation when the integral is a finite sum.
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Physical interpretation of the Burnett conjecture

Think of @*(x,k) as a “particle” distribution function on
the null cotangent bundle. Then, if this conjecture is true, we
see that these particles do not interact directly, but that they
do affect one another by their effect on the background
space-time. Further, we then have a complete system for
describing the effect of high-frequency waves on the back-
ground space-time. That is, on a fixed smooth manifold M,
we have a metric g,,,, and on the null cotangent bundle con-
structed from M, we have a scalar field a®(x,k). The fields
2., and @’ (x,k) then evolve together via G, [g] = T,,, with
T,, given in Eq. (27), and via Eq. (28).

a@
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Vlasov field as “poor man's gravitational waves”

Burnett's conjecture suggests studying the Einstein—massless
Vlasov (or Einstein—null dust) equations to gain insights into the
vacuum problem.

m Martin's talk yesterday: Israel-Poisson (1989), Moschidis
(2018), Weissenbacher (2023)
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Vlasov field as “poor man's gravitational waves”

Burnett's conjecture suggests studying the Einstein—massless
Vlasov (or Einstein—null dust) equations to gain insights into the
vacuum problem.
m Martin's talk yesterday: Israel-Poisson (1989), Moschidis
(2018), Weissenbacher (2023)
m The Einstein—massless Vlasov (or Einstein—null dust)
equations could be easier.
m This is useful when the phenomenon is dominated by
high-frequency gravitational waves.
m Could provide insights on the physical phenomenon and even
suggest a mathematical approach.
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(In)stability of Cauchy horizons

VOLUME 63, NUMBER 16 PHYSICAL REVIEW LETTERS 16 OCTOBER 1989

Inner-Horizon Instability and Mass Inflation in Black Holes

E. Poisson and W. Israel
Canadian Institute for Advanced Research Cosmology Program, Theoretical Physics Institute,
University of Alberta, Edmonton, Alberta, Canada T6G 2J1
(Received 6 July 1989)

these questions.

The problem b ble if one iders a sim-
ple model: A charged, spherical (Reissner-Nordstrdm)
black hole perturbed by crossflowing radial streams of
infalling and outgoing lightlike particles. This model is
very idealized, but there are good reasons for believing
that it captures the essential physics. In the first place,
the causal and horizon structures of the Reissner-
Nordstrém and Kerr black holes are known to be very
similar.! Secondly, the large blueshift of infalling gravi-
tational waves means that high-frequency components
will dominate near the Cauchy horizon, so that Isaac-
son’s “effective stress-energy” description* for the waves
(in effect, the “optical,” graviton approximation) should
be an adequate approximation.

‘We begin by setting up the basic equations of the

onathan Luk quency spacetimes in general relat



Remarks on Burnett's conjecture

m If Burnett's conjecture is true, then the effective
stress-energy-momentum is trace-free, satisfies the dominant
energy condition, and is positive semi-definite.
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Remarks on Burnett's conjecture

m If Burnett's conjecture is true, then the effective
stress-energy-momentum is trace-free, satisfies the dominant
energy condition, and is positive semi-definite.

m In practice, one is also interested in describing how the
limiting Vlasov field related to the sequence of solutions.
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Green—Wald theorem

Theorem (Green—Wald (2011))

Given the setting as in Burnett's conjecture, the limiting
stress-energy momentum tensor T, satisfies

T, =0

and
T XM XY >0 for all causal vector X.
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Further remarks on Burnett's conjecture

The first conjecture is a question of compactness.
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Further remarks on Burnett's conjecture

The first conjecture is a question of compactness.
m Weak convergence: ¢, — 9 weakly if [ @i, — [ oy for all
nice enough ¢.
m cos(nx) has no pointwise limit as n — 0, but cos(nx) — 0.
m oyl — 9 and 9P = @ do not imply ¥y — Iy
m cos?(nx) = 3(1 4 cos(2nx)) — 1 # 0.
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Further remarks on Burnett's conjecture

The first conjecture is a question of compactness.

m Weak convergence: ¢, — 9 weakly if [ @i, — [ oy for all
nice enough ¢.
m cos(nx) has no pointwise limit as n — 0, but cos(nx) — 0.
m oyl — 9 and 9P = @ do not imply ¥y — Iy
m cos?(nx) = 3(1 4 cos(2nx)) — 1 # 0.

m Model problems on R?:
Ap = (90)?, Do =(0e9)?, 0o = (0:0)* — (9x0)*,
where A = 92 + 6}%, O=-02 + 02

m Suppose ¢, are solutions, ¢, — ¢ uniformly and
sup, [|0¢n||1ee < +00. What can we say about the limits?
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Further remarks on Burnett's conjecture

m Burnett's conjecture reflects a subtle combination of
non-compactness and compactness.
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Further remarks on Burnett's conjecture

m Burnett's conjecture reflects a subtle combination of
non-compactness and compactness.

m Compare: incompressible Euler equations
Ov +div(v@v) =—-VP, divv=0. (1)
Any smooth solution to the Euler—Reynolds system
dev +div(v@v) = —VP +divR, divv=0 (2)

can be achieved as limits of solutions to (1) (De
Lellis—=Székelyhidi, Isett).
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Further remarks on Burnett's conjecture

The second conjecture is about constructing low-regularity
solutions.
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Further remarks on Burnett's conjecture

The second conjecture is about constructing low-regularity
solutions.
m Constructing solutions to the Einstein equations
(Choquet-Bruhat (1952)) requires some amount of regularity.

m The best known general result requires the curvature to be in
L? (Klainerman—Rodnianski-Szeftel (2015)).
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Further remarks on Burnett's conjecture

The second conjecture is about constructing low-regularity
solutions.
m Constructing solutions to the Einstein equations
(Choquet-Bruhat (1952)) requires some amount of regularity.
m The best known general result requires the curvature to be in
L? (Klainerman—Rodnianski-Szeftel (2015)).
m Fact: If a sequence of vacuum metrics g, have up to second
order derivatives uniformly bounded in L2, then any
subsequential limit must also be vacuum.
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Further remarks on Burnett's conjecture

The second conjecture is about constructing low-regularity
solutions.
m Constructing solutions to the Einstein equations
(Choquet-Bruhat (1952)) requires some amount of regularity.

m The best known general result requires the curvature to be in
L? (Klainerman—Rodnianski-Szeftel (2015)).

m Fact: If a sequence of vacuum metrics g, have up to second
order derivatives uniformly bounded in L2, then any
subsequential limit must also be vacuum.

m Thus we must go below the lowest known general threshold.
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High-frequency spacetimes in U(1) symmetry

Jonathan Luk High frequency spacetimes in general relativity



U(1) symmetry and gauge condition

We will study the Burnett's conjecture under symmetry.

m Take (t = x%, x!, x%,x3) € I x R? x S! as coordinates. We

impose a U(1) (translational) symmetry (i.e. no x>
dependence)

g =e g+ ¥ (dx® + 20, dx")?.
m Impose that g is put into the form:
g = —N?(dt)? + e26;(dx' + B'dt)(dx + Fdt).

m Impose also that {t = const.} hypersurfaces have zero mean
curvature.
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Reduced equation in U(1) symmetry

Under U(1) symmetry, the Einstein equations for (*)g become an
Einstein—wave map system (with target H?) on the
(2 + 1)-dimensional space

Ogtp = —2e (g ™0 wiw,
Ogw = (gfl)“’jﬁuw&,w,
Ric,,(g) = 20,40, + %e“w’@uw@yw,

where d2( = %e“w(*dw).
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U(1) symmetry and gauge condition

m Together with the gauge conditions, equations become
schematically (for ® = (¢,w) and g components of g)

O ® = [(®)Q(0%, 00),
Ag,w = (09)2, + (0,9)(0,P).

where [z is wave operator, A the Euclidean Laplacian on
{t = const.}, Q a g-null form.

m We now ask the PDE problem: If (,,g,) are solutions and
10%(®@n — Poc)lle S A5, 110%(gn — goo)llL S A5

what can we say about (®oo, §o0)?
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Burnett's conjecture

Theorem (Huneau-L. (2019))

Under the symmetry assumption and gauge condition, the first
Burnett conjecture is true.

m Moreover, the massless Vlasov field is given by a microlocal
defect measure.
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Burnett's conjecture

Theorem (Huneau-L. (2019))

Under the symmetry assumption and gauge condition, the first
Burnett conjecture is true.

m Moreover, the massless Vlasov field is given by a microlocal
defect measure.

m Guerra—Teixeira da Costa (2021) gave a simplified treatment
of one of the frequency regimes.
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Simplified model

Recall the schematic equation

{Dgncbn = [(,)Q(0P,, DP,),
A(gn)w/ = (agn)fw + (auq)n)(al/(bn)'

m Q@ is a null form with respect to g,.

m g obeys elliptic equations.
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Simplified model

Recall the schematic equation

{Dgncbn = [(,)Q(0P,, DP,),
A(gn)w/ = (agn)fw + (auq)n)(al/(bn)'

m Q@ is a null form with respect to g,.
m g obeys elliptic equations.

The first (easy) step is to show that the limit satisfies

Ogoe Poo = N(Po) Q(OP o, 0P ),
A(goo),w = (agoo)fw + W_limk—>00(8N¢nk)(8V¢nk)'

m A weaker form of compensated compactness.
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Microlocal defect measures

Suppose ¥, — 1o uniformly and |01, < 1. Then

[ (0l = o) BOO(M VYO, — o))

= b(x)m(€)ats dv.
S*Rd+1

for every smooth b(x) and smooth m(&) homogeneous of order 0,
where m(2V) is the corresponding Fourier multiplier,

e [M(ED)FI(E) = m(E)F(€).
m Gérard (1991), Tartar (1990).

m Measures the location and direction of failure of strong limit.
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Microlocal defect measures and linear wave equation

m The microlocal defect measure associated with solutions to the
linear wave equation satisfies the massless Vlasov equation.
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Microlocal defect measures and linear wave equation

m The microlocal defect measure associated with solutions to the
linear wave equation satisfies the massless Vlasov equation.

m Our setting is quasilinear: need special structure and
cancellations.
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Construction of high-frequency spacetimes

Theorem (Huneau-L. (2017))

Given a generic, small data, smooth, local-in-time, U(1)-symmetric
solution to the Einstein—null dust system with a finite number of
families of null dust, there exists a sequence of vacuum solutions
whose limit is the given solution.
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Geometric optics construction

m The proof is based on an ansatz

by = Py + )\Z Fa sin(52) + error.
A

m A precise understanding of interaction of waves and
(non)-generation of higher harmonics.

m Null dust is generated in the limit:
6M¢)\a,,¢)\ — 8ud>oayd>o + %ZA F/?\OHUA&,UA.
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From vacuum to dust to Vlasov

m Finite sums of delta measures are weak-* dense in the set of
all Radon measures.

m Work in progress: use this theorem as a building block to
construct more general limiting solutions to the
Einstein—massless Vlasov system.
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From vacuum to dust to Vlasov

m Finite sums of delta measures are weak-* dense in the set of
all Radon measures.

m Work in progress: use this theorem as a building block to
construct more general limiting solutions to the
Einstein—massless Vlasov system.

m Key difficulty: understand (and sharpen) the dependence on
the number of families of dust.
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From vacuum to dust to Vlasov

m Finite sums of delta measures are weak-* dense in the set of
all Radon measures.

m Work in progress: use this theorem as a building block to
construct more general limiting solutions to the
Einstein—massless Vlasov system.

m Key difficulty: understand (and sharpen) the dependence on
the number of families of dust.

m Need to use more precise eikonal functions.
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High-frequency spacetimes in generalized wave coordinates
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Geometric optics construction

m One may wish to carry out the whole program in 3+1
dimensions, e.g., in generalized wave coordinates.
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Geometric optics construction

m One may wish to carry out the whole program in 3+1
dimensions, e.g., in generalized wave coordinates.

Theorem (Touati (2022))

There exists one parameter families of vacuum solutions
representing high-frequency geometric optics constructions, whose
limits are solutions to the Einstein—null dust system.

m This upgrades the approximate solutions of Choquet-Bruhat
(1969) to actual solutions.
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B High-frequency angularly regular spacetimes
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Angularly regular spacetimes

If one considers “angularly regular” spacetimes, there is still a good
low-regularity well-posedness result.

Theorem (L.—Rodnianski (2013))

Consider metric of the form

g = —4Q% dudu + yap(d* — bAdu)(d6B — bBdu).

Local existence and uniqueness holds with the class where for

g € {logQ,~, b},
dug € lel, 0ug € Li

as long as there are extra regularity in the 0-directions.
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Angularly regular spacetimes

If one considers “angularly regular” spacetimes, there is still a good
low-regularity well-posedness result.

Theorem (L.—Rodnianski (2013))

Consider metric of the form

g = —4Q% dudu + yap(d* — bAdu)(d6B — bBdu).

Local existence and uniqueness holds with the class where for

g € {logQ,~, b},
dug € lel, 0ug € Li

as long as there are extra regularity in the 0-directions.

m The profile of g can be very general, not necessarily oscillatory
with a particular profile.
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Burnett's conjectures

Theorem (L.—Rodnianski (2020))

Both conjectures of Burnett are true in the setting of angularly
regular spacetimes and the limits correspond to solutions to the
Einstein—null dust system.
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E Applications: null dust shell solutions and the formation of
trapped surfaces
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Null dust shell solutions

PROCEEDINGS

THE ROYAL IRISH ACADEMY
PAPERS READ BEFORE THE ACADEMY.

A MODEL IN GENERAL RELATIVITY ¥OR THE INSTANTANEOUS
TRANSFORMATION OF A MASSIVE PARTICLE INTO RADIATION

By J. L. SYNGE
(Dublin Institute for Advanced Studies)

[Read 27 Mav, 1957, Publishod 23 Drcaunex, 1057

m Synge (1957) constructed an explicit null dust shell solution
(M, g) to the Einstein equation.
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Null dust shell solutions

THE ROYAL IRISH ACADEMY
PAPERS READ BEFORE THE ACADEMY.

A MODEL IN GENERAL RELATIVITY ¥OR THE INSTANTANEOUS
TRANSFORMATION OF A MASSIVE PARTICLE INTO RADIATION

By E
(Dublin Institute for ced Studies)
[Road 27 Mav, 1957, Publishod 23 Drcxsmes, 1057

m Synge (1957) constructed an explicit null dust shell solution
(M, g) to the Einstein equation.

m Many other explicit solutions known, including interaction of
null dust shells. (Dray, Gibbons, Penrose, Redmount, t' Hooft, ...)
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Null dust shell solutions

THE ROYAL IRISH ACADEMY
PAPERS READ BEFORE THE ACADEMY.

A MODEL IN GENERAL RELATIVITY ¥OR THE INSTANTANEOUS
TRANSFORMATION OF A MASSIVE PARTICLE INTO RADIATION

By E
(Dublin Institute for ced Studies)
[Road 27 Mav, 1957, Publishod 23 Drcxsmes, 1057

m Synge (1957) constructed an explicit null dust shell solution
(M, g) to the Einstein equation.

m Many other explicit solutions known, including interaction of
null dust shells. (Dray, Gibbons, Penrose, Redmount, t' Hooft, ...)

m Question: Can one prove a general local existence result for
null dust shells?
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Plane wave solutions with a null dust shell

m Plane wave ansatz
g = —2dudv + H(v)*(e°™) (dy)? + e~ ¢ (dz2)?).

1 if v<0

m lLet G =0and H =
(v) (v) {1\/ ifv>0

m We compute

1
8 8 :_2H _E(G/)2:_ :250

Ric(5, 8y H 2

m Solution to the Einstein—null dust system where the null dust
is a delta measure.
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Null dust shell solution as a vacuum limit

m Plane wave ansatz
g = —2dudv + H(v)?(e®™M (dy)? + e ¢() (dz)?),
m Let &(v) be smooth and compactly supported, with
[&2(v)dv = 4.
= Define G.(v) = e26(e1v).

m Can solve for H, in a uniform region to obtain vacuum
solutions.

m im0 G(v) =
lime_0(G, (v))2 = ||m6ﬁoe 1B2(e~1v) = 46p(v).
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Null dust shell solution as a vacuum limit

m Plane wave ansatz
g = —2dudv + H(v)?(e®™M (dy)? + e ¢() (dz)?),
m Let &(v) be smooth and compactly supported, with
[&2(v)dv = 4.
= Define G.(v) = e26(e1v).

m Can solve for H, in a uniform region to obtain vacuum
solutions.

m im0 G(v) =0,
lime_0(G/(v))? = lime_0 e 1&2(e71v) = 46p(v).

m The limit is the null dust shell solution we saw earlier.
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Null dust shell solution as a vacuum limit

m Plane wave ansatz
g = —2dudv + H(v)?(e®™M (dy)? + e ¢() (dz)?),

m Let &(v) be smooth and compactly supported, with
[&2(v)dv = 4.

= Define G.(v) = e26(e1v).

m Can solve for H, in a uniform region to obtain vacuum
solutions.

m im0 G(v) =0,
lime_0(G/(v))? = lime_0 e 1&2(e71v) = 46p(v).

m The limit is the null dust shell solution we saw earlier. This

involves concentration and is slightly different from
“high-frequency limit".
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Local existence for general null dust shells

Using the general low-regularity local existence result in vacuum,
we prove

Theorem (L.—Rodnianski (2020))

Given any suitable null dust shell data, there exists a unique local
solution to the Einstein—null dust system which features the
interactions of two null shells.
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Local existence for general null dust shells

loc. exi t.‘

‘sequence of vacuum data sequence of vacuum solutions ‘

lconverges by construction lconverges by Burnett

| Einstein—null dust data.| T | Einstein—null dust Solution}
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Local existence for general null dust shells

loc. exi t.‘

sequence of vacuum solutions ‘

‘sequence of vacuum data

lconverges by construction lconverges by Burnett

| Einstein—null dust data.| T | Einstein—null dust Solution}

m The local existence result holds without any symmetry
assumptions.

m The theorem applies more generally to construct solutions to
the Einstein—null dust system where the null dust is
measure-valued.
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From Synge to Christodoulou

m Synge's solution is not just a local propagating null shell, but
is also an example of gravitational collapse.

m A trapped surface forms in dynamical evolution!

m A much harder problem is whether a trapped surface can form
in evolution in vacuum.

Jonathan Luk High frequency spacetimes in general relativity



From Synge to Christodoulou

m Synge's solution is not just a local propagating null shell, but
is also an example of gravitational collapse.

m A trapped surface forms in dynamical evolution!

m A much harder problem is whether a trapped surface can form
in evolution in vacuum.

Theorem (Christodoulou (2008))

A trapped surface can form dynamically in vacuum by the focusing
of gravitational waves.

B An, Athanasiou, Jaffe, Klainerman, Le, Lesourd, Li, Liu, L., Mei, Reiterer, Rodnianski, Trubowitz, Yu, ...
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From Synge to Christodoulou and back

m Christodoulou’s construction is based on what he called
the short pulse method.
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m If we take the length scale — 0
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From Synge to Christodoulou and back

m Christodoulou’s construction is based on what he called
the short pulse method.

m If we take the length scale — 0, the spacetime converges to
the Synge solution.
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From Synge to Christodoulou and back

m Christodoulou’s construction is based on what he called
the short pulse method.

m If we take the length scale — 0, the spacetime converges to
the Synge solution.

m Thus Christodoulou's construction can be viewed as an
“approximation” of the Synge solution.
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Thank you!

nathan Luk i quency spaceti
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