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Nonlinear stability of a black hole family

Theorem

General initial data sufficiently close to a member of a black hole family
evolve according to the Einstein equation to a spacetime which

possesses a complete future null infinity I + whose past is bounded by a
future complete event horizon H+,

asymptotes back to a a member of the same black hole family as (an
appropriate notion of) time goes to infinity.
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Known results in nonlinear stability

Λ = 0:
Minkowski [Christodoulou-Klainerman 1993, Lindblad-Rodnianski 2003]

Schwarzschild
for axially symmetric polarized perturbations [Klainerman-Szeftel 2017],
for data which lie on a codimension-3 “submanifold” of moduli space
[Dafermos-Holzegel-Rodnianski-Taylor 2021]

Kerr for |a| ≪ M [Klainerman-Szeftel 2019, Klainerman-Szeftel 2021, Shen 2022,

G.-Klainerman-Szeftel 2022]

Λ > 0:
de Sitter [Friedrich 1986]

Kerr-de Sitter for |a| ≪ M [Hintz-Vasy 2016]

Kerr-Newman-de Sitter for |a| ≪ M [Hintz 2018]
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The set-up of the proof

The proof relies on a continuity argument: the maximal development of
the perturbed data is constructed as a limiting sequence of finite spacetimes,
where each step is governed by a final time that defines a subregion of the
spacetime, together with a set of bootstrap assumptions.

A subset B ⊂ [0,∞) which is non-empty, open and closed is the entire
interval. Consider

B = {tfin ∈ [0,∞) : bootstrap & gauge assumptions hold in Dfin}.
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Bootstrap assumptions measure in a quantitative way how the
bootstrap region is close to the perturbed family of black holes.

Schematically

sup
Dfin

|g − gMf ,af |, |Γ− ΓMf ,af |, |R−RMf ,af | ≤ ϵ.

Here the solution is compared to a Schwarzschild/Kerr whose
parameters Mf , af are chosen on the basis of some curvature
components at the final time.

Gauge assumptions are normalized towards the future of the
bootstrap region (even though more than one gauge normalization is
normally necessary) by setting up some conditions on the final time.
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B = {tfin ∈ [0,∞) : bootstrap & gauge assumptions hold in Dfin} is

non-empty:

initial data of size ϵ0 ≪ ϵ

open: if tfin ∈ B, then tfin + δ ∈ B for sufficiently small δ.

the bootstrap assumptions need to be “improved”: the smallness of
initial data and the gauge assumptions are used to show that all
quantitative estimates can be improved, for example

sup
Dfin

|g − gMf ,af |, |Γ− ΓMf ,af |, |R−RMf ,af | ≤ Cϵ0 < ϵ.

By continuity, the extended spacetime bounded by tfin + δ inherits the
bootstrap estimates.
the gauge assumptions need to be constructed for the extended
spacetime.

closed: if tj ∈ B with tj → tfin then tfin ∈ B. Relies on higher order
Ck estimates for all the quantities and Arzela-Ascoli theorem to show
convergence.

Then B = [0,∞) and therefore the solution is global.
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Improvement of the bootstrap assumptions

To improve the quantitative smallness of all curvature and metric
components of Dfin, the general strategy is:

first improve the norms for “almost” gauge invariant quantities

then improve them for the remaining quantities.

In linear theory, the Teukolsky variables α[±2] are gauge invariant, i.e. to a
linear change of gauge of size ϵ they change up to quadratic terms:

α[±2] → α[±2] +O(ϵ2).

In nonlinear theory, the Teukolsky equations are of the form

T [±2](α±2) = O(ϵ2) =
∑

(Γ− ΓMf ,af )(R−RMf ,af )︸ ︷︷ ︸
satisfying the bootstrap assumptions
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Aside: Second order perturbations of Kerr (Ripley-Loutrel-G.-Pretorius 2020)

g = gM,a + ϵ · g(1) +O(ϵ2)

Γ = ΓM,a + ϵ · Γ(1) +O(ϵ2)

R = RM,a + ϵ ·R(1) + ϵ2 ·R(2)

Linear perturbations are described by the Teukolsky equations for Ψ
(1)
4 :

T [−2][Ψ
(1)
4 ] = 0

Second order perturbations are described by the Teukolsky equation
for Ψ

(2)
4 with a quadratic source term [Campanelli-Lousto 1999]:

T [−2][Ψ
(2)
4 ] = S(2)[Γ(1), R(1)]

The source term depends on all first order geometric quantities in
addition to Ψ

(1)
4 : need reconstruction of the metric perturbation.
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In the outgoing radiation gauge

g(1)µ
µ
= gµνg(1)µν = 0

all first order quantities can be derived from the solution of the Teukolsky
equation for Ψ

(1)
4 through null transport equations:

T [−2][Ψ
(1)
4 ] = 0

(∆ + µ+ µ+ 3γ − γ)(0) λ(1) = −Ψ
(1)
4

(∆ + 2(γ − γ) + µ− µ)(0) g
(1)
mm = −2λ(1)

...

This allows to compute the source term S(2)[Γ(1), R(1)] and solve the

Teukolsky equation for Ψ
(2)
4 .
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Back to the improvement of the bootstrap ass. for T [±2](α±2) = O(ϵ2)

The scalar version of the linear Teukolsky equation for s = ±2 is

□gM,aα
[s] +

2s

ρ2
(r −M)∂rα

[s] +
2s

ρ2

(
a(r −M)

∆
+ i

cos θ

sin2 θ

)
∂ϕα

[s]

+
2s

ρ2

(
M(r2 − a2)

∆
− r − ia cos θ

)
∂tα

[s] +
1

ρ2
(s− s2 cot2 θ)α[s] = 0.

We actually consider tensorial equations for

αab =W (ea, e4, eb, e4), αab =W (ea, e3, eb, e3),

but the structure is the same.

It turns out that the Teukolsky equation is difficult to analyze directly in
view of its first order terms. One needs to consider instead higher order
quantities[Dafermos-Holzegel-Rodnianski 2016-2017, Ma 2017] that satisfy more treatable
equations, called (generalized) Regge-Wheeler equations, which can
be analyzed in much the same way as the scalar wave equation

□gψ = 0.
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One needs to consider instead higher order
quantities[Dafermos-Holzegel-Rodnianski 2016-2017, Ma 2017] that satisfy more treatable
equations, called (generalized) Regge-Wheeler equations, which can
be analyzed in much the same way as the scalar wave equation

□gψ = 0.
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A little bit of history...

Historically, there are two versions of linearizing the Einstein equation:

1 metric perturbations: g = gKerr + ġ

2 curvature perturbations: R = RKerr + Ṙ, Γ = ΓKerr + Γ̇
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2 curvature perturbations: R = RKerr + Ṙ, Γ = ΓKerr + Γ̇
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Consider metric perturbations of the form

g = e2νdt2 − e2ψ
(
dϕ− ωdt− q2dx

2 − q3dx
3)2 − e2µ2(dx2)2 − e2µ3(dx3)2

of the Schwarzschild metric, with

e2ν = e−2µ2 = 1− 2M

r
, eµ3 = r, eψ = r sin θ, ω = q2 = q3 = 0.

The decoupled equation for axial perturbations (i.e. those modifying ω, q2,
q3) is given by the so-called Regge-Wheeler equation:

□gMψ =
4

r2

(
1− 2M

r

)
ψ

In general, we call Regge-Wheeler equation an equation of the form

□gψ − V ψ = 0, for a positive real potential V
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In order to obtain a decoupled equation for perturbations of Kerr, one
needs to use curvature perturbations. The relevant Weyl scalars are the
spin ±2 quantities

α[+2] = Ψ0 = −W (l,m, l,m),

α[−2] = (r − ia cos θ)4Ψ4 = −(r − ia cos θ)4W (n,m, n,m)

that satisfy the so-called Teukolsky equation of spin s

□gM,aα
[s] +

2s

ρ2
(r −M)∂rα

[s] +
2s

ρ2

(
a(r −M)

∆
+ i

cos θ

sin2 θ

)
∂ϕα

[s]

+
2s

ρ2

(
M(r2 − a2)

∆
− r − ia cos θ

)
∂tα

[s] +
1

ρ2
(s− s2 cot2 θ)α[s] = 0

In general, we call Teukolsky equation an equation of the form

□gα− V α = c1∂rα+ c2∂ϕα+ c3∂tα

with c1, c2, c3 complex functions, and V a real function.
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Chandrasekhar describes a transformation theory from
mode-decomposed curvature perturbations (solution to the Teukolsky
equation) to mode-decomposed metric perturbations (solution to the
Regge-Wheeler equation):

Teukolsky equation → Regge-Wheeler equation

□gα− V α = c1∂rα+ c2∂ϕα+ c3∂tα → □gψ − V ψ = 0

14 / 22



Shaking up the past: a new Chandrasekhar transformation

Dafermos-Holzegel-Rodnianski introduced the Chandrasekhar
transformation in physical space in Schwarzschild[DHR 2016]:

it consists of
taking two null derivatives of the Teukolsky variables

ψab = r∇e3

(
r2∇e3

(
r−3∆2αab

))
ψab = r∇e4

(
r2∇e4

(
r−3∆2αab

))

so that

□2ψab −
4

r2

(
1− 2M

r

)
ψab = 0

□2ψab −
4

r2

(
1− 2M

r

)
ψab = 0.

Energy estimates for the Teukolsky variables can be obtained from the
Regge-Wheeler equation through the Chandrasekhar transformation[DHR

2016].
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In Kerr, a similar transformation holds[Ma 2017, DHR 2017], and the Teukolsky
variables get transformed into a generalized version of the
Regge-Wheeler equation:

□2ψ − V ψ − i
4a cos θ

ρ2
∇∂tψ = a · Lψ[α], (1)

where

V is a positive real potential and ρ2 = r2 + a2 cos2 θ

Lψ[α] denotes linear terms in up to two derivatives of α. Schematically,

Lψ[α] = c1(r, θ)∇∂t∇e3α+ c2(r, θ)∇∂ϕ∇e3α+ c3(r, θ)∇e3α+ c4(r, θ)α

Energy-Morawetz estimates for these equations have been obtained in Kerr
for |a| ≪M [Ma 2017, DHR 2017] and for |a| < M [Teixeira da Costa-Shlapentokh

Rothman 2020-2023].

Even though equation (1) has a first order term in ∂t, it satisfies good
divergence properties.

Due to the presence of Lψ[α] on the right hand side of (1), one has to
view the wave equation in (1) as coupled with the defining equations
for ψ.
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In the non-linear picture, we define [G.-Klainerman-Szeftel 2020-2022] the
Chandrasekhar transformation as

ψab = f(r, θ)
(
∇e3∇e3Aab + C1∇e3Aab + C2Aab

)
, A = α+ i ⋆α.

This satisfies a non-linear gRW equation:

□2ψ − V ψ − i
4a cos θ

ρ2
∇∂tψ = a · Lψ[α] + Err[Γ̌, Ř]

Error terms which, according to the bootstrap assumptions, would decay
“too slowly” to close the argument do not appear in Err[Γ̌, Ř]: this is a
manifestation of the null condition:

□ψ = m(dψ, dψ), with m(ξ, ξ) = 0 if g(ξ, ξ) = 0.
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Error terms which, according to the bootstrap assumptions, would decay
“too slowly” to close the argument do not appear in Err[Γ̌, Ř]: this is a
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The bootstrap assumptions for α and α are finally improved by obtaining
energy estimates for the gRW equation for ψ and ψ.

Conservation of E(t) =
∫
Σt

|∂tψ|2 + |∇ψ|2 is obtained through

0 = □ψ · ∂tψ =
(
− ∂2

t ψ +△ψ
)
· ∂tψ = −1

2
∂t
(
|∂tψ|2 + |∇ψ|2

)
+∇ · (∂tψ∇ψ)

Here, energy estimates for |a| ≪M are obtained by multiplying the
equation by ∇∂tψ and taking the real part:

Using the bootstrap assumptions on Γ̌, Ř, one obtains energy estimates for
ψ and α, which are “almost” gauge invariant.
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Preamble to gauge: non-integrable frames

To each point of Dfin we can associate a null frame {e3, e4, ea}, with e3, e4
null vectorfields and {ea}a=1,2 orthogonal to e3 and e4.

In order to use the Teukolsky equation, we consider null frames which are
small perturbations of the principal null frame in Kerr, such as

e3,4 =
(r2 + a2)

ρ
√
∆

∂t +
a

ρ
√
∆
∂ϕ ±

√
∆

ρ
∂r, e1 =

1

ρ
∂θ, e2 =

1

ρ sin θ
∂ϕ +

a sin θ

ρ
∂t.

The orthogonal space to the principal null frame is not integrable, and so
not tangent to a sphere: X,Y ∈ H ⇏ [X,Y ] ∈ H. One can nevertheless
consider transformations of the above into integrable frames.

[One could instead use the double null coordinates[Pretorius-Israel 1998], but
then the Teukolsky variables would not be small.]
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Gauge assumptions at final time

The gauge assumptions on Dfin are imposed at the “final” sphere S∗ and
hypersurface Σ∗[Klainerman-Szeftel 2019].

The sphere S∗ is a codimension 2 compact surface, unrelated to the initial
conditions, on which some geometric quantities have the same value as in
Schwarzschild, and which are equipped with effective coordinates (θ, ϕ).
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Gauge assumptions on Dfin

In order to finally improve the bootstrap assumptions for all the Γ̌ and Ř,
we need gauge assumptions on Dfin as well.

Two gauges are introduced[Klainerman-Szeftel 2021]:

Geodesic gauge, which is a generalization of the geodesic foliation in
the non-integrable case: good for decay estimates, bad for loss of
derivatives

∇e4 Γ̌ = ∇Γ̌ + Ř

Temporal gauge, which favors transport equations along a null
direction: no loss of derivatives, bad for decay estimates

∇e4 Γ̌ = ∇(r, θ) + Γ̌ + Ř

In the geodesic gauge, there is a hierarchy of renormalized quantities
satisfying transport estimates with integrable right hand side which allows
to improve the bootstrap assumptions for all the gauge-dependent
quantities.

(The control of gauge-dependent quantities holds for |a| < M , if you have
control of the almost-gauge invariant quantities!)
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Temporal gauge, which favors transport equations along a null
direction: no loss of derivatives, bad for decay estimates

∇e4 Γ̌ = ∇(r, θ) + Γ̌ + Ř
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In order to finally improve the bootstrap assumptions for all the Γ̌ and Ř,
we need gauge assumptions on Dfin as well.
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Mass, angular momentum and center of mass frame

On the final sphere S∗ one defines the mass Mf , the angular momentum af
and the virtual axis of rotation of Dfin, which converge in the limit to the
final parameters M∞, a∞[Klainerman-Szeftel 2019]:

2Mf

r
:= 1 +

1

16π

∫
S∗

trχtrχ, af :=
r3

8πM

∫
S∗

J(0)curlβ.

Since the initialization of S∗ does not
make a direct reference to the initial
conditions, when it is transported
along Σ∗ to a sphere on the initial
data this induces a new foliation on
the initial data which differs
substantially from the original one,
due to a shift to the center of mass
frame of the final black holes
(gravitational wave recoil).
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Thank you for your attention!


