Modified Teukolsky equation for spectral shifts

Aaron Zimmerman Center for Gravitational Physics, UT Austin

Nonlinear Aspects of General Relativity Princeton October 10, 2023

(Based on arXiv:2206.10653 with Asad Hussain)

Motivation

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

LVK arXiv:2111.03606

GWs from binary black holes

GW150914

LVC PRL 116, 061102 (2016)

GW190521

LVC PRL 125, 101102 (2020)

Ringdown in binary black holes

LCV PRL 116, 221101 (2016)

LVC ApJL 900, L13 (2020)

- Spectra determined by mass and spin
- Mass sets overall frequency scale

- Low quality oscillator: hard to measure ringdown
- One mode: mass and spin
- Two modes: clean test of Kerr spacetime

Black hole spectroscopy

Berti, Cardoso, Will (2006)

 χ

 $Q = \omega \tau / 2$

6

Multiple modes in ringdown

GW150914

Isi, Gielser+ PRL 123, 111102 (2019) c.f. Cotesta+ PRL 129, 111102 (2022)

GW190521

Capano, Cabero+ arXiv:2105.05238 c.f. LVK PRD 103, 122022 (2021)

Constraining deviations

• Primarily null tests

- Each event weakly constraining
- Combine multiple constraints (AZ, Haster, Chatziioannou 2019)
 - Population model
 - Specific theory

Isi, Chatziioannou, Farr, arXiv:1904.08011

Ringdown tests from O3a

Ringdown only

Full waveform, no overtones

pSEOBNRv4HM

Towards precision tests

- Test specific theories
 - Constraints mapped to theory params
 - Incorporate higher harmonics and overtones
- Why ringdown? Seems tractable, needed anyway
- Much work on QNMs beyond-GR, expansions in small spin, e.g.
 - McManus+ arXiv:1906.05155
 - Pierini & Gualtieri arXiv:2207.11267
 - Cano, Fransen, Hertog arXiv:2005.03671
- But merged black holes have

 Λ/I

Towards precision tests

Need a method that handles high spins

- Strategy: derive master wave equation in theories beyond-GR
- Use eigenvalue perturbation theory to compute ringdown spectrum
- Much recent work, e.g.
 - Cano + (2023a,b)
 - Li+ arXiv:2310.YYYYY

Ringdown in Kerr

• Scalar wave equation separates, metric perts don't separate or decouple

• Scalar wave equation separates, metric perts don't separate or decouple

• Scalar wave equation separates, metric perts don't separate or decouple

• Teukolsky (1973): Use Newman-Penrose eqns to decouple scalar quantites

• Master eqn separates (Teukolsky 1973):

• Master eqn separates (Teukolsky 1973):

• Operator picture (Wald 1978):

• Master eqn separates (Teukolsky 1973):

• Operator picture (Wald 1978):

• Metric can be reconstructed (in special gauges)

Quasinormal modes

Quasinormal modes

Ringdown beyond Kerr

• Focus on theories which perturb off GR in decoupling limit

• Focus on theories which perturb off GR in decoupling limit

• Focus on theories which perturb off GR in decoupling limit

• Focus on theories which perturb off GR in decoupling limit

Solve order by order for equilibrium solution

Quadratic gravity example: dCS

- Dynamical Chern-Simons: couple total derivative to scalar field
- New length scale \bullet

Quadratic gravity example: dCS

- Dynamical Chern-Simons: couple total derivative to scalar field
- New length scale \bullet

- Stationary BH solutions
- known in slow spin expansion (Cano et al. 2019),
- Numerical solution tractable (Stein 2014) ${ \bullet }$

Quadratic gravity example: dCS

- Stationary BH solutions
- Post-Newtonian predictions (Yagi+ 2012)
- Binary black hole simulations (Okounkova+ 2019)
- Strong constraints from NICER (Silva+ 2021)
- Slow-spin expansion for ringdown (Cano+ 2020; Wagle+ 2021; Srivastava+ 2021)
- But parameter inference requires results at high spins

Wagle, Yunes & Silva arXiv:2103.09913

Perturbed black holes beyond Kerr

• Now add dynamical perturbations to all fields

Perturbed black holes beyond Kerr

Now add dynamical perturbations to all fields \bullet

Resulting equations are coupled and not separable \bullet

• Two bases to perturb around

• Two bases to perturb around

• Two bases to perturb around

Two bases to perturb around

• First gives full decoupling, second gives partial decoupling

Modified Teukolsky equation

Gravitational case: derive perturbations to Teukolsky equation

- Gravitational case: derive perturbations to Teukolsky equation
- Direct derivation from NP approach involved (Li, Wagle + 2022, Hussain & AZ 2022)
 - Track modifications to null tetrad, spin coefficients, curvature quantities

- Gravitational case: derive perturbations to Teukolsky equation
- Direct derivation from NP approach involved (Li, Wagle + 2022, Hussain) & AZ 2022)
- Track modifications to null tetrad, spin coefficients, curvature quantities • Operator approach provides shortcut:

- Gravitational case: derive perturbations to Teukolsky equation
- Direct derivation from NP approach involved (Li, Wagle + 2022, Hussain) & AZ 2022)
- Track modifications to null tetrad, spin coefficients, curvature quantities • Operator approach provides shortcut:

- Gravitational case: derive perturbations to Teukolsky equation
- Direct derivation from NP approach involved (Li, Wagle + 2022, Hussain) & AZ 2022)
- Track modifications to null tetrad, spin coefficients, curvature quantities • Operator approach provides shortcut:

2nd expansion of Einstein tensor in Kerr

2nd expansion of Einstein tensor in Kerr

1st order in metric evaluate on stationary fields

2nd expansion of Einstein tensor in Kerr

1st order in metric evaluate on stationary fields

2nd expansion of Einstein tensor in Kerr

1st order in metric evaluate on stationary fields

Leading order in metric evaluate on

Perturbations of quasinormal modes

Eigenvalue perturbations

Eigenvalue perturbations

Eigenvalue perturbations

Conceptually extends to QNMs

Eigenvalue perturbations

Need finite product where wave operator is self-adjoint

Eigenvalue perturbations

Need finite product where wave operator is self-adjoint

Eigenvalue perturbations

Need finite product where wave operator is self-adjoint

Eigenvalue perturbations

Scalar example: parametric resonance

 Nearly extremal BHs: QNMs nearly evenly spaced

 "Background" grav QNM drives scalar QNMs

Yang, AZ, Lehner, arXiv:1402.4859

Scalar example: parametric resonance

 Nearly extremal BHs: QNMs nearly evenly spaced

 "Background" grav QNM drives scalar QNMs

Yang, AZ, Lehner, arXiv:1402.4859

Scalar example: parametric resonance

 Nearly extremal BHs: QNMs nearly evenly spaced

 "Background" grav QNM drives scalar QNMs

Transient "turbulence" of scalar perts

Yang, AZ, Lehner, arXiv:1402.4859

Coupled equations

• Cannot decouple and separate: gravitoelectromag perturbations

Coupled equations

- Cannot decouple and separate: gravitoelectromag perturbations
- Small charge: can decouple and apply EVP

Chandrasekhar: NP derivation

Chandrasekhar: NP derivation

• We know the eigenmodes for Q = 0

Chandrasekhar: NP derivation

• We know the eigenmodes for Q = 0

This decouples everything

Chandrasekhar: NP derivation

• We know the eigenmodes for Q = 0

This decouples everything

Chandrasekhar: NP derivation

• We know the eigenmodes for Q = 0

This decouples everything

Dias, Godazgar, Santos, arXiv:1501.04625 Carullo et al. arXiv:2109.13961

Frequency shifts beyond Kerr

• Application to ringdown modes is direct:

Mark, Yang, AZ, Chen, arXiv:1409.5800 AZ +, arXiv:1406.4206 Hussain & AZ arXiv: 2206.10653

Frequency shifts beyond Kerr

• Application to ringdown modes is direct:

- ... except it is not
- Conceptual issue: metric reconstruction couples ψ and
- Couples two families of modes:

Mark, Yang, AZ, Chen, arXiv:1409.5800 AZ +, arXiv:1406.4206 Hussain & AZ arXiv: 2206.10653

Degenerate EVP

• Formally write metric reconstruction as

Consider superposition of states that don't mix

• Apply EVP approach

Hussain & AZ arXiv:2206.10653

Isospectrality

- Connected to Kerr isospectrality (Chrzanowski 1976, Nichols + 2012)
- Definite-parity perturbations constructed from Hertz potential

Isospectrality

- Connected to Kerr isospectrality (Chrzanowski 1976, Nichols + 2012)
- Definite-parity perturbations constructed from Hertz potential

Isospectrality

- Connected to Kerr isospectrality (Chrzanowski 1976, Nichols + 2012)
- Definite-parity perturbations constructed from Hertz potential

- Equality of modes means Kerr is isospectral
- Perts to Kerr break isospectrality generically (Li + arXiv:2310.YYYY)

Choose theory

Stationary deformation

Choose mode

Reconstruct metric

Roadmap

Roadmap

Roadmap

New physics?

Looking ahead

- Predicting QNMs may allow for multimode ringdown tests of Kerr
 - Modified Teukolsky eqn
 - EVP method: allows for high spins
 - Several challenges ahead in implementation
- Many detections in the coming years
 - Combine constraints
- 3rd gen and LISA: precision predictions needed

LVK arXiv:2111.03606

Extras

Combining events

- Beyond-GR parameter common to all events: combine constraints directly
- Beyond-GR parameter varies per event
 - Need population modeling (hierarchical modeling) to combine events
 - Modeling needs to account for degeneracies

- Example: charged black holes
 - Use ringdown package (lsi, Farr)
 - Use multiple tones, infer
 - Start from peak of full IMR waveform

Hussain, Isi, AZ in prep

Example: Charged BHs

GW150914

See also Carullo + arXiv: 2109.13961

GW190521

Hussain, Isi, AZ in prep

Example: Charged BHs

Population Prior

Hussain, Isi, AZ in prep

Example: Charged BHs

See also Carullo + arXiv: 2109.13961

Hussain, Isi, AZ in prep

Gravitational perts for Kerr

Angular equation: (spin-weighted) spheroidal harmonics

• Standard Sturm-Liouville eigenvalue problem

Gravitational perts for Kerr

Radial equation: Schrodinger-like with complex potential

Gravitational perts for Kerr

Radial equation: Schrodinger-like with complex potential

