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Outline

+ Motivation

+ Conserved currents for Kerr — relativistic product
* Quasinormal modes and orthogonality
* Time-dependent perturbation theory for black holes

“ Application to perturbative frequency shifts



Motvation

How can we use quasinormal modes in perturbation theory beyond linear order?

7/

residual

* Post-merger ringdown

NR  3.N=7
- — Ayt — hay
;- NR 1 NR
Ayt — hay
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t— toeaic [M]
Giesler+ (2019)

Gravitational turbulence

Green+ (2013)

Black-hole boson clouds

Brito+ (2014)



Normal and quasinormal modes

Quasinormal

System self-adjoint dissipative

Quasi-normal
modes

* Incomplete description of ringdown

10-2 -
Frequencies =B Initial pulse
1079
Orth l , ?
Haad-hee (inner product) 10-8 —
Complete )74

spectral theorem

t/2M,



Normal and quasinormal modes

Quasinormal

System self-adjoint

dissipative

Frequencies w e C
7

Orthogonal (inner product) :

Complete X

spectral theorem

» Typically blow up at biturcation surtace

and infinity

—la)l" | Bt ©,©)

> OO
o 0L 2% 0 *
la)r Vs«—> OO

et ey B9

U U

* Not clear how to define a product

between modes



Normal and quasinormal modes

Quasinormal

Rest of talk:

System self-adjoint dissipative

* Develop the bilinear form (aka relativistic
w € C product)

Frequencies

* Time-dependent perturbation theory

with suitable
bilinear form

X

Orthogonal

* Practical example

(inner product)

this work
Complete

spectral theorem



Conserved currents

« Basic idea: Consider the equation Oy = 0, where O is a differential operator.

+ Adjoint 0" is defined by (@Tl/hf)l// — Oy = AV lu, v (integration by parts)

current

+ For solutions 0"y = 0 = Oy, the current is conserved, V_z[{, w] = 0.

+ Hence if ¥, y decay sutficiently rapidly at infinity, we obtain a
conserved (base) bilinear form

e — J 7y, wl dZ,
%

+ E.g.,if O = V4V_— m?is the Klein-Gordon operator, then z%[{, y] = — [y Vo + w V9% is the Klein-
Gordon current.



Conserved currents

(O — Oy = V 7§, y]

+ For perturbations of Kerr, apply this to the Teukolsky operator, which can be written in the useful form

+ Gives rise to the conserved quantity

p_qn_/lb

_|_
@ — pzqnbvalb |

Vamb

« This acts on GHP scalars { of weight (p, g) = (4,0)

+ The adjoint Teukolsky operator O'acts on GHP scalars y of weight (p, g) = (—4,0)




Tower of conservation laws

: [y, w] = J (0% — 4By — w(O° + 4B)p| dZ, |

» From this “base” bilinear form, construct an infinite number of conserved quantities combining with symmetries:

» A differential operator & is a symmetry operator if it takes solutions into solutions, i.e., Oy = LD Oy, for some
operator <.

2 II[y, Gy]is also conserved.

» For Kerr, we have symmetry operators [€, 0] = 0 = [, O] L; time translation
arising from the Killing vectors and Killing tensor, C - q Ly rotation

JC  Carter operator

» These symmetry operators moreover commute with each other. Compositions of symmetries are also
symmetries, hence we obtain an infinite number of conserved quantities (see also Grant and Flanagan, 2020).



—@ reflection

; [y, w] = J (0% — 4By — w(O° + 4B)p| dZ, |

» QOur bilinear form will be constructed using the discrete reflection symmetry J : (¢, ) — (—t, — ¢)

+  Acts on null tetrad as J.[¢ = — An? J.n® = — A% J.m® = el m?
> Define action on GHP scalars nn = (p, q) as Fn = i?*9I1 P19 o J = (—=p, — q), where 1* = Ae'
B GHP prime + t-¢ reflection

» Satisfies important property, @‘P;” o ‘I’;” > 701

Exactly what we need to

4 ‘1’3/ ? J takes solutions of adjoint Teukolsky to solutions of Teukolsky construct a product on two

solutions in the same space!
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Bilinear form

+ Letyy, yp = (—4,0) be smooth with compact support in ker @'. Define bilinear form

Ky, y0)) =11 [‘Pgﬂfl/fp llfz]

* Properties

1. C-linear in both entries

2. conserved (independent of choice of Cauchy surface X)

3. (w1, 1)) = (¥, y)) (symmetric)

4. ((Layy, ) = ((wy, Lay)) (time translation operator is symmetric)

il



Bilinear form

+ Proof of (4), ((Ly,y)) = ((y1, Lay))

closed on solutions

3#2’ =d(t-nm)+1t x Cartan’s magic formula Ltﬂ(qf;l/gjwl, wz)
= m(U5 LT 1, ¥2) + m(W5 > Tehn, Lurhs)
= —m (0> T L1, vb2) + m(Wy > Tepr, Lutpo)

J'gtﬂ'=J' £ — 10 \Ltj:_jl’t
s 0% |:|

lCompact support

* Note that in a Hamiltonian formulation, this corresponds to

(A wi,yr)) = Ky Zys))

()



Bilinear form

In Boyer-Lindquist coordinates and Kinnersley frame,

in 6 A
<<¢17¢2>> = 4M4/3/£3drd9d¢ SAQ (] gz—>—1(5b (A
+ 1o (%&t

_8t

2Mra [ | M |
| - il _—r—zacosé’ | A(rz—az)_>¢2
- 2Mra [ , A : _
e 8¢+2_ r — 1a cos 6 - A(7“ —Cb)i)%_ A

+ In contrast to inner product, there is no complex conjugation on first argument — bilinear

“ Not positive — not an inner product

{5



(Juasinormal modes

sWemow = e_iwt+im¢stma)(r ) SSfma)(H)

» Teukolsky equation separates into angular and radial parts

: Lavd , d i m? + s% + 2ms cos 0 S
: sin & H{ & — : —a-wssme 0 2awscosd Ll S, (G =1
sin @ do do sin? @

= ’ d | d H Zsgar 21 s(r - M )H : :-_;';;;1_;.:1.;:5;;.};;';;1; #
AT — | AST'— ) + + disor + 2amo — K+ s(s+ 1) )| R, (1) =0
dr dr A

separation constant

» Angular part gives spheroidal harmonics, indexed by integer £ > max(|m|,|s|)

T

» For fixed s,m, ® € R, these are orthogonal, J do sin0 S, (0).S,,.(0) = .,
0

14



(Juasinormal modes

sWemow = e_iwt+im¢stma)(r ) SSzfma)(H)

. d d H* = 2is(r — M)H
+ Radial part A‘SE (ASHE) + ( i ) F4iswr + 2amw — K + s(s + 1)) R (1) =0
R S re — —0O0
. . . . . . . S ) )
*  Assume ingoing at horizon / outgoing at infinity Rup ei%r* e
r2s+1 ¥
J ()
« Obtain discrete spectrum w,,,, with Im(w,, ) < 0 L X é X R
| X ' x
ce "
—>  Modes decay in time but blow up at | .| = o0 N B
—> ((:,-)) divergent on quasinormal modes e X Ex
Berti+ (2009)

155



Bilinear form for quasinormal modes

« Extend (( -, - )) from compact support — quasinormal mode data (following Leung+, 1994)

“ Deform radial integration into complex plane

arg r«(u) + arg(w, + w,) = n/2

arg r«(u) + arg(w; + w,) = — n/2

« Properties (1)-(4) continue to hold.

16



Bilinear form for quasinormal modes

Let v, y, be quasinormal modes. Then 0 = ({1, Ls1bo)) — ((Lsth1, o))
= (w2 — w1) ({1, 92))

Main result

— either w; = w, or ({y;,y,)) = 0.

«  Explicitly on modes,

a®) sin 0

A Sl (H)SQ(H)Rl (T)RQ(T)

0 2
(Vermiwr> Veamows)) = 87M4/35m1m2€_i(w2_w1)t/ dT*/ do e
C 0

A 20 M i M :
(—%(wl + wo) A ZATa(ml + ms9) +2 |—r —tacosf - A(7"2—052) )

# This is fundamentally a 2D integral!

{7



Excitation coefficients

» Given initial data, expand QNM part of solution as

» Using bilinear form... * From Laplace transform..

s = Z Comn sWemn

Cmn

/ initial data
<<stmn9 V/s>> l J'OO
Crmn = M Cotm = slfmn(r,) stmn(rl)AS(r/) dr’
2 <<stmn9 stmn)) A ldw ‘a) r

n a5
¥ Ok dR, |
\ W[RI,RZ] = A1+S R1—2 —R 1

» Can prove equivalence (following Leung+, 1994). In particular, norm dr dr
of a QNM is related to derivative of the Wronskian,
d
—W'[R™™, RUP -

=

18




“Norm™ of a QNM

d .
C_qpiAie R P

w=w,,

Sketch of proot

1. If §;, S, satisfy the angular equation, then by explicit calculation

8TM*’W'[R,, R,] = J - 15" Py, yn)
S2(¢,r)

k Integral on sphere

Note that both sides vanish on QNMs. Derivative, however, will relate to QNM norm.

19



“Norm ofa ONM”~

2. For R, R, solutions, ingoing at horizon, outgoing at infinity

d (t s (\I!;L/ 7 zpjjln : ngp)) — (\Ifg/ o ¢Zunn , ¢£p> Cartan’s magic formula

QONM any ®  _ —z’(w e wn)w (\Ij;l/ijijnn’wzp)

« Integrate over §

/ t (U P TYR  PiP) = —i(w — wn) / bt i°
0S

S

« Diftferentiate wrt @ and take w — w,

20



“Norm™ of a ONM

[ tom (P Ty w) = —itw - w,) [ 7@ T, u)
95 >

Aifferentiate wrt @ and take @ — cz)n\A

i [ n(#°TT, 0)

Wronskian

Vanish

d .
» Rearranging, obtain result —%[R™ R'P
S5 dw Roy, Ry 87zM4/3

w=w

(W W)

2



Summary (so far)

» Defined a bilinear form (or relativistic product) (( -, - )) for Teukolsky solutions
+ Comes from combining 79[ - , - | current with #-¢ reflection operator ¢
» Complex radial integration makes (( -, - )) finite on QNMs

» QNMs with @, # w, are orthogonal with respect to the bilinear form

+ Mode expansions i, ~ Z Crpn Wonn With the bilinear form give rise to the well-known

Zmn
expression for the excitation coefficients.

7



Application to black hole boson clouds

massive scalar field
n Kerr

“ Massive fields give rise to quasibound states (QBSs)

with |@| < u

d ~ rlethrs re — 00 (QNMs), g
—1 —ikr, 2= \/a) =
d~r e , r« — 00 (QBSs),

+ Confined by Yukawa suppression = no
radiation ater7. - _—

« Superradiantly unstable if mQyy > wR. Brito+ (2014)

* Astrophysically, leads to boson clouds for
w1078 107 ev.

25



* Many applications:

Gravitatonal atom

approximate
Quasibound states Hydrogen bound states
leading order in a = uM
and > p~! + Regular at origin
Use bilinear form ({ -, - )) ! « Hydrogenic inner product { - | - )y
* o €R

« Complete, orthonormal set of modes

« Level mixing due to potentials (nZm |6V |n'¢’'m’y, , e.g., binary
companion or self-interaction

» Self-gravity leading to frequency shifts o« (nZm |6V |nfm)y

Baumann+ (2022)

24



« Straightforward extension to massive scalar fields and QBS states with ® ~ r

Bilinear form for QBSs

le—lkr*

+ For Schwarzschild QBS, can alternatively regularize using counter-term subtraction

< <(I) 1 (I)Z > > Schwarzschild QBS

Numerical check
of orthogonality

0.06 0.07 0.08 0.09 0.10

Cutoff radius

2.x1077t
1.x107 "¢

5.x 1078}

a=0.3 -

0.001 0.002 0.005 0.010

25
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ASl= =003

+ (higher orders)

a =104 j

5.x 1074 0.001

€

0.005 0.010



Relaavistic perturbation theory

OD + 6VD = () Potential 6V

Mode ansatz © = Z cq(t)CDq Project onto mode n
q

Y (@, Oc,(H®,)) + (@, ¢ (H6VD,)) = O
q

Assume ¢ ~ 8V, ¢ ~ 6V?

ct. QM time-dependent
perturbation theory

26



Example: Frequency shifts

» Consider (Newtonian, flat space) self-gravity of a superradiant mode (from Siemonson+ 2023)

» For a single mode frequency-shift, ¢, (f) x e

e = T
oV(r) = —2u 7J d3r’Tf+J d’ ’7
\stress—enel/;y of ®
—iow, t

(P, VD))

: 5= =
2iw,((®,, ,)) + 0BV = Y c,(0{(P,. VD)) ——> S0, = 20 (O D))

q

« Compute £ = m = 1 mode frequency shifts for BH spins close to the superradiant bound.

» Compare to hydrogenic approximation and numerical relativity (Siemonson+ 2023) for a variety of a.

27



(Owr /OMioud ) (M /wr)

Frequency shafts

0.
—0.021
— hydrogenic X Excellent match
—-0.04F e numerical relativity (Siemonsen+2023) % to NR!
O relativistic product (this work)
0.0 0.1 0.2 0.3 0.4

Y
28



Conclusions

* The bilinear form generalizes the quantum mechanical inner product for black holes.

+ QNMs and QBSs are orthogonal for different .

* Perturbation theory based on our relativistic product gives greatly improved agreement with

numerical relativity.

29



Further directions

The relativistic product opens many directions of research:

* Boson clouds (self-interactions, tidal perturbers, ...)

+  Extension to Proca fields?

“ Nonlinear ringdown

« Extension to hyperbolic

g —6
107" |hé\;R _ hé\gR
0 2IO 4I0 6IO 810
t — tpeak [M]

+ Gravitational turbulence? (talk of S. Hollands)

Thank you!
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