$$\langle\langle\psi_{\ell_1 m_1 \omega_1}, \psi_{\ell_2 m_2 \omega_2}\rangle\rangle = 8\pi M^{4/3} \delta_{m_1 m_2} e^{-i(\omega_2 - \omega_1)t} \int_{C_*} dr_* \int_0^{\pi} d\theta \, \frac{(r^2 + a^2)\sin\theta}{\Delta} S_1(\theta) S_2(\theta) R_1(r) R_2(r)$$

$$\left(-\frac{i\Lambda}{\Delta}(\omega_1 + \omega_2) + \frac{2iMra}{\Delta}(m_1 + m_2) + 2\left[-r - ia\cos\theta + \frac{M}{\Delta}(r^2 - a^2)\right]\right)$$

PCTS/PGI Workshop on Nonlinear Aspects of General Relativity

Orthogonality of quasinormal modes

Stephen Green

Based on 2210.15935, 2309.10021

with E. Cannizzaro, S. Hollands, L. Sberna, V. Toomani, and P. Zimmerman

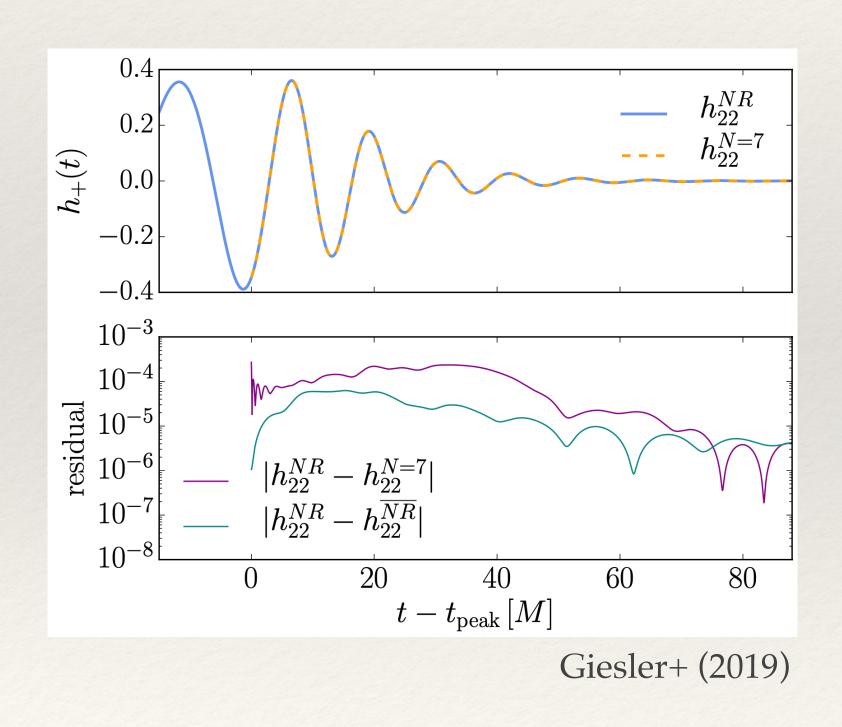
Outline

- * Motivation
- ♦ Conserved currents for Kerr → relativistic product
- * Quasinormal modes and orthogonality
- * Time-dependent perturbation theory for black holes
- * Application to perturbative frequency shifts

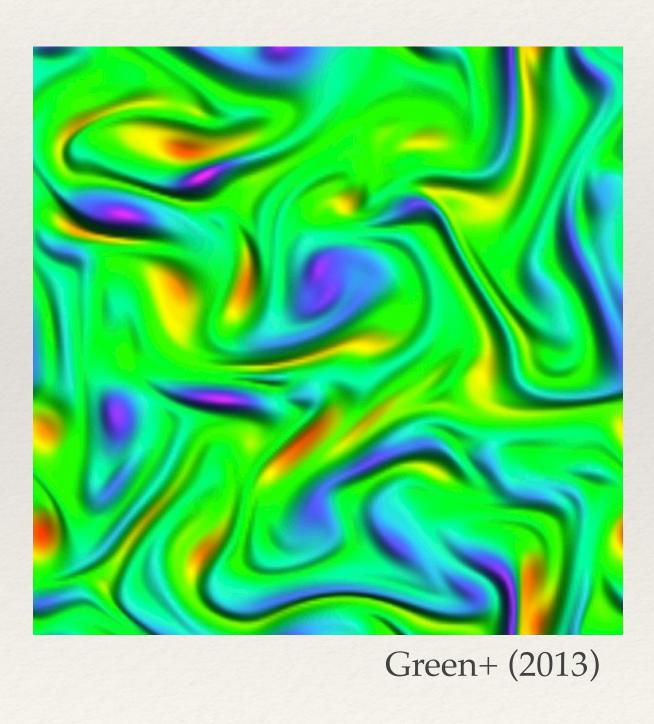
Motivation

How can we use quasinormal modes in perturbation theory beyond linear order?

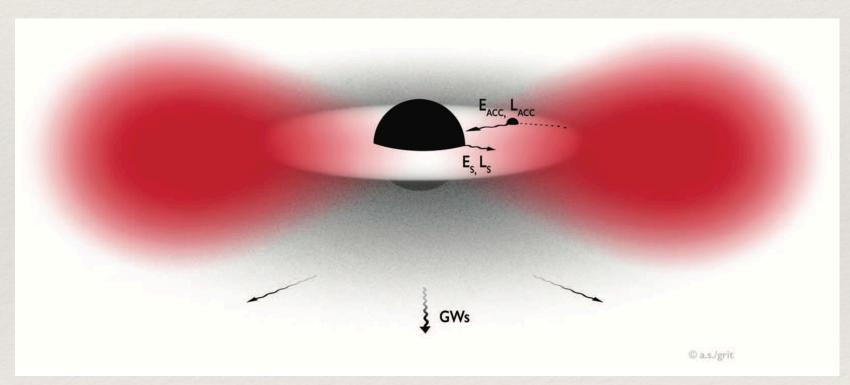
* Post-merger ringdown



* Gravitational turbulence

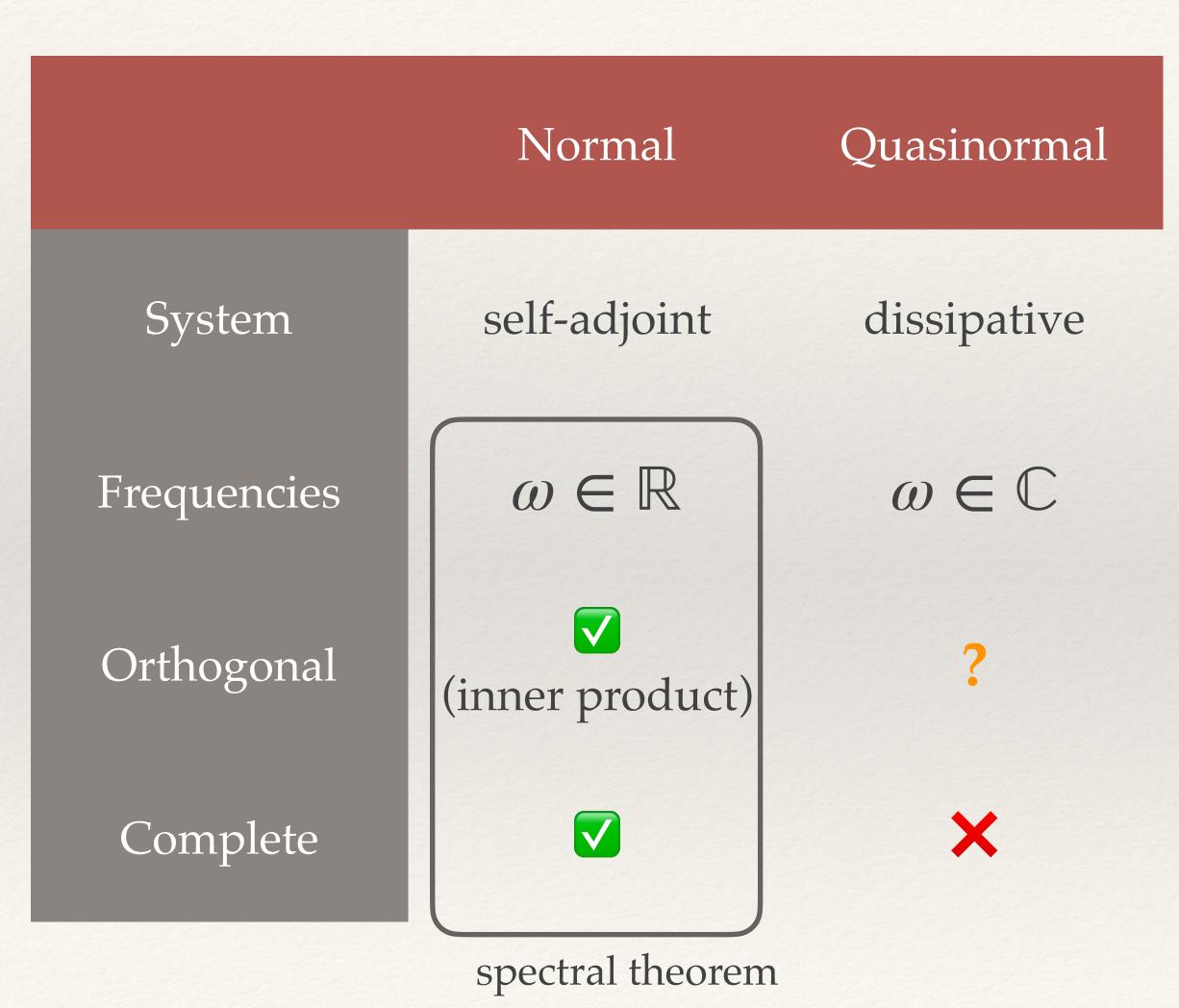


* Black-hole boson clouds

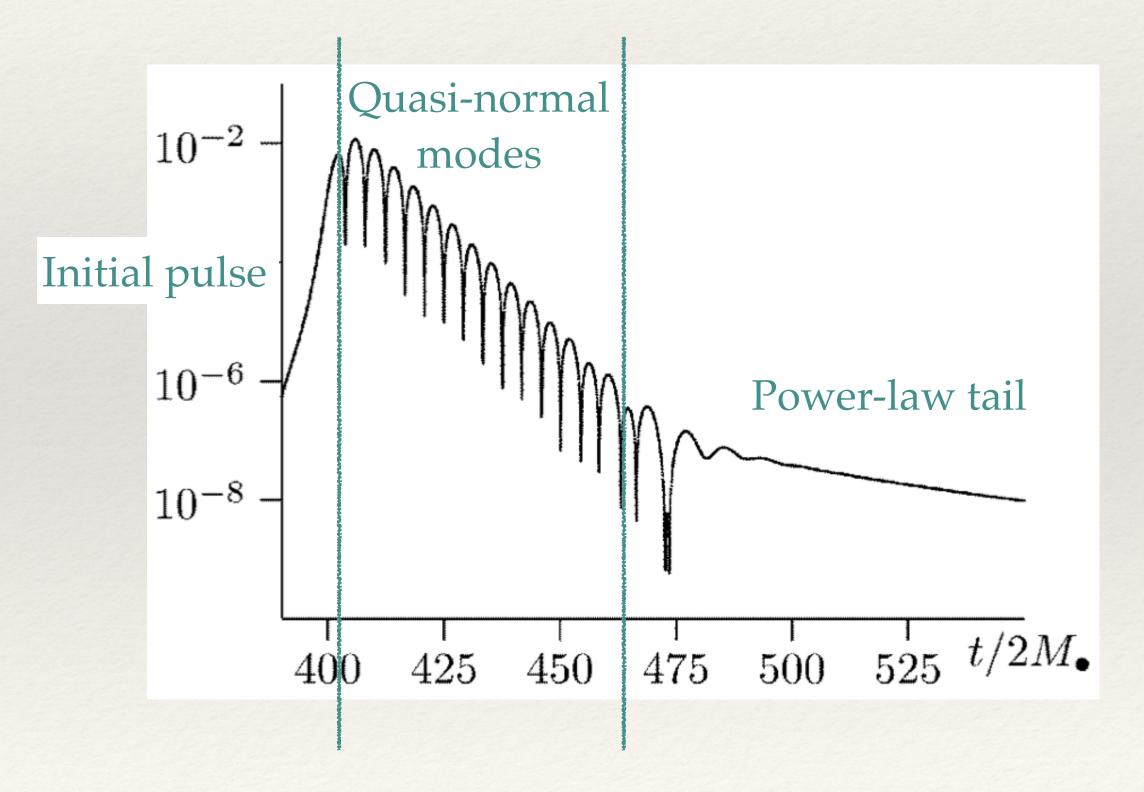


Brito+ (2014)

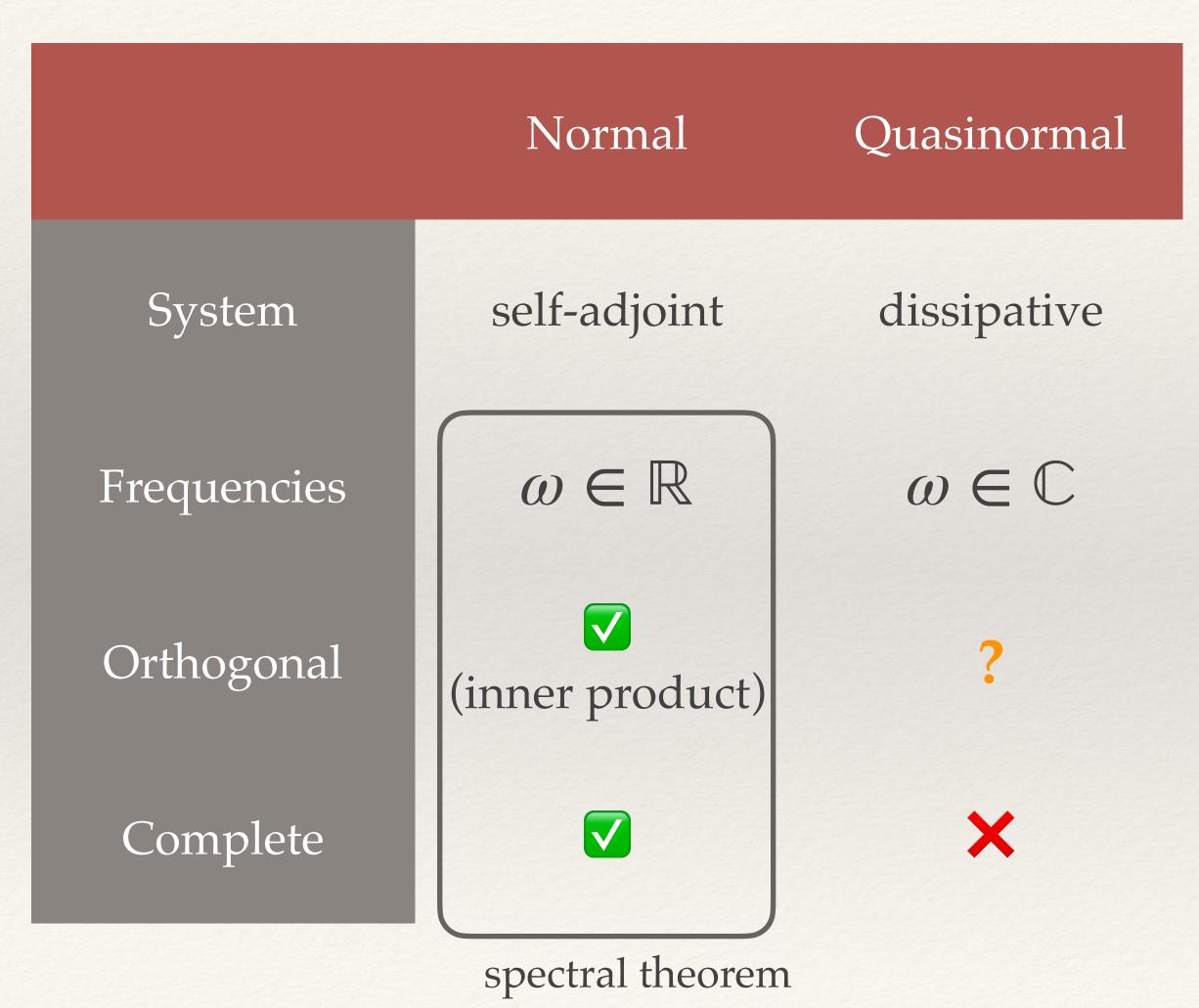
Normal and quasinormal modes



* Incomplete description of ringdown



Normal and quasinormal modes

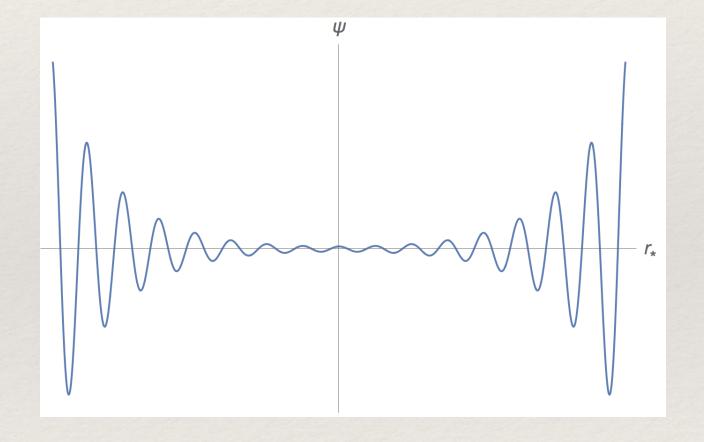


* Typically blow up at bifurcation surface and infinity

$$e^{-i\omega t} \xrightarrow{t \to \infty} 0$$

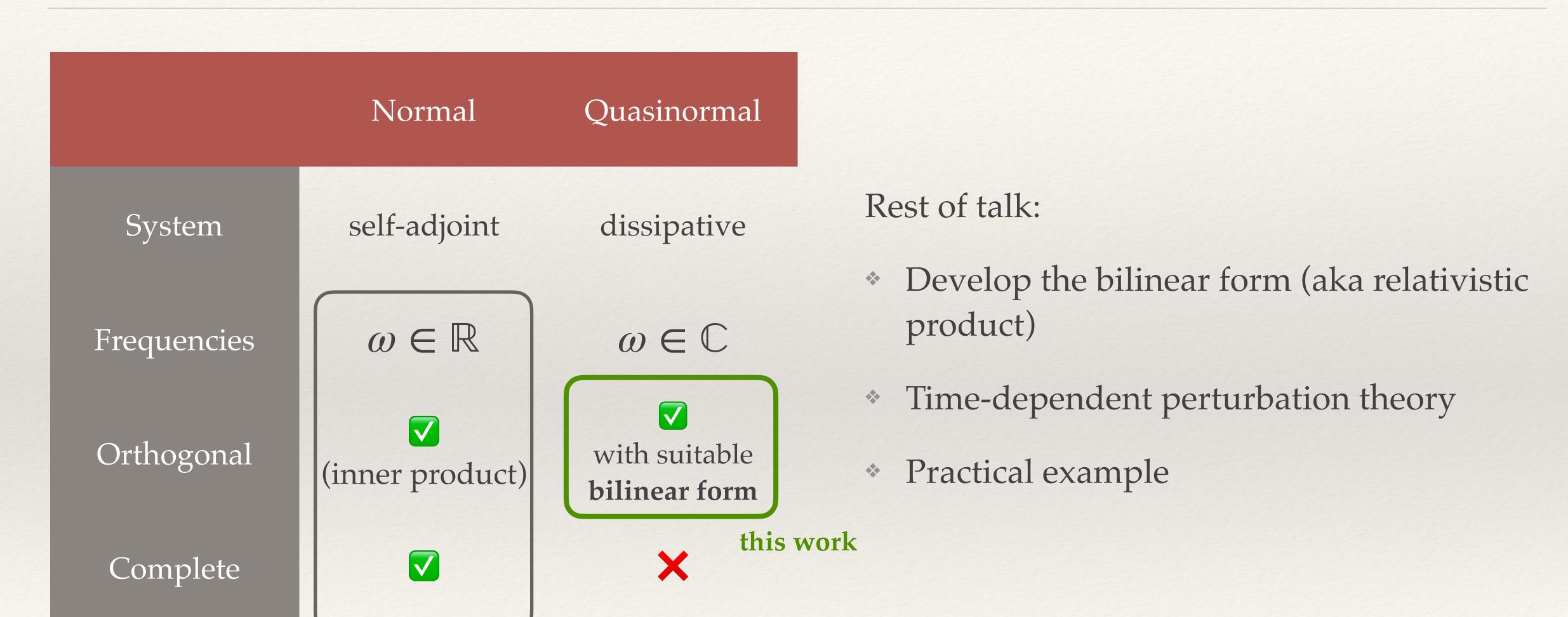
$$e^{-i\omega r_*} \xrightarrow{r_* \to -\infty} \infty$$

$$e^{i\omega r_*} \xrightarrow{r_* \to \infty} \infty$$



* Not clear how to define a product between modes

Normal and quasinormal modes



spectral theorem

Conserved currents

- * **Basic idea:** Consider the equation $\mathcal{O}\psi = 0$, where \mathcal{O} is a differential operator.
- * Adjoint O[†] is defined by

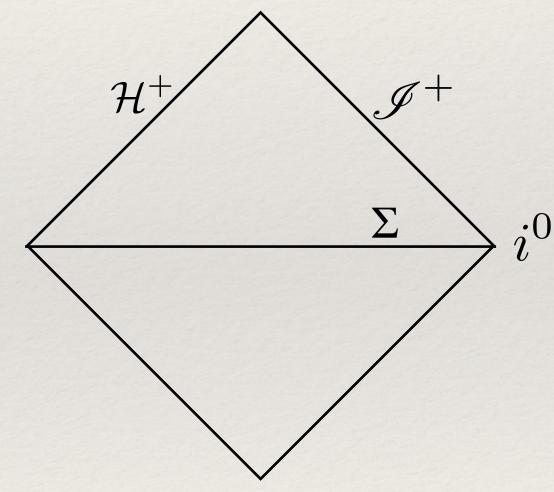
$$(\mathcal{O}^{\dagger}\tilde{\psi})\psi - \tilde{\psi}\mathcal{O}\psi = \nabla_{a}\pi^{a}[\tilde{\psi},\psi]$$

(integration by parts)

current

- * For solutions $\mathcal{O}^{\dagger}\tilde{\psi} = 0 = \mathcal{O}\psi$, the current is conserved, $\nabla_a \pi^a[\tilde{\psi}, \psi] = 0$.
 - * Hence if $\tilde{\psi}$, ψ decay sufficiently rapidly at infinity, we obtain a conserved (base) bilinear form

$$\Pi^{a}[\tilde{\psi}, \psi] = \int_{\Sigma} \pi^{a}[\tilde{\psi}, \psi] d\Sigma_{a}$$



* E.g., if $\mathcal{O} = \nabla^a \nabla_a - m^2$ is the Klein-Gordon operator, then $\pi^a[\tilde{\psi}, \psi] = -\tilde{\psi} \nabla^a \psi + \psi \nabla^a \tilde{\psi}$ is the Klein-Gordon current.

Conserved currents

$$(\mathcal{O}^{\dagger}\tilde{\psi})\psi - \tilde{\psi}\mathcal{O}\psi = \nabla_{a}\pi^{a}[\tilde{\psi},\psi]$$

* For perturbations of Kerr, apply this to the Teukolsky operator, which can be written in the useful form

$$\Theta_{a} = \nabla_{a} - \frac{p+q}{2} n^{b} \nabla_{a} l_{b} + \frac{p-q}{2} \bar{m}^{b} \nabla_{a} m_{b}$$

$$\mathcal{O} = g^{ab} (\Theta_{a} + 4B_{a})(\Theta_{b} + 4B_{b}) - 16\Psi_{2}$$

$$B_{a} = -\rho n_{a} + \tau \bar{m}_{a}$$

- * This acts on GHP scalars $\tilde{\psi}$ of weight (p, q) = (4,0)
- * The adjoint Teukolsky operator \mathcal{O}^{\dagger} acts on GHP scalars ψ of weight (p,q)=(-4,0)
- * Gives rise to the conserved quantity

$$\Pi[\tilde{\psi}, \psi] = \int_{\Sigma} \left[\tilde{\psi}(\Theta^a - 4B^a)\psi - \psi(\Theta^a + 4B^a)\tilde{\psi} \right] d\Sigma_a$$

Tower of conservation laws

$$\Pi[\tilde{\psi}, \psi] = \int_{\Sigma} \left[\tilde{\psi}(\Theta^a - 4B^a)\psi - \psi(\Theta^a + 4B^a)\tilde{\psi} \right] d\Sigma_a$$

- * From this "base" bilinear form, construct an infinite number of conserved quantities combining with symmetries:
 - * A differential operator \mathscr{C} is a symmetry operator if it takes solutions into solutions, i.e., $\mathscr{CC}\psi = \mathscr{DC}\psi$, for some operator \mathscr{D} .
 - ightharpoonup $\Pi[\tilde{\psi}, \mathcal{C}\psi]$ is also conserved.
 - * For Kerr, we have symmetry operators $[\mathscr{C}, \mathscr{O}] = 0 = [\mathscr{C}, \mathscr{O}^{\dagger}]$ arising from the Killing vectors and Killing tensor,

$$[\mathcal{C}, \mathcal{O}^{\dagger}]$$
 $\mathcal{C} o \begin{cases} \mathbb{L}_t & ext{time translation} \\ \mathbb{L}_{\phi} & ext{rotation} \end{cases}$ $\mathcal{K} o ext{Carter operator}$

* These symmetry operators moreover commute with each other. Compositions of symmetries are also symmetries, hence we obtain an infinite number of conserved quantities (see also Grant and Flanagan, 2020).

t-p reflection

$$\Pi[\tilde{\psi}, \psi] = \int_{\Sigma} \left[\tilde{\psi}(\Theta^a - 4B^a)\psi - \psi(\Theta^a + 4B^a)\tilde{\psi} \right] d\Sigma_a$$

- * Our bilinear form will be constructed using the discrete reflection symmetry $J:(t,\phi)\to (-t,-\phi)$
 - * Acts on null tetrad as $J_*l^a = -\Lambda n^a$, $J_*n^a = -\Lambda^{-1}l^a$, $J_*m^a = e^{i\Gamma}\bar{m}^a$
 - * Define action on GHP scalars $\eta \stackrel{\circ}{=} (p,q)$ as $\mathcal{J}\eta = i^{p+q}\lambda^{-p}\bar{\lambda}^{-q}\eta \circ J \stackrel{\circ}{=} (-p,-q)$, where $\lambda^2 = \Lambda e^{i\Gamma}$
 - \triangleright GHP prime + t- ϕ reflection
 - * Satisfies important property, $\mathcal{O}\Psi_2^{4/3}\mathcal{J} = \Psi_2^{4/3}\mathcal{J}\mathcal{O}^{\dagger}$
 - \blacktriangleright $\Psi_2^{4/3}\mathcal{J}$ takes solutions of adjoint Teukolsky to solutions of Teukolsky

Exactly what we need to construct a product on two solutions in the **same** space!

Bilinear form

* Let $\psi_1, \psi_2 \stackrel{\circ}{=} (-4,0)$ be smooth with compact support in ker \mathcal{O}^{\dagger} . Define bilinear form

$$\langle\langle\psi_1,\psi_2\rangle\rangle = \Pi\left[\Psi_2^{4/3}\mathcal{J}\psi_1,\psi_2\right]$$

* Properties

- 1. C-linear in both entries
- 2. conserved (independent of choice of Cauchy surface Σ)
- 3. $\langle \langle \psi_1, \psi_2 \rangle \rangle = \langle \langle \psi_2, \psi_1 \rangle \rangle$ (symmetric)
- 4. $\langle \langle L_t \psi_1, \psi_2 \rangle \rangle = \langle \langle \psi_1, L_t \psi_2 \rangle \rangle$ (time translation operator is symmetric)

Bilinear form

* Proof of (4), $\langle\langle \mathbf{L}_t \psi_1, \psi_2 \rangle\rangle = \langle\langle \psi_1, \mathbf{L}_t \psi_2 \rangle\rangle$

$$\mathcal{L}_{t}\pi(\Psi_{2}^{4/3}\mathcal{J}\psi_{1},\psi_{2})$$

$$=\pi(\Psi_{2}^{4/3}\mathcal{L}_{t}\mathcal{J}\psi_{1},\psi_{2}) + \pi(\Psi_{2}^{4/3}\mathcal{J}\psi_{1},\mathcal{L}_{t}\psi_{2})$$

$$=-\pi(\Psi_{2}^{4/3}\mathcal{J}\mathcal{L}_{t}\psi_{1},\psi_{2}) + \pi(\Psi_{2}^{4/3}\mathcal{J}\psi_{1},\mathcal{L}_{t}\psi_{2})$$

$$L_{t}\mathcal{J} = -\mathcal{J}L_{t}$$

* Note that in a Hamiltonian formulation, this corresponds to

$$\langle\langle \mathcal{H}\psi_1, \psi_2 \rangle\rangle = \langle\langle \psi_1, \mathcal{H}\psi_2 \rangle\rangle$$

Bilinear form

In Boyer-Lindquist coordinates and Kinnersley frame,

$$\langle \langle \psi_1, \psi_2 \rangle \rangle = 4M^{4/3} \int_{\Sigma} dr \, d\theta \, d\phi \, \frac{\sin \theta}{\Delta^2} \left[\psi_1 \Big|_{\substack{t \to -t \\ \phi \to -\phi}} \left(\frac{\Lambda}{\Delta} \partial_t + \frac{2Mra}{\Delta} \partial_\phi + 2 \left[-r - ia \cos \theta + \frac{M}{\Delta} (r^2 - a^2) \right] \right) \psi_2 \right] + \psi_2 \left[\left(\frac{\Lambda}{\Delta} \partial_t + \frac{2Mra}{\Delta} \partial_\phi + 2 \left[-r - ia \cos \theta + \frac{M}{\Delta} (r^2 - a^2) \right] \right) \psi_1 \right]_{\substack{t \to -t \\ \phi \to -\phi}} \right]$$

- * In contrast to inner product, there is no complex conjugation on first argument bilinear
- * Not positive not an inner product

Quasinormal modes

$$_{s}\psi_{\ell m\omega} = e^{-i\omega t + im\phi} {_{s}}R_{\ell m\omega}(r) {_{s}}S_{\ell m\omega}(\theta)$$

* Teukolsky equation separates into angular and radial parts

$$\left[\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d}{d\theta}\right) + \left(K - \frac{m^2 + s^2 + 2ms\cos\theta}{\sin^2\theta} - a^2\omega^2\sin^2\theta - 2a\omega s\cos\theta\right)\right]_{s} S_{\ell m\omega}(\theta) = 0$$

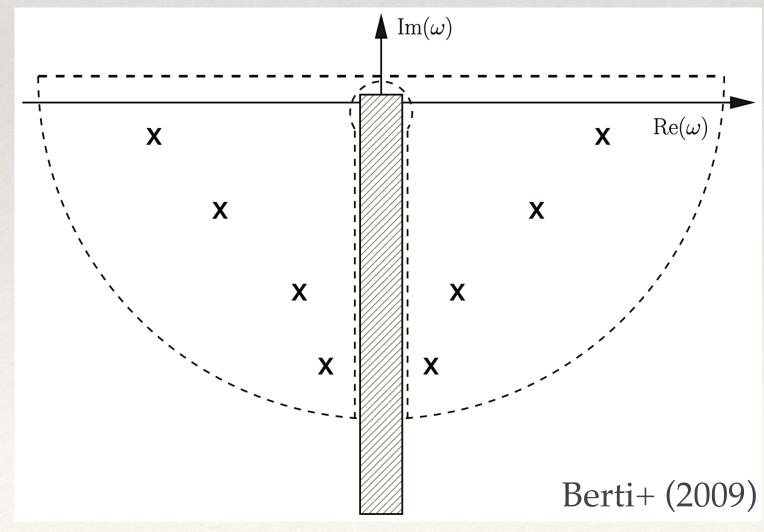
$$\left[\Delta^{-s} \frac{d}{dr} \left(\Delta^{s+1} \frac{d}{dr}\right) + \left(\frac{H^2 - 2is(r - M)H}{\Delta} + 4is\omega r + 2am\omega - K + s(s + 1)\right)\right]_{s} R_{\ell mn}(r) = 0$$
separation constant

- * Angular part gives spheroidal harmonics, indexed by integer $\ell \ge \max(|m|, |s|)$
- * For fixed $s, m, \omega \in \mathbb{R}$, these are orthogonal, $\int_0^{\pi} d\theta \sin \theta s S_{\ell m \omega}(\theta) s S_{\ell' m \omega}(\theta) = \delta_{\ell \ell'}$

Quasinormal modes

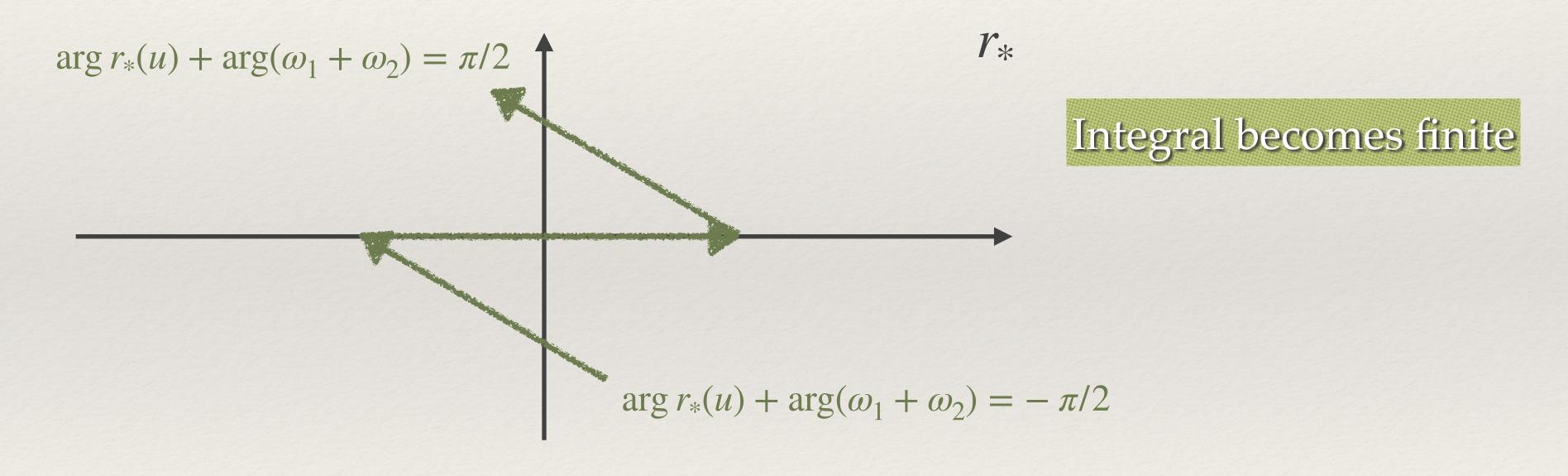
$$_{S}\psi_{\ell m\omega} = e^{-i\omega t + im\phi} {_{S}R_{\ell m\omega}(r)} {_{S}S_{\ell m\omega}(\theta)}$$

- Radial part
- $\left| \Delta^{-s} \frac{d}{dr} \left(\Delta^{s+1} \frac{d}{dr} \right) + \left(\frac{H^2 2is(r M)H}{\Delta} + 4is\omega r + 2am\omega K + s(s+1) \right) \right|_{s} R_{\ell mn}(r) = 0$
- Assume ingoing at horizon / outgoing at infinity $\begin{cases} R^{\text{in}} \sim \frac{e^{-i\kappa r_*}}{\Delta^s}, & r_* \to -\infty, \\ R^{\text{up}} \sim \frac{e^{i\omega r_*}}{r^{2s+1}}, & r_* \to \infty \end{cases}$
- Obtain discrete spectrum $\omega_{\ell mn}$ with $\text{Im}(\omega_{\ell mn}) < 0$
 - Modes decay in time but **blow up** at $|r_*| \to \infty$ $\Rightarrow \langle \langle \cdot, \cdot \rangle \rangle$ divergent on quasinormal modes



Bilinear form for quasinormal modes

- * Extend $\langle\langle \cdot, \cdot \rangle\rangle$ from compact support \longrightarrow quasinormal mode data (following Leung+, 1994)
- * Deform radial integration into complex plane



* Properties (1)-(4) continue to hold.

Bilinear form for quasinormal modes

Main result

Let
$$\psi_1, \psi_2$$
 be quasinormal modes. Then $0 = \langle \langle \psi_1, \mathcal{L}_t \psi_2 \rangle \rangle - \langle \langle \mathcal{L}_t \psi_1, \psi_2 \rangle \rangle$
= $(\omega_2 - \omega_1) \langle \langle \psi_1, \psi_2 \rangle \rangle$

 \implies either $\omega_1 = \omega_2$ or $\langle \langle \psi_1, \psi_2 \rangle \rangle = 0$.

* Explicitly on modes,

$$\langle\langle\psi_{\ell_1 m_1 \omega_1}, \psi_{\ell_2 m_2 \omega_2}\rangle\rangle = 8\pi M^{4/3} \delta_{m_1 m_2} e^{-i(\omega_2 - \omega_1)t} \int_{C_*} dr_* \int_0^{\pi} d\theta \, \frac{(r^2 + a^2)\sin\theta}{\Delta} S_1(\theta) S_2(\theta) R_1(r) R_2(r)$$

$$\left(-\frac{i\Lambda}{\Delta}(\omega_1 + \omega_2) + \frac{2iMra}{\Delta}(m_1 + m_2) + 2\left[-r - ia\cos\theta + \frac{M}{\Delta}(r^2 - a^2)\right]\right)$$

* This is fundamentally a 2D integral!

Excitation coefficients

Given initial data, expand QNM part of solution as

$$\psi_s \sim \sum_{\ell mn} c_{\ell mn} s \psi_{\ell mn}$$

Using bilinear form...

$$c_{\ell mn} = \frac{\langle \langle s \psi_{\ell mn}, \psi_s \rangle \rangle}{\langle \langle s \psi_{\ell mn}, s \psi_{\ell mn} \rangle \rangle}$$

* From Laplace transform... _____ initial data

$$c_{\ell mn} = \frac{\langle \langle s \psi_{\ell mn}, \psi_s \rangle \rangle}{\langle \langle s \psi_{\ell mn}, s \psi_{\ell mn} \rangle \rangle}$$

$$c_{n\ell m} = -\frac{i}{d \mathcal{W} / d \omega} \Big|_{\omega_n} \int_{r_+}^{\infty} s I_{\ell mn}(r') s R_{\ell mn}(r') \Delta^s(r') dr'$$

$$ve equivalence (following Leung+, 1994). In particular, norm
$$\mathcal{W}[R_1, R_2] = \Delta^{1+s} \left[R_1 \frac{dR_2}{dr} - R_2 \frac{dR_1}{dr} \right]$$$$

Can prove equivalence (following Leung+, 1994). In particular, norm of a QNM is related to derivative of the Wronskian,

$$\frac{d}{d\omega} \mathcal{W}[R_{\omega}^{\text{in}}, R_{\omega}^{\text{up}}] = \frac{-i}{8\pi M^{4/3}} \langle \langle \psi_{\omega_n}^{\text{in}}, \psi_{\omega_n}^{\text{up}} \rangle \rangle$$

$$\omega = \omega_n$$

"Norm" of a QNM

$$\frac{d}{d\omega} \mathcal{W}[R_{\omega}^{\text{in}}, R_{\omega}^{\text{up}}] \bigg|_{\omega = \omega_n} = \frac{-i}{8\pi M^{4/3}} \langle \langle \psi_{\omega_n}^{\text{in}}, \psi_{\omega_n}^{\text{up}} \rangle \rangle$$

Sketch of proof

1. If S_1 , S_2 satisfy the angular equation, then by explicit calculation

$$8\pi M^{4/3} \mathscr{W}[R_1, R_2] = \int_{S^2(t,r)} t \cdot \pi(\Psi_2^{4/3} \mathscr{J} \psi_1, \psi_2)$$
Integral on sphere

Note that both sides vanish on QNMs. Derivative, however, will relate to QNM norm.

"Norm of a QNM"

2. For R_1 , R_2 solutions, ingoing at horizon, outgoing at infinity

$$d\left(t \cdot \pi \left(\Psi_{2}^{4/3} \mathcal{J} \psi_{\omega_{n}}^{\text{in}}, \psi_{\omega}^{\text{up}}\right)\right) = \mathcal{L}_{t} \pi \left(\Psi_{2}^{4/3} \mathcal{J} \psi_{\omega_{n}}^{\text{in}}, \psi_{\omega}^{\text{up}}\right)$$

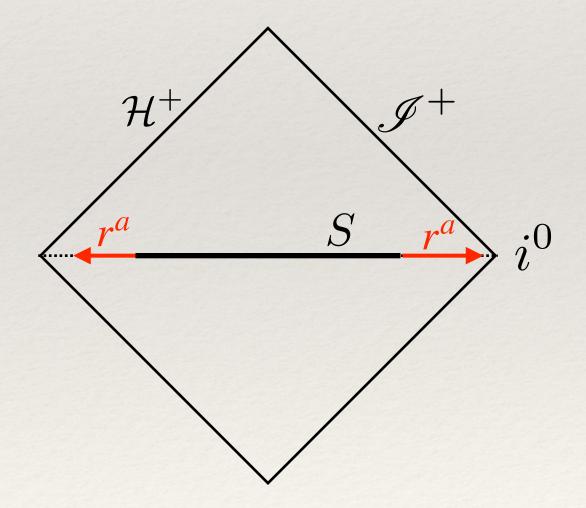
$$= -i(\omega - \omega_{n}) \pi \left(\Psi_{2}^{4/3} \mathcal{J} \psi_{\omega_{n}}^{\text{in}}, \psi_{\omega}^{\text{up}}\right)$$

Cartan's magic formula

* Integrate over S

$$\int_{\partial S} t \cdot \pi(\Psi_2^{4/3} \mathcal{J} \psi_{\omega_n}^{\text{in}}, \psi_{\omega}^{\text{up}}) = -i(\omega - \omega_n) \int_S \pi(\Psi_2^{4/3} \mathcal{J} \psi_{\omega_n}^{\text{in}}, \psi_{\omega}^{\text{up}})$$

* Differentiate wrt ω and take $\omega \to \omega_n$



"Norm" of a QNM

$$\int_{\partial S} t \cdot \pi(\Psi_2^{4/3} \mathcal{J} \psi_{\omega_n}^{\text{in}}, \psi_{\omega}^{\text{up}}) = -i(\omega - \omega_n) \int_S \pi(\Psi_2^{4/3} \mathcal{J} \psi_{\omega_n}^{\text{in}}, \psi_{\omega}^{\text{up}})$$

$$\int_{\partial S_+} t \cdot \pi \left(\Psi_2^{4/3} \mathcal{J} \psi_{\omega_n}^{\text{in}}, \frac{d}{d\omega} \Big|_{\omega = \omega_n} \psi_{\omega}^{\text{up}} \right)$$

$$-i \int_S \pi(\Psi_2^{4/3} \mathcal{J} \Upsilon_{\omega_n}^{\text{in}}, \psi_{\omega_n}^{\text{up}})$$

$$-i \int_S \pi(\Psi_2^{4/3} \mathcal{J} \Upsilon_{\omega_n}^{\text{in}}, \psi_{\omega_n}^{\text{up}})$$

$$-i \int_S \pi(\Psi_2^{4/3} \mathcal{J} \Upsilon_{\omega_n}^{\text{in}}, \psi_{\omega_n}^{\text{up}})$$

$$+ \int_{\partial S_-} t \cdot \pi \left(\frac{d}{d\omega} \Big|_{\omega = \omega_n} \Psi_2^{4/3} \mathcal{J} \psi_{\omega}^{\text{in}}, \psi_{\omega_n}^{\text{up}} \right)$$
Vanish

* Rearranging, obtain result $\left. \frac{d}{d\omega} \mathcal{W}[R_{\omega}^{\text{in}}, R_{\omega}^{\text{up}}] \right|_{\omega = \omega_n} = \frac{-i}{8\pi M^{4/3}} \langle \langle \psi_{\omega_n}^{\text{in}}, \psi_{\omega_n}^{\text{up}} \rangle \rangle$

Summary (so far)

- * Defined a bilinear form (or relativistic product) $\langle\langle \cdot, \cdot \rangle\rangle$ for Teukolsky solutions
 - * Comes from combining $\pi^a[\cdot,\cdot]$ current with t- ϕ reflection operator \mathcal{J}
 - * Complex radial integration makes $\langle\langle \cdot, \cdot \rangle\rangle$ finite on QNMs
 - * QNMs with $\omega_1 \neq \omega_2$ are orthogonal with respect to the bilinear form
- * Mode expansions $\psi_s \sim \sum_{\ell mn} c_{\ell mn} s \psi_{\ell mn}$ with the bilinear form give rise to the well-known expression for the excitation coefficients.

Application to black hole boson clouds

$$(\Box - \mu^2)\Phi = 0$$

massive scalar field in Kerr

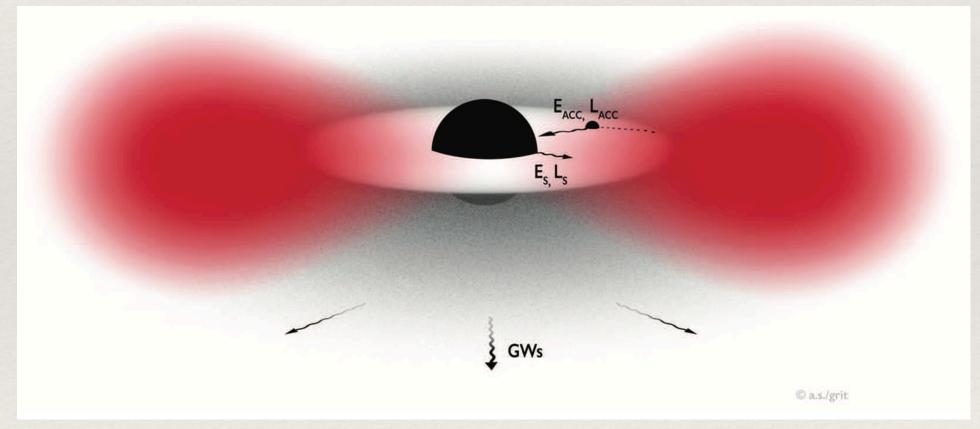
* Massive fields give rise to quasibound states (QBSs) with $|\omega| < \mu$

$$\Phi \sim r^{-1}e^{ikr_*}, \qquad r_* \to \infty \quad \text{(QNMs)},$$

$$\Phi \sim r^{-1}e^{-ikr_*}, \qquad r_* \to \infty \quad \text{(QBSs)},$$

$$k = \sqrt{\omega^2 - \mu^2}$$

- * Confined by Yukawa suppression \Longrightarrow no radiation at \mathcal{I}^+ .
- * Superradiantly unstable if $m\Omega_{\rm H} > \omega_{\rm R}$.
- * Astrophysically, leads to boson clouds for $\mu \approx 10^{-18} 10^{-19} \text{ eV}.$



Brito+ (2014)

Gravitational atom

Quasibound states

approximate leading order in
$$\alpha = \mu M$$
 and $r \gg \mu^{-1}$

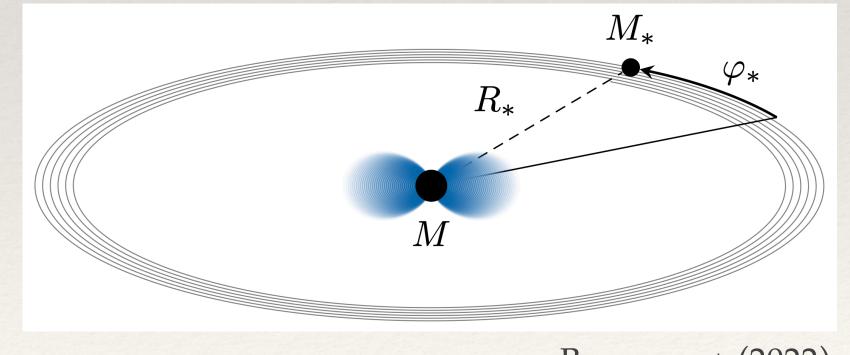
Use bilinear form $\langle\langle \cdot, \cdot \rangle\rangle$!

Many applications:

- * Level mixing due to potentials $\langle n\ell m | \delta V | n'\ell' m' \rangle_H$, e.g., binary companion or self-interaction
- * Self-gravity leading to frequency shifts $\propto \langle n\ell m | \delta V | n\ell m \rangle_H$

Hydrogen bound states

- * Regular at origin
- * Hydrogenic inner product $\langle \cdot | \cdot \rangle_H$
- $* \omega \in \mathbb{R}$
- * Complete, orthonormal set of modes



Baumann+ (2022)

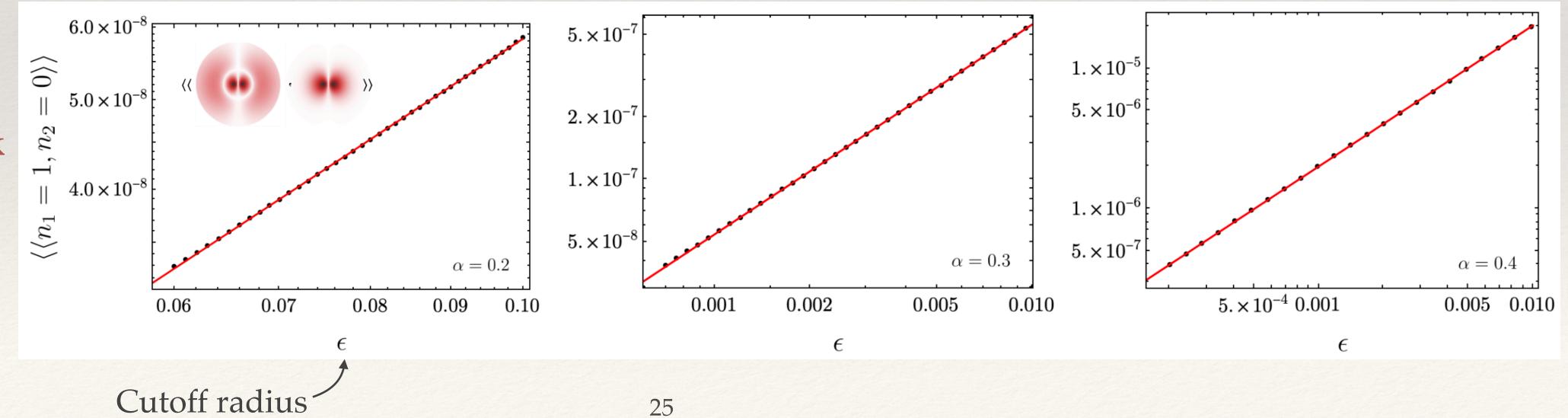
Bilinear form for QBSs

- * Straightforward extension to massive scalar fields and QBS states with $\Phi \sim r^{-1}e^{-ikr_*}$ as $r \to \infty$.
- * For Schwarzschild QBS, can alternatively regularize using counter-term subtraction

$$\langle \langle \Phi_1, \Phi_2 \rangle \rangle_{\text{Schwarzschild QBS}}$$

$$= i \delta_{m_1 m_2} \delta_{l_1 l_2} (\omega_1 + \omega_2) \lim_{\bar{r}_* \to -\infty} \left[\int_{\bar{r}_*}^{\infty} dr_* X_1(r'_*) X_2(r'_*) + \frac{i}{\omega_1 + \omega_2} X_1(\bar{r}_*) X_2(\bar{r}_*) + (\text{higher orders}) \right]$$

Numerical check of orthogonality



Relativistic perturbation theory

$$\mathcal{O}\Phi + \delta V\Phi = 0 \qquad \text{Potential } \delta V$$

Mode ansatz
$$\Phi = \sum_{q} c_q(t) \Phi_q$$

Project onto mode n

$$\sum_{q} \langle \langle \Phi_n, \mathcal{O}c_q(t)\Phi_q \rangle \rangle + \langle \langle \Phi_n, c_q(t)\delta V\Phi_q \rangle \rangle = 0$$

Assume $\dot{c} \sim \delta V$, $\ddot{c} \sim \delta V^2$

$$2i\omega_n \langle \langle \Phi_n, \Phi_n \rangle \rangle + O(\delta V^2) = \sum_q c_q(t) \langle \langle \Phi_n, \delta V \Phi_q \rangle \rangle$$

cf. QM time-dependent perturbation theory

Example: Frequency shifts

* Consider (Newtonian, flat space) self-gravity of a superradiant mode (from Siemonson+ 2023)

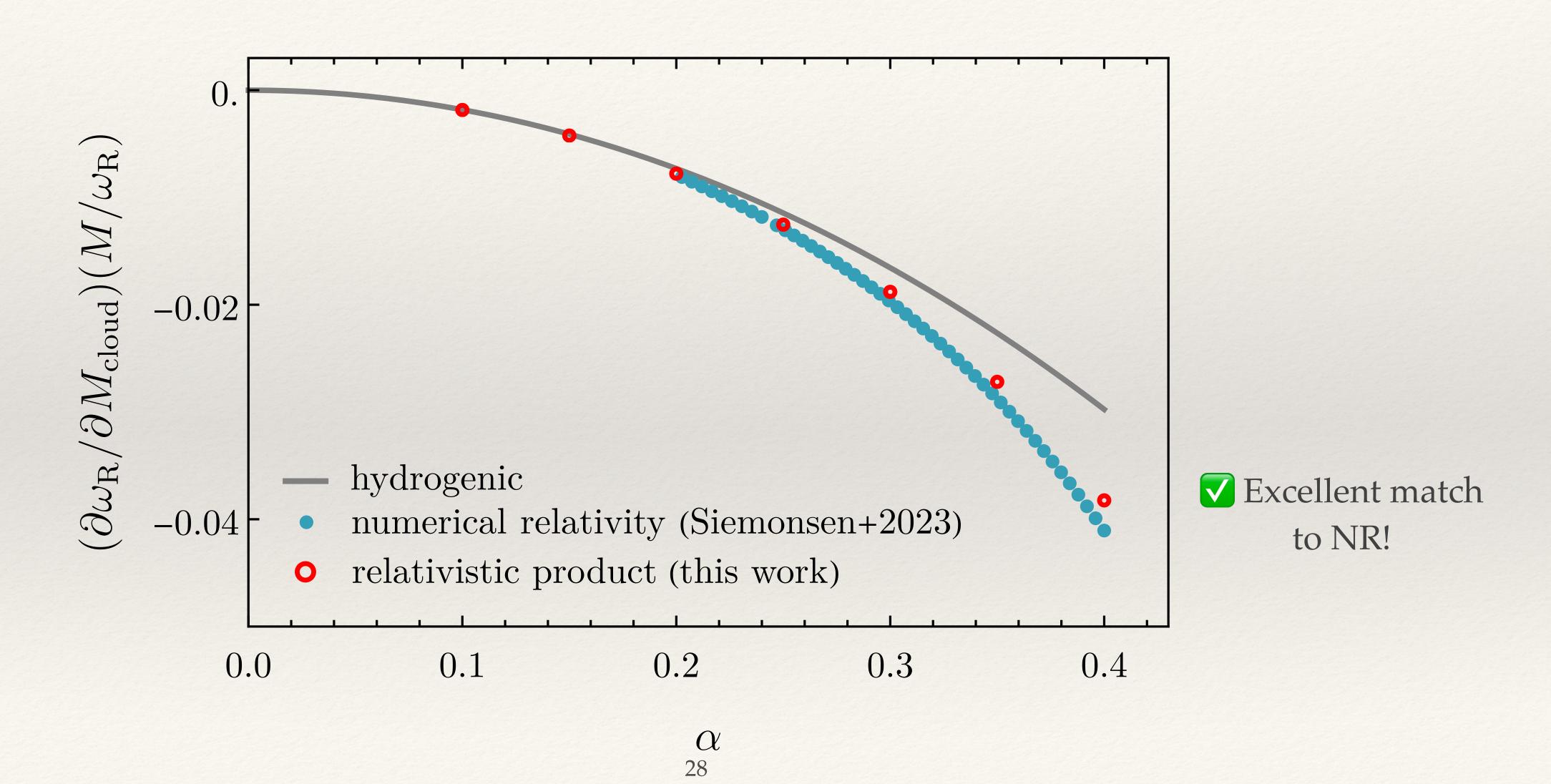
$$\delta V(r) = -2\mu^2 \left[\frac{1}{r} \int_{r_+}^r d^3r' T_t^t + \int_r^\infty d^3r' \frac{T_t^t}{r'} \right]$$
stress-energy of Φ

* For a single mode frequency-shift, $c_n(t) \propto e^{-i\delta\omega_n t}$

$$2i\omega_n\langle\langle\Phi_n,\Phi_n\rangle\rangle + O(\delta V^2) = \sum_q c_q(t)\langle\langle\Phi_n,\delta V\Phi_q\rangle\rangle \qquad \longrightarrow \qquad \delta\omega_n = -\frac{\langle\langle\Phi_n,\delta V\Phi_n\rangle\rangle}{2\omega_n\langle\langle\Phi_n,\Phi_n\rangle\rangle}$$

- * Compute $\ell = m = 1$ mode frequency shifts for BH spins close to the superradiant bound.
 - * Compare to hydrogenic approximation and numerical relativity (Siemonson+ 2023) for a variety of α .

Frequency shifts



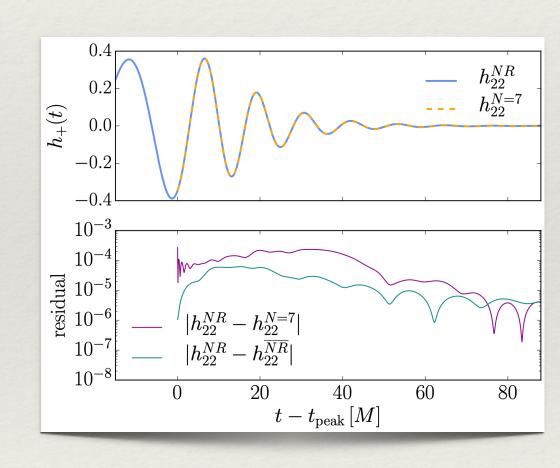
Conclusions

- * The bilinear form generalizes the quantum mechanical inner product for black holes.
- * QNMs and QBSs are orthogonal for different ω .
- Perturbation theory based on our relativistic product gives greatly improved agreement with numerical relativity.

Further directions

The relativistic product opens many directions of research:

- * Boson clouds (self-interactions, tidal perturbers, ...)
- * Extension to Proca fields?
- Nonlinear ringdown
- Extension to hyperbolic slices



* Gravitational turbulence? (talk of S. Hollands)

