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Black hole spectroscopy: from theory to experiment
Overtones, nonlinearities, and elephants
Agnostic black hole spectroscopy (now automated!)
Have we observed overtones?*
Pseudospectra and quasinormal mode instabilities*



Black hole spectroscopy:
from theory to experiment



November 18, 1915:
Schwarzschild metric

           : physical curvature singularity
                    
                      : “Schwarzschild radius”

Key questions: 

1) Is the Schwarzschild “singularity” the end point of gravitational collapse?
1939: Oppenheimer-Snyder, yes (for dust, in spherical symmetry)
1963: Lifshitz-Khalatnikov, not generically
Wheeler (following Schmidt’s discovery of a quasar): does the nuclear equation of state halt collapse?
Answer: Penrose-Hawking singularity theorems

2) If so, is the Schwarzschild solution stable?
Answer: black hole perturbation theory, quasinormal modes (QNMs) and black hole spectroscopy

The Schwarzschild metric



Are black holes stable? The Golden Age (1963-1970s)
Late 1960s and 1970s:

ü “Golden Age” of black hole physics
ü Misner-Thorne-Wheeler, “Gravitation”
ü Kip Thorne and students (including Saul Teukolsky) lay the 

foundations to understand black hole stability and dynamics

1963:

ü Roy Kerr: rotating black holes

ü Maarten Schmidt at Caltech discovers the first 
quasar, 3C273 at z=0.15 – extragalactic!

ü Must be compact and outshines the brightest 
galaxies: first supermassive black hole

ü Giacconi-Gursky propose orbital satellite to 
study X-ray sources
1964: Cygnus X-1, first stellar-mass black hole



QNMs and overtones: some milestones. Phase 1 – theory development
1957 – Regge-Wheeler axial (odd-parity) perturbations as a scattering problem, boundary conditions not understood
1970 – Zerilli polar (even-parity) perturbations, much harder!

Scalar, electromagnetic and gravitational perturbations of a Schwarzschild BH: Regge-Wheeler/Zerilli equations
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1-'ig. 4. The fraction F of the Incident energy carried by the scattered 
outgoing wave packet at spatial infinity plotted as a function of the 

parameter a. 

is the ratio of the energies carried by the incoming and the 
outgoing wave packets and is readily computed as 

F = J(q,out)' dx = J(q,out)" d.v 
f(q,Jn) 2 dx 1t' 

ln Fig. 4 the fraction F is plotted as a function of the 
width-parameter a. For an incident wave packet, the 
width of which is about a Schwarzschild radius (a-==: 1) 
approx:unate1y half the total energy is scattered and the 
rest absorbed by the black-hole. 

We have confined ourselves so far t o some results con-
coming the scattering of odd-parity gravitational waves 
of angular momentum l = 2 by a Schwarzschild black-hole. 
The mathemat ical and numerical details omitted here, as 
well as the scattering of higher l modes, even-parity waves, 
sca lar gravitational waves and finally electromagnetic 
waves, will be discussed elsewhere in a separate and more 
detailed paper. 
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Phase Change in the Upper Mantle 
above 350 km 
BuLLEN 1 •2 has used the Adams-Williamson relation in 
region JJ (upper 400 km in the mantle) to relate the rate 
of change of density in the Earth's interior to the rat e 
of change of seismic velocity. The Adams-Williamson 
relation implicitly assumed that phase changes are 
absent. Recent interpretations of the velocity gradient 
in the mantle• have re-emphasized. the importance of 
phase changes in region C (between 400 and 900 km). 
Region B is often treated as a homogeneous layer , but 
I present here some evidence t o show that phase• change 
may also occur in this region. 

A number of empirical equations which relate densities 
of common rocks and minerals with velocities of com-
pressional waves•-• show that velocity 1s linearly pro-
portional to density 

(1) 

where U has a value of about :3 (km/s)/(g/cm3 ). This 
relation has been applied to th0 calculation of density 
in various regions of the E arth from known seismic 
velocities'-•. For common rooks and minerals, bulk 

4 
sound \·clocity, C, which is defined as ( Vp 2 - 3 
was also found to be linearly proportiona to density. 
This relation may be expressed as 

(2) 
"·here, for rocks and minerals with mean atomic weight 
about 21, b has a value of 2·36 (km/s)f(g/cm 3 ) (ref. 10). 
This empirical relation was shown to follow closely the 
C versus p relation for a single material under large 
compressionll,I2, Anderson13 gave a sE'ismic of 
state relating the seismic parameter <p (11·hteh IS 1dentwal 
to 0 2 ) and p 

(3) 

Fitting this equation to data for thirty-one selected 
rocks and minerals, the valuE' for n is found to be about 3. 

\Vith increasing depth, both temperature and pressure 
rise. The implicit assumption in the application of any 
one of the empirical d ensity velocity relations to tilE' 
prediction of density in the upper mantle is that the 
effect of an increase of temperature and pressure w1th 
depth might change density and velocity in approxi-
mately the same ratio as that represent ed by_ the r>rnptnoal 
relations. I have found14 that, m rogwns of lugh 
temperat,uro gradient such as the upper mantle, 
assumption is violated for the relat10n IJetween . r P 

and p but is obeyed for equations 2 and 3. These rp]a,t.,ons 
are used to estimate the density dtfferenco,; at Yarwus 
depths in the upper mantle, corresponding to a giYE'!l 
dist1·ibution of seismic velocities. 

As noted by Anderson13 , the seismic cquatio11 of state 
tends to predict smaller change of density than does 
Birch's equation of stat e at a given change of '?· In 
Fig. I, pf p0 is plotted against 'fll'flo for tho followmg equa-
tions: equation G, wit h b = 2·36 (kmjs)/(gfom") and 
0 0fp 0 = 1·8 (km/s)/(g/cm3 ) as for most. rocks and 
(a is adjusted such that C = 0 0 whe11 p = p0). l'fjllnt wn " 
(n=3). and finally Birf:h's equation"' 

q:>f'flo=-§-(p/po)l[7(p/po)i- 5] (4) 

QNMs and overtones: some milestones. Phase 1 – theory development
1957 – Regge-Wheeler axial (odd-parity) perturbations as a scattering problem, boundary conditions not understood
1970 – Zerilli polar (even-parity) perturbations, much harder!
1970 – Vishveshwara now boundary conditions are clear: scattering experiment, “ringdown waves”



QNMs and overtones: some milestones. Phase 1 – theory development
1957 – Regge-Wheeler axial (odd-parity) perturbations as a scattering problem, boundary conditions not understood
1970 – Zerilli polar (even-parity) perturbations, much harder!
1970 – Vishveshwara now boundary conditions are clear: scattering experiment, “ringdown waves”
1971 – Press ringdown waves are free oscillation modes of the black hole
1971 – Davis-Ruffini-Press-Price these modes are excited when radially falling particles cross the light ring
1973 – Teukolsky formalism for Kerr perturbations



after switching to the tortoise coordinate (14) and introduc-
ing! ¼ ðr2 þ a2Þ1=2R the radial Eq. (12) takes the form of
the Schrödinger equation

d2!

dr2%
& V! ¼ 0 (20)

with the potential

V ¼ &!2 þ 4rgram!& a2m2

ðr2 þ a2Þ2

þ "

r2 þ a2

!
!2

a þ
lðlþ 1Þ þ k2a2

r2 þ a2

þ 3r2 & 4rgrþ a2

ðr2 þ a2Þ2 & 3"r2

ðr2 þ a2Þ3
"
: (21)

We include the ð&!2Þ term in the definition of the poten-
tial, because even if wewere to separate it, there would be a
residual dependence on!. We present the qualitative shape
of the potential V for a typical choice of parameters in
Fig. 7. One can clearly see the potential well where the
bound Keplerian orbits are localized and a barrier separat-
ing this region from the near-horizon region where super-
radiant amplification takes place.

Consequently, the axion wave function at the horizon
r ¼ rþ (corresponding to r% ¼ &1) is suppressed relative
to the wave function in the vicinity of the Keplerian orbit
by a tunneling exponent,

jRðrþÞj ’ jRðrcÞje&I;

where the tunneling integral I is

I ¼
Z r%ðr2Þ

r%ðr1Þ
dr%

ffiffiffiffi
V

p
¼

Z r2

r1

dr

ffiffiffiffi
V

p
ðr2 þ a2Þ
"

; (22)

with r1;2 being the boundaries of the classically forbidden
region. We will only follow the leading exponential depen-
dence on e&I and do not aim at calculating the normaliza-
tion prefactor in front of the exponent.

To relate the tunneling exponent with the rate of super-
radiance instability let us consider again the energy flow
Eq. (6). Integrating it over the horizon we obtain

dE
dt

¼ !ðmwþ &!Þ
Z
horizon

jYð"ÞRðrþÞj2; (23)

where E is the energy in the axion cloud. The energy is
maximum in the Keplerian region, so that in the limit
where we only keep track of the dependence on the ex-
ponent e&I we can write

E / jRðrcÞj2 ’ e2IjRðrþÞj2;
and, consequently, to rewrite (23) as

dE
dt

¼ const ' ðmwþ &!Þe&2IE: (24)

In other words, the WKB approximation for the super-
radiance rate gives1

# ¼ #ðmwþ &!Þe&2I; (25)

where the normalization prefactor is determined mainly by
the spread of the wave function in the classically allowed
region. We will limit ourself by calculating the exponential
part #. We leave the technical details for the Appendix, and
present only the final result here. Namely, the final answer
for the tunneling integral in the extremal Kerr geometry
takes the form

I ¼ $
!
2%&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2%ð%& 1Þ

p "
; (26)

which translates in the following superradiant rate,

#WKB ( 10&7r&1
g e&2$%ð2&

ffiffi
2

p
Þ ( 10&7r&1

g e&3:7%; (27)

where we took the large % limit in (26) and chose the
prefactor to match the low % results of Sec. II B (this value
also agrees with that of [19,32]). As we already said, the
exponent in (27) is larger than that in [19] by a factor of two.
As explained in the Appendix, the rate (27) provides an
upper envelope for superradiance rates at different l in the
large % limit. We have presented (27) by a dotted line in
Fig. 5; it agrees reasonably well with the previous%=l ) 1
results.

III. DYNAMICS OF SUPERRADIANCE

Let us turn now to discussing the dynamical consequen-
ces of the superradiant instability. One important property
of the rates calculated in Sec. II is that the time scale for the
development of the instability is quite slow compared to
the natural dynamical scale rg close to the black hole
horizon, #&1

sr > 107rg. Consequently, in many cases non-
linear effects, both gravitational, and due to axion self-
interactions, become important in the regime where the
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FIG. 7 (color online). The shape of the radial Schroedinger
potential for the eigenvalue problem in the rotating black hole
background. Superradiant modes are localized in a potential well
region created by the mass ‘‘mirror’’ from the spatial infinity on
the right, and by the centrifugal barrier from the ergo-region and
horizon on the left. 1Note, that at this stage we still agree with [19].
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Quasinormal modes: 
• Ingoing waves at the horizon,

outgoing waves at infinity
• Spectrum of damped modes (“ringdown”) 

Massive scalar field: 

• Superradiance: black hole bomb when
[Press-Teukolsky 1972]

• Hydrogen-like, unstable bound states 
[Detweiler 1980, Zouros+Eardley, Dolan…]

[Arvanitaki+Dubovsky, 1004.3558]

0 < ! < m⌦H
<latexit sha1_base64="jYfVTIpELl6Vbm+ImvxJeEbWqUs=">AAAB/XicbVDLSsNAFJ3UV42v+Ni5CRbBVUmqoIsuim66s4J9QBPCZDpph85kwsxEqKH4K25cKOLW/3Dn3zhps9DWA5d7OOde5s4JE0qkcpxvo7Syura+Ud40t7Z3dves/YOO5KlAuI045aIXQokpiXFbEUVxLxEYspDibji+yf3uAxaS8PheTRLsMziMSUQQVFoKrCOn7nGGh7DOvNu8B03TDKyKU3VmsJeJW5AKKNAKrC9vwFHKcKwQhVL2XSdRfgaFIojiqemlEicQjeEQ9zWNIcPSz2bXT+1TrQzsiAtdsbJn6u+NDDIpJyzUkwyqkVz0cvE/r5+q6MrPSJykCsdo/lCUUltxO4/CHhCBkaITTSASRN9qoxEUECkdWB6Cu/jlZdKpVd3zau3uotK4LuIog2NwAs6ACy5BAzRBC7QBAo/gGbyCN+PJeDHejY/5aMkodg7BHxifP3uJk/E=</latexit>

QNMs and overtones: some milestones. Phase 2 – overtones and spectroscopy



[Berti-Cardoso-Will, gr-qc/0512160; EB+, gr-qc/0707.1202]

• One mode fixes mass and spin – and the whole spectrum!
• N modes: N tests of GR dynamics…if they can be measured
• Measurement requires understanding of QNM excitation (as in atomic physics!)
• Retrograde modes (too often ignored)

QNMs and overtones: some milestones. Phase 2 – overtones and spectroscopy



QNMs and overtones: some milestones. Phase 2 – overtones and spectroscopy
1975 – Chandrasekhar-Detweiler first numerical calculation of overtones in Schwarzschild, with limited accuracy
1978 – Cunningham-Price-Moncrief observe overtones in perturbative calculation of collapse to Schwarzschild
1979 – Detweiler first complete calculation of the Kerr spectrum, “black hole spectroscopy”
“After the advent of gravitational wave astronomy, the observation of [the black hole’s] resonant frequencies might finally 
provide direct evidence of black holes with the same certainty as, say, the 21 cm line identifies interstellar hydrogen.”
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Fig. 12—Fundamental quasi-normal ringing subtracted from for quadrupole gravitational radiation. The subtracted curve 
represents — /I exp (—<0/0 sin — 8) where a>B, a>/ are the real and imaginary parts of the least damped quasi-normal 
frequency. The parameters A and 8 are chosen to minimize oscillations at late times in the subtracted curve. 

and phase adjusted to minimize oscillations at late times. The result is plotted in Figure 12. The signature of the 
second quasi-normal mode aj2 = (0.69687 + 0.549380(2M)_1 is a ratio between the magnitudes of adjacent peaks 
(maximum and minimum) of 

exp {Im (cu2)7r/Re (cu2)} ^ 12. (IV-5) 

There is some indication in Figure 12 of the appearance of an oscillation with a damping rate of this order. It 
should be noted that the last few oscillations in the residual curve must be ignored. These fall near or below the 
extrapolated t~6 tail of the field, and we should expect the tail strongly to contaminate the ringing. The early time 
region of the curve must also be ignored since it is contaminated by the initial burst of radiation from the collapse. 

Figures 5 not only show that quasi-normal ringing appears in the outgoing radiation, but in fact that quasi- 
normal ringing seems in some sense to dominate the radiation. To investigate this quantitatively, we consider in 
Figure 13 to what extent the quadrupole gravitational spectrum (cf. Fig. 7) for collapse from r0 = 8M can be 
approximated by (i) the spectrum of pure quasi-normal ringing at the fundamental quasi-normal frequency, and by 
(ii) the spectrum of the two Chandrasekhar and Detweiler (1975) quasi-normal modes (cf. Table 1) with relative 
amplitude and phase adjusted for a good fit to the actual spectrum. The one-mode spectrum gives only a rough 
approximation, but the two-mode spectrum provides an excellent approximation to the main peak of the spectrum. 
The fact that the two-mode approximation does not reproduce the small secondary low-frequency peak is consistent 
with the interpretation that this secondary peak is produced by the initial burst of radiation. A comparison of 
Figures 7 and 13 shows that the main peak of the spectrum for r0 = 20M is also very well approximated. The two- 
mode spectrum, however, does not give as good a fit to the rQ = 4M collapse, nor can it be improved with a different 
choice of relative amplitudes and phases; all such two-mode spectra are somewhat broader than the r0 = 4M 
spectrum. This is caused by the circumstance that the initial burst of radiation in the r0 = 4M case falls at about 
the same frequency as the quasi-normal ringing. (Note the absence of a secondary peak in the rQ = 4M spectrum 
in Fig. 7.) To check that the impressive agreement in Figure 13 is not a result of the freedom to choose two param- 
eters (relative phase and amplitude) in superposing two modes we have tried to reproduce the / = 3 gravitational 
spectrum with the same two (/ = 2) modes and have found it impossible to achieve even a rough agreement. 

Although quasi-normal modes account very well for most of the radiation in the above example, we wish to 
caution against the assumption that quasi-normal ringing generally accounts for nearly all the radiation. That this 
is not so is made clear if we consider electromagnetic dipole radiation. In this case arguments based on the idealized 
potential (Price 1972) suggest that the single quasi-normal frequency given in Table 1 is the only quasi-normal 
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QNMs and overtones: some milestones. Phase 3 – excitation, pre-NR
1986 – Leaver Green’s function, continued fractions, excitation factors (also Andersson) – by analogy with H2+ ion!
1989 – Echeverria quantifies how well you can measure mass and spin from a single mode
1998 – Flanagan-Hughes ringdown may have as much SNR as inspiral
2002 – Hod-Dreyer are QNMs related with Bekenstein’s ideas on area quantization and LQG?
2003 – Dreyer+ revive/rebrand Detweiler’s idea of “black hole spectroscopy”
2005 – Berti-Cardoso-Will SNRs, measurability, QNM frequencies+fits, overtones vs. higher multipoles

Radial infall vs. one mode

Radial infall vs. six modes



Overtone excitation can be computed (no fits!) in linear perturbation theory

[Zhang+, 1305.4306]

[Leaver, PRD, 1986]
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FIG. 3. Sasaki-Nakamura wave function for an ultrarelativistic infall along the symmetry axis of a Kerr BH. Solid black
lines are results from the numerical solution of the perturbation equations; the other lines are results obtained by summing
different numbers of overtones. The upper panels refer to l = 2, the lower panels to l = 3. The left panels corresponds to
the Schwarzschild limit (j = 0), and the right panels to a fast-spinning Kerr BH with a = 0.49 (j = 0.98). In this plot, as
everywhere else in the paper, we use units 2M = 1.

Ψ must be understood as the Sasaki-Nakamura wave
function – against numerical gravitational waveforms ob-
tained in this way. As in the Schwarzschild case, the
integrand appearing in the calculation of the Kerr ex-
citation factors is, in general, divergent. The divergence
can be regularized following a procedure analogous to the
Schwarzschild case (cf. Appendix A2).

Figure 3 confirms our basic findings from the nonrotat-
ing case: the convergence of the QNM expansion is not
necessarily monotonic, and the excitation coefficient ex-
pansion works better for higher values of l. Notice that a
relatively small number of overtones is sufficient to repro-
duce the numerical waveform at early times even when
the spin of the Kerr BH is rather large (j = 0.98), so
that one may in principle expect that a larger number of
overtones would be necessary (see e.g. [29, 54–57]). To
our knowledge, the calculation presented in this Section
is the first concrete proof that an excitation-coefficient
expansion is applicable and useful in the Kerr case: all
calculations available in the literature so far were specific
to the Schwarzschild case (see e.g. [32, 33]).

V. CONCLUSIONS AND OUTLOOK

In this paper we have implemented a new method,
based on the MST formalism, to compute the excita-
tion factors Bq for Kerr QNMs. This method is simpler
and more accurate than the method used by two of us
in [2], allowing us to extend the calculation to higher
angular multipoles l and to higher overtone numbers n.
Tables of the excitation factors Bq in the Teukolsky and
Sasaki-Nakamura formalisms will be made publicly avail-
able online [39], in the hope to stimulate further research
in this field.

As a test of the method, we have computed the QNM
excitation coefficients for the classic problem of particles
falling radially into the BH. We have compared the exci-
tation coefficient expansion against numerical results for:
(i) particles falling from rest (E = 1) into a Schwarzschild
BH, (ii) large-energy particles (E = 10) falling into
a Schwarzschild BH, and (iii) ultrarelativistic particles
falling into a Kerr BH along the symmetry axis. In all
cases we found excellent agreement, validating the useful-

Leaver (1986): Green’s function in Schwarzschild. Overtones: agreement well before peak
Zhang+ (2013): extension to Kerr (here for an ultrarelativistic infall along the z axis) 

“Excitation factors” in Kerr known
“Excitation coefficients” depend on initial data
Difficult, unsolved problem for comparable-mass mergers
See recent work by Oshita

[EB+Cardoso, gr-qc/0605118; Oshita, 2109.09757]



QNMs and overtones: some milestones. Phase 4 – excitation, post-NR
2005 – Pretorius numerical relativity breakthrough: merger simulations. Soon after Brownsville/RIT, Goddard…
2006 – Berti-Cardoso systematic calculation of Kerr excitation factors
2006 – Buonanno-Cook-Pretorius fit overtones to Pretorius’ equal-mass simulations – but are they physical?
            Spherical-spheroidal mixing: numerical simulations use the “wrong” basis (Berti-Cardoso-Casals 2005)
2007 – Berti+ quantify excitation of higher multipole QNMs in unequal-mass, nonspinning mergers
2012, 2014 – Gossan+, Meidam+ first Bayesian study of ringdown



A new Golden age: GW150914 – SNR~7 in ringdown
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Spectroscopy of Kerr black holes with Earth- and space-based interferometers

Emanuele Berti1,2, Alberto Sesana3, Enrico Barausse4,5, Vitor Cardoso2,6, Krzysztof Belczynski7
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We estimate the potential of present and future interferometric gravitational-wave detectors to
test the Kerr nature of black holes through “gravitational spectroscopy,” i.e. the measurement of
multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population
synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that
Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy
in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like
Cosmic Explorer is necessary to go beyond z ⇠ 3. In contrast, eLISA-like detectors should carry out
a few – or even hundreds – of these tests every year, depending on uncertainties in massive black
hole formation models. Many space-based spectroscopical measurements will occur at high redshift,
testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections
to general relativity (if they occur in nature) must be significant.

Introduction. The first binary black hole (BH) mer-
ger signal detected by the LIGO Scientific Collaboration,
GW150914 [1], had a surprisingly high combined signal-
to-noise ratio (SNR) of 24 in the Hanford and Livingston
detectors. The quasinormal mode signal (“ringdown”)
from the merger remnant is consistent with the predic-
tions of general relativity (GR) for a Kerr BH, but it was
observed with a relatively low SNR ⇢ ⇠ 7 [2]. The large
masses of the binary components [3] have interesting im-
plications for the astrophysics of binary BH formation [4],
and the detection placed some constraints on the merger
rates of BH binaries in the Universe [5–8].

LISA Pathfinder was successfully launched in Decem-
ber 2015, paving the way for a space-based detector such
as eLISA [9, 10], which will observe mergers of massive
BHs throughout the Universe with very large SNRs and
test the Kerr nature of the merger remnants. The basic
idea is that the dominant ` = m = 2 resonant frequency
and damping time can be used to determine the rem-
nant’s mass M and dimensionless spin j = J/M2 (we
adopt geometrical units G = c = 1 throughout this Let-
ter.) In GR, all subdominant mode frequencies (e.g. the
modes with ` = m = 3 and ` = m = 4 [11]) are then
uniquely determined by M and j. The detection of sub-
dominant modes requires high SNR, but each mode will
provide one (or more) tests of the Kerr nature of the rem-
nant [12]. As first pointed out by Detweiler in 1980, grav-
itational waves allow us to do BH spectroscopy: “After
the advent of gravitational wave astronomy, the observa-
tion of these resonant frequencies might finally provide
direct evidence of BHs with the same certainty as, say,
the 21 cm line identifies interstellar hydrogen” [13].

Such high SNRs are known to be achievable with an
eLISA-like detector [14]. The surprisingly high SNR of

GW150914 raised the question whether current detect-
ors at design sensitivity should routinely observe ring-
down signals loud enough to perform gravitational spec-
troscopy. Leaving aside conceptual issues about ruling
out exotic alternatives [15–17], here we use our current
best understanding of the astrophysics of stellar-mass
and supermassive BHs to compute the rates of events
that would allow us to carry out spectroscopical tests.

Below we provide the details of our analysis, but the
main conclusions can be understood relying on the noise
power spectral densities (PSDs) Sn(f) of present and fu-
ture detectors, as shown and briefly reviewed in Fig. 1,
and simple back-of-the-envelope estimates.
Ringdown SNR. Consider the merger of two BHs with
source-frame masses (m1, m2), spins (j1, j2), total mass
Mtot = m1 + m2, mass ratio q ⌘ m1/m2 � 1 and sym-
metric mass ratio ⌘ = m1m2/M2

tot. The remnant mass
and dimensionless spin, M and j = J/M2, can be com-
puted using the fitting formulas in [26] and [27], respect-
ively (see also [28, 29]). The ringdown SNR ⇢ can be es-
timated by following [14]. Including redshift factors and
substituting the Euclidean distance r by the luminosity
distance DL as appropriate, Eq. (3.16) of [14] implies
that ⇢ is well approximated by

⇢ =
�eq

DLFlmn


8

5

M3
z ✏rd

Sn(flmn)

�1/2

, (1)

where Mz = M(1 + z). Fits of the mass-independent di-
mensionless frequency Flmn(j) ⌘ 2⇡Mzflmn and quality
factor Qlmn(j) are given in Eqs. (E1) and (E2) of [14].
The geometrical factor �eq = 1 for Michelson interfero-
meters with orthogonal arms, while �eq =

p
3/2 for an

eLISA-like detector (where the angle between the arms
is 60�). This expression involves the non sky-averaged

[EB+, 1605.09286]
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Black hole spectroscopy with gravitational waves
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Figure 2. Rates of binary BH mergers that yield detectable ringdown signals (filled symbols) and allow for spectroscopical
tests (hollow symbols). Left panel: rates per year for Earth-based detectors of increasing sensitivity. Right panel: rates per
year for 6-link (solid) and 4-link (dashed) eLISA configurations with varying armlength and acceleration noise.

of BH-BH merger rates, and therefore model M3 should
be regarded as pessimistic [8]. In all of these models we
set the BH spins to zero, an assumption consistent with
estimates from GW150914 [4]. Even in the unrealistic
scenario where all BHs in the Universe were maximally
spinning, rates would increase by a factor . 3 (see Table
2 of [5]). Massive binaries with ringdowns detectable by
Earth-based interferometers could also be produced by
other mechanisms (see e.g. [34–37]), and therefore our
rates should be seen as lower bounds.

To estimate ringdown rates from massive BH mergers
detectable by eLISA we consider the same three models
(PopIII, Q3nod and Q3d) used in [18] and produced with
the semi-analytical approach of [38] (with incremental
improvements described in [39–41]). These models were
chosen to span the major sources of uncertainty a↵ect-
ing eLISA rates, namely (i) the nature of primordial BH
seeds (light seeds coming from the collapse of Pop III
stars in model PopIII; heavy seeds originating from pro-
togalactic disks in models Q3d and Q3nod), and (ii) the
delay between galaxy mergers and the merger of the BHs
at galactic centers (model Q3d includes this delay; model
Q3nod does not, and therefore yields higher detection
rates). In all three models the BH spin evolution is fol-
lowed self-consistently [38, 39]. For each event in the
catalog we compute ⇢ from Eq. (1), where ✏rd is rescaled
by a spin-dependent factor as necessary.

Detection rates. The ringdown detection rates (events
per year with ⇢ > 8 in a single detector) predicted by
models M1, M3, M10 (for stellar-mass BH binaries) and
PopIII, Q3d, Q3nod (for supermassive BH binaries) are
shown in Fig. 2 with filled symbols. For example, models

M1 (M10, M3) predict 3.0 (2.5, 0.57) events per year
with detectable ringdown in O1; 7.0 (5.8, 1.1) in O2; and
40 (35, 5.2) in AdLIGO. Model Q3d (Q3nod, PopIII)
predicts 38 (533, 13) events for a 6-link N2A5 eLISA
mission lasting 5 years, but in the plot we divided these
numbers by 5 to facilitate a more fair comparison in terms
of events per year.
BH spectroscopy. Suppose that we know that a signal
contains two (or possibly more) ringdown modes. We
expect the weaker mode to be hard to resolve if its amp-
litude is low and/or if the detector’s noise is large. The
critical SNR for the second mode to be resolvable can
be computed using the generalized likelihood ratio test
(GLRT) [42] under the following assumptions: (i) using
other criteria, we have already decided in favor of the
presence of one ringdown signal; (ii) the ringdown fre-
quencies and damping times, as well as the amplitude
of the dominant mode, are known. Then the critical
SNR ⇢GLRT to resolve a mode with either ` = m = 3
or ` = m = 4 from the dominant mode with ` = m = 2
is well fitted, for nonspinning binary BH mergers, by

⇢2, 3GLRT = 17.687 +
15.4597

q � 1
� 1.65242

q
, (2)

⇢2, 4GLRT = 37.9181 +
83.5778

q
+

44.1125

q2
+

50.1316

q3
.(3)

These fits reproduce the numerical results in Fig. 9 of
[42] within 0.3% when q 2 [1.01 � 100]. Spectroscopical
tests of the Kerr metric can be performed whenever either
mode is resolvable, i.e. ⇢ > ⇢GLRT ⌘ min(⇢2, 3GLRT, ⇢2, 4GLRT).
The ` = m = 3 mode is usually easier to resolve than the
` = m = 4 mode, but the situation is reversed in the

Black hole spectroscopy horizons

[EB+, 1605.09286; Jiménez Forteza+, 2005.03260; Ota-Chirenti, 2108.01774…]

LIGO

CE
LIGO events

Expected ringdown detections
vs. (3,3,0) spectroscopy tests
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Figure 2. Rates of binary BH mergers that yield detectable ringdown signals (filled symbols) and allow for spectroscopical
tests (hollow symbols). Left panel: rates per year for Earth-based detectors of increasing sensitivity. Right panel: rates per
year for 6-link (solid) and 4-link (dashed) eLISA configurations with varying armlength and acceleration noise.

of BH-BH merger rates, and therefore model M3 should
be regarded as pessimistic [8]. In all of these models we
set the BH spins to zero, an assumption consistent with
estimates from GW150914 [4]. Even in the unrealistic
scenario where all BHs in the Universe were maximally
spinning, rates would increase by a factor . 3 (see Table
2 of [5]). Massive binaries with ringdowns detectable by
Earth-based interferometers could also be produced by
other mechanisms (see e.g. [34–37]), and therefore our
rates should be seen as lower bounds.

To estimate ringdown rates from massive BH mergers
detectable by eLISA we consider the same three models
(PopIII, Q3nod and Q3d) used in [18] and produced with
the semi-analytical approach of [38] (with incremental
improvements described in [39–41]). These models were
chosen to span the major sources of uncertainty a↵ect-
ing eLISA rates, namely (i) the nature of primordial BH
seeds (light seeds coming from the collapse of Pop III
stars in model PopIII; heavy seeds originating from pro-
togalactic disks in models Q3d and Q3nod), and (ii) the
delay between galaxy mergers and the merger of the BHs
at galactic centers (model Q3d includes this delay; model
Q3nod does not, and therefore yields higher detection
rates). In all three models the BH spin evolution is fol-
lowed self-consistently [38, 39]. For each event in the
catalog we compute ⇢ from Eq. (1), where ✏rd is rescaled
by a spin-dependent factor as necessary.

Detection rates. The ringdown detection rates (events
per year with ⇢ > 8 in a single detector) predicted by
models M1, M3, M10 (for stellar-mass BH binaries) and
PopIII, Q3d, Q3nod (for supermassive BH binaries) are
shown in Fig. 2 with filled symbols. For example, models

M1 (M10, M3) predict 3.0 (2.5, 0.57) events per year
with detectable ringdown in O1; 7.0 (5.8, 1.1) in O2; and
40 (35, 5.2) in AdLIGO. Model Q3d (Q3nod, PopIII)
predicts 38 (533, 13) events for a 6-link N2A5 eLISA
mission lasting 5 years, but in the plot we divided these
numbers by 5 to facilitate a more fair comparison in terms
of events per year.
BH spectroscopy. Suppose that we know that a signal
contains two (or possibly more) ringdown modes. We
expect the weaker mode to be hard to resolve if its amp-
litude is low and/or if the detector’s noise is large. The
critical SNR for the second mode to be resolvable can
be computed using the generalized likelihood ratio test
(GLRT) [42] under the following assumptions: (i) using
other criteria, we have already decided in favor of the
presence of one ringdown signal; (ii) the ringdown fre-
quencies and damping times, as well as the amplitude
of the dominant mode, are known. Then the critical
SNR ⇢GLRT to resolve a mode with either ` = m = 3
or ` = m = 4 from the dominant mode with ` = m = 2
is well fitted, for nonspinning binary BH mergers, by

⇢2, 3GLRT = 17.687 +
15.4597

q � 1
� 1.65242

q
, (2)

⇢2, 4GLRT = 37.9181 +
83.5778

q
+

44.1125

q2
+

50.1316

q3
.(3)

These fits reproduce the numerical results in Fig. 9 of
[42] within 0.3% when q 2 [1.01 � 100]. Spectroscopical
tests of the Kerr metric can be performed whenever either
mode is resolvable, i.e. ⇢ > ⇢GLRT ⌘ min(⇢2, 3GLRT, ⇢2, 4GLRT).
The ` = m = 3 mode is usually easier to resolve than the
` = m = 4 mode, but the situation is reversed in the

Earth vs. space-based: ringdown detections and black hole spectroscopy
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of BH-BH merger rates, and therefore model M3 should
be regarded as pessimistic [8]. In all of these models we
set the BH spins to zero, an assumption consistent with
estimates from GW150914 [4]. Even in the unrealistic
scenario where all BHs in the Universe were maximally
spinning, rates would increase by a factor . 3 (see Table
2 of [5]). Massive binaries with ringdowns detectable by
Earth-based interferometers could also be produced by
other mechanisms (see e.g. [34–37]), and therefore our
rates should be seen as lower bounds.

To estimate ringdown rates from massive BH mergers
detectable by eLISA we consider the same three models
(PopIII, Q3nod and Q3d) used in [18] and produced with
the semi-analytical approach of [38] (with incremental
improvements described in [39–41]). These models were
chosen to span the major sources of uncertainty a↵ect-
ing eLISA rates, namely (i) the nature of primordial BH
seeds (light seeds coming from the collapse of Pop III
stars in model PopIII; heavy seeds originating from pro-
togalactic disks in models Q3d and Q3nod), and (ii) the
delay between galaxy mergers and the merger of the BHs
at galactic centers (model Q3d includes this delay; model
Q3nod does not, and therefore yields higher detection
rates). In all three models the BH spin evolution is fol-
lowed self-consistently [38, 39]. For each event in the
catalog we compute ⇢ from Eq. (1), where ✏rd is rescaled
by a spin-dependent factor as necessary.

Detection rates. The ringdown detection rates (events
per year with ⇢ > 8 in a single detector) predicted by
models M1, M3, M10 (for stellar-mass BH binaries) and
PopIII, Q3d, Q3nod (for supermassive BH binaries) are
shown in Fig. 2 with filled symbols. For example, models

M1 (M10, M3) predict 3.0 (2.5, 0.57) events per year
with detectable ringdown in O1; 7.0 (5.8, 1.1) in O2; and
40 (35, 5.2) in AdLIGO. Model Q3d (Q3nod, PopIII)
predicts 38 (533, 13) events for a 6-link N2A5 eLISA
mission lasting 5 years, but in the plot we divided these
numbers by 5 to facilitate a more fair comparison in terms
of events per year.
BH spectroscopy. Suppose that we know that a signal
contains two (or possibly more) ringdown modes. We
expect the weaker mode to be hard to resolve if its amp-
litude is low and/or if the detector’s noise is large. The
critical SNR for the second mode to be resolvable can
be computed using the generalized likelihood ratio test
(GLRT) [42] under the following assumptions: (i) using
other criteria, we have already decided in favor of the
presence of one ringdown signal; (ii) the ringdown fre-
quencies and damping times, as well as the amplitude
of the dominant mode, are known. Then the critical
SNR ⇢GLRT to resolve a mode with either ` = m = 3
or ` = m = 4 from the dominant mode with ` = m = 2
is well fitted, for nonspinning binary BH mergers, by

⇢2, 3GLRT = 17.687 +
15.4597

q � 1
� 1.65242

q
, (2)

⇢2, 4GLRT = 37.9181 +
83.5778

q
+

44.1125

q2
+

50.1316

q3
.(3)

These fits reproduce the numerical results in Fig. 9 of
[42] within 0.3% when q 2 [1.01 � 100]. Spectroscopical
tests of the Kerr metric can be performed whenever either
mode is resolvable, i.e. ⇢ > ⇢GLRT ⌘ min(⇢2, 3GLRT, ⇢2, 4GLRT).
The ` = m = 3 mode is usually easier to resolve than the
` = m = 4 mode, but the situation is reversed in the

[EB+, 1605.09286]



Overtones, nonlinearities, and elephants: 
Is the merger linear?

Is it all much easier than this?
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FIG. 1. Fractional errors �!r/!r (thick lines) and �!i/!i (thin lines) between the fundamental ` = m = 2 QNM frequencies computed
from BH perturbation theory and those obtained by fitting N overtones to numerical waveforms according to method (i) (see text). Left: SXS
waveforms, q = 1; middle: SXS waveforms, q = 3; right: point-particle waveforms.

FIG. 2. Error in the spin �af (thick lines) and fractional error in the mass �Mf/Mf (thin lines) estimated by fitting N QNMs with ` = m = 2
according to method (ii) (see text). Left: SXS waveforms, q = 1; middle: SXS waveforms, q = 3; right: point-particle waveforms.

same as in Fig. 1, and errors decrease as we include more
overtones.

The results in Figs. 1 and 2 disprove the claim of [26] that
large-SNR detections cannot be used to perform BH spec-
troscopy, but they also show that the relative error between
quantities computed in BH perturbation theory and those ex-
tracted from numerical simulations currently saturates at ⇠
10�3. This “saturation effect” is less problematic for the qua-
sicircular inspiral of point particles into Schwarzschild BHs,
where relative errors can be reduced by approximately one or-
der of magnitude (we get worse agreement for point particles
falling into rotating BHs, where spherical-spheroidal mode
mixing [41, 47–49] must be taken into account).

This observation has an important implication: further nu-
merical or theoretical work is required to reduce systematic
errors for comparable-mass binary BH mergers in the LISA
band, that may have SNRs ⇠ 103 or higher [50, 51].

The saturation discussed above may be related to an unde-
sired feature of SXS waveforms. It wass already noted in [28]

that the ` = m = 2 component of  4 in the SXS simulations
contains a spurious decaying mode corresponding to the fun-
damental ` = m = 4 QNMs for q = 1. We confirm their
finding. Furthermore, as we show in Fig. 3, a multi-mode fit
of unequal-mass waveforms shows the presence of a spurious
frequency that matches quite well the fundamental QNM with
` = m = 3.

These spurious modes seem to be present only in the SXS
simulations. We did not find them in the public catalog of
waveforms from the Georgia Tech group [52], nor in our
own point-particle waveforms. Understanding the origin of
these modes is beyond the scope of this work. We speculate
that they may be gauge or wave extraction artifacts, but they
are unlikely to come from spherical-spheroidal mode mixing,
which only mixes components with the same m and different
`’s [41, 47–49]. Whatever their origin, these spurious modes
must be understood if we want to control systematics at the
level required to do BH spectroscopy with LISA.

From point particles to NR: overtones needed to reduce mass/spin errors

[Baibhav+, 1710.02156]

Top: 
real part (thick)
imaginary part (thin)

1% determination of 
needs one overtone
(better if two or three)

Bottom: 
spin (thick)
mass (thin)

1% determination of 
mass and spin needs at 
least two modes



“Including overtones allows for the modeling of the ringdown signal for all times beyond the peak strain amplitude, 
indicating that the linear quasinormal regime starts much sooner than previously expected. This implies that the 
spacetime is well described as a linearly perturbed black hole with a fixed mass and spin as early as the peak”

      Does it?

Nonlinear merger: is it just a superposition of linear QNMs?

[Giesler+, 1903.08284]



GW150914 tests of the no-hair theorem with the first overtone?

[Isi+, 1905.00869]

Overtones improve quality of consistency tests for GW150914 
Is the overtone detection robust? Assumes tstart=1126259462.423 s



Why would the full merger be linear? Two counterarguments (credits: Carullo)

[Gleiser+, gr-qc/9609022][Dhani, 2010.08602]

Counterrotating modes fit well before the peak 
even for systems with positive aligned spins. 
This clashes with point-particle understanding 
[Bernuzzi+, 1003.0597; Barausse+, 1110.3081]
Why? Because lower frequencies match inspiral: 
see EOB “pseudo-QNMs”

Post-merger head-on collisions are nonlinear
Need second-order perturbation theory
First order has larger peak amplitude in both cases
Second-order corrections decrease it



Search for nonlinearities and nonlinear modes
Two stages

Before the 2005 NR breakthrough: perturbation theory to the rescue
Close limit approximation [e.g. Gleiser+ gr-qc/9609022…]
“Lazarus project”, second-order Kerr [e.g. Campanelli-Lousto gr-qc/9811019]

After the 2005 NR breakthrough: 
Where are all the nonlinearities?
[Zlochower+, gr-qc/0306098; Ioka-Nakano, 0704.3467 + 0708.0450;
Brizuela+, 0903.1134; Pazos+, 1009.4665]

Pioneering search for nonlinearities in the Georgia Tech NR catalog
[London+, 1404.3197]

Recent explosion of activity – analytical and numerical
[Loutrel+, 2008.11770; Ripley+, 2010.00162; Magana-Zertuche+, 2110.15922; Sberna+, 2112.11168; 
Ma+, 2207.10870; Lagos-Hui, 2208.07379; Cheung+, 2208.07374; Mitman+, 2208.07380; Zhu+, 2309.13204;
Kehagias+, 2301.09345 + 2302.01240; Nee+, 2302.06634; Perrone+, 2308.15886; Bucciotti+, 2309.08501…]



“Including overtones allows for the modeling of the ringdown signal for all times beyond the peak strain amplitude, 
indicating that the linear quasinormal regime starts much sooner than previously expected. This implies that the 
spacetime is well described as a linearly perturbed black hole with a fixed mass and spin as early as the peak”

         
 Crucial: (complex) frequencies are fixed! Fitted mode amplitudes change a lot with the number of overtones

Extrapolating linear theory to the nonlinear merger: are we fitting elephants?

[Bhagwat+, Mourier+, Jimenez-Forteza+, Sberna+…]

[Giesler+, 1903.08284]



[Freeman Dyson, Nature 427, 297 (2004); Mayer+, Am. J. Phys. 78 (6), 2010]

Freeman Dyson: https://www.youtube.com/watch?v=hV41QEKiMlM

One of the big turning points in my life was a meeting with Enrico Fermi in the 
spring of 1953. In a few minutes, Fermi politely but ruthlessly demolished a 
programme of research that my students and I had been pursuing for several 
years. He probably saved us from several more years of fruitless wandering along 
a road that was leading nowhere. I am eternally grateful to him for destroying our 
illusions and telling us the bitter truth. […] He delivered his verdict in a quiet, even 
voice. “There are two ways of doing calculations in theoretical physics”, he said. 
“One way, and this is the way I prefer, is to have a clear physical picture of the 
process that you are calculating. The other way is to have a precise and self-
consistent mathematical formalism. You have neither.”

In desperation I asked Fermi whether he was not impressed by the agreement 
between our calculated numbers and his measured numbers. 
He replied, “How many arbitrary parameters did you use for your calculations?” 
I thought for a moment about our cut-off procedures and said, “Four.” 
He said, “I remember my friend Johnny von Neumann used to say, with four 
parameters I can fit an elephant, and with five I can make him wiggle his trunk.” 
With that, the conversation was over.

Extrapolating linear theory to the nonlinear merger: are we fitting elephants?

https://www.youtube.com/watch?v=hV41QEKiMlM


Is the linear model consistent when we change the fitting window?



Nonlinear merger QNM amplitudes are not constant near the peak

[Baibhav+, 2302.03050; see also Bhagwat+, 1910.08708]

“Fixed-frequency” fits as in Giesler (weaker test). Bands show regions where amplitudes are constant within 10%



Back to basics: Vishveshwara scattering experiment, fundamental mode
Preliminary question: can we recover overtone frequencies agnostically? No

[Baibhav+, 2302.03050]



Vishveshwara scattering experiment, first overtone: N=1; n=0 and n=1 free

[Baibhav+, 2302.03050]



Vishveshwara scattering experiment, first overtone: N=1; n=0 fixed; n=1 free

[Baibhav+, 2302.03050]



Vishveshwara scattering experiment, two overtones: N=2; n=0, n=1 fixed; n=2 free

[Baibhav+, 2302.03050]



Q7 (7 exponentials)      Q7T (7 exponentials+tail)    Gaussian scattering

Why do free-frequency fits fail? QNM incompleteness? Tails? Prompt response?
Three increasingly realistic waveforms in the linear regime. 

“Free-frequency” fitting here means: fix all previous modes and look for the last one.

[Baibhav+, 2302.03050]



Q7 (7 exponentials)      Q7T (7 exponentials+tail)    Gaussian scattering

[Baibhav+, 2302.03050]



Q7 (7 exponentials)       Q7T (7 exponentials+tail)       Gaussian scattering

“Tail” model Q7T : 
fits fail to find QNMs, 
but mismatch near 
the peak keeps 
decreasing

Overtones may still 
be there, but we fail 
to find them because 
of the extra physics
(here just a tail)

Fits stop converging 
when the mismatch 
dives below the 
mismatch between 
Q7 and Q7T

(black dashed line)



Fundamental mode at late times gives good estimate of mass and spin (as expected)

Non-agnostic approach: assume that frequencies are related to mass and spin as in GR
Then adding modes at the peak time improves estimate of mass and spin

Do we really gain physical information by adding N=7 modes? Which ones do we really need?

Inferred parameters of the final black hole

[Giesler+, 1903.08284]



Inferred parameters of the final black hole are insensitive to higher overtones

Fix all modes but n, look for final mass and spin minimizing mismatch. 
Note the very different scales! [Baibhav+, 2302.03050]



Agnostic spectroscopy



My mom always said life was like a box of chocolates. 
You never know what you're gonna get.



Agnostic spectroscopy: fundamental mode from numerical simulations



Agnostic spectroscopy: first overtone from numerical simulations



Why wrong? Spherical-spheroidal mode mixing



Agnostic spectroscopy: extracting modes from a face-on binary



Agnostic spectroscopy: extracting modes from a face-on binary



Agnostic spectroscopy: extracting modes from a non-face-on binary



We should really do agnostic tests

Free-frequency fit of SXS0305:

1) Including spherical-spheroidal mode mixing 
is crucial (grey square: 320 is fixed)

2) There is no strong evidence of modes 
beyond 220, 221 and 320

…but now we do know that nonlinear modes 
(first found by Lionel London, never confirmed) 
are there!

[London+, 1404.3197] [Ma+, 2207.10870]
[Cheung+, 2208.07374] [Mitman+, 2208.07380]



[Cheung+, 2208.07374]







jaxqualin

For all your quasinormal mode fitting needs…

https://mhycheung.github.io/jaxqualin/
pronounced “Jacqueline” (as in the Franz Ferdinand song)

[Cheung+, arXiv:2310.04489]









Ratio of first overtone to fundamental mode: excitation coeffs vs. excitation factors

[Cheung+, arXiv:2310.04489]



Ratio of retrograde modes to prograde modes

[Cheung+, arXiv:2310.04489]



Ratio of quadratic modes to linear modes: remnant spin and mass ratio dependence

[Cheung+, arXiv:2310.04489]



[Redondo-Yuste+, arXiv:2308.14796]

Gaussian scattering of second order perturbations: spin dependent!



Have we observed overtones?



What would happen at infinite SNR? Extracting frequencies from overtones

Fitting model: two free frequencies, 
plus (3,2,0) mixing mode fixed at the right value



First overtone

complex frequency at the peak

True value

Incorrect value inferred at the peak



GW150914 tests of the no-hair theorem: the first overtone

[Isi+, 1905.00869]

Overtones improve quality of consistency tests for GW150914, but by the arguments we made, 
this is definitely not an overtone detection. Also, analysis assumes tstart=1126259462.423 s



The first overtone: dependence on the starting time

[Cotesta+, 2201.00822]



The first overtone: amplitude and Bayes factor

[Cotesta+, 2201.00822; green: Isi-Farr, 2202.02941]



The saga continues (PRL comment + reply)

[Isi-Farr and Carullo+, to appear]

1) Shift in pyRing discretized time axis: 0.06ms (compare to Dtpeak ~2.5ms)
 2) Analysis segment T=0.2s instead of 0.1s slightly increases amplitudes (see below…)



Pseudospectra and 
QNM instabilities



Is the overtone model stable? The elephant and the flea

[Cheung+, 2111.05415]

Flea (not to scale)



Pseudospectra: is the spectrum itself stable?

[Jaramillo+, 2004.06434]

First definition: the resolvent can be very large far from the spectrum
Second definition: points in the pseudospectrum are eigenvalues of the perturbed operator
Under perturbations, the spectrum migrates out to the boundaries of the pseudospectrum



Is the spectrum stable? Pseudospectrum: no!

[Jaramillo+, 2004.06434]



Is the fundamental mode stable? The elephant and the flea

[Cheung+, 2111.05415]



Is the fundamental mode stable? The elephant and the flea

[Cheung+, 2111.05415]



Is the fundamental mode stable? No – but this does not affect spectroscopy

[Cheung+, 2111.05415; see also EB+, 2205.08547]



Summary
Addition of overtones long known to provide a better fit to: 
 point-particle waveforms, nonrotating (1970s) and rotating (1980s) collapse
 head-on black hole collisions (1990s)
 quasicircular mergers (circa 2005)

Can a linear superposition of overtones describe nonlinear mergers up to the peak? No
 Free-frequency fitting shows that several other modes are easier to extract than the first (2,2) overtone
 Need non-constant amplitudes, and high overtones do not add information to parameter estimation
 Clear evidence (now from multiple groups) of nonlinear modes in numerical waveforms
 jaxqualin: systematic extraction of linear and nonlinear modes from NR simulations

Have we observed overtones in GW150914? No
 Strong evidence only before the peak, where the linear model is definitely not applicable 
  (even if you believe that the answer to the previous question is “yes”!)
 Injections show that noise can induce artificial evidence for an overtone
 My best bet for O4/O5: higher multipole observation in unequal-mass events

Do higher overtones make sense in a realistic astrophysical setting? Maybe
 Pseudospectra suggest that higher overtones are prone to instabilities
  (so is the fundamental mode, but this does not affect spectroscopy)
 Need more work on Kerr to understand if these instabilities can be induced by perturbing “fleas”: 
 e.g., astrophysical environments or nonlinearities


