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Abstract

We study two estimation problems for continuous-time stochastic processes: the estima-
tion of integrated volatility and the estimation of occupation time functionals.

In the first problem high-frequency observations of a continuous Itô semimartingale are
considered, which are perturbed by additive microstructure noise. Our main contribution
is the analysis of the prominent spectral estimation approach for very general random
and time-varying volatility in any dimension. We prove stable central limit theorems,
which show that the estimators attain the optimal rates of convergence with quasi-
efficient asymptotic variances. Adaptive estimators together with feasible limit theorems
are provided.
In the second problem we estimate occupation time functionals

´ t
0 f(Xr)dr for a func-

tion f and a d-dimensional càdlàg process X with respect to discrete observations by a
Riemann-sum estimator. Based on novel semimartingale approximations in the Fourier
domain, central limit theorems are proved for L2-Sobolev functions f with fractional
smoothness and continuous Itô semimartingales X. General L2(P)-upper bounds on the
error are given under weak assumptions. These bounds cover all previously obtained
results in the literature and apply also to non-Markovian processes. Particularly simple
and revealing results are obtained for stationary Markov processes. Several detailed ex-
amples are discussed. As an application the approximation of local times for fractional
Brownian motion is studied. The optimality of the L2(P)-upper bounds is shown by
proving the corresponding lower bounds in case of Brownian motion.
The same methods as for studying occupation time functionals are used in the third

part to obtain generalized Itô formulas for continuous Itô semimartingales and L2-
Sobolev functions. For this the existence of certain quadratic covariations is proved.
As opposed to the usual assumption in the literature, however, X is not required to be
reversible. The Itô formulas hold in any dimension and also for rough drift and volatility
coefficients.





Zusammenfassung

Wir untersuchen zwei Schätzprobleme für zeitstetige stochastische Prozesse: Das Schät-
zen der integrierten Volatilität und das Schätzen von occupation-time-Funktionalen.
Das erste Problem beschäftigt sich mit hochfrequenten Beobachtungen von stetigen

Itô-Semimartingalen, wobei die Beobachtungen durch additives Mikrostrukturrauschen
gestört sind. Unser Hauptbeitrag in diesem Fall ist die Analyse des vielbeachteten Spek-
tralansatzes für sehr allgemeine, zufällige und zeitverändlichere Volatilitäten in beliebiger
Dimension. Wir beweisen stabile Grenzwertsätze. Mit diesen kann nachgewiesen werden,
dass die optimale Konvergenzrate erreicht wird mit quasi-effizienter asymptotischer Va-
rianz. Darüberhinaus zeigen wir Grenzwertsätze für Daten-adaptive Schätzer.
Im zweiten Problem werden occupation-time-Funktionale

´ t
0 f(Xr)dr geschätzt für

eine Funktion f und diskrete Beobachtungen eines d-dimensionalen Prozesses X mit
càdlàg-Pfaden. Dafür verwenden wir einen Riemann-Schätzer. Mit Hilfe von innova-
tiven Semimartingalapproximationen im Fourierbereich werden zentrale Grenzwertsät-
ze bewiesen für L2-Sobolev-Funktionen f mit fraktioneller Glattheit und stetige Itô-
Semimartingale X. Außerdem werden allgemeine obere Schranken für den L2(P)-Fehler
gezeigt unter schwachen Voraussetzungen. Diese oberen Schranken umfassen alle bis-
her erzielten Resultate in der Literatur und gelten auch für nicht-Markovsche Prozesse.
Besonders einfache und aufschlussreiche Resultate werden für stationäre Markovprozes-
se erzielt. Dies wird an mehreren detaillierten Beispielen verdeutlicht. Als Anwendung
betrachten wir die Approximation von Lokalzeiten für fraktionelle Brownsche Bewegun-
gen. Die Optimalität der oberen Schranken für den L2(P)-Fehler wird bewiesen durch
entsprechende untere Schranken, wenn X eine Brownsche Bewegung ist.
Die Methoden, die wir für das zweite Problem entwickelt haben, werden im dritten Teil

der Arbeit verwendet, um verallgemeinerte Itô-Formeln für stetige Itô-Semimartingale
und L2-Sobolev-Funktionen zu zeigen. Dafür beweisen wir die Existenz von bestimmten
quadratischen Variationen. Im Gegensatz zur üblichen Annahme in der Literatur muss
X jedoch nicht reversibel sein. Die Itô-Formeln gelten in jeder Dimension und auch für
weniger glatte Drift- und Volatilitätskoeffizienten.
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Chapter 1.

Introduction

The theory of stochastic processes is an important subject in modern mathematics. It is
applied in all sciences, in engineering and in finance to model complex phenomena that
appear to be random and vary in time. Continuous-time models are often mathematically
more tractable than discrete-time models, but statistical inference is usually limited
to discrete observations. If the time grid is fine enough, it can be expected that the
statistical properties of the discretized model are close to the properties of the continuous
one. The quality of the approximation, however, depends crucially on the underlying
model, possibly unknown parameters and observation errors. It is therefore important
for theoretical and practical reasons to study the properties of these approximations.
We focus in this thesis on two estimation problems for continuous-time stochastic pro-

cesses: The estimation of integrated volatility for continuous Itô semimartingales and
the estimation of occupation time functionals for general processes with càdlàg paths.
The fundamental novelty is to use Fourier analysis, together with pathwise and distri-
butional approximations to derive new and surprisingly strong results. The methods are
developed in order to be applicable to rather general processes and independent of the
dimension. In the third part of the thesis we will use these methods to generalize one of
the most important tools in stochastic analysis, namely Itô’s formula.
The problems and methods discussed in this thesis lie in the intersection between

statistics and stochastic analysis. For basic definitions and a general overview the reader
may consult the monographs of Revuz and Yor (1999), Jacod and Shiryaev (2013) and
Jacod and Protter (2011). The next three sections provide a general overview of the
problems that we study. We will give detailed account of previous work. This is followed
by an outline of the main results.

Estimating integrated volatility

For the first estimation problem let X = (Xt)0≤t≤T for T > 0 be a d-dimensional
continuous Itô semimartingale of the form

Xt = X0 +

ˆ t

0
brdr +

ˆ t

0
σrdWr, 0 ≤ t ≤ T, (1.0.1)

with drift b = (bt)0≤t≤T , volatility σ = (σt)0≤t≤T and a Brownian motion W =
(Wt)0≤t≤T . Log-price models based on Itô semimartingales are widely used in econo-
metrics and finance. A key problem is to estimate the integrated volatility

IVt =

ˆ t

0
σrσ

>
r dr, 0 ≤ t ≤ T,
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from discrete observations of X at tk = k∆n, where ∆n = T/n and k = 0, . . . , n. Since

IVt = 〈X,X〉t = lim
n→∞

bt/∆nc∑
k=1

(Xtk −Xtk−1
)(Xtk −Xtk−1

)>

is the quadratic variation ofX, where the limit is taken in probability, a natural estimator
for this is the realized variance R̂Vt =

∑bt/∆nc
k=1 (Xtk − Xtk−1

)(Xtk − Xtk−1
)>. It is

variance efficient with optimal rate of convergence ∆
1/2
n , even for more general jump

processes X (cf. Jacod and Protter (1998), Jacod and Todorov (2014)). When being
applied to financial data obtained at high frequency, however, it turns out that the
realized variance is unreliable (cf. Zhang et al. (2005)). The well-established concept
in the financial econometrics literature to explain this phenomenon is that effects like
bid-ask spreads, transaction costs and round-off errors caused by the discreteness of
prices perturb the true price process when observed at high frequency (Ait-Sahalia and
Jacod (2014, Section 2.3)). This means that the semimartingale model alone has severe
limitations in describing stylized facts of high-frequency data. Many authors therefore
study instead the observation model Yk = Xtk + εk with additive iid microstructure
noise. In this case the realized variance is provably explosive (Zhang et al. (2005)),
which makes it necessary to develop new estimation methods for IVt.
The one-dimensional parametric experiment with constant volatility σ, without drift

and with Gaussian iid noise has been well understood through a LAN (local asymptotic
normality) result by Gloter and Jacod (2001). They showed that the optimal rate of
convergence drops to ∆

1/4
n and the efficient variance is 8ησ3, where η2 is the variance of

the noise, while the efficient variance is 2σ4 in the model without noise. The nonpara-
metric estimation problem for time-varying volatility has been studied in recent years
by many different authors and several rate optimal estimators have been developed, all
satisfying central limit theorems. Prominent approaches are Zhang (2006), Barndorff-
Nielsen et al. (2008), Jacod et al. (2009) and Xiu (2010) for d = 1 and Ait-Sahalia et al.
(2010), Barndorff-Nielsen et al. (2011), Bibinger (2011) and Christensen et al. (2013) for
the multi-dimensional setup. A major focus has been to attain a minimum asymptotic
variance, which at the slow optimal convergence rate could result in substantial finite
sample precision gains.
A fundamentally different approach was introduced by Reiß (2011). He proved for

d = 1, deterministic, but time-varying volatility, without drift and with Gaussian iid
noise that the noisy observation model is asymptotically equivalent in the Le Cam sense
to a Gaussian white noise experiment. This made it possible to construct a rate optimal
estimator for IVt based on a spectral decomposition of the covariance operator in the
equivalent white noise experiment and using locally a method of moments. In contrast to
all previous approaches, the spectral estimator achieves the Cramér-Rao efficiency lower
bound 8η

´ t
0 σ

3
rdr for the asymptotic variance. This approach was extended by Bibinger

and Reiß (2014) and Bibinger et al. (2014) to a multi-dimensional non-synchronous
framework.
In the general setting, where σ is an adapted stochastic process, the asymptotic vari-

ance of the estimators above is random, as well. The notion of nonparametric efficiency,
however, has been restricted so far to deterministic situations. A first step to generalize



3 Chapter 1. Introduction

this was taken by Clément et al. (2013) who proved a convolution theorem for random
functionals when the LAMN property (local asymptotic mixed normality) is satisfied.
This indeed shows efficiency for the realized variance estimator in the observation model
without noise. A similar result has not been achieved yet in the model with noise, but
it is generally believed that the nonparametric efficiency bound from the submodel with
deterministic volatility 8η

´ t
0 σ

3
rdr also holds here. For instance, Jacod and Mykland

(2015) have proposed an adaptive version of their pre-average estimator which achieves
an asymptotic variance of about 1.07 ·8η

´ t
0 σ

3
rdr. The first main result of this thesis will

be to show that the spectral estimator for general dimension d indeed attains the con-
jectured optimal asymptotic variance, when σ is a rather general càdlàg process. This
allows for using more complex, non-Markovian models which are of central interest in
finance and econometrics.
We want to mention a few other results related to this estimation problem. Recent

advances have been made in analyzing properties of the volatility process itself, and not
only in its integrated form. The focus has been here on describing smoothness properties
of σ as observed in financial data (see for example Gatheral et al. (2018), Bibinger
et al. (2017); see also Renault et al. (2017)). In the model without noise there are also
several works on estimating different functionals of σ, not only the integrated squared
process. Interesting results in this context have been obtained by Jacod and Rosenbaum
(2013) and Li et al. (2013). Without noise it was also shown that random endogenous
observation times can influence the results (Li et al. (2014)). An observation model with
one-sided errors has been studied by Bibinger et al. (2016), exhibiting different optimal
rates of convergence.

Estimating occupation time functionals

For the second estimation problem consider a general d-dimensional stochastic process
X = (Xt)0≤t≤T with càdlàg paths. Similar to the last section, an important problem in
many fields is to estimate integral-type functionals of the form

Γt (f) =

ˆ t

0
f (Xr) dr, 0 ≤ t ≤ T,

for a function f from discrete observations of X at tk = k∆n, where ∆n = T/n and
k = 0, . . . , n. Γt(f) is called the occupation time functional of X.
If A is a Borel set, then ΓT (1A) is known as the occupation time which measures

the time X spends in A. General functions f appear for example in mathematical
finance to model path dependent derivatives (Hugonnier (1999), Chesney et al. (1997))
or in evolutionary dynamics (Pollett (2003)). Occupation time functionals are also an
important tool from a statistical point of view to estimate functionals with respect
to the invariant measure µ of an ergodic process X, because T−1ΓT (f) →

´
fdµ as

T → ∞ by the ergodic theorem under appropriate regularity assumptions (Dalalyan
(2005), Mattingly et al. (2010)). Moreover, the smoothness properties of x 7→

´ T
0 f(x+

Xr)dr play an important role in solving ordinary differential equations, for example in
combination with the phenomenon of regularization by noise (Catellier and Gubinelli
(2016)).



4

The natural estimator for discrete observations is the Riemann-sum estimator

Γ̂n,t (f) = ∆n

bt/∆nc∑
k=1

f(Xtk−1
).

It has been applied in the statistics literature, for instance, in order to estimate the
occupation time (Chorowski (2018), Gobet and Matulewicz (2016)) or functionals of the
local time of a diffusion (Florens-Zmirou (1993), Jacod (1998)). For general f see also
Dion and Genon-Catalot (2016). The obtained error bounds for Γt(f)− Γ̂n,t(f) are often
suboptimal and very specific to the problem at hand. The Riemann-estimator is more-
over commonly used for simulating from the law of Γt(f). For this the Xtk usually have
to be approximated by some Xn

tk
, obtained for example by an Euler-scheme (Mattingly

et al. (2010)). However, the increasing availability of exact simulation methods alleviates
this problem to some extent (Beskos and Roberts (2005)). Jacod et al. (2003) considered
the Riemann-sum estimator for f(x) = x in order to find the rate of convergence of the
integrated error

´ t
0 (Xr − Xbr/∆nc∆n

)dr for semimartingales with jump discontinuities,
because in this case the error Xt−Xbt/∆nc∆n

does not converge to zero in the Skorokhod
sense.
The theoretical properties of Γ̂n,t(f) have been studied systematically only in few

works and only for rather specific processes X and functions f . Consistency as ∆n → 0
follows from Riemann approximation already under weak assumptions. A central limit
theorem for Itô semimartingales and f ∈ C2(Rd) was proven in the monograph of Jacod
and Protter (2011, Chapter 6) with rate of convergence ∆n. This is much faster than the
∆

1/2
n -rate when approximating f(Xt) by f(Xbt/∆nc∆n

) for continuous X. Interestingly,
the weak limit depends only on ∇f and therefore it seems that the CLT might also
hold for C1(Rd)-functions. The proof, however, works only for f ∈ C2(Rd), using Itô’s
formula.
For less smooth functions no CLT has been obtained so far. Instead, several authors

considered L2(P)-bounds for the estimation error Γt(f)−Γ̂n,t(f). For α-Hölder functions
f and 0 ≤ α ≤ 1 the rate of convergence ∆

(1+α)/2
n , up to log factors, has been obtained

by Malliavin calculus for one dimensional diffusions (Kohatsu-Higa et al. (2014)) and
by assuming heat kernel bounds on the transition densities for Markov processes in Rd
(Ganychenko (2015); Ganychenko and Kulik (2014)). For applications the most impor-
tant case is when f is the indicator function of a Borel set. The only available result
in the literature applies to one-dimensional Brownian motion and indicator functions
f = 1[a,b), a < b. Ngo and Ogawa (2011) found the surprising rate ∆

3/4
n , which corre-

sponds to the Hölder-rate for α = 1/2. It is not clear if a similar result holds in higher
dimensions or for different processes. Ngo and Ogawa (2011) also showed that the ∆

3/4
n -

rate for indicators is optimal in the L2(P)-sense. This is the only proof of optimality for
estimating occupation time functionals so far. Note that all studied processes until now
are Markov processes.
In principle, the Riemann-sum estimator is not the only possible estimator for approx-

imating Γt(f). A possible alternative is the trapezoid rule

Θ̂n,t (f) = ∆n

bt/∆nc∑
k=1

f
(
Xtk−1

)
+ f (Xtk)

2
,
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which is also the optimal estimator from a filtering point of view if X is a Brownian
motion and f(x) = x, i.e. E[Γt(f)|X0, . . . , XT ] = Θ̂t,n(f) (cf. Diaconis (1988)). We will
show that both estimators have the same properties asymptotically, independent of the
smoothness of f , which is different from deterministic numerical integration. Interesting
connections to probabilistic quadrature rules can also be found in Briol et al. (2015).
Estimation of occupation time functionals, where the process is not observed directly,
has been studied for example by Li et al. (2013) when X is the volatility of an Itô
semimartingale.

Generalized Itô formulas

For the third problem studied in this thesis let X be again a d-dimensional continuous
Itô semimartingale as in (1.0.1). One of the most important tools in stochastic analysis
is Itô’s formula which says in its classical form that

f (Xt)− f (X0) =

ˆ t

0
〈∇f(Xr), dXr〉+

1

2

d∑
k,m=1

ˆ t

0
∂2
kmf (Xr) d

〈
X(k), X(m)

〉
r

for f ∈ C2(Rd) and 0 ≤ t ≤ T . Various generalizations of this formula have been
obtained in the past in order to relax the regularity assumptions on f . The main
distinction between the different formulas is the Itô-correction term. It can be expressed
by generalized integrals with respect to local times (cf. Bouleau and Yor (1981)) or as
1
2

∑d
m=1[∂mf(X), X(m)]t, where [∂mf(X), X(m)]t is the quadratic covariation of ∂mf(X)

and X(m) (cf. Föllmer et al. (1995)). It is defined by[
∂mf (X) , X(m)

]
t

= lim
n→∞

∑
tk∈πn,tk≤t

(
∂mf (Xtk)− ∂mf

(
Xtk−1

)) (
X

(m)
tk
−X(m)

tk−1

)
,

(1.0.2)
if this limit exists in probability for any sequence of partitions (πn)n≥1 of [0, T ] such that
the mesh size |πn| = maxk |tk − tk−1| tends to zero as n → ∞, where the points in πn
are 0 = t0 < t1 < · · · < tn = T . For one-dimensional semimartingales both approaches
give essentially the same results (Bardina and Rovira (2007)). In higher dimensions the
local time method does not apply anymore (with the notable exception of Eisenbaum
(2006) for Lévy processes with independent components).
A major problem in applying the second method is to prove the existence of

[∂mf(X), X(m)]t. A sufficient condition is reversibility of X, i.e. the time reversed pro-
cess t 7→ XT−t is again a diffusion or just a semimartingale. In this case the partial sums
in (1.0.2) can be decomposed into the sum of

∑
tk∈πn,tk≤t ∂mf(Xtk−1

)(X
(m)
tk
−X(m)

tk−1
) and∑

tk∈πn,tk≤t ∂mf(Xtk)(X
(m)
tk
−X(m)

tk−1
), which separately converge to the forward and back-

ward stochastic integrals
´ t

0 ∂mf(Xr)dXr and
´ t

0 ∂mf(Xr)d
∗Xr. Reversibility holds, for

example, for non-degenerate diffusions with Lipschitz coefficients (Millet et al. (1989)).
Under this assumption, several Itô formulas were obtained: by Föllmer and Protter
(2000) for d-dimensional Brownian motion and L2-Sobolev functions f ∈ H1(Rd), by
Moret and Nualart (2001) for d-dimensional non-degenerate diffusions and functions in
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Lp-Sobolev spaces with p > d and regularity one and by Errami et al. (2002) for C1(Rd)-
functions and reversible semimartingales. All formulas (including the ones based on local
times, but except for Föllmer and Protter (2000)) apply only to continuous f . Note also
that there are simple counterexamples for reversibility as soon as we give up on the
assumption that X is a diffusion (Walsh (1982)).

In view of (1.0.2) the existence of the quadratic covariation [∂mf(X), X(m)]t is a dis-
cretization problem. Instead of identifying it as the limit of certain stochastic integrals,
we consider the approximation directly without the assumption of reversibility. Note
that (f(Xt))0≤t≤T is in general not a semimartingale anymore, if f /∈ C2(Rd) (see Theo-
rem 71 of Protter (2013) for a counterexample). This means that [∂mf(X), X(m)]t may
have paths of unbounded variation. It is, however, a process of zero quadratic variation
for d = 1 and Lipschitz continuous f (cf. Lowther (2010), see also Walsh (2013)). It
is also interesting to note that Itô formulas can even be proven for Hölder continuous
functions, however only if X is a pure-jump process (cf. Jacod et al. (2003)).

Outline of main results

We now give an overview of the main results for the three problems above.

Chapter 2 investigates the spectral approaches for estimating integrated volatility of
Reiß (2011), Bibinger and Reiß (2014) and Bibinger et al. (2014) in a very general
setup. We study the noisy high-frequency non-synchronous observation model with gen-
eral error distribution and where X satisfies (1.0.1) for a general drift and random time
varying volatility. The one-dimensional case is considered first and in more detail in or-
der to give a clearer picture of the main ideas. This is followed by the bivariate and the
general multi-dimensional setting, including non-synchronous observations. We prove
functional stable limit theorems at the optimal convergence rate ∆

1/4
n and with asymp-

totic variances coinciding with the lower bounds in the nonparametric subexperiments
with deterministic volatility. As there is no suitable variance efficiency concept in this
case yet, we call the spectral estimators quasi-efficient. They are the only estimators so
far in this general setting to achieve the minimal asymptotic variance.

The asymptotic analysis is based on the theory of Jacod (1997), applied in a similar
context also in Fukasawa (2010) and Hayashi and Yoshida (2011), and incorporates
Fourier analysis and matrix algebra. The fundamental idea of the spectral estimator is
to smooth the noisy observations in the Fourier domain. The smoothed observations are
then combined by a local method of moments with optimal weights which depend on the
local covolatility matrix. The optimal weights thus require knowledge of the unknown
volatility process. We therefore prove adaptive versions of the spectral estimators where
in a first step the local covolatility matrices are pre-estimated from the same data. This
two stage method yields feasible limit theorems that are fully data driven.

Chapter 3 studies the estimation of occupation time functionals from several different
points of views. Related to the classical work of Geman and Horowitz (1980) on occu-
pation densities, we use Fourier methods for the estimation error Γt(f) − Γ̂n,t(f). The
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key idea is that the error is equal to

(2π)−d
ˆ
Ff (u)

( bt/∆nc∑
k=1

ˆ tk

tk−1

(
e−i〈u,Xr〉 − e−i〈u,Xtk−1〉

)
dr

)
du

by inverse Fourier transform under suitable regularity assumptions. Together with a
pathwise analysis of the exponentials e−i〈u,Xr〉 and with functions f having sufficiently
regular Fourier transforms this is just the right idea to control the estimation error.
The pathwise analysis is inspired by the one-step Euler approximations of Fournier and
Printems (2008) and is also related to Catellier and Gubinelli (2016). These ideas allow
us in Section 3.1 to extend the central limit theorem of Jacod and Protter (2011) to
L2-Sobolev functions f ∈ H1(Rd) and non-degenerate continuous Itô semimartingales
with the same rate of convergence ∆n. The proof is based on tight bounds for the Itô-
correction term in the classical Itô formula. Note that a function f ∈ H1(Rd) is not
necessarily continuous for d > 1.
For less smooth functions it is in general not possible to prove central limit theo-

rems, because the bias may become degenerate asymptotically. Instead, Section 3.2
provides non-asymptotic upper bounds for the L2(P)-error Γt(f) − Γ̂n,t(f) and general
d-dimensional càdlàg processes X under weak assumptions. Only the smoothness of the
bivariate distributions of (Xh, Xr) in 0 ≤ h < r ≤ T is required, i.e. either the joint
densities or the characteristic functions are differentiable in h and r. This allows us
to prove the rate ∆

(1+s)/2
n for a large class of d-dimensional processes and L2-Sobolev

functions with fractional smoothness 0 ≤ s ≤ 1. In particular, this covers the previous
results for Hölder and indicator functions. We therefore obtain a unifying mathematical
explanation for the different rates. Several examples demonstrate the applicability of
the upper bounds, for example to Markov processes, but also to fractional Brownian
motion. As an interesting application we prove rates of convergence for approximating
the local times of fractional Brownian motion. Note that the L2(P)-bounds also yield
improved bounds for the so-called weak approximations E[Γt(f) − Γ̂n,t(f)], which are
of key importance in Monte-Carlo simulations (cf. Gobet and Labart (2008), see also
Kohatsu-Higa et al. (2014)).
Section 3.3 studies the special case of stationary Markov processes. In this case the

L2(P)-error of Γt(f)− Γ̂n,t(f) can be calculated explicitly with respect to the associated
semigroup. This yields upper bounds in terms of fractional powers of the infinitesimal
generator of the process applied to f . While the assumption of stationarity is a limita-
tion, these bounds are more precise than the ones above (when both methods apply),
because they also hold for functions f ∈ L2(µ) which are square integrable with respect
to the invariant measure µ. Moreover, this method easily extends to infinite dimensions.
Rate optimality is addressed in Section 3.4. We prove the corresponding lower bounds

for the L2(P)-error in case of L2-Sobolev functions and d-dimensional Brownian motion.
In this case we can even conclude the efficiency of the Riemann-sum estimator in terms
of its asymptotic variance.
We want to emphasize that the L2(P)-bounds are not only optimal and explicit with

respect to their dependence on ∆n, but also with respect to T . More precisely, the
typical upper bound for L2-Sobolev functions is of order T 1/2∆

(1+s)/2
n . This allows for

approximating functionals
´
fdµ in an ergodic setting with respect to the invariant mea-
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sure µ at the optimal rate T−1/2 by the estimator T−1Γ̂n,T (f), independent of ∆n being
fixed or ∆n → 0. We therefore believe that our results may be instrumental in bridg-
ing the gap between results in statistics obtained for high-frequency and low-frequency
observations. In fact, the results of Section 3.3 have been crucial for approximating´ t

0 1[a,b)(Xr)dr, a < b, with respect to a one-dimensional stationary diffusion X in an
effort to find a universal estimator for the volatility process which is minimax optimal at
high and low frequency (cf. Chorowski (2018)). Moreover, it is well-known that, under
suitable regularity assumptions, T−1ΓT (f) converges to

´
fdµ at the rate T−1/2. This

is the same rate as for T−1Γ̂n,T (f). This suggests that our results can also be applied to
transfer results obtained in statistics for continuous observations to discrete observations
by approximating the corresponding integral functionals.
Chapter 4 is devoted to showing the existence of the quadratic covariations

[∂mf(X), X(m)]t for d-dimensional non-degenerate continuous Itô semimartingales. We
apply the methods developed in Chapter 3, working under the same assumptions as for
the central limit theorems in Section 3.1. This yields surprisingly strong results. Most
importantly, reversibility of X is not necessary. This further immediately leads to gener-
alized Itô formulas. The main result is that, up to some minor conditions, Itô’s formula
holds for L2-Sobolev functions f ∈ Hs(Rd), s > 1, if σ is Lipschitz continuous and
uniformly elliptic. This result achieves two things. First, it generalizes the Itô formulas
mentioned above for continuous diffusions and in any dimension d ≥ 1. In particular, we
have a precise relation between the regularity of f , σ and b, such that Itô’s formula also
holds for rough coefficients, if f is slightly more regular. Second, the formula also holds
for continuous Itô semimartingales and therefore allows for very complex processes that
are important in practice.
Note that we have to study all possible partitions (πn)n≥1 with mesh size |πn| → 0

for the existence of [∂mf(X), X(m)]t. This suggests that also the results in Chapter 3
should hold for more general sampling schemes.
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Nomenclature

The notation follows the usual conventions. Throughout the thesis C or Cp denote non-
negative absolute constants which may change from line to line. We give now a list of
general mathematical symbols that will be used.

P−→ convergence in probability
d−→ weak convergence
st−→ stable convergence
ucp−−→ uniform convergence in probability
an . bn, an = O(bn) a ≤ Cb
a � b a . b and b . a
an = o(bn) an/bn → 0
Xn = OP(an) (Xn/an)n≥1 is tight
Xn = oP(an) Xn/an → 0 in probability
Xn = Oucp(an) (Xn/an)n≥1 is tight with respect to the ucp topology
Xn = oucp(an) Xn/an → 0 with respect to the ucp topology
C∞c (Rd) smooth functions with compact support
Lp(Rd), Lp(µ) p-integrable functions, with respect to measure µ
S(Rd) Schwartz functions
Cs(Rd) bsc-times differentiable functions f such that all partial deriva-

tives of order bsc are s− bsc-Hölder continuous
D([0, T ],Rd) Skorokhod space
‖·‖, ‖·‖∞ Euclidean and sup norms on Rd or Rd×d
‖·‖Lp , ‖·‖Lp(P) Lp norms on Lp(Rd) and Lp(P)
‖·‖∞,µ sup norm with respect to measure µ
‖·‖α Hölder seminorm
‖·‖µ L2-norm with respect to measure µ
δlm Kronecker’s delta, i.e. δll = 1 and δlm = 0 for l 6= m
Id d× d-dimensional identity matrix
[f, g]n, 〈f, g〉n empirical scalar products
A> transpose of matrix A
dom(L) domain of operator L
vec(A) vectorization of A
A⊗B Kronecker product of A and B
Ff Fourier transform of f
Id identity function
B(M) Borel σ-algebra with respect to metric space M
(Pt)t≥0 Markov semigroup
σ(L) spectrum of operator L
σ(Xtk : 0 ≤ k ≤ n) sigma algebra generated by random variables Xtk
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δx dirac measure or dirac delta function in x ∈ Rd
Σt short for σtσ>t
Γt(f) occupation time functional
Γ̂n,t(f) Riemann-sum estimator
Θ̂n,t(f) trapezoid rule estimator
ÎVn,t, ̂ICV p,q

n,t , LMMn,t adaptive spectral estimators



Chapter 2.

Central limit theorems for spectral
estimators of integrated volatility

This chapter is adapted from Altmeyer and Bibinger (2015).

We present in this chapter several central limit theorems for the spectral estimators
of Reiß (2011), Bibinger and Reiß (2014) and Bibinger et al. (2014) in a general set-
ting. The first two sections describe the assumptions for the underlying process and
the observations, as well as the main results. The estimators will only be defined in
the third section, which also discusses in detail the spectral approach. In Section four
the asymptotic theory is presented with a focus on the one-dimensional case. For the
multi-dimensional estimators only the main steps are proved, including the effects of
non-synchronicity. Section five presents a small simulation study in order to investigate
the finite sample performance of the one-dimensional estimator. The proofs can be found
in Section six.

2.1. Statistical model

We first introduce the statistical model and provide all assumptions. For T > 0
let (Ω,F , (Ft)0≤t≤T ,P) be a filtered probability space which satisfies the usual con-
ditions, i.e. the filtration is right continuous and complete. On this space consider a
d-dimensional continuous Itô semimartingale X such that

Xt = X0 +

ˆ t

0
brdr +

ˆ t

0
σrdWr, 0 ≤ t ≤ T, (2.1.1)

where X0 is F0-measurable, (Wt)0≤t≤T is a standard d-dimensional Brownian motion,
the drift b = (bt)0≤t≤T is a locally bounded Rd-valued process and the volatility σ =
(σt)0≤t≤T is a càdlàg Rd×d-valued process, all adapted to (Ft)0≤t≤T .

We pursue the asymptotic analysis with respect to the following structural assumptions
on b and σ.

Assumption 2.1.1 (SM-α-β). Let 0 ≤ α, β ≤ 1. There exists a constant C and a
sequence of stopping times (τK)K≥1 with τK →∞ as K →∞ such that

E
[

sup
0≤r≤t

‖σ(s+r)∧τK − σs∧τK‖
2

]
≤ Ct2α, E

[
sup

0≤r≤t
‖b(s+r)∧τK − bs∧τK‖

2

]
≤ Ct2β

for all 0 ≤ s, t ≤ T with s+ t ≤ T . Moreover, (σt, σ
>
t )0≤t≤T is elliptic in the sense that

for P-almost all ω ∈ Ω there exist constants C(ω) with inf0≤t≤T (σtσ
>
t )(ω) ≥ C(ω).
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The smoothness assumptions on σ and b are rather general and appear frequently in the
literature (see e.g. Jacod and Mykland (2015), Jacod and Protter (2011, Section 2.1.5)).
They exclude fixed times of discontinuities, but allow for non-predictable jumps. The
assumptions are satisfied, if σ and b are themselves Itô semimartingales (with α = 1/2
or β = 1/2) or if their paths are Hölder continuous with regularity α or β. In particular,
they hold with α = β = 1/2 if X is a diffusion process such that σt = σ̃(Xt), bt = b̃(Xt)
with Lipschitz continuous functions σ̃, b̃. The semimartingale model in (2.1.1) and
Assumption (SM-α-β) will appear again in Chapters 3 and 4. In this chapter we will
work under (SM-α-β) for α ≥ 1/2 and any β > 0.
In the following consider without loss of generality T = 1. We work within the model

where we have indirect observations of X diluted by noise. For this let ε = (εt)0≤t≤1

be a d-dimensional iid white noise process with independent components. We assume
that ε is independent of F . Set Gt = Ft ⊗ σ(εs : s ≤ t) for 0 ≤ t ≤ 1 and let
(Ω0,G, (Gt)0≤t≤1,P0) be a filtered probability space which accommodates the signal and
the noise processes and extends the space (Ω,F , (Ft)0≤t≤1,P). For simplicity, denote it
by (Ω,G, (Gt)0≤t≤1,P).
With respect to the observation scheme of the perturbed process we consider two

different assumptions.

Assumption 2.1.2 (N-1). Let d = 1. The white noise process satisfies E[ε8
t ] < ∞ and

E[ε2
t ] = η2 > 0 for all 0 ≤ t ≤ 1. On the extension (Ω,G, (Gt)0≤t≤1,P) we observe

Y ∈ Rn+1 with Yk = Xtk + εtk at regular times tk = k/n, k = 0, . . . , n.

For general dimensions d ≥ 1 we consider a very general framework with noise and
in which observations arrive at non-synchronous sampling times. Denote the integrated
covolatility matrix by

´ t
0 Σs ds, Σs = σsσ

>
s . It coincides with the quadratic variation

〈X,X〉t of X.

Assumption 2.1.3 (N-d). Let d ≥ 1. The white noise process satisfies E[(ε
(p)
t )8] <

∞ and Var(ε(p)
t ) = η2

p > 0 for all 0 ≤ t ≤ 1 and p = 1, . . . , d. On the extension
(Ω,G, (Gt)0≤t≤1,P) we observe

Y
(p)
k = X

(p)

t
(p)
k

+ ε
(p)
k , k = 0, . . . , np, p = 1, . . . , d,

at non-synchronous observation times 0 ≤ t
(p)
k ≤ 1 which are described by quantile

transformations t(p)k = F−1
p (k/np) with differentiable, possibly random (but independent

of X and ε) distribution functions Fp with Fp(0) = 0, Fp(1) = 1, F ′p ∈ Cα([0, 1])
with values in [0, 1] for some 1/2 < α ≤ 1 such that F ′p is strictly positive. Moreover,
n/np → νp as n→∞ with constants 0 < νp <∞ for all p = 1, . . . , d.

For d = 1, ν1 = 1 and F1 = Id this assumption reduces to (N-1). Working under
(N-1) in d = 1 allows for a simpler proof which may help to understand the method
better. For d ≥ 1 Assumption (N-d) includes deterministic and random observation
times which are independent of Y . While this is still an idealization of realistic market
microstructure dynamics, our observation model constitutes the established setup in the
related literature and captures the main ingredients of realistic log-price models.
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2.2. Main results

In this section we present the three major results of this chapter in Theorems 2.2.1, 2.2.2
and 2.2.3 and discuss the consequences. Theorems 2.2.1 and 2.2.2 establish functional
stable central limit theorems in a general semimartingale setting for the spectral estima-
tors of Reiß (2011) and Bibinger and Reiß (2014). Theorem 2.2.3 gives a multivariate
limit theorem for the localized method of moments approach of Bibinger et al. (2014).
These methods are briefly explained in Section 2.3. All estimators rely on optimal weight
functions, which have to be estimated from the data, as well. The following theorems
apply to the corresponding adaptive estimators, which are all defined in Section 2.3:

• the adaptive spectral estimator ÎV n,t of integrated volatility,

• the adaptive spectral estimator ÎCV
(p,q)

n,t of integrated covolatility and

• the local method of moments estimator LMMn,t of the integrated covolatility
matrix.

These estimators are defined in (2.3.8), in (2.3.16) and (2.3.19), respectively. They attain
asymptotic efficiency lower variance bounds in the simplified models without drift, with
independent volatility processes and Gaussian noise. The limit theorems are all based
on the concept of stable convergence (see Section A.1 for details).

Theorem 2.2.1. Let d = 1. Assume (SM-α-β) for some α ≥ 1/2, β > 0 and (N-1).
Then we have the stable convergence

n1/4

(
ÎV n,t −

ˆ t

0
σ2
sds

)
st−→
ˆ t

0

√
8η |σ3

s |dW̃s (2.2.1)

as processes on D([0, 1],R), where W̃ is a Brownian motion defined on an independent
extension of the original probability space (Ω,G, (Gt)0≤t≤1,P). Moreover, the variance
estimator V̂IVn,t defined in (2.3.9) provides for fixed 0 ≤ t ≤ 1 the feasible central limit
theorem: (

V̂IVn,t
)−1/2

(
ÎV n,t −

ˆ t

0
σ2
sds

)
d−→ N(0, 1). (2.2.2)

The convergence rate in (2.2.1) and (2.2.2) is optimal already in the parametric subex-
periment (see Gloter and Jacod (2001)). ÎV n,1 is asymptotically mixed normally dis-
tributed with random asymptotic variance

´ 1
0 8η|σ3

s |ds. This asymptotic variance co-
incides with the lower bound derived by Reiß (2011) in the subexperiment with time-
varying but deterministic volatility, without drift and Gaussian error distribution. The
spectral estimator of squared integrated volatility is hence asymptotically efficient in this
setting. For the general semimartingale experiment the concept of asymptotic efficiency
is not developed yet. It is conjectured that the lower bound has analogous structure (cf.
Remark 3.1 of Jacod and Mykland (2015)). Theorem 2.2.1 establishes that the asymp-
totic variance of the estimator has the same form in the very general framework, what
we call quasi-efficient, and stable convergence holds true. The feasible limit theorem
(2.2.2) allows to provide confidence bands and is of pivotal importance for applications.
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For the multi-dimensional setting define a diagonal matrix of asymptotic noise levels
H(t) = diag(ηpν

1/2
p F ′p(t)

−1/2)p ∈ Rd×d, 0 ≤ t ≤ 1.

Theorem 2.2.2. Let d ≥ 1. Assume (SM-α-β) for some α ≥ 1/2, β > 0 and (N-d).
Then we have the stable convergence

n1/4

(
ÎCV

(p,q)

n,t −
ˆ t

0
Σ(pq)
s ds

)
st−→
ˆ t

0
v(p,q)
s dW̃s (2.2.3)

for n/np → νp and n/nq → νq with 0 < νp < ∞, 0 < νq < ∞, as processes on
D([0, 1],R), where W̃ is a Brownian motion defined on an independent extension of the
original probability space (Ω,G, (Gt)0≤t≤1,P). The asymptotic variance process satisfies

(
v(p,q)
s

)2
= 2

((
H (s)(p)

)2 (
H (s)(q)

)2
(A2

s −Bs)Bs
)1/2

×
(√

As +
√
A2
s −Bs − sgn(A2

s −Bs)
√
As −

√
A2
s −Bs

)
, (2.2.4)

where sgn denotes the sign function taking values in {−1, 1} such that (v
(p,q)
s )2 is always

non-negative, and where

As = Σ(pp)
s

(
H (s)(q)

H (s)(p)

)2

+ Σ(qq)
s

(
H (s)(p)

H (s)(q)

)2

, Bs = 4
(

Σ(pp)
s Σ(qq)

s +
(
Σ(pq)
s

)2)
.

Moreover, the variance estimator V̂ICV(p,q)

n,t defined in (2.3.17) provides for fixed 0 ≤ t ≤ 1
the feasible central limit theorem:

(
V̂ICV(p,q)

n,t

)−1/2
(
ÎCV

(p,q)

n,t −
ˆ t

0
Σ(pq)
s ds

)
d−→ N(0, 1) . (2.2.5)

The bivariate extension of the spectral method outperforms by its local adaptivity and
Fourier domain smoothing previous approaches for integrated covolatility estimation in
most cases, see Bibinger and Reiß (2014) for a detailed discussion and survey on the
different methods. It attains the multi-dimensional variance lower bound in the submodel
for estimating the integrated covolatility

´ 1
0 Σ

(pq)
s ds only in case of zero correlation.

On the other hand, the estimator already achieves a high efficiency and since it does
not involve Fisher information weight matrices, it is less computationally costly than
the efficient local method of moments approach. The general form of the asymptotic
variance given in (2.2.4) is complicated. When Σ

(12)
t = 0 and for equal volatilities

Σ
(11)
t = Σ

(22)
t = σt, it simplifies to

´ t
0 4η|σ3

s | ds which is efficient for this setup. The
rescaled version in (2.2.5) allows for confidence bounds and is of high practical value.
For the general multi-dimensional setting we first have to introduce some additional

notation. For matrices A,B ∈ Rd×d the vec-operator vec(A) ∈ Rd2 and the Kronecker
product A⊗B ∈ Rd2×d2 are defined by

vec(A) =
(
A11, A21, . . . , Ad1, A12, A22, . . . , Ad2, . . . , Ad(d−1), Add

)> ∈ Rd
2
,

(A⊗B)d(p−1)+q,d(p′−1)+q′ = App′Bqq′ , p, q, p′, q′ = 1, . . . , d.
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Note the crucial relation between the Kronecker product and the vec-operator
vec(ABC) = (C> ⊗ A) vec(B). In the limit theorems, we need to account for effects
by the non-commutativity of matrix multiplication. It will be useful to standardize the
limit theorems such that the matrix

Z = cov(vec(ZZ>)), for Z ∼ N(0, Id) standard Gaussian, (2.2.6)

appears as covariance matrix of the standardized form instead of the identity matrix.
This matrix is the sum of the d2-dimensional identity matrix Id2 and the so-called com-
mutation matrix Cd,d that maps a (d × d) matrix to the vectorization of its transpose,
i.e. Cd,dvec(A) = vec(A>). The symmetrizer matrix Z/2 is idempotent (Abadir and
Magnus (2009, Chapter 11)). For background information on matrix algebra, especially
tensor calculus using the Kronecker product and vec-operator we refer to Abadir and
Magnus (2009). With this preparation we can state the third main result in this chapter.

Theorem 2.2.3. Let d ≥ 1. Assume (SM-α-β) for some α ≥ 1/2, β > 0 and (N-d).
Then we have the stable convergence

n1/4

(
LMMn,t − vec

(ˆ t

0
Σs ds

))
st−→
ˆ t

0

(
Σ1/2
s ⊗

(
ΣHs
)1/4)ZdW̃s

+

ˆ t

0

((
ΣHs
)1/4 ⊗ Σ1/2

s

)
ZdW̃⊥s (2.2.7)

for n/np → νp as n→∞ for p = 1, . . . , d as processes on D([0, 1],Rd), where W̃ and W̃⊥

are independent d-dimensional Brownian motions defined on an independent extension
of the original probability space (Ω,G, (Gt)0≤t≤1,P). Moreover,

(
ΣH
)1/4 is the square

root of
(
ΣH
)1/2

:= H(H−1ΣH−1)1/2H and Z is the matrix defined in (2.2.6). For t = 1
the pointwise marginal central limit theorem becomes

n1/4

(
LMMn,1 − vec

( ˆ 1

0
Σsds

))
st−→MN

(
0, I−1Z

)
, (2.2.8)

where MN means mixed normal distribution with asymptotic covariance matrix

I−1 = 2

ˆ 1

0

(
Σs ⊗

(
ΣHs
)1/2

+
(
ΣHs
)1/2 ⊗ Σs

)
ds. (2.2.9)

Moreover, the covariance matrix estimator I−1
n,t defined in (2.3.20) provides for fixed

0 ≤ t ≤ 1 the feasible central limit theorem:

I
1/2
n,t

(
LMMn,t − vec

( ˆ t

0
Σsds

))
d−→ N (0,Z) . (2.2.10)

The local method of moments attains the lower asymptotic variance bound derived
in Bibinger et al. (2014) for a nonparametric experiment with deterministic covolatility
matrix, without drift and with Gaussian error distribution. Thus, the local method of
moments is asymptotically efficient in this subexperiment.
The asymptotic variance of estimating integrated volatility decreases as we can benefit

from observing correlated components. In the multi-dimensional observation model the
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minimum asymptotic variance can become much smaller than the bound in (2.2.1) for
d = 1. In an idealized parametric model with σ > 0, the variance can be reduced up to
(8/
√
d)ησ3 in comparison to the one-dimensional lower bound 8ησ3. See Bibinger et al.

(2014) for a deeper discussion of the lower bound. In view of the complex geometry
of the general multi-dimensional parameter space, expression (2.2.9) provides a neat
description of the asymptotic variance bound.

2.3. Spectral estimation

In this section we review the building blocks of the spectral estimation method. In the
following, denote by ∆n

i Y
(l) = Y

(l)
i − Y (l)

i−1, i = 1, . . . , nl, l = 1, . . . , d the increments
of Y (l) and analogously for X and other processes. For simplicity we assume first that
d = 1, in the setting of Assumption (N-1). The time interval [0, 1] is partitioned into
equidistant bins [(k − 1)hn, khn), k = 1, . . . , h−1

n ∈ N, hn → 0 as n → ∞ such that
nhn is the average number of observations per bin. Under Assumption (SM-α-β) for
α ≥ 1/2, β > 0 we can always assume by an approximation argument that σ2

t = σ2
(k−1)hn

is locally constant on each bin for t ∈ [(k − 1)hn, khn). On every block the integrated
volatility

´ khn
(k−1)hn

σ2
sds = hnσ

2
(k−1)hn

can then be estimated by hnσ̂2
(k−1)hn

, solving locally
parametric estimation problems. For this purpose Reiß (2011) uses the spectral statistics

Sjk =
n∑
i=1

∆n
i Y Φjk

(
i

n

)
, j = 1, . . . , bnhnc − 1, k = 1, . . . , h−1

n , (2.3.1)

which are discrete analogues of expressions obtained from diagonalizing the covariance
operator of observations in an equivalent white noise experiment. Here,

Φj(t) =

√
2

hn
sin
(
jπh−1

n t
)
1[0,hn] (t) , j ≥ 1, 0 ≤ t ≤ 1 , (2.3.2)

ϕj (t) = 2n

√
2

hn
sin

(
jπ

2nhn

)
cos
(
jπh−1

n t
)
1[0,hn] (t) , (2.3.3)

and Φjk (t) = Φj(t− (k− 1)hn), ϕjk (t) = ϕj(t− (k− 1)hn) are systems of trigonometric
function orthogonal with respect to empirical scalar products 〈·, ·〉n and [·, ·]n, respec-
tively (see Section 2.6.1 for details). Efficient estimators σ̂2

(k−1)hn
for σ2

(k−1)hn
are then

constructed by weighted linear combinations of bias corrected squared spectral statistics
over different frequencies.
The spectral statistics are the principal elements of the considered estimation tech-

niques. They are related to the pre-averages of Jacod et al. (2009). An important
difference is that we keep the bins fixed which simplifies the construction of the spectral
approach. Bin-wise the spectral estimation benefits from an advanced smoothing method
in the frequency domain by using the weight function of a discrete sine transformation.
The spectral statistics hence de-correlate the observations and form their bin-wise prin-
cipal components. The methodology can be viewed also as localizing the estimator of
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Curci and Corsi (2012) on bins. Reiß (2011) showed that this leads to a semiparametri-
cally efficient estimation approach of integrated volatility in a nonparametric setup with
deterministic volatility, without drift and with Gaussian noise.
The bin-width is chosen as hn � n−1/2 log n in order to attain the optimal conver-

gence rates for the results in Section 2.2. This becomes clear in the proofs in Section
2.6. The log-factor plays a role in the convergence of the sum of variances over different
frequencies. The leading asymptotic order n−1/2 for the bin-width is analogous to the
pre-average and kernel bandwidths, cf. Jacod et al. (2009) and Barndorff-Nielsen et al.
(2008), and balances the discretization error which increases with increasing hn and the
error due to noise which decreases as hn increases. Let us point out that the basis func-
tions (2.3.2) and (2.3.3) are scaled versions of the respective basis functions in Bibinger
and Reiß (2014) and Bibinger et al. (2014) for a more convenient exposition.

2.3.1. The spectral estimator of integrated volatility

As above let d = 1 and assume (N-1). In order to estimate σ2
(k−1)hn

on block k, the
spectral statistics Sjk in (2.3.1) have to be squared. This creates a bias. After correcting
for this bias, we form weighted linear combinations:

σ̂2
(k−1)hn

=

bnhnc−1∑
j=1

wjk

(
S2
jk − [ϕjk, ϕjk]n

η2

n

)
. (2.3.4)

The weights wjk are defined below. This means that we consider only asymptotically
infinitely many frequencies. As the proofs reveal it is even sufficient to consider only
the first Jn � log n frequencies, because higher frequencies are asymptotically negligible.
The bias correction incorporates the noise level η which is unknown in general. It can
be consistently estimated from the data with rate of convergence n−1/2, for instance by
η̂2 = (2n)−1

∑n
i=1(∆n

i Y )2, see Zhang et al. (2005) for an asymptotic analysis of this
estimator. The principle of bias-correcting the squared spectral statistics relates to the
early estimator of Zhou (1998) for volatility estimation under microstructure noise. Set
Ijk =

(
Var
(
S2
jk|G(k−1)hn

))−1 to be the inverse conditional variance of the S2
jk and let

Ik =
∑bnhnc−1

j=1 Ijk. The variance of σ̂2
(k−1)hn

becomes minimal and equal to
∑bth−1

n c
k=1 I−1

k

with oracle weights

wjk = I−1
k Ijk =

(
σ2

(k−1)hn
+ η2

n [ϕjk, ϕjk]n

)−2

∑bnhnc−1
m=1

(
σ2

(k−1)hn
+ η2

n [ϕmk, ϕmk]n

)−2 (2.3.5)

for k = 1, . . . , h−1
n and j = 1, . . . , bnhnc − 1, when the noise is Gaussian. For a general

noise distribution the first-order variance of σ̂2
(k−1)hn

is not affected. The estimator of´ t
0 σ

2
s ds is constructed as Riemann-sum

bth−1
n c∑

k=1

hnσ̂
2
(k−1)hn

=

bth−1
n c∑

k=1

hn

bnhnc−1∑
j=1

wjk

(
S2
jk − [ϕjk, ϕjk]n

η2

n

)
, (2.3.6)
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such that the estimator at t = 1 becomes simply the average of local estimates in the
case of equispaced bins.
It is essential to develop an adaptive version of the estimator, for which we replace

the optimal oracle weights by data-driven weights. Additionally to the estimated noise
variance, a bin-wise consistent estimator of the σ2

(k−1)hn
with some convergence rate

suffices. Local pre-estimates can be constructed by using the same ansatz as in (2.3.4),
but involving only Jn � bnhnc − 1 frequencies with constant weights wjk = J−1

n and
then averaging over (2Kn + 1) � n1/4 bins in a neighborhood of (k − 1)hn:

σ̂2,pilot
(k−1)hn

= (2Kn + 1)−1

(k−1+Kn)∧h−1
n∑

m=(k−1−Kn)∨1

J−1
n

Jn∑
j=1

(
S2
jm − [ϕjm, ϕjm]n

η̂2

n

)
. (2.3.7)

This estimator attains n−1/8 as rate of convergence under Assumption (SM-α-β) for
α ≥ 1/2, β > 0. The estimated weights are then given by ŵjk = Î−1

k Îjk where Îk, Îjk
are obtained as above but plugging in the pre-estimates of σ2

(k−1)hn
and of η2. The fully

adaptive spectral estimator of integrated volatility and the estimator for its variance are
then given by the following two-stage approach:

ÎV n,t =

bth−1
n c∑

k=1

hn

bnhnc−1∑
j=1

ŵjk

(
S2
jk − [ϕjk, ϕjk]n

η̂2

n

)
, (2.3.8)

V̂IVn,t =

bth−1
n c∑

k=1

h2
n Î
−1
k . (2.3.9)

2.3.2. The spectral covolatility estimator

Let now d ≥ 1 and assume (N-d). The spectral covolatility estimator from Bibinger
and Reiß (2014) is the obvious extension of the one-dimensional estimator using cross
products of the corresponding spectral statistics

S
(p)
jk =

np∑
i=1

∆n
i Y

(p)Φjk

(
t
(p)
i + t

(p)
i−1

2

)
, j ≥ 1, p = 1, . . . , d, k = 1, . . . , h−1

n . (2.3.10)

The basis functions Φjk are defined as in (2.3.2). Instead of (2.3.4) we then have the
local estimator for p 6= q

Σ̂
(p,q)
(k−1)hn

=

bnhnc−1∑
j=1

wp,qjk

(
S

(p)
jk S

(q)
jk

)
. (2.3.11)

Differently from (2.3.8) there is no bias correction for the cross product S(p)
jk S

(q)
jk , because

the noise is component-wise independent. For the optimal weights observe that by a
locally constant approximation of the observation frequencies that we get a bin-wise
locally constant approximation of H:

Hnk = diag
(
n−1
p η2

pνpF
′
p((k − 1)hn)−1

)
p

= diag
(
H(k−1)hn
p

)
p
. (2.3.12)



21 Chapter 2. Central limit theorems for spectral estimators

Moreover, [ϕjk, ϕjk] =
´ 1

0 ϕ
2
jk(t) dt = h−2

n π2j2, where we use for non-synchronous obser-
vations instead of (2.3.3) the simpler expression ϕjk = Φ′jk (∗). The optimal weights are
then given by wp,qjk = (I

(p,q)
k )−1I

(p,q)
jk

with

I
(p,q)
jk =

(
Σ

(pp)
(k−1)hn

Σ
(qq)
(k−1)hn

+ (Σ
(pq)
(k−1)hn

)2 +H(k−1)hn
p H(k−1)hn

q [ϕjk, ϕjk]
2 (2.3.13)

+
(
Σ

(pp)
(k−1)hn

H(k−1)hn
q + Σ

(qq)
(k−1)hn

H(k−1)hn
p

)
[ϕjk, ϕjk]

)
−1.

They depend on the volatilities, the covolatility and the noise levels with respect to p, q.
The local noise levels H(k−1)hn

p can be estimated by

Ĥ(k−1)hn
p =

∑np
i=1

(
∆iY

(p)
)2

2hn

∑
(k−1)hn≤t(p)v ≤khn

(
t(p)v − t

(p)
v−1

)2
, (2.3.14)

(cf. (2.6.5)). Averaging empirical covariances SjkS>jk over different spectral frequencies
j = 1, . . . , Jn and over a set of (2Kn + 1) adjacent bins yields a consistent estimator of
the instantaneous covolatility matrix:

Σ̂pilot
s = (2Kn + 1)−1

bsh−1
n c+Kn∑

k=bsh−1
n c−Kn

J−1
n

Jn∑
j=1

(
SjkS

>
jk − [ϕjk, ϕjk] Ĥ

n

k

)
, (2.3.15)

where Ĥ
n

k = diag(Ĥkhn
p ). End effects for s < Knhn and s > 1−Knhn are not discussed

here. Adaptive pre-estimated weights ŵp,qjk can then obtained again by plug-in from
(2.3.13). The bivariate spectral covolatility estimator with adaptive weights is then
given by

ÎCV
(p,q)

n,t =

bth−1
n c∑

k=1

hn

bnhnc−1∑
j=1

ŵp,qjk

(
S

(p)
jk S

(q)
jk

)
. (2.3.16)

The estimator of the variance is

V̂ICV(p,q)

n,t =

bth−1
n c∑

k=1

h2
n

(
(Îk)

(p,q)
)−1

. (2.3.17)

A more general version of the spectral covolatility estimator for a model including cross-
correlation of the noise (in a synchronous framework) can be found in Bibinger and
Reiß (2014). For a simpler exposition and since this notion of cross-correlation is not
adequate for the more important non-synchronous case, we restrict ourselves here to
noise according to Assumption (N-d).
∗ This meets the original idea by Reiß (2011) for continuous-time observations to use orthogonal systems
of functions and their derivatives. While in the case of regular observations on the grid i/n, i =
0, . . . , n, we can slightly benefit from discrete Fourier analysis and the exact form of the ϕjk, for non-
synchronous observations we rely on continuous-time analogues as approximations which coincide
discrete expressions at first order.
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2.3.3. Local method of moments

Let Sjk = (S
(p)
jk )p be the vector of the spectral statistics in (2.3.10) for k = 1, . . . , h−1

n

and j ≥ 1. The fundamental novelty of the local method of moments approach is to
involve multivariate Fisher informations as optimal weight matrices which are (d2 × d2)
matrices of the following form:

Wjk = I−1
k Ijk =

( bnhnc−1∑
u=1

(
Σ(k−1)hn + [ϕuk, ϕuk]Hnk

)−⊗2
)−1

·
(
Σ(k−1)hn + [ϕjk, ϕjk]Hnk

)−⊗2, (2.3.18)

where A⊗2 = A ⊗ A and A−⊗2 = (A⊗2)−1 = (A−1)⊗2. The main difference to the
estimators in (2.3.8) and (2.3.16) is that for estimating one specific (co-)volatility of
one (two) components, the estimator in (2.3.18) does not only rely on observations of
the one (two) considered component(s) but benefits from information contained in all
other correlated components. In general, this facilitates a much smaller variance in the
multivariate model.
We immediately define the adaptive estimator. With the pilot estimates (2.3.15) and

estimators for the noise level (2.3.14) at hand, we derive pre-estimated weight matrices
Ŵjk similar as above. The final estimator of vec(

´ t
0 Σs ds) is

LMMn,t =

bth−1
n c∑

k=1

hn

bnhnc−1∑
j=1

Ŵjkvec
(
SjkS

>
jk − [ϕjk, ϕjk] Ĥ

n

k

)
, (2.3.19)

and the estimator of its covariance matrix is

Î−1
n,t =

bth−1
n c∑

k=0

h2
n

( bnhnc−1∑
j=1

Îjk

)−1
. (2.3.20)

Our method is different from the approach of ?, even though they have similar names.
A common feature is the two-stage adaptivity where pre-estimated spot volatilities are
plugged in for the final estimator.

2.4. Asymptotic theory

We begin with the one-dimensional experiment. X is decomposed by a locally constant
approximation of σ and the approximation error:

Xt = X0 + X̃t + (Xt −X0 − X̃t) , (2.4.1)

where X̃t =
´ t

0 σbsh−1
n chndWs is a simplified process without drift and with locally con-

stant volatility. We distinguish between ÎV
or

n,t(Y ), the oracle version of the spectral
volatility estimator (2.3.8) from noisy observations, and ÎV

or

n,t(X̃ + ε) for the oracle
estimator in a simplified experiment in which X̃ instead of X is observed with noise.
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In order to establish a functional limit theorem, decompose the estimation error of the
oracle version of (2.3.8) in the following way:

ÎV
or

n,t(Y )−
ˆ t

0
σ2
s ds = ÎV

or

n,t(X̃ + ε)−
ˆ t

0
σ2
bsh−1

n chn
ds (2.4.2)

+ ÎV
or

n,t(Y )− ÎV
or

n,t(X̃ + ε)−
ˆ t

0

(
σ2
s − σ2

bsh−1
n chn

)
ds . (2.4.3)

We first prove the result of Theorem 2.2.1 for the right-hand side of (2.4.2). In the second
step the approximation error in (2.4.3) is shown to be asymptotically negligible. Finally,
we establish that the same functional stable CLT carries over to the adaptive estimators
by proving that the error of the plug-in estimation of optimal weights is asymptotically
negligible.

Proposition 2.4.1. We have under the assumptions of Theorem 2.2.1 that

n1/4

(
ÎV

or

n,t(X̃ + ε)− hn
bth−1

n c∑
k=1

σ2
(k−1)hn

)
st−→
ˆ t

0

√
8η |σ3

s |dW̃s, (2.4.4)

as n → ∞ on D([0, 1],R), where W̃ is a Brownian motion defined on an independent
extension of the original probability space (Ω,G, (Gt)0≤t≤1,P).

Proposition 2.4.2. We have under the assumptions of Theorem 2.2.1 that

n1/4
(
ÎV

or

n,t(Y )− ÎV
or

n,t(X̃ + ε)−
ˆ t

0

(
σ2
s − σ2

bsh−1
n chn

)
ds
)

ucp−−→ 0, as n→∞ . (2.4.5)

Theorem 2.2.1 is then an immediate consequence of the following proposition:

Proposition 2.4.3. We have under the assumptions of Theorem 2.2.1 that

n1/4
∣∣∣ÎV n,t − ÎV

or

n,t(Y )
∣∣∣ ucp−−→ 0, as n→∞. (2.4.6)

Finally, by consistency of the variance estimators and Slutsky’s Lemma the feasible
limit theorems for the adaptive estimators are valid. The proof of Proposition 2.4.1 is
based on Theorem A.1.2. For this rewrite the rescaled estimation error as a sum of
increments:

n1/4

(
ÎV

or

n,t(X̃ + ε)− hn
bth−1

n c∑
k=1

σ2
(k−1)hn

)
=

bth−1
n c∑

k=1

ζnk , (2.4.7)

ζnk = n1/4hn

bnhnc−1∑
j=1

wjk

(
S̃2
jk − E

[
S̃2
jk

∣∣∣G(k−1)hn

])
, k = 1, . . . , h−1

n , (2.4.8)

where the S̃jk correspond to the spectral statistics in (2.3.1) with respect to X̃+ε instead
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of X + ε. In order to apply Theorem A.1.2 we will verify the following five conditions:

bth−1
n c∑

k=1

E
[
ζnk
∣∣G(k−1)hn

] ucp−→ 0, (J1)

bth−1
n c∑

k=1

E
[
(ζnk )2

∣∣G(k−1)hn

]
P→
ˆ t

0
v2
sds, (J2)

bth−1
n c∑

k=1

E
[
(ζnk )4

∣∣G(k−1)hn

]
P→ 0, (J3)

bth−1
n c∑

k=1

E
[
ζnk (Wkhn −W(k−1)hn)

∣∣G(k−1)hn

] P→ 0, (J4)

bth−1
n c∑

k=1

E
[
ζnk (Nkhn −N(k−1)hn)

∣∣G(k−1)hn

] P→ 0, (J5)

with vs =
√

8η|σs|3 and where N in (J5) is any bounded martingale orthogonal to W .

Next, we consider the covolatility estimator (2.3.16) and the local method of moments
approach (2.3.19). A non-degenerate asymptotic variance is obtained when n/np → νp
with 0 < νp <∞ as n→∞ for all p = 1, . . . , d. In the idealized martingale framework
Bibinger et al. (2014) have found that non-synchronicity effects are asymptotically neg-
ligible in terms of the information content of the underlying experiments by a (strong)
asymptotic equivalence in the sense of Le Cam of the discrete non-synchronous and
a continuous-time observation model. This yields a fundamental difference to the no-
noise case where the asymptotic variance of the prominent Hayashi-Yoshida estimator
in the functional CLT hinges on interpolation effects, see Hayashi and Yoshida (2011).
In the presence of the dominant noise part, however, at the slower optimal convergence
rate, the influence of sampling schemes boils down to local observation densities. These
time-varying local observation densities are shifted to locally time-varying noise levels
(indeed locally increased noise is equivalent to locally less frequent observations). Here,
we shall explicitly prove that the error incurred by passing from a non-synchronous to a
synchronous reference scheme is asymptotically negligible.

Lemma 2.4.4. Let t̄(l)i =
(
t
(l)
i + t

(l)
i−1

)
/2 for l = 1, . . . , d. Under Assumptions (SM-α-

β) for α ≥ 1/2 and β > 0 and (N-d) we can work with synchronous sampling when
considering the signal part X, i.e. for l,m = 1, . . . , d uniformly in t and with wl,mjk as in
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Section 2.3.2 or defined as entries of (2.3.18):

bth−1
n c∑

k=1

hn
∑
j≥1

wl,mjk

nl∑
v=1

(
X

(l)

t
(l)
v

−X(l)

t
(l)
v−1

)
Φjk(t̄

(l)
v )

·
nm∑
i=1

(
X

(m)

t
(m)
i

−X(m)

t
(m)
i−1

)
Φjk(t̄

(m)
i ) + oP(n−1/4)

=

bth−1
n c∑

k=1

hn
∑
j≥1

wl,mjk

nl∑
v=1

(
X

(l)

t
(l)
v

−X(l)

t
(l)
v−1

)
Φjk(t̄

(l)
v )

nl∑
i=1

(
X

(m)

t
(l)
i

−X(m)

t
(l)
i−1

)
Φjk(t̄

(l)
i ).

Note that (F−1
l )′, (F−1

m )′ affect the asymptotics of our estimators as can be seen in
(2.2.4). They are treated as part of the summands due to noise.
Under a synchronous reference observation scheme the strategy of the asymptotic

analysis is similar to the one-dimensional setup. Analogous decompositions of the leading
terms from the simplified model without drift and with a locally constant covolatility
matrix and remainders are considered for the multivariate method of moments estimator
(2.3.19) and the spectral covolatility estimator (2.3.16). In order to prove Theorem 2.2.2
for instance, we apply Theorem A.1.2 to the sum of increments

ζnk = n
1
4hn

(∑
j≥1

wp,qjk
(
S̃

(p)
jk S̃

(q)
jk

)
− E

[
S̃

(p)
jk S̃

(q)
jk

∣∣∣G(k−1)hn

] )
(2.4.9)

for k = 1, . . . , h−1
n with S̃

(p)
jk as defined in (2.3.10) with respect to X̃ + ε instead of

X + ε. By including the case p = q with a bias correction the one-dimensional result is
generalized to non-equidistant sampling.
The asymptotic negligibility of the plug-in estimation in Proposition 2.4.3 is proven

in Section 2.6 exploiting a uniform bound on the derivative of the weights as function
of σt. In fact, it turns out that the weights are robust enough under misspecification of
the pre-estimated local volatility to render the difference between oracle and adaptive
estimators asymptotically negligible. This carries over to the multivariate methods.

2.5. Simulations

We study now the finite sample performance of the one-dimensional spectral estimator
in (2.3.8) in a random volatility scenario. We sample regular observations Y1, . . . , Yn as
in Assumption (N-1) with εi

iid∼ N(0, η2) and the simulated diffusion

Xt = bt+

ˆ t

0
σsdWs.

In a first baseline scenario configuration let σs = 1 be constant. In a second more
realistic scenario we consider

σ2
t =

(ˆ t

0
σ̃ · λ dWs +

ˆ t

0

√
1− λ2 · σ̃ dW⊥s

)
· f(t) , (2.5.1)
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n σ h−1
n η λ RE(ÎV

or

n,1) RE(ÎV n,1)

30000 1 25 0.01 – 1.01 1.43

5000 1 25 0.01 – 1.02 1.47

30000 Eq. (2.5.1) 25 0.01 0.5 1.09 1.75

30000 Eq. (2.5.1) 25 0.01 0.2 1.06 1.77

30000 Eq. (2.5.1) 25 0.01 0.8 1.09 1.75

30000 Eq. (2.5.1) 25 0.001 0.5 1.62 1.88

30000 Eq. (2.5.1) 25 0.1 0.5 1.20 1.69

30000 Eq. (2.5.1) 50 0.01 0.5 1.09 1.84

30000 Eq. (2.5.1) 10 0.01 0.5 1.16 1.86

5000 Eq. (2.5.1) 25 0.01 0.5 1.13 1.92

5000 Eq. (2.5.1) 50 0.01 0.5 1.08 1.75

5000 Eq. (2.5.1) 10 0.01 0.5 1.09 1.87

Table 2.1.: Relative Efficiencies (RE) of oracle and adaptive spectral integrated volatility
estimator in finite-sample Monte Carlo study.

with W⊥ being a standard Brownian motion independent of W and f being a determin-
istic seasonality function

f(t) = 0.1(1− t
1
3 + 0.5 · t2)

such that σ2
0 = 0.1. Set b = 0.1 and σ̃ = 0.01.

The superposition of a continuous semimartingale as random component with a time-
varying seasonality modeling the volatility’s typical U-shape mimics very general real-
istic volatility characteristics. We implement the oracle version of the estimator (2.3.8)
and the adaptive two-stage procedure with pre-estimated optimal weights. Table 2.1
presents Monte Carlo results for different scenario configurations. In particular, we
consider different tuning parameters (bin-widths) and possible dependence of the finite-
sample behavior on the leverage magnitude and the magnitude of the noise variance. We
compute the estimators’ root mean squared errors (RMSE) at t = 1, for each configura-
tion based on 1000 Monte Carlo iterations, and fix in each configuration one realization
of a volatility path to compare the RMSEs to the theoretical asymptotic counterparts
in the realized relative efficiency (RE):

RE(ÎV n,1) =

√(
(mean(ÎV n,1)−

´ 1
0 σ

2
s ds)

2 + Var(ÎV n,1)
)
·
√
n√

8η
´ 1

0 σ
3
s ds

. (2.5.2)
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The standard sample size is n = 30000, a realistic number of observations in usual
high-frequency applications as number of ticks over one trading day for liquid assets at
NASDAQ. We also focus on smaller samples, n = 5000. Throughout all simulations we
fix a maximum spectral cut-off Jp = 100 in the pre-estimation step and J = 150 for the
final estimator, which is large enough to render the approximation error by neglecting
higher frequencies negligible.
The Monte Carlo study confirms that the estimator performs well in practice and

the Monte Carlo variances come very close to the predicted lower bound, even in the
complex “wiggly” volatility setting. The fully adaptive approach performs worse than the
oracle estimator which is in light of previous results on related estimation approaches
not surprising, see e.g. Bibinger and Reiß (2014) for a study including an adaptive
multi-scale estimator (global smoothing parameter, but chosen data-driven). Still the
adaptive estimator’s performance is remarkably well in almost all configurations. For
very small noise level, the relative efficiency is not as close to 1 any more. Apart from
this case, the RE comes very close to 1 for the oracle estimator, not depending on
the magnitude of leverage, also for small samples, and being very robust with respect
to different bin-widths. A simulation study of the multivariate method of moments
estimator in a random volatility setup can be found in Bibinger et al. (2014).

2.6. Proofs

2.6.1. Preliminaries

The section prepares the actual proofs by introducing some additional notation and
properties of empirical scalar products, as well as some necessary reductions for the
process X.

Empirical scalar products

Definition 2.6.1. Let f, g : [0, 1]→ R be functions and let z = (zi)1≤i≤n ∈ Rn. We call

〈f, g〉n =
1

n

n∑
i=1

f

(
i

n

)
g

(
i

n

)
,

〈z, g〉n =
1

n

n∑
i=1

zi g

(
i

n

)
,

empirical scalar product of f , g and of z, g, respectively. We further define the “shifted”
empirical scalar products

[f, g]n =
1

n

n∑
i=1

f

(
i− 1

2

n

)
g

(
i− 1

2

n

)
,

[z, g]n =
1

n

n∑
i=1

zi g

(
i− 1

2

n

)
.

Recall the notation ∆nY =
(
∆n
i Y
)

1≤i≤n ∈ R
n, the vector of increments and analogously

∆nX and let ε = (εi)0≤i≤(n−1).
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Lemma 2.6.2. It holds that

〈Φjk,Φmk〉n = δjm , (2.6.1)

[ϕjk, ϕmk]n = δjm4n2 sin2

(
jπ

2bnhnc

)
(2.6.2)

[
ϕ2
jk, ϕ

2
mk

]
n

= (2 + δjm)n2 sin

(
jπ

bnhnc

)
sin

(
mπ

bnhnc

)
. (2.6.3)

Furthermore, we have the summation by parts decomposition of spectral statistics:

〈n∆nY,Φjk〉n = 〈n∆nX,Φjk〉n − [ε, ϕjk]n . (2.6.4)

Proof. The proofs of the orthogonality relations (2.6.1) and (2.6.2) are similar and we
restrict ourselves to proving (2.6.2). In the following we use the shortcut N = bnhnc
and without loss of generality we consider the first bin k = 1. We make use of the
trigonometric addition formulas which yield for N ≥ j ≥ r ≥ 1:

cos(jπN−1(l + 1
2)) cos(rπN−1(l + 1

2))

= cos((j + r)πN−1(l + 1
2)) + cos((j − r)πN−1(l + 1

2)).

We show that
∑N−1

i=0 cos(mπN−1(i+ 1
2)) = 0 for m ∈ N. First, consider m odd:

N−1∑
i=0

cos(mπN−1(i+ 1
2))

=

b(N−2)/2c∑
i=0

cos(mπN−1(i+ 1
2)) +

N−1∑
i=dN/2e

cos(mπN−1(i+ 1
2))

=

b(N−2)/2c∑
i=0

(
cos(mπN−1(i+ 1

2)) + cos(mπN−1(N − (i+ 1
2)))

)
= 0,

since cos(x + πm) = − cos(x) for m odd. Note that for i = (N − 1)/2 ∈ N, we leave
out one addend which equals cos(mπ/2) = 0, and also that for m even by cos(x) =
cos(x + mπ) the two sums are equal. Since cos(0) = 1, this also implies the empirical
norm for j = r.
For m ∈ N with m even, we differentiate the cases N = 4k, k ∈ N; N = 4k + 2, k ∈ N
and N = 2k + 1, k ∈ N. If N = 4k + 2, we decompose the sum as follows:

N−1∑
i=0

cos(mπN−1(i+ 1
2))

=
2k∑
i=0

cos(mπ(4k + 2)−1(i+ 1
2)) +

4k+1∑
i=2k+1

cos(mπ(4k + 2)−1(i+ 1
2)).

The addends of the left-hand sum are symmetric around the point mπ/4 at i = k and
of the right-hand sum around 3mπ/4 at i = 3k + 1. Thereby, both sums equal zero by
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symmetry. More precisely, for m being not a multiple of 4 the sums directly yield zero.
If m is a multiple of 4, we can split the sum into two or more sums which then equal
zero again.
This observation for the first sum readily implies

∑N−1
i=0 cos(mπN−1(i + 1

2)) = 0 for
N = 2k + 1, since in this case

2k∑
i=0

cos(mπN−1(i+ 1
2)) =

2k∑
i=1

cos(2mπ(4k + 2)−1(i+ 1
2)) = 0 .

For N = 4k, we may as well exploit symmetry relations of the cosine. Decompose the
sum
N−1∑
i=0

cos(mπN−1(i+ 1
2)) =

2k−1∑
i=0

cos(mπ(4k)−1(i+ 1
2)) +

4k−1∑
i=2k

cos(mπ(4k)−1(i+ 1
2)) .

Symmetry around mπ/4 and 3mπ/4 is similar as above, but these points lie off the
discrete grid this time. Yet, analogous reasoning as above yields that both sums equal
zero again, what completes the proof of (2.6.2). Likewise and using

cos2 (x) cos2 (y)

=
1

4
(cos (2x) + 1) (cos (2y) + 1)

=
1

4

(
1

2
cos (2 (x+ y)) +

1

2
cos (2 (x− y)) + cos (2x) + cos (2y) + 1

)
,

we deduce relation (2.6.3). Finally, we show (2.6.4). Applying summation by parts to
〈n∆nε,Φjk〉n and using Φjk(1) = Φjk(0) = 0, yields

〈n∆nε,Φjk〉n =
n∑
l=1

∆n
l εΦjk

(
l

n

)
= −

n∑
l=1

ε l−1
n

(
Φjk

(
l

n

)
− Φjk

(
l − 1

n

))
.

The equality sin (x+ h)− sin (x) = 2 sin
(
h
2

)
cos
(
x+ h

2

)
for x, h ∈ R gives

Φjk

(
l

n

)
− Φjk

(
l − 1

n

)
=

1

n
ϕjk

(
l − 1

2

n

)
which yields the claim.

Localization

By the localization procedure in Section A.2 it is with Assumption (SM-α-β) sufficient
to prove Theorems 2.2.1, 2.2.2 and 2.2.3 under the following assumption.

Assumption 2.6.3 (H-α-β). Let 0 ≤ α, β ≤ 1. There exists a constant K such that
almost surely

sup
0≤t≤T

(
‖Xt‖+ ‖bt‖+ ‖σt‖+ ‖(σtσ>t )−1‖

)
≤ K

and such that for all 0 ≤ s, t ≤ T with s+ t ≤ T

E
[

sup
0≤r≤t

‖σs+r − σs‖2
]
≤ Ct2α, E

[
sup

0≤r≤t
‖bs+r − bs‖2

]
≤ Ct2β.

We will always assume (H-α-β) for α ≥ 1/2 and β > 0 in the following proofs.
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Local quadratic variations of time

Observe the following asymptotic relation:∑
(k−1)hn≤t(l)i ≤khn

(
t
(l)
i − t

(l)
i−1

)2 � ∑
(k−1)hn≤t(l)i ≤khn

H
(k−1)hn
l η−2

l n−1
l

(
t
(l)
i − t

(l)
i−1

)
(2.6.5)

= H
(k−1)hn
l η−2

l n−1
l hn (2.6.6)

withH(k−1)hn
l defined in (2.3.12). Observe that the latter incorporates the noise variance

η2
l and the local observation frequency which is linked to the observation time increments
above. The left-hand side is a localized measure of variation in observation times similar
to the quadratic variation of time by Zhang et al. (2005). It appears in the variance of
the estimator and is used to estimate (F−1

l )′((k − 1)hn). Under F ′l ∈ Cα([0, 1]) with
α > 1/2 the approximation error by H

(k−1)hn
l is oP(n−1/4). The asymptotic identity

applies to deterministic observation times in a deterministic manner and to random
exogenous sampling in terms of convergence in probability.

Order of optimal weights

Recall the definition of the optimal weights (2.3.5). An upper bound for these weights
is

wjk . Ijk =
1

2

(
σ2

(k−1)hn
+
η2

n
[ϕjk, ϕjk]n

)−2
.
(

1 +
j2

nh2
n

)−2

.

{
1 for j ≤

√
nhn

j−4n2h4
n for j >

√
nhn

. (2.6.7)

This also also implies

bnhnc−1∑
j=1

wjk

(
σ2

(k−1)hn
+
η2

n
[ϕjk, ϕjk]n

)

.
b
√
nhnc∑
j=1

(
1 +

j2

h2
nn

)
+

bnhnc−1∑
j=d
√
nhne

(
1 +

j2

nh2
n

)
j−4n2h4

n (2.6.8)

.
√
nhn + nh2

n . (2.6.9)

2.6.2. Proof of Proposition 2.4.1

Recall the definition of the spectral statistics (2.3.1) and denote for j = 1, . . . , bnhnc −
1, k = 1, . . . , h−1

n :

S̃jk =
〈
n(∆nX̃ + ∆nε),Φjk

〉
n

=
〈
n∆nX̃,Φjk

〉
n
− [ε, ϕjk]n ,



31 Chapter 2. Central limit theorems for spectral estimators

where X̃ is the signal process in the locally parametric experiment. It holds that

E
[
S̃2
jk

∣∣∣G(k−1)hn

]
= E

[(〈
n∆nX̃,Φjk

〉
n
− [ε, ϕjk]n

)2
∣∣∣∣G(k−1)hn

]
(2.6.10)

= E
[〈
n∆nX̃,Φjk

〉2

n
− 2

〈
n∆nX̃,Φjk

〉
n

[ε, ϕjk]n + [ε, ϕjk]
2
n

∣∣∣∣G(k−1)hn

]
= E

[〈
n∆nX̃,Φjk

〉2

n

∣∣∣∣G(k−1)hn

]
+ E

[
[ε, ϕjk]

2
n

∣∣∣G(k−1)hn

]
= σ2

(k−1)hn
+
η2

n
[ϕjk, ϕjk]n . (2.6.11)

We have defined ζnk above such that n1/4
(
ĨV n,t − hn

∑bth−1
n c

k=1 σ2
(k−1)hn

)
is equal to

n1/4hn

bth−1
n c∑

k=1

bnhnc−1∑
j=1

wjk

(
S̃2
jk −

η2

n
[ϕjk, ϕjk]n − σ

2
(k−1)hn

)
=

bth−1
n c∑

k=1

ζnk

when we shortly express ĨV n,t = ÎV
or

n,t(X̃ + ε). We have to verify (J1)-(J5). (J1) is
trivial as the ζnk are centered conditional on G(k−1)hn . The proof of (J2) is done in two
steps. In paragraph 2.6.2 we calculate explicitly the variance which is the left-hand side
of (J2). For this we consider at first general weights wjk ≥ 0,

∑bnhnc−1
j=1 wjk = 1 which

satisfy wjk ∈ G(k−1)hn for all k = 1, . . . , h−1
n , j = 1, . . . , bnhnc − 1. After that we find

optimal weights minimizing the variance. In paragraph 2.6.2 we let n→∞ and calculate
the resulting limiting asymptotic variance. The proofs of (J3), (J4) and (J5) follow in
paragraph 2.6.2.

Computation of the variance

E[(ζnk )2|G(k−1)hn ] is equal to

n
1
2h2

n

bnhnc−1∑
j,m=1

wjkwmk E
[(
S̃2
jk − E

[
S̃2
jk

∣∣∣G(k−1)hn

])
·
(
S̃2
mk − E

[
S̃2
mk

∣∣∣G(k−1)hn

])∣∣∣G(k−1)hn

]

= n
1
2h2

n

bnhnc−1∑
j,m=1

wjkwmk
(
Tnj,m,k(1) + Tnj,m,k(2) + Tnj,m,k(3)

)
,

where the three summands Tnj,m,k(1), Tnj,m,k(2), Tnj,m,k(3) are defined as

E
[(〈

n∆nX̃,Φjk

〉2

n
− σ2

(k−1)hn

)(〈
n∆nX̃,Φmk

〉2

n
− σ2

(k−1)hn

)∣∣∣∣G(k−1)hn

]
,

E
[

4
〈
n∆nX̃,Φjk

〉
n

[ε, ϕjk]n

〈
n∆nX̃,Φmk

〉
n

[ε, ϕmk]n

∣∣∣G(k−1)hn

]
,

E
[(

[ε, ϕjk]
2
n −

η2

n
[ϕjk, ϕjk]n

)(
[ε, ϕmk]

2
n −

η2

n
[ϕmk, ϕmk]n

)∣∣∣∣G(k−1)hn

]
,
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respectively, for frequencies j,m. The iid structure of the noise and of Brownian incre-
ments yields

E
[
[ε, ϕjk]n [ε, ϕmk]n

]
=
η2

n
[ϕjk, ϕmk]n ,

E
[〈
n∆nX̃,Φjk

〉
n

〈
n∆nX̃,Φmk

〉
n

∣∣∣G(k−1)hn

]
= δjmσ

2
(k−1)hn

,

which implies with independence of the noise and X that

Tnj,m,k (2) = 4
η2

n
δjm [ϕjk, ϕmk]n σ

2
(k−1)hn

.

We further obtain by another polynomial expansion

E
[
[ε, ϕjk]

2
n [ε, ϕmk]

2
n

]
= n−4

n∑
l,l′,p,p′=1

(
E
[
εlεl′εpεp′

]
ϕjk

( l − 1
2

n

)
ϕjk

( l′ − 1
2

n

)
· ϕmk

(p− 1
2

n

)
ϕmk

(p′ − 1
2

n

))
.

Only the cases l = l′ 6= p = p′, l = p 6= l′ = p′ , l = p′ 6= l′ = p or l = l′ = p = p′ produce
non-zero results in the expectation. Hence, denoting by η′ = E[ε4

t ] the fourth moment
of the observation errors, the last line is equal to

1

n4

∑
l,l′,p,p′

(
η4
(
δll′δpp′ + δlpδl′p′ + δlp′δl′p

)
+ η′δlpδl′p′δll′ − 3η4δlpδl′p′δll′

)
·
(
ϕjk

( l − 1
2

n

)
ϕjk

( l′ − 1
2

n

)
ϕmk

(p− 1
2

n

)
ϕmk

(p′ − 1
2

n

))
=
η4

n2

(
[ϕjk, ϕjk]n

· [ϕmk, ϕmk]n + 2 [ϕjk, ϕmk]
2
n

)
+
η′ − 3η4

n4

n∑
l=1

(
ϕ2
jk

( l − 1
2

n

)
ϕ2
mk

( l − 1
2

n

))
.

Arguing similarly and using that E[(∆n
l W )4] = 3E[(∆n

l W )2] for l ∈ N, we obtain

E
[〈
n∆nX̃,Φjk

〉2

n

〈
n∆nX̃,Φmk

〉2

n

∣∣∣∣G(k−1)hn

]
= σ4

(k−1)hn

(
〈Φjk,Φjk〉n〈Φmk,Φmk〉n + 2〈Φjk,Φmk〉2n

)
= σ4

(k−1)hn
(1 + 2δjm) .

From the identities so far we obtain

Tnj,m,k (1) = E
[〈
n∆nX̃,Φjk

〉2

n

〈
n∆nX̃,Φmk

〉2

n

∣∣∣∣G(k−1)hn

]
− E

[〈
n∆nX̃,Φjk

〉2

n

∣∣∣∣G(k−1)hn

]
E
[〈
n∆nX̃,Φmk

〉2

n

∣∣∣∣G(k−1)hn

]
= σ4

(k−1)hn
(1 + 2δmj)− σ4

(k−1)hn
= 2δjmσ

4
(k−1)hn

,

Tnj,m,k (3) = E
[(

[ε, ϕjk]
2
n −

η2

n
[ϕjk, ϕjk]n

)(
[ε, ϕmk]

2
n −

η2

n
[ϕmk, ϕmk]n

)]
= E

[
[ε, ϕjk]

2
n [ε, ϕmk]

2
n

]
− η4

n2
[ϕjk, ϕjk]n [ϕmk, ϕmk]n

=
2η4

n2
[ϕjk, ϕmk]

2
n +

η′ − 3η4

n3

[
ϕ2
jk, ϕ

2
mk

]
n
.
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In all, the conditional variance is given by

E
[

(ζnk )2
∣∣∣G(k−1)hn

]
=
√
nh2

n

bnhnc−1∑
j=1

w2
jk 2

(
σ2

(k−1)hn
+
η2

n
[ϕjk, ϕjk]n

)2

+Rn

with remainder Rn. Rn vanishes for Gaussian noise. In this case, analogous to Bibinger
and Reiß (2014), we find that the optimal weights minimizing the variance, under the
constraint

∑bnhnc−1
j=1 wjk = 1, which ensures unbiasedness of the estimator, are given by

(2.3.5). The optimization can be done with Lagrange multipliers. Rn is then a remainder
in case that η′ 6= 3η4. With the weights (2.3.5) and using (2.6.3) and (2.6.7) we can
bound Rn by:

Rn .

√
nh2

n

n3

bnhnc−1∑
j=1

wjkn

∣∣∣∣sin( jπ

nhn

)∣∣∣∣
2

≤ h2
n

n
.

Therefore, the variance of the estimator
∑bth−1

n c
k=1 E[(ζnk )2|G(k−1)hn ] is equal to

√
nh2

n

bth−1
n c∑

k=1

bnhnc−1∑
j=1

(I−2
k I2

jk)I
−1
jk + oP(1) =

√
nh2

n

bth−1
n c∑

k=1

I−1
k + oP(1).

The asymptotic variance of the estimator

The key to the asymptotic variance is to recognize

(
√
nhn)−1Ik =

1√
nhn

bnhnc−1∑
j=1

1

2

(
σ2

(k−1)hn
+
η2

n
[ϕjk, ϕjk]n

)−2

as a Riemann-sum, ending up with the “double-Riemann-sum”∑bth−1
n c

k=1 hn((
√
nhn)−1Ik)

−1. The scaling factor (
√
nhn)−1 is the right choice for

the first Riemann-sum which becomes clear after two Taylor expansions. First,
expanding the sine for each frequency j we find 0 ≤ ξj ≤ jπ/(2nhn) with

Ijk =
1

2

σ2
(k−1)hn

+ 4η2n

(
jπ

2nhn
−
ξ3
j

6

)2
−2

.

Second, we expand x 7→ 1
2

(
σ2

(k−1)hn
+ 4η2nx2

)−2
which yields jπ

2nhn
− ξ3

j

6 ≤ ξ′j ≤
jπ

2nhn

such that

Ijk = Ĩjk +Rjk with Rjk =
4η2nξ′j

(σ2
(k−1)hn

+ 4η2nξ′2j )3

ξ3
j

6
(2.6.12)
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where we define Ĩjk = 1
2(σ2

(k−1)hn
+ η2( jπ

2
√
nhn

)2)−2. Now it becomes clear that
√
nhn is

indeed the right factor because

∣∣∣∣∣∣ 1√
nhn

nhn−1∑
j=1

Ĩjk −
ˆ √n− 1√

nhn

0

1

2

(
σ2

(k−1)hn
+ η2π2x2

)−2
dx

∣∣∣∣∣∣
=

∣∣∣∣ nhn−1∑
j=1

ˆ j√
nhn

j−1√
nhn

(1

2

(
σ2

(k−1)hn
+ η2π2j2h−2

n n−1
)−2

− 1

2

(
σ2

(k−1)hn
+ η2π2x2

)−2
)
dx

∣∣∣∣
.

nhn−1∑
j=1

ˆ j√
nhn

j−1√
nhn

∣∣∣∣x− j√
nhn

∣∣∣∣ dx max
j−1√
nhn
≤y≤ j√

nhn

(
y
(
σ2

(k−1)hn
+ η2π2y2

)−3)

≤
(

1√
nhn

)2
nhn−1∑

j=1

(
max

j−1√
nhn
≤y≤ j√

nhn

(
y
(
σ2

(k−1)hn
+ η2π2y2

)−3))
=

(
1√
nhn

)2
b√nhnc∑

j=1

j√
nhn

+

nhn−1∑
j=d
√
nhne

(√
nhn

j − 1

)5


.

(
1√
nhn

)2
√nhn +

nhn−1−d
√
nhne∑

j=1

( √
nhn

j + d
√
nhne

)5
 .

1√
nhn

.

We choose hn such that
√
nhn →∞. Though we consider all possible spectral frequencies

j = 1, . . . , bnhnc − 1, we shall see in the following that the Ijk for j ≥ dnβhne become
asymptotically negligible for a suitable 0 ≤ β < 1. By virtue of monotonicity of the sine
on
[
0, π2

]
and sin(x) ≥ x/2 for 0 ≤ x ≤ 1, it follows that

1√
nhn

bnhnc−1∑
j=dnβhne

Ijk .
1√
nhn

bnhnc−1∑
j=dnβhne

(
n sin2

(
nβhnπ

2nhn

))−2

≤ 1√
nhn

nhn

(
n sin2

(
nβhnπ

2nhn

))−2

≤
√
n

(
n

(
nβ−1π

4

)2
)−2

. n
1
2
−4β+2 = n

5
2
−4β .
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We deduce that 1√
nhn

∑bnhnc−1

j=dnβhne Ijk = oP (1), for every 5/8 < β < 1. Moreover, we
obtain for the first bnβhnc summands of the remainder term

1√
nhn

bnβhnc∑
j=1

Rjk =
1√
nhn

bnβhnc∑
j=1

4η2nξ′j(
σ2

(k−1)hn
+ 4η2nξ′2j

)3

ξ3
j

6

.
n√
nhn

bnβhnc∑
j=1

(
ξ3
j ξ
′
j

)
≤ n√

nhn

bnβhnc∑
j=1

(
jπ

nhn

)4

.
1√
nhn

nβhnn
4(β−1)+1 = n5β− 7

2 .

Hence 1√
nhn

∑bnβhnc
j=1 Rjk = oP(1) for every β < 7/10. As the tails are asymptotic

negligible we thus have 1√
nhn

∑bnhnc−1
j=1 Rjk = oP (1) and, in particular,

1√
nhn

bnhnc−1∑
j=1

Ijk =

ˆ √n− 1√
nhn

0

1

2

(
σ2

(k−1)hn
+ η2π2x2

)−2
dx+ oP (1) .

Computing the integral expression yields

ˆ y

0

1

2

(
σ2

(k−1)hn
+ η2π2x2

)−2
dx =

y

4
∣∣σ(k−1)hn

∣∣4(1 +

(
ηπ

|σ(k−1)hn |
y

)2
) +

1

4ηπ
∣∣σ(k−1)hn

∣∣3 arctan

(
ηπ∣∣σ(k−1)hn

∣∣y
)
.

As c < |σs| < C uniformly for all 0 ≤ s ≤ 1 with constants c, C and because arctan (x)→
π/2 as x→∞, as well as

√
n− 1√

nhn
→∞ as n→∞, we have

1√
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∣∣
(√

n− 1√
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))
+ oP (1)

=
1

8η
∣∣σ(k−1)hn

∣∣3 + oP (1) .
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The final step in the proof is another Taylor approximation:

bth−1
n c∑
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E
[

(ζnk )2
∣∣∣G(k−1)hn

]

=
√
nh2

n

bth−1
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I−1
k + oP(1) = hn

bth−1
n c∑

k=1

 1√
nhn

bnhnc−1∑
j=1

Ijk

−1

+ oP(1) (2.6.13)

= hn

bth−1
n c∑

k=1

(
1

8η
∣∣σ(k−1)hn

∣∣3 + oP (1)

)−1

+ oP(1)

=

hn bth−1
n c∑

k=1

8η
∣∣σ(k−1)hn

∣∣3+ oP (1) . (2.6.14)

The last equality is true by Taylor and because σ is uniformly bounded. Because σ is
continuous we obtain the claim by Riemann approximation, i.e.

bth−1
n c∑

k=1

E
[

(ζnk )2
∣∣∣G(k−1)hn

]
→ 8η

ˆ t

0
|σs|3 ds

in probability as n → ∞ establishing (J2) with the asymptotic expression of Theorem
2.2.1.

Lyapunov’s criterion and stability of convergence

So far, we have proved (J1) and (J2). Next, we shall prove that the Lyapunov condition
(J3) is satisfied. For the sum of fourth moments, we obtain by Jensen’s inequality and
wjk ∈ G(k−1)hn for all k = 1, . . . , h−1

n and j = 1, . . . , bnhnc − 1:

E
[

(ζnk )4
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]
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E
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])4∣∣∣∣∣∣G(k−1)hn
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≤ nh4

n
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j=1

wjk

(
E
[(
S̃2
jk − E

[
S̃2
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])4
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]) 1
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. nh4
n
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(
E
[
S̃8
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∣∣∣G(k−1)hn

]) 1
4

4

.

If we can show

E
[〈
n∆nX̃,Φjk

〉8

n

∣∣∣∣G(k−1)hn

]
. σ8

(k−1)hn
, (2.6.15)

E
[
[ε, ϕjk]

8
n

]
.
(
η2
)4 [ϕjk, ϕjk]

4
n

n4
, (2.6.16)
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then we are able to conclude that

E
[
S̃8
jk

∣∣∣G(k−1)hn

]
. E

[〈
n∆nX̃,Φjk

〉8

n

∣∣∣∣G(k−1)hn

]
+ E

[
[ε, ϕjk]

8
n

]
. σ8

(k−1)hn
+
(
η2
)4 [ϕjk, ϕjk]

4
n

n4
.

(
σ2

(k−1)hn
+ η2 [ϕjk, ϕjk]n

n

)4

. (2.6.17)

Hence, we obtain from (2.6.9)

h−1
n∑
k=1

E
[

(ζnk )4
∣∣∣G(k−1)hn

]
.

h−1
n∑
k=1

nh4
n

bnhnc−1∑
j=1

wjk

(
σ2

(k−1)hn
+
η2

n
[ϕjk, ϕjk]n

)4

. n2h6
n = o (1)

which proves (J3). We are therefore left with proving (2.6.15) and (2.6.16). The
first inequality holds because 〈n∆nX̃,Φjk〉n is N(0, σ2

(k−1)hn
)-distributed conditional on

G(k−1)hn . In order to see why the second inequality is satisfied, let gl = ε((k−1)dnhne+l)/n

ϕjk
( (k−1)dnhne+l− 1

2
n

)
for l = 1, . . . , bnhnc. The gl are independent and centered such

that for any 1 ≤ l1, . . . , l8 ≤ bnhnc with E[gl1 · · · gl8 ] 6= 0 each gl appears at least
twice and there are at most four distinct gl. If there are exactly four distinct gl, e.g.
l1 = l2, l3 = l4, l5 = l6, l7 = l8, we arrive at the bound∑

l1,l3,l5,l7

E [gl1 · · · gl8 ] ≤
(
η2
)4
n4 [ϕjk, ϕjk]

4
n .

The leading term does not include eighth moments of the noise, but the fourth power
of the second moment which we denote (η2)4 to prevent any confusion. If there are less
than four distinct gl, we obtain from (2.6.2) and (2.6.3) with the assumption E[ε8

t ] <∞,
that the respective sums are asymptotically of smaller order. The terms with eighth
moments are thus negligible. This implies (2.6.16):

E
[
[ε, ϕjk]

8
n

]
= n−8

∑
1≤l1,...,l8≤nhn

E [gl1 · · · gl8 ] .
(
η2
)4 [ϕjk, ϕjk]

4
n

n4
.

It remains to verify (J4) and (J5). The proof follows a similar strategy as the proofs of
Proposition 5.10, step 4, of Jacod et al. (2010) and Lemma 5.7 of Jacod et al. (2009). It
is sufficient to show with δnk (M) = Mkhn −M(k−1)hn that

bth−1
n c∑

k=1

E
[
ζnk δ

n
k (M)

∣∣G(k−1)hn

] P→ 0 (2.6.18)

for any M ∈ N , the set of square-integrable (Gt)0≤t≤1-martingales. Note that (2.6.18)
is closed under L2-convergence with respect to the terminal variables M1 ∈ L2(G) for
M ∈ N what follows by Cauchy-Schwarz inequality. Define subsets N 0,N 1, N 2 of N ,
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whereN 0 is the space of all square-integrable martingales adapted toW = σ(Ws : s ≤ 1),
i.e. every such martingale has the form C +

´ t
0 hs dWs for some constant C and a

predictable square-integrable process h ∈ W. N 1 is the set of all square-integrable (Ft)-
martingales which are orthogonal to W , and N 2 is the space of all square-integrable
martingales adapted to the filtration Et = σ(εs : s ≤ t), generated by the noise process.
Then the set of square-integrable martingales of the form M · N , for M ∈ N 0 ∪ N 1,
N ∈ N 2, is total in N (by independence any process of the form M · N is again a
martingale) and it is enough to show (2.6.18) for such processes. Using the decomposition

δnk (MN) = δnk (M) δnk (N) +N(k−1)hnδ
n
k (M) +M(k−1)hnδ

n
k (N) (2.6.19)

we have by independence of W and noise for any k = 1, . . . , h−1
n :

E
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ζnk δ

n
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]
= n1/4hn
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E
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S̃2
jkδ

n
k (MN)
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]
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S̃2
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]
E
[
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− 2E
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]
E
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]
+M(k−1)hnE

[
[ε, ϕjk]

2
n δ

n
k (N)

∣∣∣ E(k−1)hn

])
.

Let first M ∈ N 0. As N 0 is closed and because the case M constant is trivial, we can
assume that M =

´ ·
0 γs dWs for γ bounded, adapted to W and piecewise constant on

intervals (Tq, Tq+1] for some 0 = T0 < T1 < . . . , Tm = 1, m ≥ 1, such that

E
[〈
n∆nX̃,Φjk

〉2

n
δnk (M)

∣∣∣∣F(k−1)hn

]
(2.6.20)

=

n∑
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σ2
(k−1)hn

m∑
q=1

E
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l W∆n

pWγtq
(
WTq+1∧khn−WTq∨(k−1)hn

)∣∣F(k−1)hn

]
· Φjk

( l
n

)
Φjk

( p
n

)
.

For n large enough there is at most one Tq per block. If there is no Tq on the k-th block,
the conditional expectation above vanishes by independence of the Brownian increments
for any l, p. On the other hand, there are only m blocks containing some Tq and for
every such block the left-hand side of (2.6.20) is bounded, what can be seen e.g. by
(2.6.15) and because M is square-integrable. Hence,

n1/4hn

bth−1
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bnhnc−1∑
j=1

wjkN(k−1)hnE
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n∆nX̃,Φjk
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δnk (M)

∣∣∣∣F(k−1)hn

]
= oP(1).

(2.6.21)
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Next, letM ∈ N 1, i.e.M is orthogonal toW . The left-hand side in (2.6.20) is now equal
to

n∑
l,p,q=1

σ2
(k−1)hn

E
[
∆n
l W∆n

pW∆n
qM

∣∣F(k−1)hn

]
Φjk

( l
n

)
Φjk

( p
n

)
.

The conditional expectation vanishes, except for l = p = q, p < l = q or l < p = q. For
l = p = q we obtain by Itô’s formula

E
[

(∆n
l W )2 ∆n

lM
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]
= E

[(
(∆n

l W )2 −
(

1

n

))
∆n
lM
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]
+ E

[(
1

n

)
∆n
lM

∣∣∣∣F(k−1)hn

]
= E

[(ˆ l
n

l−1
n

Ws dWs

)
∆n
lM

∣∣∣∣∣F(k−1)hn

]
.

However, ((
´ t

0 Ws dWs) ·Mt)0≤t≤1 is an (Ft)-martingale by orthogonality such that the
last expression vanishes. The cases p < l = q and l < p = q follow similarly. Hence,
(2.6.21) is still satisfied; the left-hand side is actually zero.
With respect to N , as N 2 is closed, we can assume without loss of generality that

N1 = f(εT1 , . . . , εTm′ ) for some measurable function f and some 0 ≤ T1 < · · · < Tm′ ≤ 1,
m′ ≥ 1. Similar as before, for n large there is at most one Tq′ per block. On any block
not containing such a Tq′ it holds that δnk (N) = 0. Bounding the terms for the m′ other
blocks yields for M ∈ N 1 ∪N 2

n1/4hn

bth−1
n c∑

k=1

bnhnc−1∑
j=1

wjkM(k−1)hnE
[

[ε, ϕjk]
2
n δ

n
k (N)
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]
= oP (1) . (2.6.22)

From the previous discussion we further see that for all but at most m+m′ blocks:

nhn−1∑
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wjkE
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n∆nX̃,Φjk

〉
n
δnk (M)

∣∣∣F(k−1)hn

]
E
[
[ε, ϕjk]n δ

n
k (N)

∣∣ E(k−1)hn

]
= 0,

whereas bounds on the remaining m + m′ blocks guarantee that the cross terms tend
to zero in probability. We conclude that (2.6.18) holds. This completes the proof of
Proposition 2.4.1.

2.6.3. Proof of Proposition 2.4.2

We first give a general outline of the proof, deferring some technical details to the end
of this section. By Taylor we have for all k = 1, . . . , h−1

n and j = 1, . . . , bnhnc − 1,
the existence of random variables ξjk such that S2

jk − S̃2
jk = 2S̃jk(Sjk − S̃jk) + 2(ξjk −
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S̃jk)(Sjk − S̃jk) and |ξjk − S̃jk| ≤ |Sjk − S̃jk|. This yields
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.

For the second sum above, which we denote by Znt , we obtain by the Markov inequality
and Step 1 below for any ε > 0

P
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)
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(
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and write the first sum above as Mn
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with

Mn
t = n1/4hn

bth−1
n c∑

k=1

(
Tnk − E

[
Tnk | G(k−1)hn

])
,

Rnt = n1/4hn

bth−1
n c∑

k=1

E
[
Tnk | G(k−1)hn

]
.

In Step 2 we show that
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A well known result thereby yields Mn
t

ucp−−→ 0. Finally, observe that
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i.e. the noise terms vanish, thereby simplifying the following calculations. Write
E[(2S̃jk(Sjk − S̃jk))|G(k−1)hn ] as the sum Dn

jk + V n
jk, where Dn

jk and V n
jk are defined

as
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In Step 3 we show that
∣∣∣Dn

jk + V n
jk

∣∣∣ . hβ̃n for some β̃ > 1/2. This yields immediately
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implying ucp-convergence. We therefore conclude that
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The second claim
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)
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ucp−−→ 0, n −→∞,

follows from (H-α-β), because α ≥ 1/2. This proves Proposition 2.4.2. We end this
section with detailed proofs of Steps 1 – 3.
Step 1. We show that E[(Sjk − S̃jk)4] . h2

n. Using the decomposition
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The first summand is bounded by h2
n. For the second let κl =
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Properties of the conditional expectation show that the only choices for l, l′, p, p′ with
non-vanishing results are l, l′ < p = p′, l < l′ = p = p′ and l = l′ = p = p′. In all three
cases we can conclude by Proposition A.3.2 that∣∣∣∣E [κlκl′κpκp′]Φjk
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Observe that in any of the three mentioned cases we find at least two identical integers
l, l′, p or p′. In all, there are bnhnc ·
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Hence, we obtain
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which is up to a constant bounded by h2
n, and therefore the claim holds.
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By Step 1 we already know that E
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n. Because σ is bounded, we obtain
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Together with (2.6.9) it follows that
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Step 3. We show that
∣∣∣Dn

jk + V n
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∣∣∣ . hβn for some β > 1/2. Expanding the sums in
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V n
jk and Itô isometry yield for V n
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(ˆ m
n

m−1
n

(
σs − σ(k−1)hn

)
dWs

)∣∣∣∣∣G(k−1)hn

]
Φjk

(
l

n

)
Φjk

(m
n

))

=
n∑
l=1

E

[ˆ l
n

l−1
n

(
σ(k−1)hn

(
σs − σ(k−1)hn

))
ds

]
Φ2
jk

(
l

n

)
.

From (H-α-β) it follows for s ∈ [(k − 1)hn, khn] that∣∣E [(σ(k−1)hn

(
σs − σ(k−1)hn

))]∣∣ =
∣∣E [σ(k−1)hnE

[
σs − σ(k−1)hn

∣∣G(k−1)hn

]]∣∣ ,
which is up to a constant bounded by hαn, and hence by Fubini |Vjk| . hαn, as well.
With respect to Dn

jk, we need an additional approximation. By the boundedness of
E[|〈n∆nX̃,Φjk〉n|] from (2.6.15):∣∣∣∣∣E

[〈
n∆nX̃,Φjk

〉
n

ˆ l
n

l−1
n

bs ds

∣∣∣∣∣G(k−1)hn

]∣∣∣∣∣
.

∣∣∣∣∣E
[〈

n∆nX̃,Φjk

〉
n

ˆ l
n

l−1
n

(
bs − b(k−1)hn

)
ds

∣∣∣∣∣G(k−1)hn

]∣∣∣∣∣
+

∣∣∣∣b(k−1)hn

n
E
[〈
n∆nX̃,Φjk

〉
n

∣∣∣G(k−1)hn

]∣∣∣∣ . h
ν∧ 1

2
n n−1.

Using this bound we find that

∣∣Dn
jk

∣∣ ≤ n∑
l=1

∣∣∣∣∣E
[

2
〈
n∆nX̃,Φjk

〉
n

ˆ l
n

l−1
n

bs ds

∣∣∣∣∣G(k−1)hn

]∣∣∣∣∣
∣∣∣∣Φjk

(
l

n

)∣∣∣∣ . h
ν∧ 1

2
+ 1

2
n .

We obtain the claim with β̃ = min
{
ν ∧ 1

2 + 1
2 , α

}
. This is the only time we need the

smoothness of the drift in Assumption (H-α-β) with β > 0. This is necessary because
of the log-term in the definition of hn.

2.6.4. Proofs of Theorem 2.2.2 and Theorem 2.2.3 for oracle estimation

We decompose X similarly as in the proof of Theorem 2.2.1:

Xt = X0 + B̄t + B̃t + C̄t + C̃t , (2.6.24)

where we denote

B̄t =

ˆ t

0
bbsh−1

n chn ds , B̃t =

ˆ t

0
(bs − bbsh−1

n chn) ds , (2.6.25)

C̄t =

ˆ t

0
σbsh−1

n chn dWs , C̃t =

ˆ t

0
(σs − σbsh−1

n chn) dWs . (2.6.26)
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In order to establish a functional CLT, we decompose the estimation errors of (2.3.19)
(and likewise (2.3.16)) in the following way:

LMMor
n,t(Y )− vec

(ˆ t

0
Σs ds

)
= LMMor

n,t(C̄ + ε)− vec

(ˆ t

0
Σbsh−1

n chn ds

)
(2.6.27)

+ LMMor
n,t(Y )− LMMor

n,t(C̄ + ε)− vec

(ˆ t

0

(
Σs − Σbsh−1

n chn
)
ds

)
. (2.6.28)

One crucial step to cope with multi-dimensional non-synchronous data is Lemma 2.4.4
which is proved next. Below, we give a concise proof of the functional CLTs for the esti-
mators (2.3.19) and (2.3.16), where after restricting to a synchronous reference scheme
many steps follow as direct extensions of the one-dimensional case. The stable CLTs for
the leading terms, namely the right-hand side of (2.6.27) and the analogue for estimator
(2.3.16), are established in paragraph 2.6.4. The remainder terms (2.6.28) and their
analogues are handled in paragraph 2.6.4.

Proof of Lemma 2.4.4

Consider for l,m = 1, . . . , d, observation times t(l)i = F−1
l (i/nl) and t(m)

i = F−1
m (i/nm).

Define a next-tick interpolation function by

t
(l)
+ (s) = min

(
t(l)v , v = 0, . . . , nl|t(l)v ≥ s

)
, l = 1, . . . , d,

and analogously a previous-tick interpolation function by

t
(l)
− (s) = max

(
t(l)v , v = 0, . . . , nl|t(l)v ≤ s

)
, l = 1, . . . , d.

We decompose increments of X(l) between adjacent observation times t(l)v−1, t
(l)
v , v =

1, . . . , nl, in the sum of increments of X(l) over all time intervals [t
(m)
i−1, t

(m)
i ] contained

in [t
(l)
v−1, t

(l)
v ] and the remaining time intervals at the left

[
t
(l)
v−1, t

(m)
+

(
t
(l)
v−1

)]
and the right

border
[
t
(m)
−
(
t
(l)
v

)
, t

(l)
v

]
:

X
(l)

t
(l)
v

−X(l)

t
(l)
v−1

=
(
X

(l)

t
(l)
v

−X(l)

t
(m)
− (t

(l)
v )

)
+

∑
∆it(m)⊂∆vt(l)

(
X

(l)

t
(m)
i

−X(l)

t
(m)
i−1

)
+
(
X

(l)

t
(m)
+ (t

(l)
v−1)
−X(l)

t
(l)
v−1

)
.

If there is only one observation of X(m) in [t
(l)
v−1, t

(l)
v ], set

∑
∆it(m)⊂∆vt(l)

(
X

(l)

t
(m)
i

−X(l)

t
(m)
i−1

)
=

0. If there is no observation of X(m) in [t
(l)
v−1, t

(l)
v ] we take the union of a set of intervals⋃

v∈V [t
(l)
v−1, t

(l)
v ] which contains at least one observation time of X(m). We use an expan-

sion of Φjk(t)−Φjk(s). By virtue of sin(t)− sin(s) = 2 cos((t+ s)/2) sin((t− s)/2) and
the sine expansion, we obtain for s, t ∈ [khn, (k + 1)hn):

Φjk(t)− Φjk(s) �
√

2h−3/2
n jπ cos

(
jπh−1

n ( t+s2 − khn)
)

(t− s) . (2.6.29)
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In particular, for t−s = O(n−1) we have that Φjk(t)−Φjk(s) = O
(
ϕjk(

t+s
2 )n−1

)
. With

u
(m)
v = (1/2)(t

(m)
+ (t

(l)
v )− t(m)

− (t
(l)
v )) and ũ(m)

v = (1/2)(t
(m)
+ (t

(l)
v−1)− t(m)

− (t
(l)
v−1)), we infer

bth−1
n c∑

k=1

hn
∑
j≥1

wl,mjk

nl∑
i=1

(
X

(l)

t
(l)
i

−X(l)

t
(l)
i−1

)
X(l)Φjk(t̄

(l)
i )

nm∑
v=1

(
X

(m)

t
(m)
v

−X(m)

t
(m)
v−1

)
Φjk(t̄

(m)
v )

=

bth−1
n c∑

k=1

hn
∑
j≥1

wl,mjk

nl∑
i=1

(
X

(l)

t
(l)
i

−X(l)

t
(l)
i−1

)
Φjk(t̄

(l)
i )

nl∑
v=1

(
X

(m)

t
(l)
v

−X(m)

t
(l)
v−1

)
Φjk(t̄

(l)
v )

+

bth−1
n c∑

k=1

hn
∑
j≥1

wl,mjk

nl∑
v=1

(
X

(l)

t
(l)
v

−X(l)

t
(l)
v−1

)
Φjk(t̄

(l)
v )

×
( ∑

∆it(m)⊂∆vt(l)

(
X

(m)

t
(m)
i

−X(m)

t
(m)
i−1

)
(Φjk(t̄

(m)
i )− Φjk(t̄

(l)
v ))+

(
X

(m)

t
(m)
+ (t

(l)
v−1)
−X(m)

t
(l)
v−1

)(
Φjk(ũ

(m)
v )− Φjk(t̄

(l)
v )
)
+(

X
(m)

t
(l)
v

−X(m)

t
(m)
− (t

(l)
v )

)(
Φjk(u

(m)
v )− Φjk(t̄

(l)
v )
))
.

Since the observation times are independent ofX according to Assumption (N-d), we can
employ basic estimates from Proposition A.3.2 to the above increments of X. Applying
the bound (2.6.29), we find that the order of the last summand is

∑
k hn

∑
j w

l,m
jk j/(nhn)

and since for all weights the bound (2.6.7) holds we conclude that the approximation
error is uniformly of order OP(hn) = oP(n−1/4).

Leading terms

This paragraph develops the asymptotics for the right-hand side of (2.6.27) and the sum
of the increments in (2.4.9). We focus on the oracle versions of (2.3.19) and (2.3.16) with
their deterministic optimal weights. The proof follows the same methodology as the proof
of Proposition 2.4.1 after restricting to a synchronous reference observation scheme. We
concisely go through the details for cross terms and the proof for the bivariate spectral
covolatility estimator.
We apply again Theorem A.1.2. For the spectral estimator in (2.3.16) consider

ζnk = n1/4 hn

(∑
j≥1

wp,qjk ζ
(pq)
jk − Σ

(pq)
(k−1)hn

)
, (2.6.30)

with the random variables

ζ
(pq)
jk =

( np∑
i=1

∆n
i C̄

(p)Φjk

(
t̄
(p)
i

)
−
np−1∑
i=1

ε
(p)

t
(p)
i

ϕjk
(
t
(p)
i

) t(p)i+1 − t
(p)
i−1

2

)

×
( nq∑
v=1

∆n
v C̄

(q)Φjk

(
t̄(q)v
)
−
nq−1∑
v=1

ε
(q)

t
(q)
v

ϕjk
(
t(q)v
) t(q)v+1 − t

(q)
v−1

2

) .
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The agreement with (2.4.9) follows from a generalization of the summation by parts
identity (2.6.4):

S
(p)
jk �p −

np−1∑
v=1

Y (p)
v

(
Φjk

(
t̄
(p)
v+1

)
− Φjk

(
t̄(p)v

))

�p −
np−1∑
v=1

Y (p)
v ϕjk(t

(p)
v )

t
(p)
v+1 − t

(p)
v−1

2
.

The first relation is an equality under (N-d) when t
(p)
0 = 0 and t

(p)
np = 1. t

(p)
0 6= 0

or t(p)np 6= 1 are possible for more general observation schemes, but the distances from
the edges are asymptotically small, the remainder due to end-effects is asymptotically
negligible. Also, the second remainder by application of mean value theorem and passing
to arguments t(p)v is asymptotically negligible. This remainder can be treated as the
approximation error between discrete and continuous-time norm of the (ϕjk) in the
following.
By Lemma 2.4.4 we may without loss of generality work under synchronous observa-

tions ti, i = 0, . . . , n, when considering the signal part X. Set t̄i = (ti+1−ti)/2. We shall
write in the sequel terms of the signal part as coming from observations on a synchronous
grid (ti), while keeping to the actual grids for the noise terms. For the expectation we
have

E
[
ζ

(pq)
jk

]
=

n∑
i=1

Φ2
jk(t̄i)E

[
∆n
i C̄

(p)∆n
i C̄

(q)
]

+

(np∨nq)−1∑
i,v=1

E
[
ε

(p)

t
(p)
i

ε
(q)

t
(q)
i

]
ϕjk
(
t
(p)
i

)( t(p)i+1−t
(p)
i−1

2

)
ϕjk
(
t(q)v
)( t(q)v+1−t

(q)
v−1

2

)
=

n∑
i=1

Φ2
jk(t̄i)(ti+1 − ti)Σ(pq)

(k−1)hn
= Σ

(pq)
(k−1)hn

+Rn,k

by Itô isometry. Observe that

nl−1∑
i=1

ϕ2
jk

(
t
(l)
i

)( t(l)i+1−t
(l)
i−1

2

)2
�

nl−1∑
i=1

ϕ2
jk

(
t
(l)
i

) t(l)i+1−t
(l)
i−1

2

H
(k−1)hn
l

η2
l nl

�
(ˆ 1

0
ϕ2
jk(t) dt

)
H

(k−1)hn
l

η2
l nl

. (2.6.31)

The left approximation uses (t
(l)
i+1−t

(l)
i )/2 = (Hkhn

l +O(hαn))/(η2
l nl) as in (2.6.5) with α >

1/2 by (N-d). Writing the integral on the right-hand side as sum over the subintervals
and using mean value theorem, the differences when passing to the arguments (t

(l)
i )i

induce approximation errors of order jh−1
n n−1. Thus, the total approximation errors in

(2.6.31) are of order (hαn + j(nhn)−1)j2(nh2
n)−1.

The remainders Rn,k due to the approximation in (2.6.31) satisfy with (2.6.7) uni-
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formly

Rn,k .
b
√
nhnc∑
j=1

j2n−1h−2
n

(
hαn + jn−1h−1

n

)
+

bnhnc−1∑
d
√
nhne

(
j−1hn + j−2h2

nnh
α
n

)
,

which is of order o
(
n−1/4

)
. Since

∑
j≥1w

p,q
jk = 1, asymptotic unbiasedness is ensured:

bth−1
n c∑

k=1

E
[
ζnk
∣∣G(k−1)hn

]
=

bth−1
n c∑

k=1

n1/4hn

(∑
j≥1

wp,qjk E[ζ
(pq)
jk ]− Σ

(pq)
(k−1)hn

)
ucp−→ 0 .

We now determine the asymptotic variance expression in (2.2.4):

Var
(
ζ

(pq)
jk

)
=
( n∑
i=1

Φ2
jk(t̄i)(ti+1 − ti)

)2((
Σ

(pq)
(k−1)hn

)2
+ Σ

(pp)
(k−1)hn

Σ
(qq)
(k−1)hn

)
+ η2

pη
2
q

( np−1∑
i=1

ϕ2
jk

(
t
(p)
i

)( t(p)i+1−t
(p)
i−1

2

)2)( nq−1∑
i=1

ϕ2
jk

(
t
(q)
i

)( t(q)i+1−t
(q)
i−1

2

)2)

+

(
n∑
i=1

Φ2
jk(t̄i)(ti+1 − ti)

(
η2
pΣ

(qq)
(k−1)hn

np−1∑
i=1

ϕ2
jk

(
t
(p)
i

)( t(p)i+1−t
(p)
i−1

2

)2

+ η2
mΣ

(pp)
(k−1)hn

nq−1∑
i=1

ϕ2
jk

(
t
(q)
i

)( t(q)i+1−t
(q)
i−1

2

)2))
�
(
Σ

(pq)
(k−1)hn

)2
+ Σ

(pp)
(k−1)hn

Σ
(qq)
(k−1)hn

+ π2j2h−2
n

(
H(k−1)hn
p n−1

p Σ
(qq)
(k−1)hn

+H(k−1)hn
q n−1

q Σ
(pp)
(k−1)hn

)
+ π4j4h−4

n n−1
p n−1

q H(k−1)hn
p H(k−1)hn

q ,

where the remainder is negligible by the same bounds as for the bias above. The sum of
conditional variances with wp,qjk = I−1

k Ijk, Ik =
∑

j≥1 Ijk, thus yields

bth−1
n c∑

k=1

E
[
(ζnk )2

∣∣G(k−1)hn

]
+ oP(1) =

bth−1
n c∑

k=1

h2
nn

1/2
∑
j≥1

(
w

(pq)
jk

)2Var(ζ(pq)
jk

)

=

bth−1
n c∑

k=1

h2
nn

1/2
∑
j≥1

IjkI
−2
k =

bth−1
n c∑

k=1

h2
nn

1/2I−1
k .

As hn
√
n→∞, we obtain an asymptotic expression as the solution of an integral

bth−1
n c∑

k=1

E
[
(ζnk )2

∣∣G(k−1)hn

]

=

bth−1
n c∑

k=1

hn(
√
nhn)I−1

k →
ˆ t

0

(ˆ ∞
0

(f(Σ,H(t), νp, νq; z))
−1dz

)−1

ds
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with a continuous limit function f which is the same as in Bibinger and Reiß (2014).
Computing the solution of the integral using the explicit form of Ik and f yields the
variance

´ t
0

(
v

(p,q)
s

)2
ds with

(
v(p,q)
s

)2
= 2

(
H2 (s)(p)H2 (s)(q) (A2

s −Bs)Bs
) 1

2

×
(√

As +
√
A2
s −Bs − sgn(A2

s −Bs)
√
As −

√
A2
s −Bs

)
,

and the terms

As = Σ(pp)
s

H2 (s)(q)

H2 (s)(p)
+ Σ(qq)

s

H2 (s)(p)

H2 (s)(q)
, Bs = 4

(
Σ(pp)
s Σ(qq)

s +
(
Σ(pq)
s

)2)
.

The detailed computation is carried out in Bibinger and Reiß (2014). sgn denotes the
sign taking values in {−1,+1} and ensuring that the value of

(
v

(p,q)
s

)2 is always a positive
real number. Contrarily to the one-dimensional case, in the cross term there is no effect
of non-Gaussian noise on the variance because fourth noise moments do not occur and
because of component-wise independence.
The Lyapunov criterion follows from

E
[(
ζ

(pq)
jk

)4|G(k−1)hn

]
� 3

∑
j≥1

(
wp,qjk

)4
I−2
jk � 3 I−4

k

∑
j≥1

I2
jk = OP(1)

⇒
bth−1

n c∑
k=1

E
[(
ζnk

)4∣∣G(k−1)hn

]
= OP

(
n

bth−1
n c∑

k=1

h4
n

)
= oP

(
n−1/4

)
.

By Cauchy-Schwarz and Burkholder-Davis-Gundy inequalities, we deduce

E

hn∑
j≥1

wp,qjk

n∑
i=1

∆n
i C̄

(p)∆n
i C̄

(q)Φ2
jk(t̄i)

n∑
i=1

∆n
iW

(p)


= hn

∑
j≥1

wp,qjk

n∑
i=1

E
[
∆n
i C̄

(p)∆n
i C̄

(q)∆n
iW

(p)
]

Φ2
jk(t̄i)

≤ hn
∑
j≥1

wp,qjk

n∑
i=1

(ti − ti−1)3/2Φ2
jk(t̄i) = oP

(
n−1/4

)
.

By the analogous estimate with ∆n
iW

(q) the stability conditions are valid. This proves
stable convergence of the leading term to the limit given in Theorem 2.2.2.
The heart of the proof of Theorem 2.2.3 is the asymptotic theory for the leading

term (2.6.27), namely the analysis of the asymptotic variance-covariance structure. This
is carried out in detail in Bibinger et al. (2014) for the idealized locally parametric
experiment using bin-wise orthogonal transformation to a diagonal covariance structure.
The only difference between our main term and the setup considered in Bibinger et al.
(2014) is the Gaussianity of the noise component. Yet, in the deduction of the variance
this only affects the terms with fourth noise moments where E[ε4

i ] 6= 3E[ε2
i ] in general.



49 Chapter 2. Central limit theorems for spectral estimators

Above, we explicitly proved that the resulting remainder converges to zero for the
one-dimensional estimator and this directly extends to the diagonal elements here. An
intuitive heuristic reason why this holds is that the smoothed statistics are asymptotically
still close to a normal distribution, though the normality which could have been used in
Bibinger et al. (2014) does not hold here for fixed n in general. Based on the expressions
of variances for cross products and squared spectral statistics above, coinciding their
counterparts in the normal noise model when separating the remainder induced for the
squares, we can pursue the asymptotics along the same lines as the proof of Corollary
4.3 in Bibinger et al. (2014).
At this stage, we restrict to shed light on the connection between the expressions in

(2.2.7) and the asymptotic covariance matrix. Observe that (A ⊗ B)> = A> ⊗ B> for
matrices A,B, ZZ = 2Z and that (A⊗B)(C⊗D) = (AC⊗BD) for matrices A,B,C,D,
such that

(
Σ1/2
s ⊗

(
ΣHs
)1/4)Z((Σ1/2

s ⊗
(
ΣHs
)1/4)Z)>

=
(

Σ1/2
s ⊗

(
ΣHs
)1/4)

2Z
(

Σ1/2
s ⊗

(
ΣHs
)1/4)>

= 2
(

Σs ⊗
(
ΣHs
)1/2)Z ,

since Z commutes with
(

Σ
1/2
s ⊗

(
ΣHs
)1/4). Therefore, the expression in (2.2.7) is natural

for the matrix square root of the asymptotic covariance, where we use two independent
terms because of non-commutativity of matrix multiplication. Conditions (J1) and (J3)
and the stability conditions (J4) and (J5) can be analogously shown by element-wise
adopting the results for squared and cross products of spectral statistics from above.
Since any component of the estimator is a weighted sum of the entries of SjkS>jk, bias-
corrected on the diagonal, the convergences to zero in probability follow likewise.

Remainder terms

After applying the triangular inequality to (2.6.28), it suffices to prove that

n1/4‖LMMor
n,t(Y )− LMMor

n,t(C̄ + ε)‖ ucp−−→ 0 , (2.6.32)

n1/4

∥∥∥∥ˆ t

0
vec
(
Σs − Σbsh−1

n chn
)
ds

∥∥∥∥ ucp−−→ 0 . (2.6.33)

For A,B ∈ Rd, we use in the following several times the elementary bound:

∥∥∥AA> −BB>∥∥∥ =
∥∥∥B(A> −B>) + (A−B)A>

∥∥∥ ≤ (‖A‖+ ‖B‖
)
‖A−B‖ . (2.6.34)
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Define analogously as above S̃jk =
(∑np

i=1 ∆n
i C̄

(p)Φjk

(
t̄
(p)
i

))
1≤p≤d, the spectral statistics

in the locally constant volatility experiment. Then we can bound uniformly for all t:

‖LMMor
n,t(Y )− LMMor

n,t(C̄ + ε)‖

≤
h−1
n∑
k=1

hn

∥∥∥∥∥∥
bnhnc−1∑
j=1

Wjkvec
(
SjkS

>
jk − S̃jkS̃>jk

)∥∥∥∥∥∥
≤

h−1
n∑
k=1

hn

bnhnc−1∑
j=1

‖Wjk‖
(
‖Sjk‖+ ‖S̃jk‖

)
‖Sjk − S̃jk‖

.
h−1
n∑
k=1

hn

bnhnc−1∑
j=1

(
1 +

j2

nh2
n

)−2
‖Sjk − S̃jk‖ = OP

(
hn
)

= oP(n−1/4
)
,

what yields (2.6.32). We have used Lemma C.1 from Bibinger et al. (2014) for the
magnitude of ‖Wjk‖, the bound (2.6.34) and a bound for the sum over j, for which
holds

1√
nhn

bnhnc−1∑
j=1

(
1 +

j2

nh2
n

)−2
→ π

2

by an analogous integral approximation as used in the limiting variance before. Drift
terms and cross terms including the drift are asymptotically negligible and are handled
similarly as before. Directly neglecting drift terms, we deduce ‖Sjk − S̃jk‖ = OP(hn)
uniformly from (Sjk − S̃jk)(p) �p

∑np
i=1 ∆n

i C̃
(p)Φjk(t̄i) by Proposition A.3.2. (2.6.33) is

equivalent to

n1/4

∥∥∥∥∥
h−1
n∑
k=1

ˆ khn

(k−1)hn

(
Σs − Σ(k−1)hn

)
ds

∥∥∥∥∥ ucp−−→ 0. (2.6.35)

Using the decomposition

Σs − Σ(k−1)hn = σsσ
>
s − σ(k−1)hnσ

>
(k−1)hn

= (σs − σ(k−1)hn)σ>(k−1)hn
+ σ(k−1)hn(σ>s − σ>(k−1)hn

)

+ (σs − σ(k−1)hn)(σ>s − σ>(k−1)hn
)

for s ∈ [(k− 1)hn, khn], it is easy to find that it suffices to bound terms ‖σs−σ(k−1)hn‖.
Then, Assumption (H-α-β) guarantees (2.6.35) and (2.6.33) in the same way as for the
one-dimensional model.
For the spectral covolatility estimator (2.3.16) we may conduct an analysis of the

remainder similarly as in the proof of Proposition 2.4.2. One can as well employ inte-
gration by parts of Itô integrals after supposing again a synchronous observation design
ti, i = 0, . . . , n, possible according to Lemma 2.4.4:

∆n
i C̃

(p)∆n
i C̃

(q) −
ˆ ti

ti−1

(
Σ(pq)
s − Σ

(pq)

bsh−1
n chn

)
ds

=

ˆ ti

ti−1

(
C̃(p)
s − C̃

(p)
ti−1

)
dC̃(q)

s +

ˆ ti

ti−1

(
C̃(q)
s − C̃

(q)
ti−1

)
dC̃(p)

s . (2.6.36)
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with C̃ approximation errors as in (2.6.26). Consider the random variables

ζ̃
(pq)
jk =

n∑
i=1

∆iC̃
(p)Φjk(t̄i)

n∑
v=1

∆vC̃
(q)Φjk(t̄v) ,

ζ̃nk = hn
∑
j≥1

wp,qjk ζ̃
(pq)
jk −

ˆ (k+1)hn

khn

(
Σ(pq)
s − Σ

(pq)

bsh−1
n chn

)
ds .

Inserting (2.6.36) for ∆n
i C̃

(p)∆n
i C̃

(q), using
〈´

Z dX,
´
Z dX]

〉
=
´
Z2 d 〈X,X〉 for Itô

integrals and applying Burkholder-Davis-Gundy inequalities and using Proposition A.3.2
for E

[(
∆n
i C̃

(p)
)2], E[(∆n

i C̃
(q)
)2], it follows that E

[(
ζ̃nk
)2]

= O(n−1). Bounds for cross
terms with C̃ and C̄ readily follow by standard estimates and we conclude our claim.

2.6.5. Proofs for adaptive estimation

We carry out the proof of Proposition 2.4.3 in the case d = 1 explicitly. We need to
show that

n
1
4

∣∣∣ÎV n,t − ÎV
or

n,t(Y )
∣∣∣ ucp−−→ 0 as n→∞ . (2.6.37)

Let us first act as if the noise level η was known and concentrate on the harder problem
of analyzing the plug-in estimation of the instantaneous squared volatility process σ2

t in
the weights. We have to bound

ÎV n,t − ÎV
or

n,t(Y ) =

bth−1
n c∑

k=1

hn

bnhnc−1∑
j=1

(
ŵjk − wjk

)(
S2
jk − [ϕjk, ϕjk]n

η2

n

)
,

uniformly with wjk being the optimal oracle weights (2.3.5) and ŵjk their adaptive
estimates. We introduce a coarse grid of blocks of lengths rn such that rnh−1

n → ∞ as
n → ∞. We analyze the above difference in this double asymptotic framework, where
the plug-in estimators are evaluated on the coarse grid first. Denoting the adaptive and
oracle estimators with weights evaluated on the coarse grid by ÎV

c

n,t and ÎV
or,c

n,t (Y ),
respectively, ÎV

c

n,t − ÎV
or,c

n,t (Y ) is equal to

btr−1
n c∑

m=1

hn

mrnh
−1
n∑

k=(m−1)rnh
−1
n +1

bnhnc−1∑
j=1

(
wj(σ̂

2
(m−1)rn

)− wj(σ2
(m−1)rn

)
)
Zjk (2.6.38)

with Zjk = S2
jk−[ϕjk, ϕjk]nη

2/n−σ2
(k−1)hn

where the weights are functions (independent
of the block k, as [ϕjk, ϕjk]n does not depend on k)

wj(x) =

(
x+ η2

n [ϕjk, ϕjk]n
)−2∑bnhnc−1

l=1

(
x+ η2

n [ϕlk, ϕlk]n
)−2

,

which are well-defined for x ∈ R+ and satisfy
∑
wj(x) = 1. As σ is uniformly bounded

from below and from above, there exists a constant C1 > 0 such that uniformly

wj
(
σ2
t

)
. wj (C1) (2.6.39)
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for all j ≥ 1. By the proof of Proposition 2.4.2 we may directly consider Z̃jk =
S̃2
jk − [ϕjk, ϕjk]nη

2/n − σ2
(k−1)hn

where the S̃jk are the statistics under locally para-
metric volatility and without drift. Moreover, by subtracting σ2

(k−1)hn
in the definition

of Z̃jk equation (2.6.11) shows that the Z̃jk are uncorrelated for different k. Hence,
Var
(∑

k Z̃jk
)

=
∑

k Var(Z̃jk) and thus

Var
(∑

k

Zjk
)

=
∑
k

Var(Zjk) + o(1). (2.6.40)

We prove (2.6.37) in two steps. We show first that (2.6.38) is oP(n−1/4) uniformly and
then that the difference between estimating on the coarse and finer grid is oP(n−1/4),
as well. The crucial property to ensure tightness of the adaptive approach is a uniform
bound on the first derivatives of the weight functions: wj(x) is continuously differentiable
with derivatives satisfying: ∣∣w′j (x)

∣∣ . wj (x) log2(n) . (2.6.41)

To see why this holds set cj = η2

n [ϕjk, ϕjk]n and observe that |w′j(x)| is equal to∣∣∣∣∣∣∣
−2 (x+ cj)

−3∑bnhc−1
m=1 (x+ cm)−2 − (x+ cj)

−2∑bnhc−1
m=1

(
(−2) (x+ cm)−3

)
(∑bnhc−1

m=1 (x+ cm)−2
)2

∣∣∣∣∣∣∣
≤ 2wj (x)

∑bnhc−1
m=1 (x+ cm)−2

∣∣∣(x+ cj)
−1 − (x+ cm)−1

∣∣∣∑bnhc−1
m=1 (x+ cm)−2

. wj (x) log2(n)

for n sufficiently large. The last inequality follows from∣∣∣(x+ cj)
−1 − (x+ cm)−1

∣∣∣ ≤ 1

cj
+

1

cm
.

1

c1
= O

(
log2(n)

)
.

The plug-in estimator (2.3.7) satisfies ‖σ̂2−σ2‖L1 = OP
(
δn
)
for the L1-norm ‖ · ‖L1 with

a sequence δn → 0 as n → ∞, δn . n−1/8 for optimal window length under (H-α-β).
Hence, by (2.6.39) wj(σ̂2

(m−1)rn
− wj(σ2

(m−1)rn
) = OP(wj(C1)δn log2(n)). This, (2.6.40),

the Cauchy-Schwarz inequality and (2.6.7) show that E[|ÎV
c

n,t − ÎV
or,c

n,t (Y )
∣∣] is up to a

constant bounded by

E

btr−1
n c∑

m=1

hn

bnhnc−1∑
j=1

∣∣∣wj(σ̂2
(m−1)rn

)−wj(σ2
(m−1)rn

)
∣∣∣
∣∣∣∣∣∣

mrnh
−1
n∑

k=(m−1)rnh
−1
n +1

Zjk

∣∣∣∣∣∣


. δn
(
log2(n)

) btr−1
n c∑

m=1

hn

bnhnc−1∑
j=1

wj (C1)
(
Var
( mrnh

−1
n∑

k=(m−1)rnh
−1
n +1

Zjk

))1/2

.

√
hn
rn
δn log2 n+ o (1) . (2.6.42)
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The required order oP(n−1/4) for (2.6.38) is thus achieved if rn → 0 not too fast, i.e.
r−1
n . n1/4(log n)−5. Consider the remainder by the difference of coarse and fine grid.
Since for ÎV

or,c

n,t (Y ) and ÎV
or

n,t(Y ) the statistics for each block k are uncorrelated, it is
enough to bound the variance of the difference by

r−1
n∑

m=1

mrnh
−1
n∑

k=(m−1)rnh
−1
n +1

h2
n

bnhnc−1∑
j=1

(
E
[(
wj(σ

2
(k−1)hn

)− wj(σ2
(m−1)rn

)
)2
Z̃2
jk

]) 1
2

2

,

which is of order O(hnrn log4 (n)) using (2.6.41) and (2.6.42). This shows that
|ÎV

or,c

n,t (Y )− ÎV
or

n,t(Y )| = oP(n−1/4) uniformly. Exploiting the same ingredients as above
we obtain likewise that |ÎV

c

n,t − ÎV n,t| = oP(n−1/4) uniformly. In order to analyze the
estimation error induced by pre-estimation of η2, we can consider the weights as func-
tions of η2 and compute their derivatives. As η2 does not depend on time and we have
|η̂2 − η2| = OP(n−1/2), a simpler computation yields that the pre-estimation of η2 is of
smaller order as the error by plug-in estimation of local volatilities. Thus, using triangle
inequality we conclude (2.6.37).
The proofs that Theorem 2.2.2 and Theorem 2.2.3 extend from the oracle to the adap-

tive versions of the estimators (2.3.16) and (2.3.19) can be conducted in an analogous
way. For covariation matrix estimation, the key ingredient is the uniform bound on the
norm of the matrix derivative of the weight matrix function Wj(Σ) w.r.t.Σ, which is a
matrix with d6 entries and requires a notion of matrix derivatives, see Lemma C.2 in
Bibinger et al. (2014). The proof is then almost along the same lines as the proof of
Theorem 4.4 in Bibinger et al. (2014), with the only difference in the construction being
that the Zjk are not independent, but still have negligible correlations. The adaptiv-
ity in the proof of Theorem 4.4 of Bibinger et al. (2014) is proved under more delicate
asymptotics of asymptotically separating sample sizes. For this reason, but at the same
time not having the remainders, the restrictions on rn are different there.





Chapter 3.

Estimating occupation time functionals

This chapter is adapted from Altmeyer (2017) (Sections 3.1, 3.2 and 3.4) and Altmeyer
and Chorowski (2017) (Section 3.3).

In this chapter we estimate occupation time functionals with respect to discrete ob-
servations by a Riemann-sum estimator. In the first section central limit theorems are
proved for L2-Sobolev functions f and continuous Itô semimartingales X. We then pro-
vide general L2(P)-upper bounds on the error in the second section and discuss several
examples in detail. Section three provides a different method for obtaining L2(P)-upper
bounds for stationary Markov processes. The fourth section studies the optimality of
the L2(P)-upper bounds in case of Brownian motion. Proofs can be found in section
five.
If not stated otherwise, we assume that X is defined on a filtered probability space

(Ω,F , (F)0≤t≤T ,P).

3.1. Central limit theorems

Let X be a continuous d-dimensional Itô semimartingale as in (2.1.1). Recall from the
introduction the definition of the occupation time functional

Γt (f) =

ˆ t

0
f (Xr) dr

and the corresponding Riemann-sum estimator

Γ̂n,t (f) = ∆n

bt/∆nc∑
k=1

f
(
Xtk−1

)
,

where tk = ∆nk for ∆n = T/n and k = 0, . . . , n. We will derive in this section central
limit theorems for the error Γt(f)− Γ̂n,t(f) as ∆n → 0 with 0 ≤ t ≤ T and T fixed.

3.1.1. CLT for C2-functions

We first review the basic situation when f ∈ C2(Rd). The following is a special case of
Theorem 6.1.2 of Jacod and Protter (2011) for continuous X.

Theorem 3.1.1. Let f ∈ C2(Rd). Then we have the stable convergence

∆−1
n

(
Γt (f)− Γ̂n,t (f)

)
st−→ f (Xt)− f (X0)

2
+

1√
12

ˆ t

0

〈
∇f (Xr) , σrdW̃r

〉
(3.1.1)
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as processes on D([0, T ],Rd), where W̃ is a d-dimensional Brownian motion defined on
an independent extension of (Ω,F , (Ft)0≤t≤T ,P).

In order to explain the main ideas of the proof consider the decomposition Γt (f) −
Γ̂n,t (f) = Mn,t(f) +Dn,t(f), where

Mn,t (f) =

bt/∆nc∑
k=1

ˆ tk

tk−1

(
f (Xr)− E

[
f (Xr)| Ftk−1

])
dr, (3.1.2)

Dn,t (f) =

bt/∆nc∑
k=1

ˆ tk

tk−1

E
[
f (Xr)− f

(
Xtk−1

)∣∣Ftk−1

]
dr. (3.1.3)

This decomposition is similar to the one in Section 2.4. By the martingale structure of
Mn,t(f) and using Itô’s formula it is easy to check from Theorem A.1.2 that the central
limit theorem

∆−1
n Mn,t (f)

st→ 1

2

ˆ t

0
〈∇f (Xr) , σrdWr〉+

1√
12

ˆ t

0

〈
∇f (Xr) , σrdW̃ r

〉
(3.1.4)

holds for n → ∞ as processes on D([0, T ],Rd), where W̃ is a d-dimensional Brownian
motion defined on an independent extension of (Ω,F , (Ft)0≤t≤T ,P). In fact, for this
f ∈ C1(Rd) is sufficient (for a proof see Proposition 3.5.4). With respect to Dn,t(f) Itô’s
formula shows that (∆−1

n Dn,t(f))0≤t≤T converges uniformly on [0, T ] in probability to(
f (Xt)− f (X0)

2
− 1

2

ˆ t

0
〈∇f (Xr) , σrdWr〉

)
0≤t≤T

. (3.1.5)

In particular, ∆−1
n Dn,t(f) is not negligible asymptotically (this is different compared to

(J1) in Section 2.4). Summing up ∆−1
n Mn,t(f) and ∆−1

n Dn,t(f) as well as the corre-
sponding limits yields the theorem. It is interesting to note that the CLT implies the
stable convergence of ∆−1

n (Γt(f)− Θ̂n,t(f)) to 1/
√

12
´ t

0 〈∇f(Xr), σrdW̃ r〉, where

Θ̂n,t (f) = ∆n

bt/∆nc∑
k=1

f
(
Xtk−1

)
+ f (Xtk)

2

is the trapezoid rule estimator. Therefore Θ̂n,t(f) is actually the more natural estimator
for Γt(f). It is remarkable that the trapezoid rule and the Riemann-sum approximation
have the same rate of convergence. This is not true generally for deterministic integrands.
We will see in Section 3.4 that both estimators are rate optimal and that the asymptotic
variance is optimal.
Remark 3.1.2. From a statistical point of view the stable central limit theorem can
be exploited to obtain a feasible central limit theorem, like in the theorems of Sec-
tion 2.2. More precisely, the estimator AV ART

∧
(f) = 1/12

∑n
k=1〈∇f(Xtk−1

), Xtk −
Xtk−1

〉2 converges in probability to 1/12
´ T

0 ‖σ
>
r ∇f(Xr)‖2dr, which is equal to

Var(1/
√

12
´ T

0 〈∇f(Xr), σrdW̃ r〉). The stable convergence and the continuous mapping

theorem therefore yield ∆−1
n (AV ART
∧

(f))−1/2(ΓT (f) − Θ̂n,T (f))
d−→ N(0, 1). This can

be used to derive asymptotic confidence intervals for Θ̂n,T (f).
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3.1.2. CLT for Fourier-Lebesgue functions

Interestingly, the weak limit in (3.1.1) is also well-defined for less smooth functions. As
the argument above relies on Itô’s formula, it breaks already for f ∈ C1(Rd). In order
to study the limit of ∆−1

n Dn,t(f) for more general f note that we can write

f (Xr)− f
(
Xtk−1

)
= (2π)−d

ˆ
Ff (u)

(
e−i〈u,Xr〉 − e−i〈u,Xtk−1

〉
)
du, (3.1.6)

if f is sufficiently regular, where Ff(u) =
´
f(x)ei〈u,x〉dx is the Fourier transform of f .

In principle, we can now study e−i〈u,Xr〉− e−i〈u,Xtk−1
〉 instead of f(Xr)− f(Xtk−1

). The
error can be calculated exactly, if the characteristic functions of the marginals Xr are
known. For the general Itô semimartingale X in (2.1.1), however, this is a difficult issue.
The key idea is to replace the marginals Xr by the close approximations Xr−ε+br−ε(r−
ε) +σr−ε(Wr−Wr−ε) for some ε = ε(u, n) whose distributions are Gaussian conditional
on Fr−ε. This idea is inspired by the one-step Euler approximation of Fournier and
Printems (2008). For this σ needs to be non-degenerate and the approximation error
has to be sufficiently small. We therefore work as in the last chapter under Assumption
(SM-α-β). This time, however, 0 ≤ α ≤ 1 is arbitrary.
The right hand side in (3.1.6) shows that it is natural to assume that the Fourier

transform of f is integrable, which leads to the the Fourier-Lebesgue spaces. They are
introduced in Section A.4. If f ∈ FLsloc(Rd) for s ≥ 1, then f ∈ C1(Rd) such that
(3.1.4) remains true. Moreover, for sufficiently smooth σ also the limit for ∆−1

n Dt,n(f)
in (3.1.5) remains valid. This yields the wanted CLT. For a concise statement we use
the trapezoid rule estimator from the last section.

Theorem 3.1.3. Assume (SM-α-β) for 0 ≤ α, β ≤ 1. Let s > 2− 2α, s ≥ 1, s+β > 1.
Then we have for f ∈ FLsloc(Rd) the stable convergence

∆−1
n

(
Γt (f)− Θ̂n,t (f)

)
st−→ 1√

12

ˆ t

0

〈
∇f (Xr) , σrdW̃ r

〉
as processes on D([0, T ],Rd), where W̃ is a d-dimensional Brownian motion defined on
an independent extension of (Ω,F , (Ft)0≤t≤T ,P). The feasible central limit theorem of
Remark 3.1.2 remains valid.

This result is remarkable since it is only based on regularity assumptions for f and σ.
In particular, if σ is smoother, then the conditions on f can be relaxed. For α > 1/2,
f ∈ FL1

loc(Rd) is allowed. For α ≤ 1/2 there is a trade-off between the regularities of f
and σ. The theorem also extends to L2-Sobolev functions for sufficiently large regularity,
because Hs

loc(Rd) ⊂ FLs
′
loc(Rd), if s > s′ + d/2 (cf. Proposition A.4.2).

Remark 3.1.4. As the proof of Theorem 3.1.3 reveals, it is not possible to argue as in
Section 3.1.1 using a generalized Itô formula for f ∈ C1(Rd).

3.1.3. CLT for L2-Sobolev functions

The proof of Theorem 3.1.3 does not apply to all C1(Rd)-functions. The weak limit,
however, is also well-defined for f ∈ H1

loc(Rd). A minor issue in this case is that the
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random variables f(Xr) depend on the version of f that we choose in its equivalence
class in L2

loc(Rd). This problem disappears if f is continuous or if Xr has a density. Note
that H1(Rd) ⊂ C(Rd) only for d = 1. Interestingly, it can be shown by the methods
of Debussche and Romito (2014, Section 5), which are also inspired by Fournier and
Printems (2008), under Assumption (SM-α-β) that the marginals Xr have Lebesgue
densities pr for r > 0 (∗).
In order to extend the central limit theorem to f ∈ H1

loc(Rd), it turns out that we
need to make the following stronger assumption.

Assumption (X0). X0 is independent of (Xt −X0)0≤t≤T and Lebesgue density µ. Ei-
ther, Fµ ∈ L1(Rd) or Fµ is non-negative and µ is bounded.

This assumption can be understood in two ways. First, the independence and the
boundedness of µ imply that the marginals Xr have uniformly bounded Lebesgue den-
sities (this follows without assuming the existence of the densities as motivated above).
Second, f itself becomes more regular, as by independence E[Γt(f)|(Xr −X0)0≤r≤t] =´ t

0 (f ∗ µ̃)(Xr −X0)dr with µ̃(x) = µ(−x). Unfortunately, this property can not be used
directly in the proof.
We can show under this assumption that (3.1.4) remains true for f ∈ H1

loc(Rd). More-
over, for f ∈ Hs

loc(Rd) and sufficiently large s ≥ 1 we can prove that ∆−1
n Dn,T (f)

converges to (3.1.5) in probability. This convergence is not uniform in 0 ≤ t ≤ T any-
more. Therefore the weak convergence is not functional and holds only at the fixed time
T .

Theorem 3.1.5. Assume (SM-α-β) for 0 ≤ α, β ≤ 1 and (X0). Let s > 2− 2α, s ≥ 1,
s+ β > 1. Then we have for f ∈ Hs

loc(Rd) the stable convergence

∆−1
n

(
ΓT (f)− Θ̂n,T (f)

)
st−→ 1√

12

ˆ T

0

〈
∇f (Xr) , σrdW̃ r

〉
,

where W̃ is a d-dimensional Brownian motion defined on an independent extension of
(Ω,F , (Ft)0≤t≤T ,P). The feasible central limit theorem of Remark 3.1.2 remains valid.

Because of independence, Assumption (X0) can be relaxed by randomizing the initial
condition and then using a coupling argument. This yields the following corollary.

Corollary 3.1.6. Assume (SM-α-β) for 0 ≤ α, β ≤ 1. Let s > 2−2α, s ≥ 1, s+β > 1.
For any function f ∈ Hs

loc(Rd) there exists a set E ⊂ Rd such that Rd\E has Lebesgue
measure 0 and such that the stable convergence in Theorem 3.1.5 holds for all X0 = x0 ∈
E.

This result generalizes Theorem 3.1.1 considerably. The set E depends in general on
the function f , i.e. it can change if we consider a different function f̃ with f = f̃ almost
everywhere.

Remark 3.1.7. In some cases it is possible to derive similar CLTs for f ∈ Hs
loc(Rd) with

0 ≤ s < 1. For example, we have f = 1[a,∞) ∈ H
1/2−
loc (R) and the proof of Theorem

∗This will be studied more explicitly in the forthcoming paper of Romito (2017).
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3.1.5 implies a CLT for ∆
−3/4
n (ΓT (fε)− Γ̂n,T (fε)), where fε = f ∗ ϕε with ϕ ∈ C∞c (Rd),

ϕε = ε−1ϕ(ε−1(·)) and ε = ∆
1/2
n . The limiting distribution is similar to Corollary 3.4 of

Ngo and Ogawa (2011), which applies to Brownian motion only, and involves local times
of X. The rate ∆

3/4
n will be explained in the next section. This proof does not yield a

CLT for ∆
−3/4
n (ΓT (f)− Γ̂n,T (f)), as the error ΓT (f − fε)− Γ̂n,T (f − fε) is only of order

OP(∆
3/4
n ).

3.2. Upper bounds for less smooth functions

The aim of this section is to derive finite sample upper bounds on ‖ΓT (f)−Γ̂n,T (f)‖L2(P)

with explicit dependence on ∆n, T and f . The function f is possibly much rougher than
in the last section. It is therefore not possible to use arguments based on Taylor’s
theorem such as Itô’s formula. Except for special cases, it is impossible to prove central
limit theorems for ΓT (f) − Γ̂n,T (f) in this case (cf. Remark 3.1.7). Instead of using
martingale arguments, the results here are based on direct calculations with respect
to the distribution of X. The following is inspired by the proof of Ganychenko (2015,
Theorem 1).
We always assume that X = (Xt)0≤t≤T is a càdlàg process with respect to

(Ω,F , (F)0≤t≤T ,P), not necessarily a semimartingale or a Markov process. Then

‖ΓT (f)− Γ̂n,T (f)‖2L2(P)

=

n∑
k,j=1

ˆ tk

tk−1

ˆ tj

tj−1

E
[ (
f (Xr)− f

(
Xtk−1

)) (
f (Xh)− f

(
Xtj−1

)) ]
dhdr.

Assume that the bivariate distributions of (Xa, Xb), a < b, have Lebesgue densities pa,b.
Under suitable regularity assumptions the expectation in the last display can be written
as

ˆ r

tk−1

(ˆ
f (x) f (y)

(
∂bph,b (x, y)− ∂bptj−1,b (x, y)

)
d (x, y)

)
db

=

ˆ r

tk−1

ˆ h

tj−1

(ˆ
f (x) f (y) ∂2

abpa,b (x, y) d (x, y)

)
dadb. (3.2.1)

From this we can obtain general upper bounds on ‖ΓT (f)− Γ̂n,T (f)‖2L2(P). Their struc-
ture reflects that the distributions of (Xa, Xb) degenerate for a = b, therefore requiring
a different argument.

Proposition 3.2.1. Assume that the joint densities pa,b of (Xa, Xb) exist for all 0 <
a < b ≤ T .

(i) Assume that b 7→ pa,b(x, y) is differentiable for all x, y ∈ Rd, 0 < a < b < T with
∂bpa,b ∈ L∞loc(R2d). Then there exists a constant C such that for all bounded f with
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compact support

‖ΓT (f)− Γ̂n,T (f)‖2L2(P)

≤ C∆n

ˆ
(f (y)− f (x))2

( n∑
k=1

ˆ tk

tk−1

ptk−1,r (x, y) dr

+
∑

k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

(
|∂rph,r (x, y) |+ |∂rptj−1,r (x, y) |

)
dhdr

)
d (x, y) .

(ii) In addition, assume that a 7→ ∂bpa,b(x, y) is differentiable for all x, y ∈ Rd, 0 <
a < b < T with ∂2

abpa,b ∈ L∞loc(R2d). Then we also have

‖ΓT (f)− Γ̂n,T (f)‖2L2(P)

≤ C∆2
n

ˆ
(f (y)− f (x))2

(
∆−1
n

n∑
k=1

ˆ tk

tk−1

ptk−1,r (x, y) dr

+
∑

k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

∣∣∂2
hrph,r (x, y)

∣∣ dhdr)d (x, y) .

Concrete upper bounds can be obtained from this by combining the smoothness of
f with bounds on ∂bpa,b and ∂2

abpa,b. Another way for getting upper bounds comes
from formally applying the Plancherel theorem to (3.2.1). Denote by ϕa,b = Fpa,b the
characteristic function of (Xa, Xb). Under sufficient regularity conditions (3.2.1) is equal
to

(2π)−2d
ˆ r

tk−1

ˆ h

tj−1

(ˆ
Ff (u)Ff (v) ∂2

abϕa,b (u, v)d (u, v)

)
dadb.

This yields the following version of the last proposition.

Proposition 3.2.2. Let ϕa,b be the characteristic functions of (Xa, Xb) for 0 ≤ a, b ≤ T
with ϕa,a(u, v) = ϕa(u+ v) for u, v ∈ Rd.

(i) Assume that b 7→ ϕa,b(u, v) is differentiable for u, v ∈ Rd, 0 < a < b < T with
∂bϕa,b ∈ L∞loc(R2d). Then there exists a constant C such that for all f ∈ L1(Rd)
with Ff ∈ C∞c (Rd)

‖ΓT (f)− Γ̂n,T (f)‖2L2(P)

≤ C∆n

ˆ
|Ff (u)| |Ff (v)|

( n∑
k=1

ˆ tk

tk−1

gtk−1,r(u, v)dr

+
∑

k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

(
|∂rϕh,r (u, v)|+

∣∣∂rϕtj−1,r (u, v)
∣∣) dhdr)d (u, v) ,

with gtk−1,r(u, v) = |ϕr,r(u, v)|+ |ϕtk−1,r(u, v)|+ |ϕtk−1,tk−1
(u, v)|.
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(ii) In addition, assume that a 7→ ∂bϕa,b(u, v) is differentiable for all u, v ∈ Rd, 0 <
a < b < T with ∂2

abϕa,b ∈ L∞loc(R2d). Then we also have

‖ΓT (f)− Γ̂n,T (f)‖2L2(P)

≤ C∆2
n

ˆ
|Ff (u)| |Ff (v)|

(
∆−1
n

n∑
k=1

ˆ tk

tk−1

ˆ tk

tk−1

(|∂rϕh,r (u, v)|

+
∣∣∂rϕtk−1,r (u, v)

∣∣)dhdr +
∑

k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

∣∣∂2
hrϕh,r (u, v)

∣∣ dhdr)d (u, v) .

The second proposition is useful if the characteristic functions ϕa,b are explicitly
known, while the densities pa,b are not. This is true for many Lévy or affine processes.
Moreover, it can be easier to find upper bounds on characteristic functions than for the
respective densities. Note that the second proposition does not require the joint densi-
ties pa,b to exist. This is relevant, for instance, when studying jump processes without
marginal densities (cf. Example 3.2.12). In some cases both propositions apply and the
results can differ as we will see in the next section.
We will now study several concrete examples of processes X and function spaces for

f and derive explicit upper bounds.

3.2.1. Markov processes

Let X be a continuous-time Markov process on Rd with transition densities ξh,r,
0 ≤ h < r ≤ T , such that E[g(Xr)|Xh = x]=

´
g(y)ξh,r(x, y)dy for x ∈ Rd and all con-

tinuous, bounded functions g. Denote by Px0 the law of X conditional on X0 = x0. The
joint density of (Xh, Xr), conditional on X0 = x0, is ph,r(x, y;x0) = ξ0,h(x0, x)ξh,r(x, y).
The necessary differentiability conditions on ph,r from Proposition 3.2.1 translate to
assumptions on ξh,r. The following heat kernel bounds are similar to the ones in Gany-
chenko (2015).

Assumption 3.2.3. The transition densities ξh,r for 0 ≤ h < r < T satisfy one of the
following conditions:

(A) The function r 7→ ξh,r(x, y) is continuously differentiable for all x, y ∈ Rd and
there exist probability densities qr on Rd satisfying for some constant C > 0

sup
x,y∈Rd

|ξh,r (x, y)|
qr−h (y − x)

≤ C, sup
x,y∈Rd

|∂rξh,r (x, y)|
qh−r (y − x)

≤ C

h− r
. (3.2.2)

(B-γ) Let 0 < γ ≤ 2. In addition to (A), the function h 7→ ∂rξh,r(x, y) is continuously
differentiable for all x, y ∈ Rd and the qh satisfy

sup
x,y∈Rd

∣∣∂2
hrξh,r (x, y)

∣∣
qr−h (y − x)

≤ C

(r − h)2 . (3.2.3)

Moreover, if γ < 2, then supx∈Rd
(
‖x‖2s+dqh(x)

)
. h2s/γ for 0 < s ≤ γ/2, while,

if γ = 2, then
´
‖x‖2sqh(x)dx . hs for 0 < s ≤ 1.
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These conditions are satisfied in case of elliptic diffusions with Hölder continuous coef-
ficients with qh(x) = c1h

−d/2e−c2‖xh
−1/2‖2 and γ = 2 for some constants c1, c2. They are

also satisfied for many Lévy driven diffusions with qh(x) = c1h
−d/γ(1 + ‖xh−1/γ‖γ+d)−1

and 0 < γ < 2 (Ganychenko et al. (2015)). Different upper bounds in (3.2.2), (3.2.3) are
possible yielding different results below.
Based on Proposition 3.2.1 we recover the main results of Ganychenko (2015) and

Ganychenko et al. (2015). For 0 ≤ s ≤ 1 denote by ‖f‖Cs the Hölder seminorm
supx 6=y

‖f(x)−f(y)‖
‖x−y‖s .

Theorem 3.2.4. Let n ≥ 2 and x0 ∈ Rd. Let X be a Markov process with transition
densities ξa,b.

(i) Assume (A). There exists a constant C such that for every bounded f

‖ΓT (f)− Γ̂n,T (f)‖L2(Px0) ≤ C‖f‖∞T
1/2∆1/2

n (log n)1/2 .

(ii) Assume (B-γ) for 0 < γ ≤ 2. There exists a constant C such that for f ∈ Cs(Rd)
with 0 ≤ s ≤ γ/2

‖ΓT (f)− Γ̂n,T (f)‖L2(Px0) ≤ C‖f‖CsT
1/2

∆
1+2s/γ

2
n , 2s/γ < 1,

∆n (log n)1/2 , 2s/γ = 1.

Up to log factors the rate of convergence (for fixed T ) is ∆
(1+2s/γ)/2
n for f ∈ Cs(Rd),

interpolating between the worst-case rates ∆
1/2
n and the “best” rate ∆n. Interestingly,

smaller γ means faster convergence for the same smoothness s.

Remark 3.2.5. The T 1/2-term in the upper bound is optimal and appears in almost every
other example below (observe however Theorem 3.2.13). If X is ergodic with invariant
measure µ, then this can be used to estimate functionals

´
fdµ with respect to µ by

the estimator T−1Γ̂n,T (f) with optimal rate T−1/2, independent of any condition on the
discretization order ∆n, i.e. there is essentially no difference between the high and the
low frequency setting (cf. Theorem 3.3.4).

Theorem 3.2.4 yields for the bounded function f = 1[a,b], a < b, only the rate
∆

1/2
n (log n)1/2. This cannot explain the ∆

3/4
n -rate obtained for Brownian motion in

Ngo and Ogawa (2011). In order to find a unifying view consider now f ∈ Hs(Rd),
0 ≤ s ≤ 1 (cf. Section A.4).

Theorem 3.2.6. Let X be a Markov process with transition densities ξa,b and bounded
initial density µ.

(i) Assume (A). There exists a constant C such that for f ∈ L2(Rd)

‖ΓT (f)− Γ̂n,T (f)‖L2(P) ≤ C‖µ‖1/2∞ ‖f‖L2T 1/2∆1/2
n (log n)1/2 .
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(ii) Assume (B-γ) for 0 < γ ≤ 2. There exists a constant C such that for f ∈ Hs(Rd)
with 0 ≤ s ≤ γ/2

‖ΓT (f)− Γ̂n,T (f)‖L2(P) ≤ C‖µ‖1/2∞ ‖f‖HsT 1/2


∆

1+2s/γ
2

n , γ < 2, 2s/γ < 1,

∆
1+s

2
n (log n)1/2 , γ = 2, 2s/γ < 1,

∆n (log n)1/2 , 2s/γ = 1.

While the regularity of f is now measured in the L2-Sobolev sense, we still obtain
the interpolating rate ∆

(1+2s/γ)/2
n up to log factors. Since Cs(K) ⊂ Hs−(Rd) for com-

pacts K ⊂ Rd and because f = 1[a,b] ∈ H1/2−(R), this theorem also yields the rates
∆

(1+2s/γ)/2−
n for s-Hölder functions on compacts and ∆

3/4−
n (up to log factors) for indica-

tors. By an explicit interpolation as in Theorems 3.3.9 and 3.3.10 this can be improved
to ∆

(1+2s/γ)/2
n and ∆

3/4
n , respectively. By considering L2-Sobolev spaces we therefore

unify the different rates obtained for Markov processes. The log factors in Theorem
3.2.6 can be removed in many cases (cf. Section 3.2.2).
Remark 3.2.7. (i) The role of µ in the proof of Theorem 3.2.6 is to ensure that the

marginals have uniformly bounded densities ph, i.e. sup0≤h≤T ‖ph‖∞ ≤ ‖µ‖∞. This
is necessary, because the bounds in Assumption 3.2.3 degenerate at 0. Otherwise it
is not even clear that ‖ΓT (f)‖L2(P) <∞ for f ∈ L2(Rd). If supx∈Rd

´ T
0 ξ0,r(x)dr <

∞, then the initial distribution can be arbitrary. This holds, for instance, when
d = 1 and qh(x) = c1h

−1/2e−c2‖xh
−1/2‖2 .

(ii) A different possibility for removing the initial condition is to wait until T0 > 0
such that XT0 has dispersed enough to have a bounded Lebesgue density. The
proof of Theorem 3.2.6 can then be applied to ‖

´ T
T0
f(Xr)dr− Γ̂n,T0,T (f)‖L2 , where

Γ̂n,T0,T (f) is a Riemann-sum estimator taking only observations in [T0, T ] into
account.

(iii) A similar argument as in the proof of Corollary 3.1.6 shows ΓT (f) − Γ̂n,T (f) =
OPx0

(an) for almost all initial conditions X0 = x0 ∈ Rd, where an corresponds to
the rates in Theorem 3.2.6 up to an additional log factor.

3.2.2. Additive processes

Let Y = (Yt)0≤t≤T be an additive process on Rd with Y0 = 0 and local character-
istics (σ2

t , Ft, bt), where σ2 = (σ2
t )0≤t≤T is a continuous Rd×d-valued function such

that σ2
t is symmetric for all t, b = (bt)0≤t≤T is a locally integrable Rd-valued func-

tion and (Ft)0≤t≤T is a family of positive measures on Rd with Ft({0}) = 0 and
sup0≤t≤T {

´
(‖x‖2 ∧ 1)dFt(x)} < ∞ (cf. Tankov (2003, Section 14.1)). The increments

Yr − Yh, 0 ≤ h < r ≤ T , are independent and have infinitely divisible distributions.
In particular, the corresponding characteristic functions are eψh,r(u), u ∈ Rd, by the
Lévy-Khintchine representation (Tankov (2003, Theorem 14.1)), where the characteris-
tic exponents ψh,r(u) are given by

i

ˆ r

h
〈u, bt〉 dt−

1

2

ˆ r

h
‖σ>t u‖2dt+

ˆ r

h

ˆ (
ei〈u,x〉 − 1− i 〈u, x〉1{‖x‖≤1}

)
dFt (x) dt.
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Applying Proposition 3.2.2 yields the following result. The independence in (X0) is
always satisfied, because Y has independent increments.

Theorem 3.2.8. Let T ≥ 1. Consider the process Xt = X0 + Yt, where Y = (Yt)0≤t≤T
is an additive process with local characteristics (σ2

t , Ft, bt) as above and such that X0

satisfies (X0).

(i) Let 0 < γ ≤ 2 and assume that |∂rψh,r(v)| ≤ c(1 + ‖v‖)γ+βr and |eψh,r(v)| ≤
ce−c‖v‖

γ(r−h) for a constant c and all 0 ≤ h < r ≤ T , v ∈ Rd and some 0 ≤ βr ≤
β∗ ≤ γ/2 with 0 < γ + βr ≤ 2. Then there exists a constant Cµ such that for
f ∈ Hs(Rd) with β∗/2 ≤ s ≤ γ/2 + β∗

‖ΓT (f)− Γ̂n,T (f)‖L2(P) ≤ Cµ‖f‖HsT∆
1
2

+
s−β∗/2
γ−β∗

n .

If Fµ ∈ L1(Rd), then Cµ = C‖Fµ‖1/2
L1 and otherwise Cµ = C‖µ‖1/2∞ . If even

|∂rψh,r(v)| ≤ c‖v‖γ+βr , then the same upper bound holds with T 1/2 instead of T .

(ii) If |∂rψh,r(v)| ≤ c, then we have for f ∈ L2(Rd)

‖ΓT (f)− Γ̂n,T (f)‖L2(P) ≤ Cµ‖f‖L2T∆n.

The same upper bound holds with T 1/2 instead of T , if c1 ≤ ρ(v) ≤ ∂rψh,r(v)≤
c2ρ(v) ≤ 0 for a bounded function v 7→ ρ(v) and constants c1 ≤ c2.

By the comments before Remark 3.2.7 we can obtain from this upper bounds for
Hölder and indicator functions. The condition |∂rψh,r(v)| ≤ c(1 + ‖v‖)γ+βr gives an
additional degree of freedom in order to account for time-inhomogeneity (cf. Example
3.2.11). Note that there are no log terms as compared to Theorem 3.2.6. The smaller
γ/2 + β∗, the less smoothness is necessary for f to achieve a ∆n rate.
Remark 3.2.9. In some situations it is sufficient to consider directly Xt = Yt. This is
true, for instance, if d = 1 and γ > 1 (cf. Remark 3.5.13). For different d or γ it follows
in (i) that YT0 for any T0 > 0 has a density pT0 with FpT0 ∈ L1(Rd). Similarly to Remark
3.2.7(ii) the proof of Theorem 3.2.8 can then be applied to ‖

´ T
T0
f(Xr)dr− Γ̂n,T0,T (f)‖L2 .

For OP bounds and almost all initial values X0 = x0 ∈ Rd refer to Remark 3.2.7(iii).
We study now a few examples.

Example 3.2.10 (Non-vanishing Gaussian part). Assume that Y has local charac-
teristics (σ2

t , Ft, 0) with sup0≤r≤T ‖(σrσ>r )−1‖ < ∞. Then γ = 2, β∗ = 0 and
|∂rψh,r(v)| . ‖v‖2 (cf. Sato (1999, Equation (8.9))). Part (i) of Theorem 3.2.8 there-
fore yields up to a constant the upper bound ‖f‖HsT 1/2∆

(1+s)/2
n for f ∈ Hs(Rd) with

0 ≤ s ≤ 1, thus improving on Theorem 3.2.6 by removing the log-factor.

Example 3.2.11 (γ-stable processes). Let ψh,r(v) = −c
´ r
h ‖v‖

γ+βtdt with c, γ, βr as in
Theorem 3.2.8. A process with these characteristic exponents exists if β is continuous.
X is a generalized symmetric γ-stable process with stability index γ + βr changing in
time. For d = 1 it is a multistable Lévy motion (cf. Example 4.1 in Falconer and Liu
(2012)). If β∗ = 0, then X is just a symmetric γ-stable process and Theorem 3.2.8
yields the upper bound ‖f‖HsT 1/2∆

1/2+s/γ
n for f ∈ Hs(Rd) and 0 ≤ s ≤ γ/2. Again,

this removes the log-factor of Theorem 3.2.6.
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Example 3.2.12 (Compound Poisson process). Let X be a compound Poisson process.
Then ψh,r(v) = (r − h)

´
(ei〈v,x〉 − 1)dF (x) for all 0 ≤ h < r ≤ T and a finite measure

F . Observe that the marginals Xr do not have Lebesgue densities unless X0 does. Since
ρ(v) := ∂rψh,r(v) =

´
(ei〈v,x〉 − 1)dF (x) is bounded in v, part (ii) of the theorem yields

the upper bound ‖f‖L2T∆n for all f ∈ L2(Rd). The improved bound applies, if F is
symmetric (cf. Section 3.3.1).

3.2.3. Fractional Brownian motion

Let B = (Bt)0≤t≤T be a fractional Brownian motion in Rd with Hurst index 0 < H < 1.
This means that the d component processes (B

(m)
t )0≤t≤T for m = 1, . . . , d are indepen-

dent and centered Gaussian processes with covariance function c(h, r) := E[B
(m)
h B

(m)
r ] =

1
2(r2H + h2H − (r − h)2H), 0 ≤ h ≤ r ≤ T . If H = 1/2, then B is just a Brownian
motion. For H 6= 1/2 it is an important example of a non-Markovian process which is
also not a semimartingale.

Theorem 3.2.13. Let T ≥ 1, n ≥ 2. Consider the process Xt = X0 + Bt, where
(Bt)0≤t≤T is a fractional Brownian motion with Hurst index 0 < H < 1 and where X0

satisfies (X0). Then there exists a constant Cµ as in Theorem 3.2.8 such that for any
f ∈ Hs(Rd) and 0 ≤ s ≤ 1

‖ΓT (f)− Γ̂n,T (f)‖L2(P) ≤ Cµ‖f‖Hs

TH∆
1+s

2
n , H ≥ 1/2,

T 1/2∆
1+2sH

2
n , H < 1/2.

Again, from this we can obtain upper bounds for Hölder and indicator functions (cf.
comments before Remark 3.2.7). It is interesting that the rate remains unchanged but
the dependency on T differs for H > 1/2, while this effect is reversed for H < 1/2. The
dependency on H is optimal. Indeed, if f is the identity, then for some constant C

‖ΓT (f)− Γ̂n,T (f)‖L2(P) ≥ C

{
TH∆n, H > 1/2,

T 1/2∆
1+2H

2
n , H < 1/2.

(3.2.4)

Remark 3.2.9 applies here as well in order to relax the assumption on X0. In particular,
we can directly consider Xt = Bt if d = 1. Comparing the theorem (at least for H < 1/2)
to Example 3.2.11 suggests that there is a more general result for self-similar processes
with self-similarity index α and upper bound ‖f‖HsT 1/2∆

1/2+αs
n .

The key idea in the proof is that fractional Brownian motion is locally nondeterminis-
tic. There are many more processes (and random fields) with this property. In principle,
the proof of the theorem will apply in these cases as well, as long as the time derivatives
of Φh,r(u, v) can be controlled. This holds, for instance, for multifractional Brownian
motion with time varying Hurst index H(t) (cf. Boufoussi et al. (2007)) and stochastic
differential equations driven by fractional Brownian motion (cf. Lou and Ouyang (2017))
We will now apply Theorem 3.2.13 to approximate local times from discrete data.

Let d = 1 and let (LaT )a∈R be the family of local times of B until T which satisfies the
occupation time formula

´ T
0 g(Br)dr =

´
R g(x)LxTdx for every continuous and bounded

function g (cf. Nualart (1995, Chapter 5)). We can write LaT = δa(LT ) for a ∈ R,
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where δa is the Dirac delta function. Note that δa ∈ H−1/2−(R) has negative regularity.
Theorem 3.2.13 therefore suggests the rate T 1/2∆

1/4
n (for H = 1/2). This turns out to

be almost correct.

Theorem 3.2.14. Let T ≥ 1, n ≥ 2, d = 1. Let Xt = Bt, where (Bt)0≤t≤T is
a fractional Brownian motion with Hurst index 0 < H < 1. Consider fa,ε(x) =
(2ε)−11(a−ε,a+ε)(x) for x, a ∈ R and ε = ∆αH

n with αH = 3
2 ·

H
1+H − ρ when H ≥ 1/2

and αH = H − ρ when H < 1/2 for any small ρ > 0. Then we have for some constant
C, independent of a, that

‖LaT − Γ̂n,T (fa,ε)‖L2(P) ≤ C

TH∆
3
4
· 1−H
1+H

−ρ
n , H ≥ 1/2,

T 1/2∆
1−H

2
−ρ

n , H < 1/2.

This considerably generalizes Theorem 2.6 of Kohatsu-Higa et al. (2014), which applies
only to Brownian motion. For H close to 1 the rate becomes arbitrarily slow, because
the paths of B are almost differentiable and the occupation measure becomes more and
more singular with respect to the Lebesgue measure.

3.3. Upper bounds for stationary Markov processes

While we obtained in the last section L2(P)-upper bounds on ΓT (f)−Γ̂n,T (f) for general
càdlàg processes, this section considers the case of a stationary Markov process X. On
the one hand, this leads to very elegant proofs, based on calculus for Markov semigroup
and its infinitesimal generator with respect to X. On the other hand, the upper bounds
apply to more general functions f and are even better in some cases compared to the last
section by removing log terms. Moreover, a stationary Markov process is not necessarily
Rd-valued or has to satisfy any of the assumptions of the various examples studied in
the last section. We will recover some of the previous results, but based on the methods
in this section.
In the following, X is a continuous-time Markov process on [0, T ] with values in a

Polish space S. For any measure µ on S denote by L2(µ) := L2(S, µ) the space of square
integrable functions f : S → R with respect to µ and with norm ‖f‖µ = (

´
f2dµ)1/2.

‖·‖∞,µ denotes the sup-norm in L∞(µ). For the basic concepts of semigroup theory and
functional calculus refer to Section A.5.
Our main assumptions are the following:

Assumption 3.3.1. X is a stationary time-homogeneous Markov process with station-
ary measure µ. The associated semigroup (Pr)r≥0 is Feller and its infinitesimal generator
L with respect to L2(µ) is a normal operator.

These assumptions are satisfied for many important processes. The leading example
is the standard Ornstein-Uhlenbeck process in Rd. Note that for f ∈ L2(µ) both ΓT (f)
and Γ̂n,T (f) are µ-almost surely well-defined random variables in L2(P) (cf. Section
3.1.3). Consider the operators |L|s/2, s ≥ 0, which are defined via the functional cal-
culus of L. They have domains dom(|L|s/2) ⊂ L2(µ) and thus contain all f ∈ L2(µ)
with ‖|L|s/2f‖µ < ∞. If X is an Ornstein-Uhlenbeck process, then the related spaces
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dom((I − L)s/2) ⊂ dom(|L|s/2) are known as Bessel potential spaces and play an im-
portant role in Malliavin calculus (Watanabe (1984)). We are now ready to state the
general upper bound.

Theorem 3.3.2. Let X be a Markov process satisfying Assumption 3.3.1 with X0
d∼ µ.

There exists a universal constant C such that for all f ∈ dom(|L|s/2), 0 ≤ s ≤ 1,∥∥∥ΓT (f)− Γ̂n,T (f)
∥∥∥
L2(P)

≤ C‖|L|s/2f‖µT 1/2∆
1+s

2
n .

The proof of this theorem is remarkably short. For s = 0 it follows that dom(|L|0) =

L2(µ) and the rate is T 1/2∆
1/2
n . Since dom(|L|s/2) ⊂ dom(|L|1/2) for s ≥ 1, the rate

is never better than T 1/2∆n. For 0 < s < 1 the bound interpolates between the two
extreme cases. Note that there are no log terms as in Theorems 3.2.4 or 3.2.6.
A deeper understanding of the spaces dom(|L|s/2) requires more explicit knowledge

about the generator. For example, if L is self-adjoint, then |L| = −L and thus
‖|L|1/2f‖2µ = ‖(−L)1/2f‖2µ = 〈−Lf, f〉µ. This is the Dirichlet form associated with
L and µ. It is typically easier to analyze than studying dom(|L|1/2) directly in terms of
the functional calculus. Examples are diffusions on Rd such that for sufficiently smooth
functions f the Dirichlet form is bounded by

´
‖∇f(x)‖2dµ(x). This immediately leads

to upper bounds for Hölder and indicator functions. Up to some additional conditions,
we will show that α-Hölder functions lie in dom(|L|α/2) and indicator functions of certain
cylinder sets of Rd lie in dom(|L|1/4), implying the rates ∆

(1+α)/2
n and ∆

3/4
n , respectively.

This explains the different rates obtained in the literature similar to the arguments be-
fore Remark 3.2.7 (see also Remark 3.3.11). An important difference in case of S ⊂ Rd is
that the considered functions have to lie only in L2(µ) and not in L2(Rd). For instance,
bounded functions are in L2(µ), but not in L2(Rd).

The assumption of starting in the stationary distribution can be relaxed to some
extent. Indeed, if the initial distribution is absolutely continuous with respect to µ,
then the result of Theorem 3.3.2 remains valid. More generally, if the distribution of
XT0 , T0 ≥ 0, is absolutely continuous with respect to µ, then the result still applies, if
instead of ΓT (f) the alternative occupation time functional ΓTn,T (f) =

´ T
Tn
f(Xr)dr is

estimated by Γ̂n,Tn,T (f) = ∆n
∑n

k=Tn∆−1
n +1

f(Xtk−1
), where Tn = dT0/∆

−1
n e∆n. Clearly,

ΓT (f) = Γ0,T (f) and Γ̂n,T (f) = Γ̂n,0,T (f). This yields the following corollary.

Corollary 3.3.3. Let X be a Markov process satisfying Assumption 3.3.1. Assume that
XT0

d∼ η, T0 ≥ 0, for a probability measure η such that η � µ with density dη/dµ. There
exists a universal constant C such that for all f ∈ dom(|L|s/2), 0 ≤ s ≤ 1,∥∥∥ΓTn,T (f)− Γ̂n,Tn,T (f)

∥∥∥
L2(P)

≤ C
∥∥∥dη
dµ

∥∥∥1/2

∞,µ
‖|L|s/2f‖µT 1/2∆

1+s
2

n .

As an example consider the Ornstein-Uhlenbeck process which is a Gaussian process
and therefore every XT0 for T0 > 0 is normally distributed such that the distribution of
XT0 is absolutely continuous with respect to the stationary measure of X (cf. Example
3.3.5).
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Consider now the situation of Remark 3.2.5. With respect to ergodicity, it is well-
known that T−1ΓT (f) is T 1/2-consistent for

´
fdµ, i.e. T−1ΓT (f)−

´
fdµ = OP(T−1/2),

when L is self-adjoint and f ∈ dom((−L)−1/2) (see e.g. Kipnis and Varadhan (1986,
Theorem 1.8)). By Theorem 3.3.2 this can be extended to the estimator T−1Γ̂n,T (f)
and more general L2(µ)-functions (cf. Remark 3.2.5).

Theorem 3.3.4. Let X be a Markov process satisfying Assumption 3.3.1 with X0
d∼ µ.

There exists a universal constant C such that for all f ∈ L2(µ) with f0 ∈ dom(|L|−1/2),
f0 = f −

´
fdµ,∥∥∥∥T−1Γ̂n,T (f)−

ˆ
S
f(x) dµ(x)

∥∥∥∥
L2(P)

≤ CT−1/2

(
‖f‖µ∆1/2

n +
∥∥∥|L|−1/2f0

∥∥∥
µ

)
.

Using Corollary 3.3.3 the assumption of starting in the stationary distribution can be
relaxed. As an example for dom(|L|−1/2) being non-trivial, assume that 0 is a simple
eigenvalue of L and that L has a spectral gap, i.e. s0 > 0, where s0 = sup{r > 0 :
B(0, r) ∩ σ(L) = {0}} and B(0, r) = {z ∈ C : |z| ≤ r}. In that case, X is ergodic and
it can be shown that f0 ∈ dom(|L|−1/2) is satisfied whenever f is non-constant (Bakry
et al. (2013, Section 4.2.1)). Furthermore, the upper bound of the theorem simplifies,
since ∥∥∥|L|−1/2f0

∥∥∥
µ
≤ s−1/2

0 ‖f0‖µ ≤ s−1/2
0 ‖f‖µ.

A concrete example of a process with spectral gap is the Ornstein-Uhlenbeck process
(Bakry et al. (2013, Chapter 4)). Theorem 3.3.4 shows that in order to achieve the rate
T 1/2 as n, T → ∞ there is essentially no gain in the high-frequency case, i.e. ∆n → 0,
compared to the low-frequency case with ∆n fixed. The error bound improves on the
commonly used condition in the literature that T∆n . 1 to achieve T 1/2-consistency (see
e.g. Dion and Genon-Catalot (2016, Section 5)). It is interesting to note that Theorem
3.3.4 depends on negative powers of |L|, while Theorem 3.3.2 depends on positive powers
of |L|.
Next, we apply the general bound from Theorem 3.3.2 to several important examples.

We first study Markov jump processes, i.e. continuous time Markov processes with
countable state spaces. Then a special class of diffusion processes is considered for
which the spaces dom(|L|s/2) can be described via the Dirichlet form 〈−Lf, f〉µ. After
that, we show for the example of Brownian motion how the assumption of stationarity
can be removed. Finally, we show that the method also applies to infinite dimensional
diffusions.

3.3.1. Markov-jump processes

Consider a continuous-time Markov process (Xr)r≥0 on a countable state space S. Such
a process can always be realized as Xr = YNr for a Markov chain (Ys)s∈S starting in
some initial distribution µ with transition probabilities (Pxy)x,y∈S and an independent
Poisson process (Nr)r≥0 with intensity 0 < λ < ∞ (Ethier and Kurtz (1986, Section
4.2)). Observing a path of X at the discrete times 0,∆n, 2∆n, ..., (n − 1)∆n, the jump
times can be identified with ∆n precision. Hence, if the function f is bounded, then
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every jump contributes at most 2‖f‖∞ to the estimation error |ΓT (f)− Γ̂n,T (f)|. This
yields the bound

‖ΓT (f)− Γ̂n,T (f)‖L2(P) ≤ 2‖f‖∞E
[
N2
T

]1/2
∆n = 2‖f‖∞

(
λT + (λT )2

)1/2
∆n.

This gives the optimal rate ∆n but requires the function f to be bounded. Moreover, the
error grows linearly in T as opposed to T 1/2 in Theorem 3.3.2. This can be improved,
if X is stationary with stationary measure µ and reversible, i.e. P> = P , where P> is
the transpose of P . Then the infinitesimal generator L = λ(P − I) is a bounded, non-
negative self-adjoint operator. Therefore, ‖(−L)1/2f‖µ ≤ ‖(−L)1/2‖‖f‖µ ≤ λ1/2‖f‖µ
with operator norm ‖(−L)1/2‖. It follows that dom((−L)1/2) = L2(µ) and Theorem
3.3.2 implies ∥∥∥ΓT (f)− Γ̂n,T (f)

∥∥∥
L2(P)

≤ Cλ1/2‖f‖µT 1/2∆n.

(cf. Example 3.2.12). Note that the results of Section 3.2.1 do not apply here, because
the state space is countable and therefore heat kernel bounds are not available.

3.3.2. Diffusions with generator in divergence form

In the following we write ‖A‖∞,µ = supj,k‖Ajk‖∞,µ and ‖g‖µ =
´
‖g(x)‖2dµ(x) for

measurable functions x 7→ A(x) ∈ Rd×d and x 7→ g(x) ∈ Rd.
Let L be an elliptic operator in divergence form (c.f. Bass (2006, Chapter VII))

and let (Xr)r≥0 be the associated diffusion process (in the sense of Bass (2006, Section
I.2)) with or without reflection arising as the solution of some stochastic differential
equation. Assume that the process is stationary and takes its values in some closed
subset U ⊂ S := Rd. Then the stationary measure µ has support in U . In case U ( Rd
we think of µ as a measure on Rd and embed the domain of the infinitesimal generator
dom(L) ⊂ L2(U, µ) canonically into L2(Rd, µ) by letting Lf := Lf̃ , whenever f |U = f̃
for f ∈ L2(Rd, µ), f̃ ∈ L2(U, µ). Finally, assume that L satisfies

〈−Lf, g〉µ =

ˆ
Rd
〈A (x)∇f (x) ,∇g (x)〉Rd dµ(x), f, g ∈ dom(L) ∩ C2(Rd), (3.3.1)

for a measurable function x 7→ A(x) ∈ Rd×d such that A(x) is symmetric, positive
definite for all x ∈ Rd and such that ‖A‖∞,µ is finite. Observe that the right hand
side of the last line is also well-defined for L2(Rd, µ)-integrable functions f, g ∈ C1(Rd).
An operator L satisfying (3.3.1) is self-adjoint on dom(L) ∩ C2(Rd). Observe for f ∈
dom(L) ∩ C2(Rd) ⊂ dom(L) ⊂ dom(|L|s/2) and 0 ≤ s ≤ 1 that

‖|L|s/2f‖2µ = ‖(−L)s/2f‖2µ ≤ ‖(I − L)s/2f‖2µ ≤ ‖(I − L)1/2f‖2µ
= 〈f − Lf, f〉µ ≤ ‖f‖2µ + ‖A‖∞,µ‖∇f‖2µ
≤ max (1, ‖A‖∞,µ) ‖f‖2H1(µ), (3.3.2)

where
‖f‖H1(µ) = ‖f‖µ + ‖∇f‖µ
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is the µ-weighted Sobolev norm. Combining this with Theorem 3.3.2 yields∥∥∥ΓT (f)− Γ̂n,T (f)
∥∥∥
L2(P)

≤

{
C max

(
1, ‖A‖1/2∞,µ

)
‖f‖H1(µ)T

1/2∆n, f ∈ dom(L) ∩ C2(Rd),

C‖f‖µT 1/2∆
1/2
n , f ∈ L2(µ).

(3.3.3)

By interpolating between the two cases f ∈ L2(µ) and f ∈ dom(L) ∩ C2(Rd) we will
study Hölder and indicator functions. Compared to the last section this interpolation
will be done explicitly. The unified view using L2-Sobolev spaces follows afterwards.
Before doing this let us discuss some important examples where (3.3.1) holds.

Example 3.3.5 (Ornstein-Uhlenbeck process). Assume that (Xr)r≥0 satisfies the
stochastic differential equation

dXr = −Xrdr +
√

2dWr

in Rd where (Wr)r≥0 is a d-dimensional Brownian motion. If X0
d∼ µ, where µ has

Lebesgue density dµ(x)/dλ = (2π)−d/2 exp(−|x|2/2), then X is stationary with station-
ary measure µ. The infinitesimal generator L satisfies

Lf(x) = −〈x,∇f (x)〉Rd + ∆f (x) , x ∈ Rd, (3.3.4)

with f ∈ dom(L) = H2(µ), the µ-weighted Sobolev space of twice weakly differen-
tiable functions with all partial derivatives up to order two belonging to L2(µ). Using
integration by parts it follows that

〈−Lf, g〉µ =

ˆ
Rd
〈∇f (x) ,∇g (x)〉Rd dµ(x), f, g ∈ C2(Rd) (3.3.5)

(cf. Pavliotis (2014, Section 4.4)). Hence, L is a self-adjoint operator of the form (3.3.1)
with Ajk = 1(j = k) for all 1 ≤ j, k ≤ d. This example can be generalized considerably
(see Chojnowska-Michalik and Goldys (2002) and Subsection 3.3.3 below).

Example 3.3.6 (Scalar diffusion with possibly attracting boundaries). Fix some bound-
aries −∞ ≤ β < ρ ≤ ∞. Assume that (Xr)r≥0 is a stationary diffusion process on [β, ρ]
solving the one-dimensional stochastic differential equation

dXr = b(Xr)dr + σ(Xr)dWr, (3.3.6)

for a continuous drift b : [β, ρ] → R, strictly positive continuous volatility σ : [β, ρ] →
(0,∞) and a one-dimensional Brownian motion (Wr)r≥0. Sufficient conditions for the
existence have been provided by Hansen et al. (1998, Section 3.1). In particular, sta-
tionarity is guaranteed if the speed density

m (x) =
1

σ2 (x)
exp

(ˆ x

x0

2b(y)

σ2(y)
dy
)
, β ≤ x0, x ≤ ρ,

is integrable on [β, ρ]. Then the stationary measure has the density

dµ (x)

dλ
= C0m (x)1 (β < x < ρ) ,
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where C0 is a normalizing constant. The infinitesimal generator L satisfies

Lf (x) = b(x)f ′(x) +
σ2(x)

2
f ′′(x)

=
1

2

(
dµ(x)

dλ

)−1(
f ′(x)σ2(x)

dµ(x)

dλ

)′
, β < x < ρ,

with f ∈ dom(L), where

dom(L) =
{
f ∈ L2([β, ρ], µ) : f and f ′ are absolutely continuous with

lim
x↘λ

f ′(x)m (x)σ2 (x) = lim
x↗ρ

f ′(x)m (x)σ2 (x) = 0 and

Lf ∈ L2([β, ρ], µ)
}
.

For details see Section 3.3 of Hansen et al. (1998). Embedding the domain into L2(µ)
as mentioned before and integrating by parts it follows that

〈−Lf, g〉µ =

ˆ
R
f ′(x)g′(x)σ2(x) dµ(x), f, g ∈ dom(L) ∩ C2(R), (3.3.7)

which is of the form (3.3.1) with A = σ2. For b(x) = −x and σ(x) =
√

2, X is just the
one-dimensional Ornstein-Uhlenbeck process.

Example 3.3.7 (Reflected diffusion). Fix some boundaries −∞ < β < ρ <∞. Assume
that X is a one-dimensional reflected diffusion on [β, ρ]. By this we mean that X satisfies
the Skorokhod type stochastic differential equation

dXr = b(Xr)dr + σ(Xr)dWr + dKr, (3.3.8)

for a bounded measurable drift b : [β, ρ] → R, strictly positive continuous volatility
σ : [β, ρ]→ (0,∞), (Wr)r≥0 is a Brownian motion and (Kr)r≥0 is an adapted continuous
process with finite variation starting from 0 and such that for every r ≥ 0

ˆ r

0
1(β,ρ)(Xs)dKs = 0.

The stationary measure and the generator L are as in the last example. Since [β, ρ] is
compact, the domain simplifies to

dom(L) =
{
f ∈ L2([β, ρ], µ) : f and f ′ are absolutely continuous with

f ′(λ) = f ′(ρ) = 0 and Lf ∈ L2([β, ρ], µ)
}
.

Therefore (3.3.1) holds here, as well. For more details see Chorowski (2018, Section 1.1).
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Hölder functions

Consider an α-Hölder continuous function f : Rd → R, 0 ≤ α ≤ 1, with finite Hölder-
norm

‖f‖α = sup
x 6=y∈Rd

|f(x)− f(y)|
|x− y|α

,

and such that f ∈ L2(µ). Let (ϕε)ε≥0 be a non-negative smooth kernel, i.e. ϕε(x) =
ε−1ϕ(ε−1x), 0 ≤ ϕ ∈ C∞c (Rd), supp(ϕ) ⊂ [−1, 1]d,

´
Rd ϕ(x) dx = 1. Then the convolu-

tion fε = f ∗ϕε lies in C∞(Rd) and has bounded derivatives. Hence fε ∈ L2(µ)∩C2(Rd).
It is not clear that fε ∈ dom(L) due to possible boundary conditions as in the examples
above. In order to extend (3.3.3) assume the following:

Assumption 3.3.8. dom(L)∩C2(Rd) is dense in L2(µ)∩C1(Rd) with respect to ‖·‖H1(µ).

This assumption is relatively weak and is satisfied in all the examples above. In
particular, if there are no boundary conditions for f ∈ dom(L), then L2(µ) ∩ C2(Rd) =
dom(L)∩C2(Rd), as is the case for the Ornstein-Uhlenbeck process. By approximation
(3.3.3) can thus be extended to∥∥∥ΓT (f)− Γ̂n,T (f)

∥∥∥
L2(P)

≤

{
C max

(
1, ‖A‖1/2∞,µ

)
‖f‖H1(µ)T

1/2∆n, f ∈ L2(µ) ∩ C1(Rd),

C‖f‖µT 1/2∆
1/2
n , f ∈ L2(µ).

(3.3.9)

Note that fε ∈ L2(µ)∩C1(Rd). Using
´
ϕ (x) dx = 1 and

´
∇ϕ(x)dx = 0, it follows that

‖f − fε‖2µ =

ˆ ∣∣∣∣ˆ (f (x)− f (x+ εy))ϕ (y) dy

∣∣∣∣2 dµ (x) . ‖f‖2αε2α,

‖∇fε‖2µ =

ˆ
‖f (x)

ε

ˆ
∇ϕ (y) dy −∇fε (x)‖2dµ (x)

=
1

ε2

ˆ
‖
ˆ

(f (x)− f (x+ εy))∇ϕ (y) dy‖2dµ (x)

. ‖f‖2αε2α−2.

From ‖fε‖H1(µ) . ‖fε‖µ + ‖∇fε‖µ ≤ ‖f − fε‖µ + ‖f‖µ + ‖∇fε‖µ this yields with (3.3.9)
that ∥∥∥ΓT (f)− Γ̂n,T (f)

∥∥∥
L2(P)

≤
∥∥∥ΓT (f − fε)− Γ̂n,T (f − fε)

∥∥∥
L2(P)

+
∥∥∥ΓT (fε)− Γ̂n,T (fε)

∥∥∥
L2(P)

. ‖f‖αT 1/2∆1/2
n εα + ‖f‖αT 1/2∆nε

α−1 + ‖f‖µT 1/2∆n.

Choosing ε = ∆
1/2
n implies the bound ‖f‖αT 1/2∆

(1+α)/2
n + ‖f‖µT 1/2∆n. Up to the

second term, which is of smaller order as long as α < 1, these are the rates obtained
in Section 3.2.1. This can be improved, if L satisfies a Poincaré type inequality, i.e. if
there exists a constant c <∞ such that for all f ∈ dom(L)

‖f0‖µ ≤ c‖∇f‖µ, (3.3.10)
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where f0 = f −
´
fdµ. Let f0,ε = f0 ∗ ϕε. Then ‖fε‖α = ‖f0,ε‖α and it follows that

‖f0,ε‖H1(µ) . ‖∇fε‖µ . ‖f‖αεα−1. With ε = ∆
1/2
n this implies∥∥∥ΓT (f)− Γ̂n,T (f)

∥∥∥
L2(P)

=
∥∥∥ΓT (f0)− Γ̂n,T (f0)

∥∥∥
L2(P)

. ‖f‖αT 1/2∆
1+α

2
n . (3.3.11)

Poincaré inequalities hold for many stationary measures µ, for example for the Ornstein-
Uhlenbeck process and in Example 3.3.6 when m(x) is uniformly bounded from above
and below. For other examples see Bakry et al. (2013, Chapter 4) and Chen (2006).
Observe that for α = 1 the upper bound is ‖f‖1T 1/2∆n, removing an additional

√
log n

term present in Theorem 3.2.4. In summary, we have shown the following:

Theorem 3.3.9. Let X be a stationary diffusion with values in Rd and stationary mea-
sure µ, whose generator L satisfies (3.3.1) and Assumption 3.3.8. There exists a constant
C <∞ such that for all α-Hölder continuous functions f , 0 ≤ α ≤ 1,∥∥∥ΓT (f)− Γ̂n,T (f)

∥∥∥
L2(P)

≤ C
(
‖f‖αT 1/2∆

1+α
2

n + ‖f‖µT 1/2∆n

)
.

If L satisfies a Poincaré type inequality as in (3.3.10) for some c < ∞, then the upper

bound is C‖f‖αT 1/2∆
1+α

2
n .

Indicator functions

Let d = 1 and consider f = 1[K,∞), K ∈ R, such that f ∈ L2(µ). Let (ϕε)ε>0 be a
non-negative smooth kernel as in the previous example. Then fε = f ∗ϕε is bounded by
1 and lies in L2(µ) ∩ C2(R). f − fε has support in [K − ε,K + ε] such that

‖f − fε‖2µ ≤
ˆ K+ε

K−ε
dµ,

‖f ′ε‖2µ =

ˆ ∣∣∣∣f (x)

ε

ˆ
ϕ′ (y) dy − f ′ε (x)

∣∣∣∣2 dµ (x)

=
1

ε2

ˆ K+ε

K−ε

∣∣∣∣ˆ (f (x)− f (x+ εy))ϕ′ (y) dy

∣∣∣∣2 dµ (x)

.
1

ε2

ˆ K+ε

K−ε
dµ.

As before, ‖fε‖µ ≤ ‖f − fε‖µ + ‖f‖µ. If µ is absolutely continuous with respect to the
Lebesgue measure λ with bounded density dµ/dλ, then ε−1

´K+ε
K−ε dµ is bounded and in

that case it follows from (3.3.3), uniformly in K, that∥∥∥ΓT (f)− Γ̂n,T (f)
∥∥∥
L2(P)

. T 1/2 (∆nε)
1/2 + T 1/2∆nε

−1/2 + T 1/2∆n. (3.3.12)

The last term is of lower order compared to the first two. Hence, choosing ε = ∆
1/2
n

yields the rate T 1/2∆
3/4
n obtained by Ngo and Ogawa (2011) and Kohatsu-Higa et al.

(2014) for one-dimensional diffusions. However, now the rate is uniform in K with
explicit dependence on T . These arguments can easily be extended to general dimension
d implying the following theorem.
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Theorem 3.3.10. Let X be a stationary diffusion with values in Rd and stationary
measure µ, whose generator L satisfies (3.3.1) and Assumption 3.3.8. Assume that µ has
bounded Lebesgue density. If f is an indicator function in Rd of [K1, L1)×· · ·× [Kd, Ld),
−∞ < Kj < Lj ≤ ∞, 1 ≤ j ≤ d, then∥∥∥ΓT (f)− Γ̂n,T (f)

∥∥∥
L2(P)

. T 1/2∆3/4
n ,

uniformly in Kj , Lj.

The same rate clearly holds up to constants for finite linear combinations of such
indicators.

Sobolev functions

The closure of L2(µ) ∩ C1(Rd) with respect to ‖·‖H1(µ) yields the space H1(µ), a µ-
weighted Sobolev space. This is not a Banach space in general (Kufner (1985)). This
issue can be avoided if µ has a bounded Lebesgue density dµ/dλ. Then L2(Rd) ⊂
L2(Rd, µ) and

‖f‖H1(µ) ≤ ‖
dµ

dλ
‖∞‖f‖H1 , f ∈ L2(Rd) ∩ C1(Rd).

Taking the closure of L2(µ)∩C2(Rd) with respect to ‖·‖H1 yields H1(Rd). This implies,
instead of (3.3.9), that∥∥∥ΓT (f)− Γ̂n,T (f)

∥∥∥
L2(P)

≤

{
C max

(
1, ‖A‖1/2∞,µ

)
‖dµdλ‖

1/2
∞ ‖f‖H1T 1/2∆n, f ∈ H1(Rd),

C‖dµdλ‖
1/2
∞ ‖f‖λT 1/2∆

1/2
n , f ∈ L2(Rd).

(3.3.13)

From this we can obtain a special case of Theorem 3.2.6 by an interpolation argument
as in the proof of that theorem.
Assume now that H1(µ) is actually a Banach space. This is true, for instance, in the

Examples 3.3.5 and 3.3.6, when m(x) is uniformly bounded from above and below. In
that case interpolation (in the sense of Adams and Fournier (2003, Chapter 7)) between
H1(µ) and L2(µ) is possible and yields a similar bound as in Theorem 3.2.6, but with
‖·‖Hs replaced by an appropriate interpolation norm. The results in Theorems 3.3.9 and
3.3.10 are explicit cases of this. Up to boundary conditions this implies that α-Hölder
functions lie in dom((−L)α/2), 0 ≤ α ≤ 1, and indicator functions f = 1[K,L) lie in
dom((−L)1/4), −∞ < K < L ≤ ∞.
Depending on the boundary conditions for f ∈ dom(L) and assuming that µ has

bounded Lebesgue density, it can be shown in many examples that H1(Rd) embeds
continuously into dom((I − L)1/2) ⊂ dom((−L)1/2). This holds, for instance, for the
Ornstein-Uhlenbeck process and for the reflected diffusions in Example 3.3.6. Since
L2(Rd) ⊂ dom((−L)0) = L2(Rd, µ), interpolation implies that Hs(Rd) embeds contin-
uously into dom((I − L)s/2) ⊂ dom((−L)s/2). In particular, the indicator functions
f = 1[K,L) lie in dom((−L)1/4−ε) for any small ε > 0.
Remark 3.3.11. Arguing like in the proof of Corollary 3.3.3 the strict stationarity as-
sumption can be relaxed here and in Theorems 3.3.9 and 3.3.10.
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3.3.3. Infinite dimensional diffusions

Since the general state space S of X is only assumed to be Polish, it is also possible
to study infinite dimensional diffusions. The results of Section 3.2.1 do not apply then,
because, in general, heat kernel bounds are not available in this setting. Example 3.3.5
can be generalized considerably. If X satisfies the stochastic differential equation

dXr = AXrdr +Q1/2dWr,

where A and Q are operators on a separable Hilbert space H, with Q being bounded
self-adjoint, then X is a Gaussian Markov process and the generator L satisfies a similar
formula as in (3.3.4) with ∇ and ∆ replaced by the corresponding Fréchet derivatives
D and D2. Under certain conditions on A and Q the generator is reversible and X
has a stationary measure µ. The domain is again a µ-weighted Sobolev space and the
associated Dirichlet form is

〈−Lf, g〉µ =
1

2

ˆ
H

〈
Q1/2Df (x) , Q1/2Dg (x)

〉
H
dµ (x) .

The results of Section 3.3.2 therefore remain formally the same. For details see
Chojnowska-Michalik and Goldys (2002). For a different kind of example consider an
infinite dimensional system of the form

dX(i)
r =

(
pV ′

(
X(i+1)
r −X(i)

r

)
− qV ′

(
X(i)
r −X(i−1)

r

))
dr + dW (i)

r ,

where (r, i) ∈ [0,∞) × Z, p, q ≥ 0 with p = (1 +
√
ε)/2, q = (1 −

√
ε)/2, ε > 0,

where {(W (i)
r )r≥0 : i ∈ Z} is an independent family of Brownian motions and where

V is some potential function (Diehl et al. (2017)). X = (X
(i)
r )r≥0,i∈Z is stationary and

the infinitesimal generator L(ε) = LS +
√
εLA can be studied via its symmetric and

antisymmetric parts LS and LA. The Dirichlet form for the symmetric part is given in
Lemma 2.1 of Diehl et al. (2017). If ε = 0, then the generator is symmetric and a similar
analysis as in Section 3.3.2 can be applied.

3.4. Lower bounds

We will now address the important question if the upper bounds for ‖ΓT (f) −
Γ̂n,T (f)‖L2(P) derived in the last two sections are optimal. Optimality here means
that the upper bounds cannot be improved uniformly for all f belonging to a given
class of functions. For this it is sufficient to find a candidate f where the error
‖ΓT (f)− Γ̂n,T (f)‖L2(P) matches the upper bound up to an absolute constant. The only
explicit lower bound in the literature has been established by Ngo and Ogawa (2011) for
Brownian motion in d = 1 and indicator functions f = 1[a,b], matching the upper bound
∆

3/4
n .
Apart from optimality with respect to the Riemann-sum estimator, it is interesting

from a statistical point of view to ask for optimality across all possible estimators. Note
that ‖ΓT (f)− Γ̂n,T (f)‖L2(P) is bounded from below by

inf
g
‖ΓT (f)− g‖L2(P) = ‖ΓT (f)− E [ΓT (f)| Gn]‖L2(P), (3.4.1)
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where Gn = σ(Xtk : 0 ≤ k ≤ n) and where the infimum is taken over all Gn-measurable
random variables. If f is the identity, then it is well-known that E[ΓT (f)|Gn] = Θ̂n,T (f),
where Θ̂n,T (f) is the trapezoid rule estimator from Section 3.1.1 (see e.g. (Diaconis,
1988)). If f ∈ H1(Rd), then this still holds approximately. The methods from Section
3.1 allow for identifying the limit of the right hand side in (3.4.1) as n→∞, yielding an
explicit lower bound valid for all f ∈ H1(Rd). For the L2-Sobolev spaces Hs(Rd) with
0 < s < 1 such a universal result is not possible. Instead, we derive a lower bound for
an explicit candidate matching the upper bound established in Example 3.2.10.

Theorem 3.4.1. Let T ≥ 1 and let Xt = X0 +Wt, where (Wt)0≤t≤T is a d-dimensional
Brownian motion and where X0 satisfies (X0).

(i) We have for any f ∈ H1(Rd) the asymptotic lower bound

lim inf
n→∞

(
∆−1
n ‖ΓT (f)− Γ̂n,T (f)‖L2(P)

)
≥ lim inf

n→∞

(
∆−1
n inf

g
‖ΓT (f)− g‖L2(P)

)
= E

[
1

12

ˆ T

0
‖∇f (Xr)‖2dr

]1/2

,

where the infimum is taken over all Gn-measurable random variables.

(ii) Let fα ∈ L2(Rd), 0 < α < 1, be the L2(Rd) function with Fourier transform
Ffα (u) = (1 + ‖u‖)−α−d/2, u ∈ Rd. Then fα ∈ Hs(Rd) for all 0 ≤ s < α, but
fα /∈ Hα(Rd). Moreover, fα satisfies for all 0 ≤ s < α the asymptotic lower bound

lim inf
n→∞

(
∆
− 1+s

2
n ‖ΓT (fα)− Γ̂n,T (fα)‖L2(P)

)
≥ lim inf

n→∞

(
∆
− 1+s

2
n inf

g
‖ΓT (fα)− g‖L2(P)

)
> 0.

For d = 1 the lower bounds also hold forXt = Wt (cf. Remark 3.2.9). Interestingly, the
asymptotic lower bound in (i) corresponds exactly to the asymptotic variance obtained
for the CLTs in Section 3.1. This proves the asymptotic efficiency of Γ̂n,T (f) and Θ̂n,T (f)
for f ∈ H1(Rd). Note that Brownian motion is a major example for the upper bounds
derived in the last section.
The key step in the proof is to calculate the conditional expectation E[ΓT (f)|Gn],

which reduces to Brownian bridges interpolating between the observations. The same
calculations hold when X is a Lévy process with finite first moments (cf. Jacod and
Protter (1988, Theorem 2.6)) and similarly when X belongs to a certain class of Markov
processes (cf. Chaumont and Uribe Bravo (2011)).

3.5. Proofs

3.5.1. Proofs of Section 1

In the following, T is fixed and ∆n → 0 as n → ∞. Consider first the following
preliminary observations.
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Preliminaries

By the localization procedure in Section A.2 and Assumption (SM-α) it is sufficient to
prove Theorems 3.1.3 and 3.1.5 under Assumption (H-α-β) from the last chapter.
In this case it is enough to prove Theorems 3.1.3 and 3.1.5 for f with compact support.

Indeed, if f ∈ FLsloc(Rd) or f ∈ Hs
loc(Rd) is replaced by f̃ = fϕ for a smooth cutoff

function ϕ with compact support in a ball BK+ε = {x ∈ Rd : ‖x‖ ≤ K + ε} of radius
K + ε, ε > 0, and ϕ = 1 on BK , then f̃ = f on BK and f̃ ∈ FLs(Rd) or f̃ ∈ Hs(Rd).
Moreover, in order to replace b and σ by piecewise constant approximations let btc∆n =
bt/∆nc∆n, t ≥ 0, and define the process X(∆n) = (Xt(∆n))0≤t≤T , where Xt(∆n) =
Xbtc∆n + bbtc∆n (t− btc∆n) + σbtc∆n (Wt −Wbtc∆n ).

The main estimates distinguishing the proofs of Theorems 3.1.3 and 3.1.5 are collected
in the following two lemmas. Recall that FL1(Rd) ⊂ C1(Rd).

Lemma 3.5.1. Assume (H-α-β) for 0 ≤ α, β ≤ 1. Let f ∈ C1(Rd) have compact
support. Then it follows for k = 1, . . . , n and tk−1 ≤ r ≤ tk, uniformly in r and k:

(i) E[‖∇f(Xr)‖2] = O(‖∇f‖2∞),

(ii) E[〈∇f(Xtk−1
), Xr −Xr(∆n)〉2] = o(∆n‖∇f‖2∞),

(iii) E[(f(Xr)− f(Xtk−1
)− 〈∇f(Xtk−1

), Xr −Xtk−1
〉)2]= o(∆n‖∇f‖2∞),

(iv) E[‖∇f(Xr)−∇f(Xtk−1
)‖2] = o(‖∇f‖2∞),

(v) E[supt |
∑bt/∆nc

k=1

´ tk
tk−1

(tk − r −∆n/2)E[〈∇f(Xr), br〉|Ftk−1
]dr|] = o(∆n‖∇f‖∞).

Proof. We only prove (v). The other statements follow from the boundedness of ∇f
and Proposition A.3.2. (v) follows immediately for bounded and continuous b, because
〈∇f(Xr), br〉 can be approximated uniformly at the left end 〈∇f(Xtk−1

), btk−1
〉. For

bounded b let gε be continuous and adapted processes such that sup0≤t≤T ‖gε,t‖ < ∞
uniformly in ε and E[

´ T
0 ‖bh − gε,h‖dh] → 0 as ε → 0. Then (v) holds for gε and by

approximation also for b.

Lemma 3.5.2. Assume (H-α-β) for 0 ≤ α, β ≤ 1 and (X0). Let f ∈ H1(Rd). Then it
follows for k = 1, . . . , n and tk−1 ≤ r ≤ tk, uniformly in r and k:

(i) E[‖∇f(Xr)‖2] = O(‖f‖2H1),

(ii) E[〈∇f(Xh), Xr −Xr(∆n)〉2] = o(∆n‖f‖2H1),

(iii) E[(f(Xr)− f(Xh)− 〈∇f(Xh), Xr −Xh〉)2] = o(∆n),

(iv) E[‖∇f(Xr)−∇f(Xtk−1
)‖2] = o(1),

(v) E[|
∑n

k=1

´ tk
tk−1

(tk − r −∆n/2)E[〈∇f(Xr), br〉|Ftk−1
]dr|] = o(∆n‖f‖H1).

Proof. The marginals Xr have uniformly bounded Lebesgue densities pr by (X0). Hence
(i) follows from

E
[
‖∇f (Xr)‖2

]
=

d∑
m=1

ˆ
(∂mf (x))2 pr (x) dx . ‖f‖2H1 . (3.5.1)
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With respect to (ii) consider first f ∈ S(Rd). By inverse Fourier transform and
F(∇f)(u) = iuFf(u), u ∈ Rd, it follows that 〈∇f(Xtk−1

), Xr − Xr(∆n)〉2 is equal
to

(2π)−2d

(ˆ
Ff(u)i 〈u,Xr −Xr (∆n)〉 e−i〈u,Xtk−1

−X0〉e−i〈u,X0〉du

)2

= −(2π)−2d

ˆ
Ff(u)Ff (v) 〈u,Xr −Xr (∆n)〉

· 〈v,Xr −Xr (∆n)〉 e−i〈u+v,Xtk−1
−X0〉e−i〈u+v,X0〉d (u, v) .

As X0 and (Xt −X0)0≤t≤T are independent, E[〈∇f(Xtk−1
), Xr −Xr(∆n)〉2] is up to a

constant bounded by(ˆ
|Ff (u)| |Ff (v)| ‖u‖‖v‖ |Fµ (u+ v)| d (u, v)

)
E
[
‖Xr −Xr(∆n)‖2

]
,

which is of order o(∆n‖f‖2H1) by Lemma 3.5.3 and Proposition A.3.2. This yields (ii)
for f ∈ S(Rd). For f ∈ H1(Rd) consider a sequence (fm)m≥1 ⊂ S(Rd) converging to f
with respect to ‖·‖H1 . Then ‖Xr −Xr(∆n)‖ ≤ ‖Xr‖+ ‖Xr(∆n‖ . 1 + ‖Wr −Wtk−1

‖.
Independence yields∣∣‖〈∇f(Xtk−1

), Xr −Xr(∆n)〉‖L2(P) − ‖〈∇fm(Xtk−1
), Xr −Xr(∆n)〉‖L2(P)

∣∣
. E[‖∇ (f − fm)

(
Xtk−1

)
‖2]1/2E[

(
1 + ‖Wr −Wtk−1

‖
)2

]1/2 . ‖f − fm‖H1 → 0,

as m → ∞. Hence (ii) also holds for f ∈ H1(Rd). With respect to (iii) consider again
first f ∈ S(Rd). Arguing by inverse Fourier transform, the left hand side is because of
Taylor’s theorem bounded byˆ 1

0
E
[〈
∇f

(
Xtk−1

+ t
(
Xr −Xtk−1

))
−∇f

(
Xtk−1

)
, Xr −Xtk−1

〉2
]
dt

.
ˆ
|Ff (u)| |Ff (v)| ‖u‖‖v‖E [gn (u) gn (v)] |Fµ (u+ v)| d (u, v)

· E
[
‖Xr −Xtk−1

‖4
]1/2

,

where gn(u) = supr,h:|r−h|≤∆n

´ 1
0 |1−e

−it〈u,Xr−Xh〉|2dt and where we applied the Cauchy-
Schwarz inequality twice. Lemma 3.5.3 together with E[‖Xr − Xtk−1

‖4]1/2 = O(∆n)
shows that the left hand side in (iii) is for f ∈ S(Rd) up to a constant bounded by

∆n

ˆ
|Ff (u)|2 ‖u‖2E

[
g2
n (u)

]1/2
du.

A similar approximation argument as for (ii) yields the same bound for f ∈ H1(Rd).
gn(u) is bounded in n and u and converges P-almost surely to 0 as n → ∞ for any
u ∈ Rd. By dominated convergence the last display is thus of order o(∆n). This yields
(iii). (iv) is proved similarly. For (v) and bounded and continuous b the claim follows
from

〈∇f(Xr), br〉 − 〈∇f(Xtk−1
), btk−1

〉
= 〈∇f(Xr), br − btk−1

〉+ 〈∇f(Xr)−∇f(Xtk−1
), btk−1

〉,

part (iv) and (3.5.1). For bounded b argue as in part (v) of the last lemma.
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Lemma 3.5.3. Let ξ ∈ L1(Rd) ∩ L2(Rd) and let µ be a probability density on Rd.

(i) If Fµ ∈ L1(Rd), then
ˆ
|ξ (u) ξ (v)| |Fµ (u+ v)| d (u, v) . ‖Fµ‖L1‖ξ‖2L2 .

(ii) If Fµ is non-negative and µ is bounded, then the upper bound is instead ‖µ‖∞‖ξ‖2L2.

Proof. By a density argument we can assume that ξ, µ ∈ S(Rd) and that Fµ is non-
negative in (ii). Let g, h ∈ L2(Rd) with Fg(u) = |ξ(u)|, Fh(u) = |Fµ(u)| such that the
d(u, v) integral is equal to
ˆ
Fg (u)Fg (v)Fh (u+ v) d (u, v) =

ˆ
Fg (u− v)Fg (v)Fh (u) d (u, v)

=

ˆ
(Fg ∗ Fg) (u)Fh (u) du =

ˆ
Fg2 (u)Fh (u) du = C

ˆ
g2 (u)h (−u) du,

(3.5.2)

where we used the Plancherel Theorem in the last line. If Fµ ∈ L1(Rd), then the last
line is bounded by

C‖g‖2L2‖h‖∞ . ‖ξ‖2L2 sup
u∈Rd

∣∣∣∣ˆ Fh (x) ei〈u,x〉dx

∣∣∣∣ . ‖Fµ‖L1‖ξ‖2L2 .

If, on the other hand, Fµ is non-negative, then h(u) = FFh(−u) = µ (−u) and therefore
(3.5.2) is bounded by

C‖g‖2L2‖h‖∞ . ‖µ‖∞‖ξ‖2L2 .

This shows (i) and (ii).

Proof of Theorem 3.1.3

It is enough to show the CLT in (3.1.1) for f ∈ FLsloc(Rd), which immediately yields the
claim in terms of Γt(f)− Θ̂n,t(f). Recall the decomposition Γt(f)− Γ̂n,t(f) = Mn,t(f) +
Dn,t(f) withMn,t(f) and Dn,t(f) as in (3.1.2) and (3.1.3). By the localization argument
in the preliminaries above the proof follows from the following two propositions.

Proposition 3.5.4. Assume (H-α-β) for 0 ≤ α, β ≤ 1. Let f ∈ C1(Rd) have compact
support. Then we have the stable convergence

∆−1
n Mn,t (f)

st→ 1

2

ˆ t

0
〈∇f (Xr) , σrdWr〉+

1√
12

ˆ t

0

〈
∇f (Xr) , σrdW̃ r

〉
as processes on D([0, T ],Rd), where W̃ is a d-dimensional Brownian motion defined on
an independent extension of (Ω,F , (Ft)0≤t≤T ,P).

Proposition 3.5.5. Assume (H-α-β) for 0 ≤ α, β ≤ 1. Let s > 2−2α, s ≥ 1, s+β > 1.
Then we have for f ∈ FLs(Rd) with compact support that

∆−1
n Dn,t (f)

ucp−−→ 1

2
(f (Xt)− f (X0))− 1

2

ˆ t

0
〈∇f (Xr) , σrdWr〉 . (3.5.3)
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We note in the proofs precisely where Lemma 3.5.1 is used, which allows for deducing
Theorem 3.1.5 with small modifications.

Proof of Proposition 3.5.4. We write Mn,t(f) =
∑bt/∆nc

k=1 Zk and M̃n,t(f) =
∑bt/∆nc

k=1 Z̃k
for random variables

Zk =

ˆ tk

tk−1

(
f (Xr)− E

[
f(Xr)| Ftk−1

])
dr, (3.5.4)

Z̃k =

ˆ tk

tk−1

〈
∇f(Xtk−1

), Xr (∆n)− E
[
Xr (∆n)| Ftk−1

]〉
dr. (3.5.5)

Z̃k “linearizes” Zk with respect to f . The proof is based on the following statements for
0 ≤ t ≤ T :

∆−1
n sup

0≤t≤T

∣∣∣Mn,t (f)− M̃n,t (f)
∣∣∣ P−→0, (3.5.6)

∆−2
n

bt/∆nc∑
k=1

E
[
Z̃2
k

∣∣∣Ftk−1

]
P−→1

3

ˆ t

0
‖σ>r ∇f(Xr)‖2dr, (3.5.7)

∆−2
n

bt/∆nc∑
k=1

E
[
Z̃2
k1{|Z̃k|>ε}

∣∣∣Ftk−1

]
P−→0, for all ε > 0, (3.5.8)

∆−1
n

bt/∆nc∑
k=1

E
[
Z̃k
(
Wtk −Wtk−1

)>∣∣∣Ftk−1

]
P−→1

2

ˆ t

0
∇f(Xr)

>σrdr, (3.5.9)

∆−1
n

bt/∆nc∑
k=1

E
[
Z̃k
(
Ntk −Ntk−1

)∣∣∣Ftk−1

]
P−→0, (3.5.10)

where (3.5.10) holds for all bounded (R-valued) martingales N which are orthogonal to
all components of W . (3.5.6) yields Mn,t(f) = M̃n,t(f) + oucp(∆n). The claim follows
thus from the remaining statements (3.5.7) through (3.5.10) and Theorem A.1.2.
We prove now the five statements above. Mn,t(f) − M̃n,t(f) is a discrete martingale

such that by the Burkholder-Davis-Gundy inequality

E
[

sup
0≤t≤T

(
Mn,t (f)− M̃n,t (f)

)2
]
≤

n∑
k=1

E
[(
Zk − Z̃k

)2
]
.

Decompose any such Zk − Z̃k into
ˆ tk

tk−1

(
Ak,r − E

[
Ak,r| Ftk−1

])
dr (3.5.11)

+

ˆ tk

tk−1

〈
∇f

(
Xtk−1

)
, Xr −Xr(∆n)− E

[
Xr −Xr(∆n)| Ftk−1

]〉
dr, (3.5.12)

where Ak,r = f(Xr) − f(Xtk−1
) − 〈∇f(Xtk−1

), Xr − Xtk−1
〉. The second moment of

(3.5.12) is bounded by 2∆n

´ tk
tk−1

E[〈∇f(Xtk−1
), Xr−Xr(∆n)〉2]dr = o(∆3

n) using Lemma
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3.5.1(ii). The same order follows for the second moment of (3.5.11) from Lemma
3.5.1(iii). This yields (3.5.6). In order to prove the remaining statements observe first
by the (stochastic) Fubini theorem that Z̃k is equal to

〈∇f(Xtk−1
),

ˆ tk

tk−1

(tk − r)(br − E[br|Ftk−1
])〉dr

+ 〈∇f(Xtk−1
), σtk−1

ˆ tk

tk−1

(tk − r)dWr〉.

The first term is of smaller order than the second one. By Itô isometry, because σ is
càdlàg and from Lemma 3.5.1(i),(iv) it therefore follows that the left hand side in (3.5.7)
is equal to

∆n

3

bt/∆nc∑
k=1

‖σ>tk−1
∇f

(
Xtk−1

)
‖2 + oP (1) =

1

3

ˆ t

0
‖σ>r ∇f (Xr)‖2dr + oP (1) .

With respect to (3.5.8) note that |Z̃k| > ε implies ‖
´ tk
tk−1

(tk − r)dWr‖ > ε′ for some
ε′ > 0 and sufficiently large n because of the Cauchy-Schwarz inequality. Consequently,
it follows from Lemma 3.5.1(i) and independence that

E
[
Z̃2
k1{|Z̃k|>ε}

]
. E

[
‖∇f(Xtk−1

)‖2
](

∆4
n + E

[
‖
ˆ tk

tk−1

(tk − r) dWr‖4
])
,

which is of order O(∆4
n), thus implying (3.5.8). The left hand side of (3.5.9), on the

other hand, is equal to Rn + ∆n
2

∑bt/∆nc
k=1 ∇f(Xtk−1

)>σtk−1
with E[‖Rn‖] = o(1) by Itô’s

isometry (applied coordinatewise). (3.5.9) follows then from σ being càdlàg and 3.5.1(iv).
The same argument shows that the left hand side in (3.5.10) is of order oP(1).

Proof of Proposition 3.5.5. Lemma 3.5.6(i) below shows

Dn,t (f) =
∆n

2

bt/∆nc∑
k=1

E
[
f(Xtk)− f(Xtk−1

)
∣∣Ftk−1

]
+ oucp(∆n). (3.5.13)

In order to find the limit of this sum, write it as

∆n

2

bt/∆nc∑
k=1

E
[
Ak| Ftk−1

]
+

∆n

2

bt/∆nc∑
k=1

E
[
Bk| Ftk−1

]
, (3.5.14)

where Ak = f(Xtk)− f(Xtk−1
)−Bk and Bk = 〈∇f(Xtk−1

), Xtk −Xtk−1
〉. Note that by

the Burkholder-Davis-Gundy inequality

E
[

sup
0≤t≤T

∣∣∣∣ bt/∆nc∑
k=1

(
E
[
Ak| Ftk−1

]
−Ak

) ∣∣∣∣2] . n∑
k=1

E
[
A2
k

]
,
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which is of order o(∆n) by Lemma 3.5.1(iii). Therefore, (3.5.14) is up to an error of
order oucp(∆n) equal to

∆n

2

bt/∆nc∑
k=1

(
f (Xtk)− f

(
Xtk−1

))
+

∆n

2

bt/∆nc∑
k=1

(
E
[
Bk| Ftk−1

]
−Bk

)
,

The first sum is just ∆n
2 (f(Xbt/∆nc) − f(X0)) = ∆n

2 (f(Xt) − f(X0)) + oucp(∆n), while
the second one is equal to

∆n

2

bt/∆nc∑
k=1

ˆ tk

tk−1

〈
∇f

(
Xtk−1

)
,
(
E
[
br| Ftk−1

]
− br

)〉
dr

− ∆n

2

bt/∆nc∑
k=1

ˆ tk

tk−1

〈
∇f

(
Xtk−1

)
, σrdWr

〉
.

This is equal to −∆n
2

´ bt/∆nc
0 〈∇f(Xr), σrdWr〉+ oucp(∆n) and the claim follows. In the

second line use Lemma 3.5.1(iv) and for the first line note that it is a discrete martingale
of order oucp(∆n) by the Burkholder-Davis-Gundy inequality and Lemma 3.5.1(i).

We now state and prove the lemmas used above.

Lemma 3.5.6. Assume (H-α-β) for 0 ≤ α, β ≤ 1. Let s > 2 − 2α, s ≥ 1, s + β > 1.
Then we have for f ∈ FLs(Rd) with compact support that

Dn,t (f)− ∆n

2

bt/∆nc∑
k=1

E[f(Xtk)− f(Xtk−1
)|Ftk−1

] = oucp(∆n).

Proof. Consider first f ∈ S(Rd). By applying Itô’s formula and the Fubini theorem the
left hand side in the statement is equal to Dn,t(1, f) +Dn,t(2, f), where Dn,t (1, f) and
Dn,t (2, f) are defined by

bt/∆nc∑
k=1

ˆ tk

tk−1

(
tk − r −

∆n

2

)
E
[ 〈
∇f
(
Xr

)
, br
〉 ∣∣∣∣Ftk−1

]
dr,

bt/∆nc∑
k=1

ˆ tk

tk−1

(
tk − r −

∆n

2

)
E
[

1

2

d∑
l,m=1

∂2
lmf (Xr)

(
σrσ

>
r

)
(l,m)

∣∣∣∣Ftk−1

]
dr.

We will show that

E

[
sup

0≤t≤T
|Dn,t(1, f) +Dn,t(2, f)|

]

. o (∆n‖f‖FLs) + ∆n

ˆ
|Ff (u)| (1 + ‖u‖)s gn (u) du, (3.5.15)

with gn as in Lemma 3.5.7 below. Choose now any sequence (fm) ⊂ S(Rd) converging
to f ∈ FLs(Rd) with respect to ‖·‖FLs . This means, in particular, that fm converges
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to f uniformly. Therefore (3.5.15) also holds for f . The properties of gn and dominated
convergence therefore imply the claim.
In order to show (3.5.15) note first that E[sup0≤t≤T |Dn,t(1, f)|] = o(∆n‖f‖FLs) fol-

lows already from Lemma 3.5.1(v). With respect to Dn,t(2, f) write Σt = σtσ
>
t and fix

l,m = 1, . . . , d. For f ∈ S(Rd) it is always justified to exchange integrals in the following
calculations. We can write ∂2

lmf(Xr) = −(2π)−d
´
Ff(u)ulume

−i〈u,Xr〉du such that

Dn,t (2, f) = −(2π)−d
ˆ
Ff (u)ulumQn,t (u) du,

where

Qn,t(u) =

bt/∆nc∑
k=1

ˆ tk

tk−1

(
tk − r −

∆n

2

)
E
[
e−i〈u,Xr〉Σr

(l,m)
∣∣∣Ftk−1

]
dr.

Consequently, because of

E

[
sup

0≤t≤T

∣∣∣∣ˆ Ff (u)ulumQn,t (u) du

∣∣∣∣
]
≤
ˆ
|Ff (u)| ‖u‖2E

[
sup

0≤t≤T
|Qn,t (u)|

]
du,

the remaining part of (3.5.15) follows from Lemma 3.5.7.

The following lemma is stronger than necessary here. This will become useful for
Theorem 3.1.5.

Lemma 3.5.7. Assume (H-α-β) for 0 ≤ α, β ≤ 1. Let s > 2 − 2α, s ≥ 1, s + β > 1.
Then we have uniformly in u ∈ Rd that

‖ sup
0≤t≤T

Qn,t (u)‖L2(P) ≤ C∆n (1 + ‖u‖)s−2 gn (u) ,

where supn≥1 supu∈Rd |gn(u)| <∞ and gn(u)→ 0 for all u ∈ Rd as n→∞.

Proof. The proof is divided into five steps.
Step 1. Let 0 < ε ≤ 1 and define tε = max(bt/εcε − 2ε, 0) for 0 ≤ t ≤ T . tε projects

t to the grid {0, ε, 2ε, . . . , dT/εeε} such that t − tε ≤ 3ε and t − tε ≥ min(2ε, t). Later,
we will choose ε depending on n and u, i.e. ε = ε(u, n). Define the process X̃t (ε) =

Xtε +btε(t−tε)+σtε(Wt−Wtε). Assumption (H-α-β) implies E[(Σt
(l,m)−Σ

(l,m)
tε )2] . ε2α

and Proposition A.3.2 yields E[‖Xt − X̃t(ε)‖2] . (ε2(β+1) + ε2(α+1/2)). Define

Qn,t (ε, u) =

bt/∆nc∑
k=1

ˆ tk

tk−1

(
tk − r −

∆n

2

)
E
[
e−i〈u,X̃r(ε)〉Σ(l,m)

rε

∣∣∣Ftk−1

]
dr.

The Lipschitz-continuity of x 7→ eix therefore yields

‖ sup
0≤t≤T

(Qn,t (u)−Qn,t (ε, u))‖L2(P)

. ∆n

(ˆ T

0
E
[∣∣∣e−i〈u,Xr〉Σ(l,m)

r − e−i〈u,X̃r(ε)〉Σ(l,m)
rε

∣∣∣2] dr)1/2

. ∆n (1 + ‖u‖)s−2 gn,1(u),
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with gn,1(u) = (1 + ‖u‖)2−s(εα + ‖u‖ε1+β + ‖u‖ε1/2+α). We study now Qn,t(ε, u).
Step 2. With respect to the new grid {0, ε, 2ε, . . . , dT/εeε} and 0 ≤ t ≤ T let

Ij(t) = {k = 1, . . . , bt/∆nc : (j − 1)ε < tk ≤ jε}, 1 ≤ j ≤ dT/εe,

be the set of blocks k ≤ bt/∆nc with right endpoints tk ≤ t inside the interval (j−1)ε, jε].
Then Qn,t (ε, u) =

∑dT/εe
j=1 Rj,t(u) +

∑dT/εe
j=1 E[Aj,t(u)|F(j−1)ε] for Rj,t(u) = Aj,t(u) −

E[Aj,t(u)|F(j−1)ε] and where

Aj,t(u) =
∑

k∈Ij(t)

ˆ tk

tk−1

(
tk − r −

∆n

2

)
ξr,kdr, ξr,k = E

[
e−i〈u,X̃r(ε)〉Σ(l,m)

rε

∣∣∣Ftk−1

]
,

such that Aj,t(u) is Fjε-measurable for fixed u. We want to show that
sup0≤t≤T |

∑dT/εe
j=1 Rj,t(u)| is negligible. Note first that Ij(t) = ∅ for t ≤ (j − 1)ε and

Ij(t) = Ij(T ) for t > jε. Therefore, Aj,t(u) = 0 for t ≤ (j − 1)ε and Aj,t(u) = Aj,T (u)
for t > jε. Denote by j∗ the unique j ∈ {1, . . . , dT/εe} with (j − 1)ε < t ≤ jε. Then∑dT/εe

j=1 Rj,t(u) = Bj∗−1(u) +Rj∗,t(u), where Bm(u) =
∑m

j=1Rj,T (u) defines a complex-
valued martingale (Bm(u))m=0,...,dT/εe with respect to the filtration (Fmε)m=0,...,dT/εe.
The Burkholder-Davis-Gundy inequality then yields

E
[

sup
0≤t≤T

∣∣∣∣ dT/εe∑
j=1

Rj,t (u)

∣∣∣∣2] . E
[

sup
m∈{0,...,dT/εe}

|Bm (u)|2 + sup
0≤t≤T

|Rj∗,t (u)|2
]

. E

dT/εe∑
j=1

|Aj,T (u)|2
+ E

[
sup

0≤t≤T
|Aj∗,t (u)|2

]
.

If ε < ∆n, then each Ij(t) contains at most one block k and for tk−1 ≤ r ≤ tk ≤ jε
we have necessarily tk−1 ≤ (j − 1)ε = rε. Hence, |ξr,k| . |E[e−i〈u,σrε (Wr−Wrε )〉|Frε ]| ≤

e−
‖u‖2
2K

ε by Assumption (H-α-β) and thus |Aj,t(u)| . ∆2
ne
− ‖u‖

2

2K
ε. Moreover, there are

clearly at most ∆−1
n many non-empty Ij(t). Consequently in this case the last display

is up to a constant bounded by ∆3
ne
− ‖u‖

2

K
ε.

Assume in the following that ε ≥ ∆n. Then Ij(t) contains at most Cε∆−1
n many

blocks k and therefore

E

[
sup

0≤t≤T
|Aj∗,t (u)|2

]
. ∆2

nε
2. (3.5.16)

Moreover,

E
[ dT/εe∑
j=1

|Aj,T (u)|2
]2

. ∆4
n

dT/εe∑
j1,j2=1

∑
k1,k′1∈Ij1 (T )

∑
k2,k′2∈Ij2 (T )

ˆ tk1

tk1−1

ˆ tk′1

tk′1−1ˆ tk2

tk2−1

ˆ tk′2−1

tk′2−1

∣∣∣E [ξr1k1ξr′1k′1 · · · ξr2k2ξr′2k′2

]∣∣∣ d (r1, r
′
1, r2, r

′
2

)
.
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Fix j and k1, k
′
1, k2, k

′
2, r1, r

′
1, . . . , r2, r

′
2. Let r and h be the largest and second largest

indices in the set {rl, rl′ : 1 ≤ l ≤ 2} with corresponding blocks k, k̃ such that tk−1 ≤
r ≤ tk, tk̃−1 ≤ h ≤ tk̃. Without loss of generality assume h ≤ r. If tk−1 ≤ rε < tk, then∣∣∣E [ξr1k1ξr′1k′1ξr2k2ξr′2k′2

]∣∣∣ . E [|ξr,k|] . e−
‖u‖2
2K

ε.

If, on the other hand, h ≤ rε < tk−1 ≤ r < tk, then∣∣∣E [ξr1k1ξr′1k′1ξr2k2ξr′2k′2

]∣∣∣ . E [|E [ξr,k| Frε ]|] . e−
‖u‖2
2K

ε.

In the two cases rε < tk−1 ≤ h ≤ r < tk and rε < h < tk−1 ≤ r < tk conditioning on Fh
instead gives∣∣∣E [ξr1k1ξr′1k′1ξr2k2ξr′2k′2

]∣∣∣ . E
[∣∣∣E [e−i〈u,σrε (Wr−Wh)〉

∣∣∣Fh]∣∣∣] . e−
‖u‖2
2K
|r−h|.

As ε ≥ ∆n, it follows that
∑

k∈Ij(T )

´ tk
tk−1

1dr ≤ ε. In all, we conclude that

E[(
∑dT/εe

j=1 |Aj,T (u)|2)p/2]2 is up to a constant bounded by

∆4
n

ε2e−
‖u‖2
2K

ε + ε

dT/εe∑
j=1

∑
k,k̃∈Ij(T )

ˆ tk̃

tk̃−1

ˆ tk

tk−1

e−
‖u‖2
2K
|r−h|drdh

 .

By symmetry in r, h we find for u 6= 0 that

dT/εe∑
j=1

∑
k,k̃∈Ij(T )

ˆ tk̃

tk̃−1

ˆ tk

tk−1

e−
‖u‖2
2K
|r−h|drdh

≤ 2

dT/εe∑
j=1

∑
k̃∈Ij(T )

ˆ tk̃

tk̃−1

ˆ jε

h
e−
‖u‖2
2K

(r−h)drdh

.
dT/εe∑
j=1

∑
k̃∈Ij(T )

ˆ tk̃

tk̃−1

1dh‖u‖−2

(
1− e−

‖u‖2
2

(ε+∆n)

)

. ‖u‖−2

(
1− e−

‖u‖2
2

(ε+∆n)

)
,

because 1−e−
‖u‖2

2
(jε−h) ≤ 1−e−

‖u‖2
2

(ε+∆n) for tk̃−1 ≤ h ≤ jε and k̃ ∈ Ij(T ). Combining
the estimates for ε < ∆n and ε ≥ ∆n in all we have shown in this step that

‖ sup
0≤t≤T

Qn,t (ε, u)‖L2(P) . ∆n (1 + ‖u‖)s−2 gn,2 (u)

+ ‖ sup
0≤t≤T

dT/εe∑
j=1

E
[
Aj,t (u)| F(j−1)ε

]
‖L2(P)
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with

gn,2(u) = (1 + ‖u‖)2−s(∆1/2
n e−

‖u‖2
2K

ε

+ ε1/2−1/4‖u‖−1/2

(
1− e−

‖u‖2
2

(ε+∆n)

)1/4

+ ε).

Step 3. We need to use two martingale decompositions. Write

dT/εe∑
j=1

E
[
Aj,t (u)| F(j−1)ε

]
=

dT/εe∑
j=1

R
(1)
j,t (u) +

dT/εe∑
j=1

R
(2)
j,t (u) +

dT/εe∑
j=1

E
[
Aj,t (u)| F(j−3)ε

]
,

where R
(1)
j,t (u) = E[Aj,t(u)|F(j−1)ε] − E[Aj,t(u)|F(j−2)ε], R

(2)
j,t = E[Aj,t(u)|F(j−2)ε] −

E[Aj,t(u)|F(j−3)ε]. The arguments in step 2 can be applied to
∑dT/εe

j=1 R
(1)
j,t (u) and∑dT/εe

j=1 R
(2)
j,t (u) instead of

∑dT/εe
j=1 Rj,t (u). Moreover, for r ≤ 3ε observe that rε = 0.

Hence E[Aj,t(u)|F(j−3)ε] is for j ∈ {1, 2, 3} up to a constant bounded by

∑
k∈Ij(t)

ˆ tk

tk−1

(
tk − r −

∆n

2

)
e−
‖σ>0 u‖

2

2
rdr . ∆n

ˆ ε

0
e−
‖u‖2
2K

rdr ≤ ∆nε.

We conclude that

‖ sup
0≤t≤T

dT/εe∑
j=1

E
[
Aj,t (u)| F(j−1)ε

]
‖L2(P)

. ∆n (1 + ‖u‖)s−2 gn,2 (u) + ‖ sup
0≤t≤T

dT/εe∑
j=4

E
[
Aj,t (u)| F(j−3)ε

]
‖L2(P).

Step 4. For tk−1 ≤ r ≤ tk and k ∈ Ij(t), j ≥ 4, note that rε = (j − 3)ε. Hence
E[ξr,k|F(j−3)ε] = YkVr,k, where

Vr,k = e−i〈u,b(j−3)ε(r−tk−1)〉−
‖σ>

(j−3)ε
u‖2

2
(r−tk−1),

Yk = e−i〈u,X(j−3)ε+b(j−3)ε(tk−1−(j−3)ε)〉−
‖σ>

(j−3)ε
u‖2

2
(tk−1−(j−3)ε)Σ

(l,m)
(j−3)ε.

Since also tk−1 − (j − 3)ε > ε, it follows that |Yk| . e−
‖u‖2
2K

ε. Moreover,
´ tk
tk−1

(tk − r −
∆n
2 )YkVtk,kdr = 0. We therefore conclude that

∑dT/εe
j=4 E[Aj,t(u)|F(j−3)ε] is bounded by

∆n

dT/εe∑
j=4

∑
k∈Ij(t)

ˆ tk

tk−1

|Yk| |Vr,k − Vtk,k| dr

 . ∆2
n (1 + ‖u‖)2 e−

‖u‖2
2K

ε.
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Consequently, it follows with gn,3(u) = ∆n(1 + ‖u‖)4−se−
‖u‖2
2K

ε that

‖ sup
0≤t≤T

dT/εe∑
j=4

E
[
Aj,t (u)| F(j−3)ε

]
‖L2(P) . ∆n (1 + ‖u‖)s−2 gn,3 (u) .

Step 5. The four previous steps combined show that ‖sup0≤t≤T Qn,t(u)‖L2(P) is up to a
constant bounded by ∆n(1 + ‖u‖)s−2gn(u) with gn(u) = gn,1(u) + gn,2(u) + gn,3(u). Set
ε = ε (u, n) := min

(
νn‖u‖−2, 1

)
for νn = 2K log(1 + ‖u‖3∆

1/2
n ). Hence 0 < ε ≤ 1 and

ε → 0 for fixed u. Choose C ≥ 1 large enough to ensure that ε(u, n) < 1 for ‖u‖ > C

and n = 1 (and thus for all n). For ‖u‖ ≤ C this means ε ≤ νn‖u‖−2 . ∆
1/2
n and

supu:‖u‖≤C gn(u) = o(1). For ‖u‖ > C, on the other hand, it follows that

gn,1 (u) . ‖u‖2−s
(
‖u‖−1−2βν1+β

n + ‖u‖−2αν1/2+α
n

)
,

gn,2 (u) . ‖u‖2−s
(

∆1/2
n

(
1 + ‖u‖3∆1/2

n

)−1

+ ‖u‖−1ν1/2−1/(2p)
n

(
1− e−

‖u‖2
2

(ε+∆n)

)
+ ‖u‖−2νn

)
,

gn,3 (u) . ‖u‖4−s∆n

(
1 + ‖u‖3∆1/2

n

)−1
.

The assumptions that 2 − s − 2α < 0, s ≥ 1, s + β > 1 and the fact that νn grows
in u only logarithmically imply that sup‖u‖>C gn(u) is bounded in n. Consequently,
supn≥1 supu∈Rd gn(u) is bounded. Moreover, for fixed u with ‖u‖ > C it follows that
gn(u)→ 0 as n→∞. This proves the claim.

Proof of Theorem 3.1.5

Similar to Theorem 3.1.3 and given the preliminaries it is sufficient to prove the following
two propositions for f ∈ Hs(Rd).

Proposition 3.5.8. Assume (H-α-β) for 0 ≤ α, β ≤ 1 and (X0). Then we have for
f ∈ H1(Rd) the stable convergence

∆−1
n Mt,n (f)

st→ 1

2

ˆ t

0
〈∇f (Xr) , σrdWr〉+

1√
12

ˆ t

0

〈
∇f (Xr) , σrdW̃ r

〉
(3.5.17)

as processes on D([0, T ],Rd), where W̃ is a d-dimensional Brownian motion defined on
an independent extension of (Ω,F , (Ft)0≤t≤T ,P).

Proposition 3.5.9. Assume (H-α-β) for 0 ≤ α, β ≤ 1 and (X0). Let s > 2−2α, s ≥ 1,
s+ β > 1. Then we have for f ∈ Hs(Rd) that

∆−1
n DT,n (f)

P−→ 1

2
(f (XT )− f (X0))− 1

2

ˆ T

0
〈∇f (Xr) , σrdWr〉 . (3.5.18)

Note that the convergence in the second proposition is not functional as compared to
Proposition 3.5.5. Since the weak limit in (3.5.17) is a continuous process, convergence
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with respect to the Skorokhod topology and thus the stable convergence also hold at
t = T (Billingsley (2013)). This yields the CLT in (3.1.1) for f ∈ Hs(Rd) and at the
fixed time T .

Proof of Proposition 3.5.8. The proof of Proposition 3.5.4 can be repeated in exactly the
same way after replacing all references to Lemma 3.5.1 by the corresponding statements
in Lemma 3.5.2. We only have to argue differently for (3.5.8), because ∇f(Xr) may not
be bounded.
As
´ tk
tk−1

(tk − r)dWr is independent of Ftk−1
, it follows from the Cauchy-

Schwarz inequality that E[Z̃2
k1{|Z̃k|>ε}|Ftk−1

] is up to a constant bounded by
‖∇f(X(k−1)∆n

)‖2E[(∆4
n + ∆3

nY
2
k )1{‖∇f(X(k−1)∆n )‖∆3/2

n (1+|Yk|)>ε′}
|Ftk−1

] for ε′ > 0 and

with Yk ∼ N(0, 1) independent of Ftk−1
. Since the marginals have uniformly bounded

Lebesgue densities (uniform in time), it follows that the first moment of the left hand
side in (3.5.8) is up to a constant bounded by

ˆ
‖∇f (x)‖2E

[(
∆n + Y 2

1

)
1{‖∇f(x)‖∆3/2

n (1+|Y1|)>ε′
}] dx.

This converges to 0 by dominated convergence, implying (3.5.8).

Proof of Proposition 3.5.9. The proof follows the one of Proposition 3.5.5. We only have
to replace all references to 3.5.1 by the corresponding statements in Lemma 3.5.2 and
use Lemma 3.5.10 instead of Lemma 3.5.6, while also replacing all oucp expressions by
the respective oP terms.

Lemma 3.5.10. Assume (H-α-β) for 0 ≤ α, β ≤ 1 and (X0). Let s > 2 − 2α, s ≥ 1,
s+ β > 1. Then we have for f ∈ Hs(Rd) with compact support, s ≥ 1 and s > 2− 2α,
that

Dn,T (f)− ∆n

2

n∑
k=1

E[f(Xtk)− f(Xtk−1
)|Ftk−1

] = oP(∆n).

Proof. Using the notation from Lemma 3.5.6 we only have to show for f ∈ S(Rd) that

E [|Dn,T (1, f) +Dn,T (2, f)|]

. o (∆n‖f‖Hs) + ∆n

(ˆ
|Ff(u)|2 (1 + ‖u‖)2s g2

n (u) du

)1/2

, (3.5.19)

with gn as in Lemma 3.5.7. This can be extended to f ∈ Hs(Rd) by an approximation
argument as in Lemma 3.5.6.
E[|Dn,T (1, f)|] = o(∆n‖f‖Hs) follows from Lemma 3.5.2(v). With respect to

Dn,T (2, f) we write

Dn,T (2, f) = −(2π)−d
ˆ
Ff (u)ulume

−i〈u,X0〉Q̃n,T (u) du

with

Q̃n,T (u) =

bt/∆nc∑
k=1

ˆ tk

tk−1

(
tk − r −

∆n

2

)
E
[
e−i〈u,Xr−X0〉Σ(l,m)

r

∣∣∣Ftk−1

]
dr.
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This corresponds to Qn,T (u) in Lemma 3.5.7 with Xr−X0 instead of Xr. Consequently,
the independence from (X0) shows that E[|Dn,T (2, f)|2] is equal to

(2π)−2d
ˆ
Ff (u)Ff (v)Fµ (u+ v)ulumvlvmE

[
Q̃n,T (u) Q̃n,T (v)

]
d (u, v)

.
ˆ
|Ff(u)|2 ‖u‖4E

[∣∣∣Q̃n,T (u)
∣∣∣2] du,

by Lemma 3.5.3. The remaining part of (3.5.19) follows therefore from Lemma 3.5.7.

Proof of Corollary 3.1.6

Proof. Without loss of generality we can assume in the following that F and the corre-
sponding extensions are separable. In fact, it is enough to prove stable convergence for
separable F , essentially because the σ-fields generated by X, b and σ are separable (see
Jacod and Shiryaev (2013, Theorem IX 7.3) for details). Assume first that X0 = 0. On a
suitable extension as in Theorem 3.1.5, denoted by (Ω′,F ′, (F ′t)0≤t≤T ,P′), let Fn(X,x0)
be defined as the random variables

∆−1
n

( ˆ T

0
f (Xr + x0) dr −∆n

n∑
k=1

1

2

(
f
(
Xtk−1

+ x0

)
+ f (Xtk + x0)

))

and let F (X,σ, W̃ , x0) =
√

1/12
´ T

0 〈∇f(Xr + x0), σrdW̃ r〉, where Fn and F are mea-
surable functions and x0 ∈ Rd. The stable convergence in the claim is equivalent
to E[Ug(Fn(X,x0))] → E[Ug(F (X,σ, W̃ , x0))] for any continuous bounded function
g : R → R and any bounded F-measurable random variable U (cf. Section A.1). We
have to show that this holds for almost all x0 ∈ Rd.
Let (Ω′′,F ′′, (F ′′t )0≤t≤T ,P′′) be another extension of (Ω,F , (Ft)0≤t≤T ,P) such that

there is a random variable Y
d∼ N(0, Id), with the d-dimensional identity matrix

Id, which is independent of F and such that Y is F ′′0 -measurable. On this space
the process (Xt + Y )0≤t≤T satisfies Assumption (X0). Without loss of generality
(Ω′,F ′, (F ′t)0≤t≤T ,P′) also extends this space. Theorem 3.1.5 yields E[Ug(Fn(X,Y ))]→
E[Ug(F (X,σ, W̃ , Y ))] for all continuous and bounded g and all F ′′-measurable random
variables U . By independence of Y and F this holds in particular for all F-measurable
U independent of Y .
By a coupling argument (cf. Kallenberg (2002, Corollary 6.12)) there are (again

on another extension of the probability space) X̃, Ỹ , σ̃, B, Ũ with (X,σ, W̃ , Y, U)
d∼

(X̃, σ̃, B, Ỹ , Ũ) such that Ỹ is independent of (X̃, σ̃, B, Ũ) and (Fn(X̃, Ỹ ), Ũ) −→
(F (X̃, σ̃, B, Ỹ ), Ũ) almost surely. By conditioning on Ỹ = x0 and using independence
this implies that E[Ug(Fn(X,x0))] −→ E[Ug(F (X,σ, W̃ , x0))] for PỸ -almost all x0 (by
dominated convergence for conditional expectations, cf. Kallenberg (2002, Theorem
6.1)). Since Ỹ d∼ Y

d∼ N(0, 1), this holds for almost all x0. In particular, this holds for
all g ∈ Cc(Rd), i.e. all continuous functions with compact support. Since this space is
separable and because F is separable, this implies the claim (cf. Theorem Kallenberg
(2002, 5.19)).
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3.5.2. Proofs of Section 2

Observe first the following lemma, which will be used frequently.

Lemma 3.5.11. Let α, β ∈ R. It follows that

n∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

(b− a)−α a−βdadb .



log2 n, α = 1, β = 1,

T 2−α−β logβ n, α < 1, β ≥ 1,

T 2−α−β, α < 1, β < 1,

∆2−α−β
n , α > 1, β > 1,

T 1−β log n, α = 1, β < 1.

Proof. The expression in the statement is equal to ∆2−α−β
n

∑n
k−1>j≥2(k − 1 −

j)−α
´ j
j−1 a

−βda, which is bounded by ∆2−α−β
n (

∑n
k=1 k

−α)(
´ n

1 a−βda). If α = 1, then
the sum is of order log n, while it is of order n1−α when α < 1 and just finite when
α > 1. The same statements hold for the integral, depending on β. Considering all
possible combinations yields the claim.

Proof of Proposition 3.2.1

Proof. Write ‖ΓT (f)− Γ̂n,T (f)‖2L2(P)= A1 +A2 +A3, where A1 =
∑
|k−j|≤1Mk,j , A2 =

2
∑

k−1>j≥2Mk,j and A3 = 2
∑

k>2Mk,1 and where

Mk,j =

ˆ tk

tk−1

ˆ tj

tj−1

E
[(
f (Xr)− f

(
Xtk−1

)) (
f (Xh)− f

(
Xtj−1

))]
dhdr.

Applying the Cauchy-Schwarz inequality several times yields A1 + A2 + A3 . S1 + S2,
where S1 = ∆n

∑n
k=1

´ tk
tk−1

E[(f(Xr) − f(Xtk−1
))2]dr and S2 =

∑
k−1>j≥2 |Mk,j |. It

follows that

S1 = ∆n

ˆ
(f (y)− f (x))2

(
n∑
k=1

ˆ tk

tk−1

ptk−1,r (x, y) dr

)
d (x, y) .

The following idea generalizes Equation (8) of Ganychenko (2015) to arbitrary processes.
For (i) consider tj−1 < h < tj < tk−1 < r < tk and let gh,tj−1,b(x, y) = ph,b (x, y) −
ptj−1,b (x, y). The Fubini theorem implies for bounded f with compact support that
Mk,j is equal to

ˆ tk

tk−1

ˆ tj

tj−1

ˆ r

tk−1

ˆ
f (x) f (y) ∂bgh,tj−1,b (x, y) d (x, y) dbdhdr.

By interchanging integration and differentiation the inner integral is equal to
∂b(
´
f(x)f(y)gh,tj−1,b(x, y)d(x, y)). Observe that

´
gh,tj−1,b(x, y)dy is independent of b.

Consequently, ∂b(
´
f2(x)gh,tj−1,b(x, y)d(x, y)) = 0. This holds similarly if f2(x) is re-

placed by f2(y), because
´
gh,tj−1,b(x, y)dx = 0. It follows that Mk,j is equal to

−1

2

ˆ tk

tk−1

ˆ tj

tj−1

ˆ r

tk−1

ˆ
(f (y)− f (x))2 ∂bgh,tj−1,b (x, y) d (x, y) dbdhdr
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and S2 is up to a constant bounded by

∆n

ˆ
(f (y)− f (x))2

 ∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

∣∣∂rgh,tj−1,r (x, y)
∣∣ dhdr

 d (x, y) .

Together with the bound for S1 this yields (i). For (ii) it follows similarly that Mk,j is
equal to

− 1

2

ˆ tk

tk−1

ˆ tj

tj−1

ˆ r

tk−1

ˆ h

tj−1

(ˆ
(f (y)− f (x))2 ∂2

abpa,b (x, y) d (x, y)

)
dadbdhdr.

(ii) follows from the bound on S1 and because S2 is up to a constant bounded by

∆2
n

ˆ
(f (y)− f (x))2

 ∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

∣∣∂2
hrph,r (x, y)

∣∣ dhdr
 d(x, y).

Proof of Proposition 3.2.2

Proof. As in the proof of Proposition 3.2.1 it is sufficient to bound S1+S2. For f ∈ S(Rd)
we can write f(Xr) = (2π)−d

´
Ff(u)e−i〈u,Xr〉du for all 0 < r < T . It follows that

E[(f(Xr)− f(Xtk−1
)(f(Xh)− f(Xtj−1))] is equal to

(2π)−2d

ˆ
Ff (u)Ff (v)E

[(
e−i〈v,Xr〉 − e−i〈v,Xtk−1

〉
)

·
(
e−i〈u,Xh〉 − e−i〈u,Xtj−1 〉

)]
d (u, v) .

With ϕh,h(u, v) = E[ei〈u+v,Xh〉] the expectation is for all h, r, tk−1, tj−1 equal to

ϕh,r (u, v)− ϕtj−1,r (u, v)− ϕh,tk−1
(u, v) + ϕtj−1,tk−1

(u, v). (3.5.20)

For (i) this implies by symmetry in u, v that S1 is up to a constant bounded by

∆n

ˆ
|Ff (u)| |Ff (v)|

(
n∑
k=1

ˆ tk

tk−1

gtk−1,r (u, v) dr

)
d (u, v) (3.5.21)

with gtk−1,r(u, v) as in the statement. Let g̃h,tj−1,b(u, v) = ∂bϕh,b(u, v) − ∂bϕtj−1,b(u, v).
Then (3.5.20) is for tj−1 < h < tj < tk−1 < r < tk equal to

´ r
tk−1

g̃h,tj−1,b(u, v)db.
Therefore S2 is up to a constant bounded by

∆n

ˆ
|Ff (u)| |Ff (v)|

 ∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

∣∣g̃h,tj−1,r (u, v)
∣∣ dhdr

 d (u, v) .
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This yields (i). With respect to (ii) note that the last argument also applies to r = h,
k = j such that (3.5.21) is bounded by

∆n

ˆ
|Ff (u)| |Ff (v)|

(
n∑
k=1

ˆ tk

tk−1

ˆ tk

tk−1

∣∣g̃h,tk−1,r (u, v)
∣∣ dhdr) d (u, v) ,

giving a bound on S1. For S2 note that (3.5.20) is equal to
´ r
tk−1

´ h
tj−1

∂2
abϕa,b(u, v)dadb.

This yields (ii), because S2 is up to a constant bounded by

∆2
n

ˆ
|Ff (u)| |Ff (v)|

 ∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

∣∣∂2
hrϕh,r (x, y)

∣∣ dhdr
 d (u, v) .

Proof of Theorem 3.2.4

Proof. If f is bounded, then fm(x) = f(x)1{‖x‖≤m} defines a sequence of bounded
functions with compact support converging to f pointwise with ‖fm‖∞ ≤ ‖f‖∞ for all
m. If f is Hölder-continuous, then we can similarly find a sequence (fm)m≥1 ⊂ C∞c (Rd)
converging to f pointwise with ‖fm‖Cs . ‖f‖Cs . In both cases it follows Px0 almost
surely that ΓT (fm)−Γ̂n,T (fm)→ ΓT (f)−Γ̂n,T (f) asm→∞ by dominated convergence.
The lemma of Fatou implies

‖ΓT (f)− Γ̂n,T (f)‖2
L2(Px0) ≤ lim inf

m→∞
‖ΓT (fm)− Γ̂n,T (fm)‖2

L2(Px0).

It is therefore sufficient to prove the theorem for bounded f with compact support.
Conditional on x0 the random variables (Xh, Xr), h 6= r, have the joint densities

ph,r(x, y;x0) = ξ0,r(x0, x)ξh,r(x, y), x, y ∈ Rd. Moreover, the heat kernel bounds in
Assumption 3.2.3 imply

|ph,r (x, y;x0)| ≤ qr−h (y − x) qh (x− x0) ,

|∂rph,r (x, y;x0)| ≤ 1

r − h
qr−h (y − x) qh (x− x0) ,∣∣∂2

hrph,r (x, y;x0)
∣∣ ≤ ( 1

(r − h)2 +
1

(r − h)h

)
qh (x− x0) qr−h (y − x) .

Then
´

(
∑n

k=1

´ tk
tk−1

ptk−1,r(x, y;x0)dr)d(x, y) = T and Lemma 3.5.11 yields

ˆ  ∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

(
|∂rph,r (x, y;x0) |+ |∂rptj−1,r (x, y;x0) |

)
dhdr

 d (x, y)

.
∑

k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

(r − h)−1dhdr . T log n.

Applying Proposition 3.2.1(i) to ph,r(·;x0) yields the claim in (i) for bounded f . For
(ii), on the other hand, the moment conditions on qa imply that

´
‖y − x‖2sqa(x −
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x0)qb−a(y − x)d(x, y) . (b − a)2s/γ for 0 < s ≤ γ/2. Consequently, Lemma 3.5.11
yields for ∆−1

n

´
‖y−x‖2s(

∑n
k=1

´ tk
tk−1

ptk−1,r(x, y;x0)dr)d(x, y) up to a constant the upper

bound ∆−1
n

∑n
k=1

´ tk
tk−1

(r − tk−1)2s/γdr and also
ˆ
‖y − x‖2s

( ∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

∣∣∂2
hrph,r (x, y;x0)

∣∣ dhdr)d (x, y)

.
∑

k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

(
(r − h)2s/γ−2 + (r − h)2s/γ−1 h−1

)
dhdr.

For 2s/γ < 1 Lemma 3.5.11 implies for the sum of these two upper bounds the order
O(T∆

2s/γ−1
n + T 2s/γ log n), while it is O(T log n) for 2s/γ = 1. In the first case note

that
T 2s/γ log n = T∆2s/γ−1

n

(
T 2s/γ−1∆1−2s/γ

)
log n ≤ T∆2s/γ−1

n

log n

n1−2s/γ
,

which is of order O(T∆
1+2s/γ
n ), i.e. there is no log n-term. This implies (ii) for f ∈

Cs(Rd).

Proof of Theorem 3.2.6

Proof. Note that L2(Rd) = H0(Rd). For f ∈ Hs(Rd), 0 ≤ s ≤ 1, let (fm)m≥1 ⊂ C∞c (Rd)
be a sequence of functions converging to f with respect to ‖·‖Hs with ‖fm‖Hs ≤ ‖f‖Hs .
Then ‖ΓT (f)− Γ̂n,T (f)‖2L2(P) is bounded by

2‖ΓT (f − fm)− Γ̂n,T (f − fm)‖2L2(P) + 2‖ΓT (fm)− Γ̂n,T (fm)‖2L2(P).

Then ‖ΓT (f − fm)‖L2(P) .
´ T

0 E[
´

(f(x) − fm(x))2pr(x)dx]1/2dr, where the marginal
densities pr satisfy sup0≤r≤T |pr(x)| = sup0≤r≤T |

´
ξ0,r(x0, x)µ(x0)dx0| ≤ ‖µ‖∞ by As-

sumption A. It follows that ‖ΓT (f−fm)‖L2(P) is up to a constant bounded by ‖f−fm‖L2 ,
which converges to 0 as m → ∞. A similar argument shows ‖Γ̂n,T (f − fm)‖L2(P) → 0

as m→∞. It is therefore sufficient to prove the theorem for f ∈ C∞c (Rd).
The random variables (Xh, Xr), h 6= r, have the joint densities ph,r(x, y) =

pr(x)ξh,r(x, y), x, y ∈ Rd and the heat kernel bounds in Assumption 3.2.3 imply

|ph,r (x, y)| ≤ ‖µ‖∞qr−h (y − x) ,

|∂rph,r (x, y)| ≤ ‖µ‖∞
1

r − h
qr−h (y − x) ,∣∣∂2

hrph,r (x, y)
∣∣ ≤ ‖µ‖∞( 1

(r − h)2 +
1

(r − h)h

)
qr−h (y − x) .

Then
´
f2(x)(

∑n
k=1

´ tk
tk−1

ptk−1,r(x, y)dr)d(x, y) . ‖µ‖∞‖f‖2L2T and it follows by Lemma
3.5.11 that
ˆ
f2 (x)

 ∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

(
|∂rph,r (x, y) |+ |∂rptj−1,r (x, y) |

)
dhdr

 d (x, y)

. ‖µ‖∞‖f‖2L2

∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

(r − h)−1dhdr . ‖µ‖∞‖f‖2L2T log n.
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By symmetry the same holds with f2(y) instead of f2(x). Applying Proposition 3.2.1(i)
along with the trivial bound (f(x)− f(y))2 ≤ 2f(x)2 + 2f(y)2 therefore yields (i). For
(ii) we distinguish the cases γ < 2 and γ = 2. Let first 0 < s ≤ γ/2 < 1. In this case, the
L2-Sobolev norm defined via the Fourier transform is equivalent to the Slobodeckij-norm

‖f‖H̃s =

(
‖f‖2L2 +

ˆ
(f (x)− f (y))2

‖x− y‖2s+d
d (x, y)

)1/2

, (3.5.22)

(cf. Di et al. (2012) for more details). Similar to the proof of Theorem 3.2.6 the moment
conditions on qa imply for 0 < s ≤ γ/2 that

∆−1
n

ˆ
(f (y)− f (x))2

(
n∑
k=1

ˆ tk

tk−1

ptk−1,r(x, y)dr

)
d(x, y)

≤ ‖f‖2Hs∆−1
n sup

x,y∈Rd

(
n∑
k=1

ˆ tk

tk−1

‖y − x‖2s+dptk−1,r(x, y)dr

)

. ‖f‖2Hs∆−1
n

(
n∑
k=1

ˆ tk

tk−1

(r − tk−1)2s/γ dr

)
,

ˆ
(f (y)− f (x))2

( ∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

∣∣∂2
hrph,r (x, y)

∣∣ dhdr)d (x, y)

≤ ‖f‖2Hs sup
x,y∈Rd

(
‖y − x‖2s+d

∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

∣∣∂2
hrph,r (x, y)

∣∣ dhdr)

. ‖f‖2Hs

( ∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

(r − h)2s/γ−1 h−1dhdr

)
.

We surprisingly recover the same upper bounds as in the proof of Theorem 3.2.6. This
yields the claim in (ii) for 0 < s ≤ γ/2 < 1. Consider now γ = 2 and 0 < s ≤ 1.
Unfortunately, the Slobodeckij-norm is not equivalent to the ‖·‖Hs-norm when s = 1.
We already know from (i) that the operator ΓT − Γ̂n,T is a continuous linear operator
from L2(Rd) to L2(P). It is therefore sufficient to show that it is also a continuous linear
operator from H1(Rd) to L2(P). Indeed, as the Sobolev spaces Hs(Rd) for 0 ≤ s ≤ 1
form interpolation spaces, the general claim is obtained by interpolating the operator
norms of ΓT − Γ̂n,T for s = 0 and s = 1 (cf. Adams and Fournier (2003, Theorem
7.23)). For s = 1 we have f(y) − f(x) =

´ 1
0 〈∇f(x+ t(y − x), y − x〉 dt. It follows for

any 0 < h < r < T that
ˆ

(f (y)− f (x))2 qr−h (y − x) d (x, y)

≤
ˆ 1

0

( ˆ
‖∇f (x+ t (y − x))‖2‖y − x‖2qr−h (y − x) d (x, y) dt

)
=

ˆ
‖∇f (x+ tz)‖2‖z‖2qr−h (z) d (x, z) . ‖f‖2H1 (r − h) ,
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using
´
‖x‖2qa(x)dx . a. Proposition 3.2.1(ii) therefore implies

‖ΓT (f)− Γ̂n,T (f)‖2L2(P) . ‖µ‖∞‖f‖
2
H1

(
∆n

n∑
k=1

ˆ tk

tk−1

(r − tk−1) dr

+∆2
n

∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

(
(r − h)−2 + h−1

)
dhdr

)
.

Using the bounds from above yields the claim in (ii) for s = 1.

Proof of Theorem 3.2.8

Y is independent of F0 and thus of X0. Therefore the characteristic function of (Xh, Xr)
at (u, v) ∈ R2d for 0 ≤ h < r ≤ T is ϕh,r(u, v) = ϕ̃h,r(u, v)Fµ(u+ v), where ϕ̃h,r(u, v) =
eψh,r(v)+ψ0,h(u+v) is the characteristic function of (Yh, Yr). ψh,r(u) is for almost all r
differentiable with

∂rψh,r(u) = i 〈u, br〉 −
1

2
‖σ>r u‖2 +

ˆ (
ei〈u,x〉 − 1− i 〈u, x〉1{‖x‖≤1}

)
dFr (x) ,

and also ∂2
hrψh,r(u) = 0. Hence

∂rϕh,r(u, v) = ∂rψh,r (v) ϕ̃h,r(u, v)Fµ(u+ v), (3.5.23)

∂2
hrϕh,r (u, v) = (∂hψh,r (v) + ∂hψ0,h (u+ v)) ∂rψh,r (v) ϕ̃h,r(u, v)Fµ(u+ v).

ϕh,r as well as the derivatives ∂rϕh,r and ∂2
hrϕh,r satisfy the assumptions of Proposition

3.2.2(i) and (ii). Consider first the following lemma.

Lemma 3.5.12. Fix u, v ∈ Rd such that v 6= 0 and ‖u+ v‖ 6= 0 and let

Un =
∑

k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

(
|ϕ̃h,r(u, v)|+

∣∣ϕ̃tj−1,r(u, v)
∣∣) dhdr,

Vn =

n∑
k=1

ˆ tk

tk−1

ˆ tk

tk−1

(
|ϕ̃h,r (u, v)|+

∣∣ϕ̃tk−1,r (u, v)
∣∣) dhdr.

Then we have the following under the assumptions of Theorem 3.2.8(i):

(i) (1 + ‖v‖)γ+β∗Un . T 2(1 + ‖v‖)β∗/2(1 + ‖u‖)β∗/2.

(ii) (1 + ‖v‖)γ+β∗Vn . T∆n (1 + ‖v‖)γ/2+β∗ (1 + ‖u‖)γ/2+β∗.

(iii) ((1 + ‖v‖)2γ+2β∗ + (1 + ‖v‖)γ+β∗(1 + ‖u + v‖)γ+β∗)Un . T 2(1 + ‖v‖)γ/2+β∗(1 +
‖u‖)γ/2+β∗.

Proof. Observe first the following estimates:∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

|ϕ̃h,r(u, v)| dhdr

.
ˆ T

0

ˆ T

0
e−c‖v‖

γ |r−h|−c‖u+v‖γ(h∧r)dhdr

. ‖v‖−γ
ˆ T

0

(
1− e−c‖v‖γ(T−h)

)
e−c‖u+v‖γhdh .

{
‖v‖−γT,
‖v‖−γ‖u+ v‖−γ .

(3.5.24)
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The same holds when ϕ̃h,r(u, v) is replaced by ϕ̃tj−1,r(u, v). Let first ‖v‖, ‖u + v‖ ≥ 1.
Then (1 + ‖v‖)γ+β∗ ≤ ‖v‖γ+β∗/2‖u‖β∗/2 + ‖v‖γ+β∗/2‖u + v‖β∗/2 and the last display,
together with T ≥ 1 and β∗/2 ≤ γ, yields (i). The same is true if ‖u + v‖ ≤ 1, as
‖u + v‖β∗/2 ≤ 1. If ‖v‖ < 1, then (i) holds trivially, because |ϕ̃h,r(u, v)| ≤ 1. Observe
next that Vn is bounded by

2∆2
n

n∑
k=1

e−c‖u+v‖γtk−1 . ∆n

ˆ T

0
e−c‖u+v‖γhdh .

{
T∆n,

∆n‖u+ v‖−γ .
(3.5.25)

Let first ‖u+ v‖ ≥ 1. Then (1 + ‖v‖)γ+β∗ ≤ ‖v‖γ/2+β∗/2‖u‖γ/2+β∗/2 + ‖v‖γ/2+β∗/2‖u+
v‖γ/2+β∗/2. The last display, together with T ≥ 1 and β∗/2 ≤ γ, yields (ii). Again, this
remains true if ‖u+ v‖ < 1. With respect to (iii) let ‖v‖, ‖u+ v‖ ≥ 1. Then it follows
from ‖u+ v‖β∗ . ‖u‖β∗ + ‖v‖β∗ that

‖v‖2γ+2β∗ + ‖v‖γ+β∗‖u+ v‖γ+β∗

≤ ‖v‖3/2γ+β∗‖u‖γ/2+β∗ + ‖v‖3/2γ+β∗‖u+ v‖γ/2+β∗ + ‖v‖γ+2β∗‖u+ v‖γ

+ ‖u+ v‖γ‖u‖β∗‖v‖γ+β∗ .

(3.5.24) together with β∗/2 ≤ γ implies (iii). The same holds when ‖u + v‖ < 1 as
before. For ‖v‖ < 1 the trivial bound from above applies.

Proof of Theorem 3.2.8. Since Y and X0 are independent, the marginals Xr have uni-
formly bounded densities pr(x) ≤ ‖µ‖∞, x ∈ Rd, even if the distributions of Yr have no
densities. By the argument at the beginning of the proof of Theorem 3.2.6 it is therefore
enough to show the claim for f ∈ S(Rd).
Consider first the claim in (i). We only have to show it for s = β∗/2 and s = γ/2+β∗.

As in the proof of Theorem 3.2.6, the general claim for β∗/2 ≤ s ≤ γ/2 + β∗ follows by
interpolation. Let u, v ∈ Rd. Then for any 0 ≤ h, r ≤ T it holds |gh,r(u, v)| . |Fµ(u+v)|
with g from Proposition 3.2.2(i). Moreover, by assumption |∂rψh,r(v)| ≤ c(1+‖v‖)γ+β∗ .
Lemma 3.5.12(i) and Proposition 3.2.2(i) therefore imply that ‖ΓT (f) − Γ̂n,T (f)‖2L2(P)
is up to a constant bounded by

T 2∆n

ˆ
|Ff(u)| |Ff (v)| (1 + ‖u‖)β∗/2(1 + ‖v‖)β∗/2 |Fµ(u+ v)| d (u, v) . (3.5.26)

Lemma 3.5.3 shows for this the upper bound T 2∆n‖f‖2Hs , implying the claim for s =
β∗/2. With respect to s = γ/2 + β∗ it follows similarly by Lemma 3.5.12(ii) and (iii),
Proposition 3.2.2(ii) and Lemma 3.5.3 that ‖ΓT (f)− Γ̂n,T (f)‖2L2(P) is up to a constant
bounded by T 2∆n‖f‖2Hs . This is the claimed bound for s = γ/2 + β∗. To see that the
improved bound holds note that |∂rψh,r(v)| ≤ c‖v‖γ+βr simplifies the calculations in
Lemma 3.5.12, since there is no need to distinguish the cases ‖v‖ ≥ 1 or ‖v‖ < 1.
At last, consider (ii). From |∂rψh,r(v)| . 1 it follows immediately that ϕh,r(u, v)

and the time derivatives ∂rϕh,r(u, v), ∂2
hrϕh,r(u, v) are bounded by T 2|Fµ(u + v)|. As

T ≥ 1, Proposition 3.2.2(ii) and Lemma 3.5.3 imply the claim. If c1ρ(v) ≤ ∂rψh,r(v) ≤
c2ρ(v) ≤ 0 for all 0 ≤ h, r ≤ T , then |ϕ̃h,r(u, v)| ≤ e−cc2ρ(v)|r−h|−cc2ρ(u+v)(r∧h) and
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∑
k−1>j≥2

´ tk
tk−1

´ tk
tk−1
|∂rϕ̃h,r(u, v)|dhdr is up to a constant bounded by

n∑
k=1

ˆ tk

tk−1

ˆ tk

h
(−ρ (v)) e−cc2ρ(v)(r−h)drdh .

n∑
k=1

ˆ tk

tk−1

(
e−cc2ρ(v)(tk−h) − 1

)
dh,

and similarly for ∂rϕ̃tk−1,r(u, v), while
∑

k−1>j≥2

´ tk
tk−1

´ tj
tj−1
|∂2
hrϕ̃h,r(u, v)|dhdr is up to

a constant bounded by
´ T

0

´ T
h (−ρ(v))e−cc2ρ(v)(r−h)drdh. The first expression is of order

O(T∆n) and the second one of order O(T ). Again, the claim follows from Proposition
3.2.2(ii) and Lemma 3.5.3.

Remark 3.5.13. If d = 1 and γ > 1, β∗ = 0, then the proof applies to Xt = Yt. Indeed,
replace T by

´ T
0 e−c‖u+v‖2hdh in (3.5.24) and (3.5.25). Together with a slightly different

argument for ‖v‖ < 1 this yields e.g. instead of (3.5.26) the bound

T∆n

ˆ T

0

ˆ
|Ff(u)| |Ff (v)| e−c‖u+v‖2hd (u, v) dh

≤ T∆n

ˆ T

0

ˆ
|Ff(u)|2 e−c‖u+v‖2hd (u, v) dh . ‖f‖2HsT 2∆n.

This works, because u 7→ e−c‖u‖
γh is integrable and because

´ T
0 h−1/γdh is finite.

Proof of Theorem 3.2.13

The characteristic function of (Xh, Xr) at (u, v) ∈ R2d for 0 ≤ h < r ≤ T is
ϕh,r(u, v) = ϕ̃h,r(u, v)Fµ(u + v), where ϕ̃h,r(u, v) is the characteristic function of
(Bh, Br). As B is a Gaussian process, it follows that ϕ̃h,r(u, v) is equal to e−

1
2

Φh,r(u,v)

with Φh,r(u, v) = ‖u‖2h2H +‖v‖2r2H +2 〈u, v〉 c (h, r). Since fractional Brownian motion
is locally nondeterministic (cf. Xiao (2006)), there exist constants δ, c2 > 0 such that
for b− a ≤ δ, 0 ≤ a < b,

Var (〈v,Bb −Ba〉+ 〈u,Ba〉) ≥ c2

(
‖v‖2σ2(a, b) + ‖u‖2σ2 (0, a)

)
with σ2(a, b) = E[(B

(1)
b − B

(1)
a )2] = (b − a)2H . By self-similarity of B this holds for

arbitrary 0 ≤ a < b. Therefore

Φh,r (u, v) = Var (〈v,Br〉+ 〈u,Bh〉) = Var (〈v,Br −Bh〉+ 〈u+ v,Bh〉)

≥ c2

(
‖v‖2 (r − h)2H + ‖u+ v‖2h2H

)
and ϕ̃h,r(u, v) ≤ e−c‖v‖2(r−h)2H−c‖u+v‖2h2H . Moreover,

∂rϕh,r(u, v) = −1

2
∂rΦh,r(u, v)ϕh,r(u, v),

∂2
hrϕh,r (u, v) =

(
− 1

2
∂2
hrΦh,r (u, v) +

1

4
∂rΦh,r (u, v) ∂hΦh,r (u, v)

)
ϕh,r (u, v) ,

∂rΦh,r (u, v) = 2H(‖v‖2 + 〈u, v〉)r2H−1 − 2H 〈u, v〉 (r − h)2H−1,

∂hΦh,r (u, v) = 2H(‖u‖2 + 〈u, v〉)h2H−1 + 2H 〈u, v〉 (r − h)2H−1,

∂2
hrΦh,r (u, v) = 2H (2H − 1) 〈u, v〉 (r − h)2H−2 .
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We first prove a lemma. Denote for any function (r, h) 7→ g(r, h) and fixed u, v ∈ Rd by
Un(g) the sum

∑
k−1>j≥2

´ tk
tk−1

´ tj
tj−1

g(r, h)ϕ̃h,r(u, v)dhdr.

Lemma 3.5.14. Let T ≥ 1 and assume (X0). Fix u, v ∈ Rd\{0} and let 0 < H < 1,
H 6= 1/2. Consider for 0 < h < r < T the functions g1(r, h) = (r − h)2H−1, g2(r, h) =
h2H−1, g3(r, h) = (r − h)4H−2, g4(r, h) = (r − h)2H−2, g5(r, h) = (r − h)2H−1h2H−1,
g6(r, h) = r2H−1h2H−1 and g7(r, h) = (r − h)2H−1r2H−1. Then we have the following
estimates with absolute constants:

(i) (‖v‖2 + ‖v‖‖u+ v‖)(Un(g1) + Un(g2)) . T ,

(ii) if H > 1/2, then (‖v‖2 + ‖v‖‖u + v‖)(Un(g3) + Un(g4)) . T 2H and if H < 1/2,
then the same expression is up to a constant bounded by T∆2H−1

n ,

(iii) if H > 1/2, then (‖v‖+‖u+v‖)2(Un(g5)+Un(g6)+Un(g7)) . T 2H and if H < 1/2,
then the same expression is up to a constant bounded by T∆2H−1

n ,

(iv) (1 + ‖v‖)
∑n

k=1

´ tk
tk−1

´ tk
h (r2H−1 + (r − h)2H−1)ϕ̃h,r(u, v)drdh . T 2H∆n.

Proof. We need to bound the integrals in Un(gi) in several different ways. Observe
for 0 ≤ a < b ≤ T and q = 2H − 1, 4H − 2, 1 the following estimates for R(q)

a,b,v :=´ b
a r

qe−
1
2
‖v‖2r2H

dr:

R
(2H−1)
a,b,v . ‖v‖−2

(
e−

1
2
‖v‖2a2H − e−

1
2
‖v‖2b2H

)
.


‖v‖−2,

‖v‖−1(b2H − a2H)1/2,

b2H − a2H ,

(3.5.27)

R
(4H−2)
a,b,v .

{
‖v‖−2

´ b
a r

2H−2dr

‖v‖−1
´ b
a r

3H−2dr
.

{
‖v‖−2

(
b2H−1 − a2H−1

)
,

‖v‖−1(b3H−1 − a3H−1),
(3.5.28)

R
(1)
a,b,v .

{
‖v‖−1

´ b
a r
−Hdr

b− a
.

{
‖v‖−1(b1−H − a1−H),

b− a,
(3.5.29)

where we used that supv∈Rd‖v‖prpHe−
1
2
‖v‖2r2H

= supx≥0 xe
− 1

2
x2
< ∞ for any p ≥ 0. It

follows from (3.5.27) and (3.5.29) that Un(g1) is bounded by

ˆ T

0

ˆ T

h
(r − h)2H−1 e−c2(‖v‖

2(r−h)2H+‖u+v‖2h2H)drdh ≤ T

{
‖v‖−2,

‖v‖−1‖u+ v‖−1.

The estimate for g2 follows in the same way. For g3 and H > 1/2 it follows similarly
from (3.5.28), (3.5.29), T ≥ 1 and Lemma 3.5.11 that

Un (g3) .
∑

k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

 ‖v‖−2 (r − h)2H−2

‖v‖−1‖u+ v‖−1 (r − h)3H−2 h−H

 dhdr

. T 2H

{
‖v‖−2,

‖v‖−1‖u+ v‖−1,
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while for H < 1/2

Un (g3) . T∆2H−1
n

{
‖v‖−2,

‖v‖−1‖u+ v‖−1.

The estimates for g4 follow similarly (they are even easier). With respect to g5 the
integrals decompose and (3.5.27) and (3.5.29) yield for Un(g5) the bound

R
(2H−1)
0,T,v R

(2H−1)
0,T,u+v . T 2H


‖v‖−2,

‖v‖−1‖u+ v‖−1,

‖u+ v‖−2.

(3.5.30)

The argument for Un(g7) is similar. For Un(g6), on the other hand, the same equations
imply for H > 1/2 the upper bound

ˆ T

0

ˆ T

h
R

(2H−1)
h,T,v h2H−1e−c2‖u+v‖2h2H

dh . T 2H

{
‖u+ v‖−2,

‖v‖−1‖u+ v‖−1,

and for H < 1/2 by r2H−1h2H−1 ≤ h4H−2 and Lemma 3.5.11

∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1


‖u+ v‖−2h2H−2

‖u+ v‖−1‖v‖−1 (r − h)−H h3H−2

‖v‖−2r−2Hh4H−2

 dhdrdhdr

. T∆2H−1
n


‖u+ v‖−2,

‖v‖−1‖u+ v‖−1,

‖v‖−2,

because T ≥ 1 and because 1 . log n . ∆2H−1
n . Observe that we did not prove any

bound on ‖v‖2Un(g6) for H > 1/2. For this, we need a different upper bound on
ϕ̃h,r(u, v). If ‖u + v‖ ≥ ‖v‖, then ϕ̃h,r(u, v) ≤ e−c2‖v‖

2(r−h)2H−c2‖u+v‖2h2H is clearly
bounded by e−c2‖v‖2h2H . As r2H−1h2H−1 . (r − h)2H−1h2H−1 + h4H−2 for H > 1/2, it
thus follows from (3.5.30) and Lemma 3.5.11 that

Un (g6) . Un (g5) + ‖v‖−2
∑

k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

h4H−2dhdr . T 2H‖v‖−2.

If ‖u+v‖ < ‖v‖, however, then ϕ̃h,r(u, v) ≤ e−c2(‖v‖2r2H+‖u‖2h2H). To see why this holds
note that in this case necessarily 〈u, v〉 ≥ 0 by elementary geometric considerations. But
then Φh,r (u, v) ≥ ‖u‖2h2H + ‖v‖2r2H , since also c(h, r) = E[(Yr − Yh)Yh] + h2H ≥ 0
(recall that increments of fractional Brownian motion are positively correlated when
H > 1/2). From the new bound and (3.5.27) follows immediately that

Un (g6) .
ˆ T

0

ˆ T

h
R

(2H−1)
h,T,v h2H−1e−c2‖u‖

2h2H
dh . T 2H‖v‖−2.
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Finally, with respect to (iv), (3.5.27) yields

n∑
k=1

ˆ tk

tk−1

ˆ tk

h
(r2H−1 + (r − h)2H−1)ϕ̃h,r(u, v)drdh . T 2H∆n.

Arguing as for Un(g6) with the different upper bounds for ϕ̃h,r(u, v), it follows that the
left hand side is bounded by ‖v‖−1T 2H∆n. This yields (iv).

Proof of Theorem 3.2.13. As in the proof of Theorem 3.2.8 it is sufficient to prove the
claim for f ∈ S(Rd) and s ∈ {0, 1}. The conclusion follows by interpolation. We consider
only H 6= 1/2, since the case H = 1/2 corresponds to Brownian motion and is already
covered by Example 3.2.10.
Let 0 ≤ h < r ≤ T and u, v ∈ Rd. From ‖u‖ ≤ ‖v‖ + ‖u + v‖ it follows that
|∂rΦh,r(u, v)| . (‖v‖2 + ‖v‖‖u + v‖)((r − h)2H−1 + r2H−1). Lemma 3.5.14(i) therefore
implies that

∑
k−1>j≥2

´ tk
tk−1

´ tj
tj−1

(|∂rϕh,r(u, v)|+ |∂rϕtj−1,r(u, v)|)dhdr is of order O(T ).
Moreover, |gtk−1,r(u, v)| . |Fµ(u + v)| for all 1 ≤ k ≤ n and tk−1 ≤ r < tk with g
from Proposition 3.2.2(i). Applying Proposition 3.2.2(i) and Lemma 3.5.3 shows that
‖ΓT (f)−Γ̂n,T (f)‖2L2(P) is up to a constant bounded by CµT∆n‖f‖2L2 . With 1 ≤ T ≤ T 2H

for H > 1/2 this yields the claimed bound for s = 0. With respect to s = 1 note first
that

|∂rΦh,r (u, v)| . (1 + ‖u‖) (1 + ‖v‖)
(

(‖v‖+ 1) r2H−1 + (r − h)2H−1
)
,

|∂rΦh,r (u, v) ∂hΦh,r (u, v)| . (1 + ‖u‖) (1 + ‖v‖) (‖v‖+ ‖u+ v‖)2

·
(
r2H−1h2H−1 + (r − h)2H−1 h2H−1 + (r − h)2H−1 r2H−1

)
+ (1 + ‖u‖) (1 + ‖v‖)

(
‖v‖2 + ‖v‖‖u+ v‖

)
(r − h)4H−2 ,∣∣∂2

hrΦh,r (u, v)
∣∣ . (1 + ‖u‖) (1 + ‖v‖) (r − h)2H−2 .

Lemma 3.5.14(ii), (iii) and (iv) imply

∆−1
n

n∑
k=1

ˆ tk

tk−1

ˆ tk

tk−1

(|∂rϕh,r(u, v)|+ |∂rϕtk−1,r(u, v)|)dhdr

. (1 + ‖u‖) (1 + ‖v‖) (‖v‖+ 1)T 2H |Fµ (u+ v)| ,∑
k−1>j≥2

ˆ tk

tk−1

ˆ tj

tj−1

|∂2
hrϕh,r(u, v)|dhdr

. (1 + ‖u‖) (1 + ‖v‖) |Fµ (u+ v)|

{
T 2H , H > 1/2,

T∆2H−1
n , H < 1/2.

This yields the claim for s = 1 by applying Proposition 3.2.2(ii) and Lemma 3.5.3 as
above.

Proof of Theorem 3.2.14

Proof. We have fa,ε ∈ H1/2−ρ(R) for any small ρ > 0 with ‖fa,ε‖H1/2−ρ . ε−1+ρ. By
the triangle inequality and Theorem 3.2.13 (Assumption (X0) can be removed for d = 1,
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cf. Remark 3.2.9) ‖LaT − Γ̂n,T (fa,ε)‖L2(P) is bounded by

‖LaT − ΓT (fa,ε)‖L2(P) + ‖ΓT (fa,ε)− Γ̂n,T (fa,ε)‖L2(P)

. ‖LaT − ΓT (fa,ε)‖L2(P) + ε−1+ρ

TH∆
3
4
− ρ

2
n , H ≥ 1/2,

T 1/2∆
1+H

2
−ρH

n , H < 1/2.

By the occupation time formula (cf. Geman and Horowitz (1980)) and
´
fa,ε(x)dx = 1 it

follows that ‖LaT −ΓT (fa,ε)‖2L2(P) is equal to E[(LaT −
´
fa,ε(x)LxTdx)2] = E[(1

2

´ 1
−1(LaT −

Lεx+a
T )dx)2]. Equation Pitt (1978, (4.1)) implies (together with the proof of Pitt (1978,

Theorem 4)) that E[(LaT − LbT )2] . (a− b)2ξ for all 0 < ξ < 1
2H (1−H). Consequently,

‖LaT − ΓT (fa,ε)‖L2(P) . ε
1

2H
(1−H)−ρ. Optimizing in ε yields the claim.

3.5.3. Proofs of Section 3

Proof of Theorem 3.3.2

Proof. Assume first that f ∈ L2(µ). Expanding the squared error yields

‖ΓT (f)− Γ̂n,T (f)‖2L2(P) = E
[∣∣∣ n∑
k=1

ˆ tk

tk−1

(
f (Xr)− f

(
Xtk−1

))
dr
∣∣∣2]

=

n∑
k,l=1

ˆ tk

tk−1

ˆ tl

tl−1

E
[ (
f (Xr)− f

(
Xtk−1

)) (
f (Xh)− f

(
Xtl−1

)) ]
drdh.

We bound the diagonal (l = k) and off-diagonal terms (l 6= k) separately. Consider first
the diagonal case and tk−1 ≤ r ≤ h ≤ tk. By the Markov property and stationarity of
X the expectation above can be calculated explicitly. Indeed,

E
[(
f (Xr)− f

(
Xtk−1

)) (
f (Xh)− f

(
Xtk−1

))]
= 〈Ph−rf, f〉µ −

〈
Pr−tk−1

f, f
〉
µ
−
〈
Ph−tk−1

f, f
〉
µ

+ 〈f, f〉µ
=
〈
(Ph−r − I) f +

(
I − Pr−tk−1

)
f +

(
I − Ph−tk−1

)
f, f
〉
µ
.

Consequently, by symmetry in r, h,

n∑
k=1

ˆ tk

tk−1

ˆ tk

tk−1

E
[ (
f (Xr)− f

(
Xtk−1

)) (
f (Xh)− f

(
Xtk−1

)) ]
drdh

= 2

n∑
k=1

〈(ˆ tk

tk−1

ˆ h

tk−1

(Ph−r − I) drdh+ ∆n

ˆ tk

tk−1

(
I − Ph−tk−1

)
dh

)
f, f

〉
µ

= 2n
〈(ˆ ∆n

0

ˆ h

0
(Ph−r − I) drdh+ ∆n

ˆ ∆n

0
(I − Ph) dh

)
f, f

〉
µ
.

Since the generator L is normal, by the functional calculus of L (see Section A.5) this
can be written as

〈Ψ(L)f, f〉µ =

ˆ
σ(L)

Ψ (λ) d 〈Eλf, f〉µ
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with

Ψ(λ) = 2n

(ˆ ∆n

0

ˆ h

0

(
eλ(h−r) − 1

)
drdh+ ∆n

ˆ ∆n

0

(
1− eλh

)
dh

)
, λ ∈ C.

Since L is the generator of a Feller semigroup, it follows that σ(L) ⊂ {λ ∈ C : Re(λ) ≤
0}. Fix 0 ≤ s ≤ 1 such that |1 − ez| ≤ 2|z|s for z ∈ {λ ∈ C : Re(λ) ≤ 0}. Then
|Ψ(λ)| ≤ 8n∆2+s

n |λ|s, λ ∈ σ(L). Hence the diagonal terms are bounded by
ˆ
σ(L)
|Ψ(λ)| d〈Eλf, f〉µ ≤ 8T∆1+s

n

ˆ
σ(L)
|λ|s d〈Eλf, f〉µ

≤ 8‖ |L| s/2f‖2µT∆1+s
n , (3.5.31)

which is true as long as f ∈ D(|L|s/2). For the off-diagonal terms with l 6= k consider
tl−1 ≤ r ≤ tk−1 ≤ h. Then, similar as before

E
[(
f (Xh)− f

(
Xtk−1

)) (
f (Xr)− f

(
Xtl−1

))]
= 〈Ph−rf, f〉µ −

〈
Ph−tl−1

f, f
〉
µ
−
〈
Ptk−1−rf, f

〉
µ

+
〈
Ptk−1−tl−1

f, f
〉
µ

=
〈
Ptk−1−r(Ph−tk−1

− I)(I − Pr−tl−1
)f, f

〉
µ
. (3.5.32)

The off-diagonal terms are therefore equal to

2
n∑

k>l=1

ˆ tk

tk−1

ˆ tl

tl−1

E
[ (
f (Xr)− f

(
Xtk−1

)) (
f (Xh)− f

(
Xtl−1

)) ]
drdh

= 2
n∑

k>l=1

〈( ˆ tk

tk−1

ˆ tl

tl−1

Ptk−1−r

(
Ph−tk−1

− I
) (
I − Pr−tl−1

)
drdh

)
f, f

〉
µ

=

〈
2

(ˆ ∆n

0

ˆ ∆n

0

(
n∑

k>l=1

Ptk−1−tl−1−r

)(
Ph − I

)
(I − Pr) drdh

)
f, f

〉
µ

=

ˆ
σ(L)

Ψ̃ (λ) d 〈Eλf, f〉µ ,

where

Ψ̃(λ) = 2

ˆ ∆n

0

ˆ ∆n

0

(
n∑

k>l=1

eλ(tk−1−tl−1−r)
))(

eλh − 1
)(

1− eλr
)
drdh, λ ∈ C.

We will show that there exists a universal constant C̃ <∞ such that∣∣∣Ψ̃ (λ)
∣∣∣ ≤ C̃T |λ|s∆1+s

n , λ ∈ σ(L). (3.5.33)

As in (3.5.31), this implies that the off-diagonal terms are bounded by

C̃T∆1+s
n

ˆ
σ(L)
|λ|s d〈Eλf, f〉µ = C̃‖ |L| s/2f‖2µT∆1+s

n
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for f ∈ D(|L|s/2). Combining this with (3.5.31) yields the claim. In order to show
(3.5.33) observe that Ψ̃(λ) = 0 for λ = 0. It is therefore sufficient to consider λ 6= 0. In
order to bound Ψ̃ in that case note that

n∑
k>l=1

eλ(k−l−1)∆n =
n∑
l=1

1− eλ(n−l)∆n

1− eλ∆n
=

n

1− eλ∆n
− 1− eλn∆n

(1− eλ∆n)
2 .

Hence, again using |1− ez| ≤ 2|z|s,∣∣∣∣∣∆2
n

(
1− eλ∆n

)2
n∑

k>l=1

eλ(k−l−1)∆n

)∣∣∣∣∣ ≤ 2n∆2
n |λ∆n|s + 2∆2

n |λn∆n|s

≤ 4T∆1+s
n |λ|s .

Therefore, (3.5.33) follows if∣∣∣∣∆−2
n

(
1− eλ∆n

)−2
ˆ ∆n

0

ˆ ∆n

0
eλ(∆n−r)

(
eλh − 1

)(
1− eλr

)
drdh

∣∣∣∣ (3.5.34)

is bounded by a universal constant. To show this, let z = λ∆n and note that

∆−1
n

∣∣∣∣∣
´ ∆n

0

(
1− eλh

)
dh

1− eλ∆n

∣∣∣∣∣ = ∆−1
n

∣∣∣∣ ∆n

1− eλ∆n
− λ−1

∣∣∣∣ =

∣∣∣∣1z − 1

ez − 1

∣∣∣∣ , (3.5.35)

∆−1
n

∣∣∣∣∣∣
ˆ ∆n

0

(
eλ(∆n−r) − eλ∆n

)
1− eλ∆n

dr

∣∣∣∣∣∣ =

∣∣∣∣−1

z
− ez

1− ez

∣∣∣∣ =

∣∣∣∣1z − 1

ez − 1
+ 1

∣∣∣∣ . (3.5.36)

(3.5.35) converges to 1 and (3.5.36) converges to 0 as |z| → ∞. If |z| → 0 and z ∈ {λ ∈
C : Re(λ) ≤ 0}, then (3.5.35) converges to 1/2 and (3.5.36) converges to 3/2 . This
implies a universal constant bounding (3.5.34), thereby proving (3.5.33).

Remark 3.5.15. (i) If the generator is self-adjoint, then the operators Pu, u ≥ 0, are
self-adjoint as well. Pu is positive, Pu − I is negative semidefinite and I − Pu
is positive semidefinite. Therefore Ptk−1−r(Ph−tk−1

− I)(I − Pr−tl−1
) is negative

semidefinite and (3.5.32) is non-positive. In this case, the off-diagonal terms do
not contribute to the estimation error.

(ii) The restriction 0 ≤ s ≤ 1 appears in (3.5.31) and (3.5.33) due to the Lipschitz
bound |1− ez| ≤ 2|z|s.

Proof of Corollary 3.3.3

Proof. Denote by Eν for a measure ν the expectation with respect to X starting with ν
as initial distribution. Let g(x) = E[|ΓTn,T (f)− Γ̂n,Tn,T (f)|2|XTn = x]. By conditioning
on XT0 the tower and Markov properties yield that∥∥∥ΓTn,T (f)− Γ̂n,Tn,T (f)

∥∥∥2

L2(P)
= E [E [g (XTn)|XT0 ]]

= E [PTn−T0g (XT0)] =

ˆ
S
PTn−T0g (x) dη(x)

≤
∥∥∥dη
dµ

∥∥∥
∞,µ

ˆ
S
PTn−T0g (x) dµ(x).
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Since µ is an invariant (stationary) measure of the semigroup, this is equal to (cf. Bakry
et al. (2013, Section 1.2.1))∥∥∥dη

dµ

∥∥∥
∞,µ

ˆ
S
g (x) dµ(x) =

∥∥∥dη
dµ

∥∥∥
∞,µ

Eµ
[∣∣∣ΓT−Tn (f)− Γ̂n,T−Tn (f)

∣∣∣2] ,
because

g(x) = E

∣∣∣∣∣
ˆ T−Tn

0
f (Xr) dr −∆n

n−Tn∑
k=1

f (Xtk)

∣∣∣∣∣
2
∣∣∣∣∣∣X0 = x


= E

[∣∣∣ΓT−Tn (f)− Γ̂n,T−Tn (f)
∣∣∣2∣∣∣∣X0 = x

]
.

The conclusion follows by a simple modification of Theorem 3.3.2, because the error is
now considered on [0, T − Tn] instead of [0, T ].

Proof of Theorem 3.3.4

Proof. By the triangle inequality it follows from f ∈ L2(µ) = dom(|L|0) and Theorem
3.3.2 that∥∥∥∥T−1Γ̂n,T (f)−

ˆ
S
f(x) dµ(x)

∥∥∥∥
L2(P)

≤ T−1
∥∥∥Γ̂n,T (f)− ΓT (f)

∥∥∥
L2(P)

+

∥∥∥∥T−1ΓT (f)−
ˆ
S
f(x) dµ(x)

∥∥∥∥
L2(P)

≤ C‖f‖L2(µ)T
−1/2∆1/2

n +

∥∥∥∥T−1ΓT (f)−
ˆ
S
f(x) dµ(x)

∥∥∥∥
L2(P)

for a universal constant C. The claimed bound for the second term is well-known, but
we give the proof here to complement the proof of Theorem 3.3.2. Consider f such that
f0 = f −

´
fdµ ∈ dom(|L|−1/2). By linearity of the occupation time functional it follows

that
T−1ΓT (f)−

ˆ
S
fdµ = T−1ΓT (f0).

Fubini’s theorem yields

E
[∣∣∣T−1ΓT (f0)

∣∣∣2] = T−2

ˆ T

0

ˆ T

0
E [f0 (Xr) f0 (Xh)] drdh

= 2T−2

ˆ T

0

ˆ h

0
〈Ph−rf0, f0〉µ drdh

=

ˆ
σ(L)

Ψ(λ) d〈Eλf0, f0〉µ,

where

Ψ(λ) = 2T−2

ˆ T

0

ˆ h

0
eλ(h−r)drdh = 2

eλT − 1− λT
λ2T 2

= 2
(λT )−1(eλT − 1)− 1

λT
,
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and where Ψ(0) = 1 by continuous extension. Since z → z−1(ez − 1)− 1 is bounded on
the left half-plane {z ∈ C : Re(z) ≤ 0}, there exists a constant C̃ <∞ such that

|Ψ (λ)| ≤ C̃T−1 |λ|−1 , λ ∈ σ(L).

Consequently,

E
[∣∣∣T−1ΓT (f0)

∣∣∣2] ≤ CT−1

ˆ
σ(L)
|λ|−1 d 〈Eλf0, f0〉µ = CT−1‖ |L|−1/2 f0‖2µ.

3.5.4. Proof of Theorem 3.4.1

Consider first the following two lemmas.

Lemma 3.5.16. Assume (X0). For f ∈ H1(Rd) we have

‖ΓT (f)− E [ΓT (f)| Gn]‖2L2(P) = ∆2
nE
[

1

12

ˆ T

0
‖∇f(Xr)‖2dr

]
+ o

(
∆2
n‖f‖2H1

)
.

In particular, ∆−2
n ‖ΓT (f) − E[ΓT (f)| Gn]‖2L2(P) converges to E[ 1

12

´ T
0 ‖∇f(Xr)‖2dr] as

n→∞.

Proof. By independence of X0 and (Xr−X0)0≤t≤T the σ-algebra Gn is also generated by
X0 and the increments Xtk−Xtk−1

, 1 ≤ k ≤ n. The independence of increments and the
Markov property then imply for tk−1 ≤ r ≤ tk that E[f(Xr)|Gn] = E[f(Xr)|Xtk−1

, Xtk ].
The same argument shows that the random variables Yk =

´ tk
tk−1

(f(Xr)−E[f(Xr)|Gn])dr

are uncorrelated. Therefore

‖ΓT (f)− E [ΓT (f)| Gn]‖2L2(P) =
n∑
k=1

E
[
Y 2
k

]
=

n∑
k=1

E

[
Vark

(ˆ tk

tk−1

f (Xr) dr

)]
,

where Vark(Z) is the conditional variance of a random variable Z with respect to the
σ-algebra generated by Xtk−1

and Xtk . In order to linearize f , note that the random
variable Vark(

´ tk
tk−1

f(Xr)dr) = Vark(
´ tk
tk−1

(f(Xr)− f(Xtk−1
))dr) can be written as

Vark
(ˆ tk

tk−1

〈
∇f

(
Xtk−1

)
, Xr −Xtk−1

〉
dr

)
+ κn

+Vark
( ˆ tk

tk−1

(
f (Xr)− f

(
Xtk−1

)
−
〈
∇f

(
Xtk−1

)
, Xr −Xtk−1

〉)
dr

)
,

where κn is the corresponding crossterm of the decomposition. From Lemma 3.5.2(ii)
and (iii) it follows that the first and the last term are of order o(∆3

n‖f‖2H1) and
O(∆3

nan(f)) = O(∆3
n‖f‖2H1), respectively, and thus by the Cauchy-Schwarz inequality

κn = o(∆3
n‖f‖2H1). Hence, ‖ΓT (f)− E[ΓT (f) |Gn]2L2(P) is equal to

n∑
k=1

E

[
Vark

(ˆ tk

tk−1

〈
∇f

(
Xtk−1

)
, Xr

〉
dr

)]
+ o

(
∆2
n‖f‖2H1

)
.



3.5. Proofs 106

Conditional on Xtk−1
, Xtk , the process (Xr)tk−1≤r≤tk is a Brownian bridge starting from

Xtk−1
and ending at Xtk . In particular, E[Xr|Xtk−1

, Xtk ] = Xtk−1
+

r−tk−1

∆n
(Xtk −Xtk−1

)
(see e.g. Karatzas and Shreve (1991, 6.10)). The stochastic Fubini theorem and Itô
isometry thus imply that the last display is equal to

n∑
k=1

E

〈∇f (Xtk−1

)
,

ˆ tk

tk−1

(
tk − r −

∆n

2

)
dXr

〉2
+ o

(
∆2
n‖f‖2H1

)
=

∆3
n

12

n∑
k=1

E
[
‖∇f

(
Xtk−1

)
‖2
]

+ o
(
∆2
n‖f‖2H1

)
=

∆2
n

12

ˆ T

0
‖∇f(Xr)‖2dr + o

(
∆2
n‖f‖2H1

)
,

where the last line follows from Lemma 3.5.2(iv).

Lemma 3.5.17. Assume (X0). Fix 0 ≤ s < α and let ϕ(x) = (2π)−d/2e−‖x‖
2/2 for

x ∈ Rd. Consider the approximations fα,ε = fα ∗ ϕε, where ϕε = ε−dϕ(ε−1(·)) and

ε = ∆
1
2
· 1−s
1−α

n . Then the following statements hold as n→∞:

(i) ‖ΓT (fα − fα,ε)− E [ΓT (fα − fα,ε)| Gn]‖2L2(P) = o(∆1+s
n ),

(ii) ‖ΓT (fα,ε)− E [ΓT (fα,ε)| Gn]‖2L2(P) = O(∆2
n‖fα,ε‖2H1) = O(∆1+s

n ),

(iii) lim infn→∞(ε2−2αE[ 1
12

´ T
0 ‖∇fα,ε(Xr)‖2dr]) > 0.

Proof. Applying (3.4.1) from right to left and Theorem 3.2.13 for the function f =
fα − fα,ε ∈ L2(Rd) shows that the left hand side of the equation in (i) is up to a
constant bounded by ∆n‖fα − fα,ε‖2L2 . The Plancherel theorem and Fϕε(u) = Fϕ(εu)
yield that this is equal to

(2π)−d ∆n‖Ffα (1−Fϕε)‖2L2 . ∆nε
2α

ˆ
‖u‖−2α−d

(
1− e−

‖u‖
2

2
)
du.

The du-integral is finite and therefore the last line is of order O(∆nε
2α) = o(∆1+s

n ),
because α > s, implying (i). Similarly, applying (3.4.1) from right to left and Theorem
3.2.13 for the function f = fα,ε ∈ H1(Rd), the left hand side of the equation in (ii)
is up to a constant bounded by ∆2

n‖fα,ε‖2H1 . As above this can be bounded from the
Plancherel theorem by

(2π)−d ∆2
n

ˆ
|Ffα (u)|2 |Fϕ (εu)|2 (1 + ‖u‖)2 du

. ∆2
nε

2α−2

ˆ
(ε+ ‖u‖)2−2α−d e−

‖u‖
2

2

du

. ∆2
nε

2α−2

ˆ ∞
0

(ε+ ‖r‖)1−2α e−
r
2

2

dr.

As α < 1, the dr-integral is finite for ε = 0 and thus the last line is of order
O(∆2

nε
2α−2) = O(∆1+s

n ). This is the claimed order in (ii). Finally, with respect to
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(iii), denote by pr the marginal density of Xr. Then we have by the Plancherel theorem,
applied componentwise, for any T0 > 0 that E[ 1

12

´ T
0 ‖∇fα,ε(Xr)‖2dr] is bounded from

below up to a constant by

ˆ T

T0

(ˆ
‖∇fα,ε(x)p1/2

r (x)‖2dx
)
dr

= (2π)−2d
ˆ T

T0

(ˆ
‖
ˆ
Ffα (u− y)Fϕ (ε (u− y)) (u− y)hr (y) dy‖2du

)
dr,

where hr(y) = 2d/2(2π)d/4rd/4e−‖y‖
2r is the Fourier transform of p1/2

r . The substitution
εu 7→ u then yields that the du-integral above is equal to

ε2α−2

ˆ
‖
ˆ
νε (u− εy)hr (y) dy‖2du = ε2α−2

ˆ
‖(νε ∗ hr,ε) (u)‖2du,

for hr,ε(u) = ε−dhr(ε
−1u) and νε(u) = u(ε + ‖u‖)−α−d/2e−‖u‖2/2. Interestingly, νε ∈

L1(Rd) ∩ L2(Rd) for all ε ≥ 0 as α < 1. As also hr,ε ∈ L1(Rd), Young’s inequality, also
applied componentwise, implies that

ˆ
‖((νε − ν0) ∗ hr,ε) (u)‖2du ≤ ‖hr,ε‖2L1

(ˆ
‖(νε − ν0) (u)‖2du

)
.

Since ‖hr,ε‖2L1 . r−d/2, ‖νε(u)‖ ≤ ‖ν0(u)‖ and νε(u)→ ν0(u) for any u ∈ Rd we therefore
conclude by dominated convergence that the last line is of order o(r−d/2). Moreover,
it follows again by the Plancherel theorem with Fhr,ε(x) = (2π)dp

1/2
r (εx) that

´
‖(ν0 ∗

hr,ε) (u)‖2du = (2π)d
´
‖Fν0 (x)‖2pr (εx) dx. Letting ε → 0 yields the convergence to

(2π)d/2 r−d/2
´
‖Fν0 (x)‖2dx. By Pythagoras we thus find for any r > T0 > 0 that also´

‖(νε ∗ hr,ε) (u)‖2du→ cr−d/2 for some constant 0 < c <∞. Consequently,

lim inf
n→∞

(
ε2−2αE

[
1

12

ˆ T

0
‖∇fα,ε(Xr)‖2dr

])
&
ˆ T

T0

r−d/2dr,

which is bounded from below as T0 > 0.

Now we prove the theorem.

Proof of Theorem 3.4.1. The first inequality in (i) is clear. The limit in the last equality
follows from Lemma 3.5.16. With respect to (ii) observe that

‖ΓT (fα)− E [ΓT (fα)| Gn]‖2L2(P) = ‖ΓT (fα − fα,ε)− E [ΓT (fα − fα,ε)| Gn]‖2L2(P)

+ κn + ‖ΓT (fα,ε)− E [ΓT (fα,ε)| Gn]‖2L2(P),

where κn is the crossterm of the expansion. From Lemma 3.5.17 it follows that the
first term is of order o(∆1+s

n ), while the third one is of order O(∆1+s
n ). Therefore, the

crossterm is via the Cauchy-Schwarz inequality itself of order o(∆1+s
n ). Hence, Lemma
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3.5.16 implies that lim infn→∞∆
−(1+s)
n ‖ΓT (fα)− E[ΓT (fα)|Gn]‖2L2(P) is equal to

lim inf
n→∞

∆−(1+s)
n ‖ΓT (fα,ε)− E [ΓT (fα,ε)| Gn]‖2L2(P)

= lim inf
n→∞

(
∆1−s
n E

[
1

12

ˆ T

0
‖∇fα,ε(Xr)‖2dr

])
+ lim inf

n→∞

(
o
(

∆−(1+s)
n ∆2

n‖fα,ε‖2H1

))
.

From part (ii) of Lemma 3.5.17 it follows that the last term is 0, while part (iii) implies
the wanted lower bound for the first term, as ∆1−s

n ε2α−2 = 1.



Chapter 4.

Generalized Itô formulas

In this chapter we study the existence of the quadratic covariation process and the related
problem of finding generalized Itô formulas. The methods we use are directly related to
the ones of Section 3.1. The results are formulated in terms of Fourier-Lebesgue spaces
which are introduced in Section A.4.

4.1. Existence of quadratic covariations and Itô formulas

We first define the quadratic covariation and state some of its properties. More details
can be found in Russo and Vallois (1996, 1995). Consider two Rd-valued stochastic
processes Z = (Zt)0≤t≤T and Y = (Yt)0≤t≤T . The quadratic covariation [Z, Y ]t of Z
and Y at 0 ≤ t ≤ T is defined as

[Z, Y ]t = lim
n→∞

∑
tk∈πn,tk≤t

(
Ztk − Ztk−1

) (
Ytk − Ytk−1

)>
, (4.1.1)

if this limit exists in probability for any sequence of partitions (πn)n≥1 of [0, T ], where
the points in πn are 0 = t0 < t1 < · · · < tn = T , and such that the mesh size |πn| =
maxk |tk− tk−1| tends to zero as n→∞. [Z, Y ]t is bilinear and independent of (πn)n≥1.
Moreover, if Z, Y are continuous semimartingales, then [Z, Y ]t always exists.
From now on let X be a continuous Itô semimartingale as in (2.1.1). It follows that

[f(X), X(m)]t exists for f ∈ C1(Rd) and 1 ≤ m ≤ d and satisfies [f(X), X(m)]t =∑d
k=1

´ t
0 ∂kf(Xr)(σrσ

>
r )(k,m)dr (cf. Russo and Vallois (1996, Proposition 1.1)). Moti-

vated by the results in Section 3.1.2 we will study this expression by Fourier inversion
(cf. (3.1.6)). The results follow the same sequence as in Section 3.1, i.e. we consider
first s ≥ 0 and f ∈ FLsloc(Rd), then f ∈ Hs

loc(Rd) under a stronger assumption on X0.

Proposition 4.1.1. Assume (SM-α-β) for 0 ≤ α, β ≤ 1. Let s > 1 − 2α, s ≥ 0,
s+ β > 0. Then we have for any f ∈ FLsloc(Rd) and 1 ≤ m ≤ d∑

tk∈πn,tk≤t

(
f (Xtk)− f

(
Xtk−1

)) (
X

(m)
tk
−X(m)

tk−1

)
ucp−−→ [f(X), X(m)]t (4.1.2)

for any sequence of partitions (πn)n≥1 of [0, T ] with |πn| → 0, i.e. the sum converges
uniformly in probability to [f(X), X(m)]t.

This proposition is remarkable, similar to Theorem 3.1.3, because it is only based
on regularity assumptions for σ and b and gives a precise condition on the regularities
of σ, b and f . If X is reversible, i.e. if the time reversed process t 7→ XT−t is again a
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semimartingale, then this is a special case of Theorem 3.8 of Errami et al. (2002), because
FLsloc(Rd) ⊂ C(Rd). For Proposition 4.1.1, however, reversibility is not necessary.
In order to go beyond f ∈ FLsloc(Rd), we need to work again under Assumption (X0).

In this case the sum in (4.1.2) does not converge uniformly in time anymore, in general
(cf. Föllmer and Protter (2000)).

Proposition 4.1.2. Assume (SM-α-β) for 0 ≤ α, β ≤ 1 and (X0). Let s > 1 − 2α,
s ≥ 0, s+ β > 0. Then the quadratic covariation [f(X), X(m)]t exists for f ∈ Hs

loc(Rd)
and 1 ≤ m ≤ d, 0 ≤ t ≤ T .

The condition on X0 can be relaxed, just as in Corollary 3.1.6.

Corollary 4.1.3. Assume (SM-α-β) for 0 ≤ α, β ≤ 1. Let s > 1−2α, s ≥ 0, s+β > 0.
For any function f ∈ Hs

loc(Rd) there exists a set E ⊂ Rd such that Rd\E has Lebesgue
measure 0 and such that the quadratic covariation [f(X), X(m)]t exists for all X0 = x0 ∈
E, 1 ≤ m ≤ d, 0 ≤ t ≤ T .

This is, to the best of our knowledge, the most general condition obtained so far for
the existence of [f(X), X(m)]t for a continuous Itô semimartingale X. The set E depends
in general on the function f , i.e. it can change if we consider a different function f̃ with
f = f̃ almost everywhere. The same restriction appears in Föllmer and Protter (2000)
with respect to f ∈ L2

loc(Rd) = H0
loc(Rd) and with X being a Brownian motion.

Remark 4.1.4. (i) The proof of Proposition 4.1.2 shows that for bounded coefficients
b and σ the quadratic covariation [f(X), X(m)]t even exists as limit in Lp(P) and
that ‖[f(X), X(m)]t‖L2(P) . ‖f‖Hs .

(ii) The partition sequences (πn)n≥1 for which [f(X), X(m)]t exists are arbitrary, as
long as |πn| → 0. In particular, we do not require further conditions such as (3.1)
in Moret and Nualart (2001) or (2.2) in Föllmer and Protter (2000).

(iii) A slightly more precise argument shows that [f(X), X(m)]t exists for all bounded
measurable functions f , if X is an additive process (cf. 3.2.2). This is pos-
sible, because in this case the characteristic functions in the proof of Lemma
4.2.1 can be calculated explicitly without approximation and thus the expression
(1 + ‖u‖)−s‖Qn(u)‖L2(P) in that lemma is not only bounded, but even integrable
with respect to u.

Generalized Itô formulas hold under any of the conditions stated above.

Theorem 4.1.5. Assume (SM-α-β) for 0 ≤ α, β ≤ 1. Let s > 2− 2α, s ≥ 1, s+ β > 1
and consider 0 ≤ t ≤ T . Then the Itô formula

f (Xt) = f (X0) +

ˆ t

0
〈∇f(Xr), dXr〉+

1

2

d∑
m=1

[
∂mf (X) , X(m)

]
t

holds under any of the following conditions:

(i) f ∈ FLsloc(Rd),

(ii) f ∈ Hs
loc(Rd) and Assumption (X0) is satisfied,
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(iii) f is a function in Hs
loc(Rd) and X0 = x0 ∈ E ⊂ Rd, where E is the set of Corollary

4.1.3,

The conditions in the theorem are precisely the ones for the central limit theorems in
Section 3.1. The Itô formula of Russo and Vallois (1996) applies also to C1(Rd)-functions,
assuming reversibility of X.

4.2. Proofs

We first provide some preliminary steps. Define for a partition πn of [0, T ] and a function
f the operator

St,πn(f) = St,πn(f,X) = S
(m)
t,πn(f,X)

=
∑

tk∈πn,tk≤t

(
f (Xtk)− f

(
Xtk−1

)) (
X

(m)
tk
−X(m)

tk−1

)
.

As for the proofs of the central limit theorems in Section 3.1 consider the decomposition
St,πn(f) = Mn,t + Dn,t, where Mn,t =

∑
tk∈πn,tk≤πn(Ak − E[Ak|Ftk−1

]) and Dn,t =∑
tk∈πn,tk≤πn E[Ak|Ftk−1

] with Ak = (f(Xtk)−f(Xtk−1
))(X

(m)
tk
−X(m)

tk−1
). The martingale

Mn,t can be handled easily, as we will see later. In order to study Dn,t we apply the
idea from the introduction of this thesis. For f ∈ S(Rd) it follows by inverse Fourier
transform that Dn,t is equal to (2π)−d

´
Ff(u)Qn,t(u)du, where

Qn,t (u) =
∑

tk∈πn,tk≤t
E
[(
e−i〈u,Xtk〉 − e−i〈u,Xtk−1〉

)(
X

(m)
tk
−X(m)

tk−1

)∣∣∣Ftk−1

]
.

We will first prove upper bounds on ‖Qn,t(u)‖L2(P) uniformly in u ∈ Rd. For this it is
helpful to work under Assumption (H-α-β) first.

Lemma 4.2.1. Assume (H-α-β) for 0 ≤ α, β ≤ 1. Let s > 1−2α, s ≥ 0, s+β > 0. Let
(πn)n≥1 be a sequence of partitions with |πn| → 0 and consider 1 ≤ m ≤ d, 0 ≤ t ≤ T .
Then supu∈Rd((1 + ‖u‖)−s‖Qn,t(u)‖L2(P)) <∞.

Proof. In order to simplify the notation we consider in the following only t = T and
write Sπn(f) = ST,πn(f), Qn(u) = Qn,T (u) for fixed 1 ≤ m ≤ d. The proof is similar to
Lemma 3.5.7. For fixed u ∈ Rd consider the following four steps.
Step 1. Let ε > 0, which will be chosen later depending on u. Let tε = max(bt/εcε−

ε, 0), t ≥ 0, and consider for k = 1, . . . , n the partitions {tk−1 = ak,0 < ak,1 < · · · <
ak,Nk = tk} of [tk−1, tk] such that either Nk = 1 and (tk)ε < tk−1, or Nk > 1 and
ak,Nk−1 = (tk)ε > tk−1, while {ak,1, . . . , ak,Nk−2} are all multiples of ε in (tk−1, (tk)ε).
Let Zt =

´ t
0 σrdWr, 0 ≤ t ≤ T . Then with Uk = Ztk − Ztk−1

n∑
k=1

E
[(
e−i〈u,Xtk〉 − e−i〈u,Xtk−1〉

)
U

(m)
k

∣∣∣∣Ftk−1

]

=
n∑
k=1

Nk∑
j=1

E
[(
e−i〈u,Xak,j 〉 − e−i

〈
u,Xak,j−1

〉)
U

(m)
k

∣∣∣∣Ftk−1

]
.
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Let Xt(ε, h), 0 ≤ h ≤ t, be as in (A.3.1) with (t)ε,h = (t)ε∨h, 0 ≤ h ≤ t, and let Zt(ε, h)
be the corresponding approximation of Zt. Define furthermore Qn,t(ε, u) as

Qn,t(ε, u) =
n∑
k=1

Nk∑
j=1

E
[(
e−i〈u,Xak,j (ε,tk−1)〉 − e−i〈u,Xak,j−1

〉
)

·
(
Z(m)
ak,j

(ε, tk−1)− Z(m)
tk−1

)∣∣∣∣Ftk−1

]
and let Q̃n,t(ε, u) be defined similarly but with Xak,j instead of Xak,j (ε, tk−1). It then
follows from the Lipschitz continuity of x 7→ eix and the Cauchy-Schwarz inequality that
|Qn,t(u)− Q̃n,t(ε, u)| is upper bounded bounded by

ˆ T

0
‖br‖dr + ‖u‖

 n∑
k=1

Nk∑
j=1

E
[
‖Xak,j −Xak,j−1

‖2
∣∣Ftk−1

]1/2

·

 n∑
k=1

Nk∑
j=1

E
[
‖Z(m)

ak,j
− Z(m)

ak,j
(ε, tk−1)‖2

∣∣∣Ftk−1

]1/2

. (4.2.1)

Proposition A.3.2 shows ‖Qn,t(u) − Q̃n,t(ε, u)‖L2(P) . 1 + ‖u‖(εβ+1/2 + εα). The
same bound applies to ‖Qn,t(ε, u) − Q̃n,t(ε, u)‖L2(P) and thus also to ‖Qn,t (u) −
Qn,t (ε, u)‖L2(P).
Step 2. The reduction to Qn,t(ε, u) allows us to calculate the conditional expectations

with respect to Ftk−1
up to (tk)ε,tk−1

= (tk)ε ∨ tk−1. In order to rewrite Qn,t(ε, u) let for
1 ≤ j ≤ Nk

Uk,j = Zak,j (ε, tk−1)− Zak,j−1
= σak,j−1

(
Wak,j −Wak,j−1

)
and let Uk,0 = Vk,0 = 0. Then Qn,t(ε, u) is equal to

∑n
k=1

∑Nk
j=1(Rk,j,1(u) + Rk,j,2(u)),

where

Rk,j,1 (u) = E
[(
e−i〈u,Xak,j (ε,tk−1)〉 − e−i〈u,Xak,j−1

〉
)
U

(m)
k,j

∣∣∣∣Ftk−1

]
= E

[
e−i〈u,Xak,j (ε,tk−1)〉U

(m)
k,j

∣∣∣∣Ftk−1

]
Rk,j,2 (u) = E

[(
e−i〈u,Xak,j (ε,tk−1)〉 − e−i〈u,Xak,j−1

〉
)(

Z(m)
ak,j−1

− Z(m)
tk−1

)∣∣∣∣Ftk−1

]
= E

[(
e−i〈u,Xak,j (ε,tk−1)〉 − e−i〈u,Xak,j−1

〉e
− 1

2
‖σ>ak,j−1

u‖2(ak,j−ak,j−1)
)

·
(
Z(m)
ak,j−1

− Z(m)
tk−1

)∣∣∣∣Ftk−1

]
.

Then Xak,j (ε, tk−1) = Xak,j−1
+ b̃ak,j−1

(ak,j − ak,j−1) + Uk,j and thus

E
[
e−i〈u,Xak,j (ε,tk−1)〉

∣∣∣Fak,j−1

]
= e−i〈u,Xak,j−1

+b̃ak,j−1
(ak,j−ak,j−1)〉e

− 1
2
‖σ>ak,j−1

u‖2(ak,j−ak,j−1)
.
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We get therefore according to Assumption (H-α-β) that

|Rk,j,2 (u)| . ‖u‖ (ak,j − ak,j−1) e−
‖u‖2
2C (ak,j−ak,j−1)

· E
[
‖Zak,j−1

− Ztk−1
‖
∣∣Ftk−1

]
. ‖u‖ (ak,j − ak,j−1) e−

‖u‖2
2C (ak,j−ak,j−1),

trivially upper bounding the conditional expectation. On the other hand, since Uk,j
d∼

(σak,j−1
σ>ak,j−1

)1/2(ak,j−ak,j−1)1/2Z conditional on Fak,j−1
with Z d∼ N(0, I) independent

of Fak,j−1
, Rk,j,1(u) is equal to

e−i〈u,Xak,j−1
+b̃ak,j−1

(ak,j−ak,j−1)〉E
[
e−i〈u,Uk,j〉U

(m)
k,j

∣∣∣∣Fak,j−1

]
. (4.2.2)

Using integration by parts shows that this equals ‖u‖(ak,j − ak,j−1)e−
‖u‖2
2C (ak,j−ak,j−1).

In all, for 2 ≤ j ≤ Nk with ak,j − ak,j−1 = ε,

|Rk,j,1 (u) +Rk,j,2 (u)| . ‖u‖ (ak,j − ak,j−1) e−
‖u‖2
2C

ε,

such that with
∑Nk

j=2(ak,j − ak,j−1) ≤ tk − tk−1 and Rk,1,2(u) = 0

|Qn,t(ε, u)| . ‖u‖e−
‖u‖2
2C

ε +

∣∣∣∣∣
n∑
k=1

Rk,1,1 (u)

∣∣∣∣∣ .
Step 3. With respect to Rk,1,1(u) the last step shows only

|Rk,1,1 (u)| . ‖u‖ (ak,1 − tk−1) e−
‖u‖2
2C (ak,1−tk−1), (4.2.3)

and ak,1− tk−1 is smaller than ε. In order to obtain the improved factor e−
‖u‖2
2C

ε instead,
we use an additional approximation argument. Let Ij = {k = 1, . . . , n : (j − 1)ε ≤
tk−1 < jε} for 1 ≤ j ≤ dT/εe be the set of blocks k with left endpoints tk−1 inside the
intervals [(j − 1)ε, jε). Let Aj(u) =

∑
k∈Ij Rk,1,1(u). Then

∑n
k=1Rk,1,1(u) equals

dT/εe∑
j=1

(
Aj(u)− E

[
Aj(u)| F(j−1)ε

])
+

dT/εe∑
j=1

E
[
Aj(u)| F(j−1)ε

]
.

Aj(u) is Fjε-measurable and vanishes if Ij is empty. It follows by the Burkholder-Davis-
Gundy inequality that E[|

∑n
k=1Rk,1,1(u)|2] is up to a constant upper bounded by

E
[ dT/εe∑
j=1

|Aj (u)|2
]

+ E
[ dT/εe∑
j=1

∣∣E [Aj (u)| F(j−1)ε

]∣∣2 ]

+ E

∣∣∣∣∣∣
dT/εe∑
j=1

E
[
Aj (u)| F(j−1)ε

]∣∣∣∣∣∣
2 .
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Since ‖u‖(ak,1 − tk−1)1/2e−
‖u‖2
2C

(ak,1−tk−1) . 1, (4.2.3) shows for any j ≥ 1 and with
ak,1 − tk−1 ≤ tk − tk−1 that |Aj (u)|2 . tk − tk−1. Consequently,

E

∣∣∣∣∣
n∑
k=1

Rk,1,1(u)

∣∣∣∣∣
2
1/2

. 1 + E

∣∣∣∣∣∣
dT/εe∑
j=1

E
[
Aj (u)| F(j−1)ε

]∣∣∣∣∣∣
21/2

. 1 + E
[∣∣∣∣ dT/εe∑

j=2

E
[
Aj (u)| F(j−2)ε

] ∣∣∣∣1/2]1/2

, (4.2.4)

where we repeat the arguments above for the second inequality. In order to estimate the
conditional expectations let k ∈ Ij , 2 ≤ j ≤ dT/εe, such that (tk−1)ε = (j − 2)ε . We
will approximate

E[Rk,1,1(u)|F(j−2)ε] = E
[(
e−i〈u,Xak,1 (ε,tk−1)〉 − e−i〈u,Xtk−1

〉
)
U

(m)
k,j

∣∣∣∣F(j−2)ε

]
by

R̃k (u) = E
[(
e−i〈u,X̃ak,1 (ε,ak,1−tk−1)〉 − e−i〈u,X̃tk−1

(ε,0)〉
)
Ũ

(m)
k

∣∣∣∣F(j−2)ε

]
,

where X̃t(ε, h), 0 ≤ h ≤ t, is defined in (A.3.2), and where Ũk = σ(j−2)ε

(
Wak,1 −Wtk−1

)
.

Define also R̃k,1(u) as Rk,1,1(u), but with Ũk instead of Uk,1. Then the Cauchy-Schwarz
inequality implies (cf. (4.2.1)) that |E[Rk,1,1(u) − R̃k,1(u)|F(j−2)ε]| is up to a constant
bounded by

‖u‖E
[
‖Xak,1 (ε, tk−1)−Xtk−1

‖2
∣∣F(j−2)ε

]1/2 E [‖Uk,1 − Ũk‖2∣∣∣F(j−2)ε

]1/2
,

which is of order O(‖u‖(ak,1 − tk−1)(εβ+1/2 + εα)) by Proposition A.3.2 (with Xtk−1
=

X(ak,1)ε,tk−1
). On the other hand,

e
−i

〈
u,Xak,1 (ε,tk−1)

〉
− e−i〈u,Xtk−1〉 −

(
e
−i

〈
u,X̃ak,1(ε,ak,1−tk−1)

〉
− e−i〈u,X̃tk−1

(ε,0)〉
)

=
(
e−i〈u,Xtk−1〉 − e−i〈u,X̃tk−1

(ε,0)〉
)(

e
−i

〈
u,Xak,1 (ε,tk−1)−Xtk−1

〉
− 1

)
+ e−i〈u,X̃tk−1

(ε,0)〉
(
e
−i

〈
u,Xak,1 (ε,tk−1)−Xtk−1

〉
− e−i

〈
u,X̃ak,1(ε,ak,1−tk−1)−X̃tk−1

(ε,0)
〉)

.

Proposition A.3.2 then yields for |E[R̃k,1(u)− R̃k(u)|F(j−2)ε]| up to a constant the upper
bound (

‖u‖2
(
εβ+1 + εα+1/2

)
+ ‖u‖

(
εβ+1/2 + εα

))
(ak,1 − tk−1) .

In all, with
∑

k∈Ij (ak,1 − tk−1) ≤ 2ε, we get

E

∣∣∣∣∣∣
dT/εe∑
j=2

E
[
Aj (u)| F(j−2)ε

]
−
∑
k∈Ij

R̃k (u)

∣∣∣∣∣∣
21/2

. ‖u‖2
(
εβ+1 + εα+1/2

)
+ ‖u‖

(
εβ+1/2 + εα

)
.
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Together with (4.2.4) this means

E

∣∣∣∣∣
n∑
k=1

Rk,1,1(u)

∣∣∣∣∣
2
1/2

. 1 + ‖u‖2
(
εβ+1 + εα+1/2

)
+ ‖u‖

(
εβ+1/2 + εα

)

+ E

∣∣∣∣∣∣
dT/εe∑
j=2

∑
k∈Ij

R̃k (u)

∣∣∣∣∣∣
21/2

.

Step 4. Since Ũk are centered conditional on Ftk−1
, R̃k(u) is equal to

E
[
e−i〈u,X̃ak,1 (ε,ak,1−tk−1)〉Ũ

(m)
k

∣∣∣∣F(j−2)ε

]
= e−i〈u,X(j−2)ε+b̃(j−2)ε(ak,1−(j−2)ε)〉E

[
e−i〈u,Ũk〉Ũ (m)

k

∣∣∣∣F(j−2)ε

]
· E
[
e−i〈u,σ(j−2)ε

(Wtk−1
−W(j−2)ε)

∣∣∣∣F(j−2)ε

]
.

The last line is of order e−
‖u‖2
2C

(tk−1−(j−2)ε) ≤ e−
‖u‖2
2C

ε (with (j − 2)ε = (tk−1)ε) and the

first one is of order ‖u‖(ak,1 − tk−1)e−
‖u‖2
2C

(ak,1−tk−1) by arguing as after (4.2.2). We
conclude that

E

∣∣∣∣∣∣
dT/εe∑
j=2

∑
k∈Ij

R̃k (u)

∣∣∣∣∣∣
21/2

. ‖u‖e−
‖u‖2
2C

ε.

Step 5. In all we have shown that

‖Qn (u)‖L2(P) ≤ ‖Qn (u)−Qn (ε, u)‖L2(P) + ‖Qn (ε, u)‖L2(P)

. 1 + ‖u‖
(
ε(β+1/2) + εα

)
+ ‖u‖2

(
εβ+1 + εα+1/2

)
+ ‖u‖e−

‖u‖2
2C

ε.

Choose ε = ε(u) = 2C‖u‖−2 log(1+‖u‖3) which is bounded, continuous and tends to zero
as ‖u‖ → 0 or ‖u‖ → ∞. The last line therefore implies (1+‖u‖)−s‖Qn(u)‖L2(P) . 1 for

‖u‖ ≤ 1/2. For ‖u‖ > 1/2, on the other hand, note that e−
‖u‖2
2C

ε = (1+‖u‖3)−1 ≤ ‖u‖−3

such that for an absolute constant c > 0

(1 + ‖u‖)−s‖Qn(u)‖L2(P) . 1 +
(
‖u‖−s−2β + ‖u‖1−s−2α

)
log
(
c‖u‖3

)2
.

This is uniformly bounded in u and n using the conditions on s, α, β and that
‖u‖−r log(c‖u‖q) is bounded for any r, q > 0. This yields the claim of the lemma.

4.2.1. Proof of Proposition 4.1.1

With the help of the last lemma we will now first derive upper bounds on St,πn(f).
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Lemma 4.2.2. Assume (H-α-β) for 0 ≤ α, β ≤ 1. Let s > 1 − 2α, s ≥ 0, s + β > 0.
Let (πn)n≥1 be a sequence of partitions with |πn| → 0 and let 1 ≤ m ≤ d. Then we have
for any f ∈ FLs(Rd) that ‖sup0≤t≤T St,πn (f)‖L1(P) . ‖f‖FLs .

Proof. Recall the decomposition St,πn(f) = Mn,t(f)+Dn,t(f) from the beginning of this
section. By a density argument it is sufficient to show ‖sup0≤t≤T St,πn‖L1(P) . ‖f‖FLs
for f ∈ S(Rd), which means we only have to show ‖sup0≤t≤T Mn,t‖L1(P) . ‖f‖FLs ,
‖sup0≤t≤T Dn,t‖L1(P) . ‖f‖FLs . Since Mn,t is a discrete martingale, it follows from the
Burkholder-Davis-Gundy inequality that

‖ sup
0≤t≤T

Mn,t‖2L1(P) ≤ ‖ sup
0≤t≤T

Mn,t‖L2(P) =
n∑
k=1

‖Ak − E
[
Ak| Ftk−1

]
‖2L2(P)

.
n∑
k=1

‖Ak‖2L2(P) . ‖f‖
2
∞

n∑
k=1

E[‖Xtk −Xtk−1
‖2] . ‖f‖2∞.

This yields ‖sup0≤t≤T Mn,t‖2L1(P) . ‖f‖2FLs by the inequality |f(x)| =

(2π)−d|
´
Ff(u)e−i〈u,x〉du| .

´
|Ff(u)|du for x ∈ Rd. Since the estimates in the proof

of Lemma 4.2.1 are essentially pathwise, we can further show that

sup
u∈Rd

((1 + ‖u‖)−s sup
0≤t≤T

‖Qn,t(u)‖L1(P)) <∞.

Therefore, we have as at the beginning of this section that

‖ sup
0≤t≤T

Dn,t‖L1(P) . sup
u∈Rd

((1 + ‖u‖)−s sup
0≤t≤T

‖Qn,t(u)‖L1(P))‖f‖FLs . ‖f‖FLs .

Proof of Proposition 4.1.1. Let (πn)n≥1 be a sequence of partitions with |πn| → 0. Let
1 ≤ m ≤ d be fixed. Consider the stopping times (ρK)K≥1 and corresponding pro-
cesses (Xt(K))0≤t≤T as defined in Section A.2. We already know that St,πn(f,X(K))−
[f(X(K)), X(K)(m)]t → 0 in L1(P) for all 0 ≤ t ≤ T and f ∈ S(Rd) ⊂ C1(Rd)
(cf. Russo and Vallois (1996, Proposition 1.1)). A simple calculation shows that even
St,πn(f,X(K)) − [f(X(K)), X(K)(m)]t

ucp−−→ 0. Since S(Rd) is dense in FLs(Rd) with
respect to ‖·‖FLs , we can extend f 7→ ([f(X(K)), X(K)(m)]t)0≤t≤T uniquely to an oper-
ator on FLs(Rd). Lemma 4.2.2 yields that the operators f 7→ (St,πn(f,X(K)))0≤t≤T are
equicontinuous on FLs(Rd) and therefore St,πn(f,X(K))− [f(X(K)), X(K)(m)]t

ucp−−→ 0
holds also for f ∈ FLs(Rd).
Consider now f ∈ FLsloc(Rd) and let f (K) = fϕ for a smooth cutoff function ϕ

as in Section 3.5.1 such that f (K) ∈ FLs(Rd) has compact support and f (K) = f

on {x ∈ Rd : ‖x‖ ≤ K}. It follows that St,πn(f,X(K)) = St,πn(f (K), X(K))
ucp−−→

[f(X(K)), X(K)(m)]t. Since St,πn(f (K+1), X(K+ 1)(m)) = St,πn(f (K), X(K)(m)) almost
surely on {ρK > t}, we also have [f(X(K + 1)), X(K + 1)(m)]t = [f(X(K)), X(K)(m)]t
almost surely on {ρK > t} and therefore it is justified to set [f(X), X(m)]t :=
[f(X(K)), X(K)(m)]t on {ρK > t}. In particular, as St,πn(f,X) = St,πn(f (K), X(K)) on
{ρK > t}, we conclude that St,πn(f,X)

ucp−−→ [f(X), X(m)]t.
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4.2.2. Proof of Proposition 4.1.2

Observe first the following corresponding statement to Lemma 4.2.2.

Lemma 4.2.3. Assume (H-α-β) for 0 ≤ α, β ≤ 1 and (X0). Let (πn)n≥1 be a sequence
of partitions with |πn| → 0. Let s > 1 − 2α, s ≥ 0, s + β > 0. Then we have for
f ∈ Hs(Rd) that ‖St,πn(f)‖L2(P) ≤ C2‖f‖Hs, 0 ≤ t ≤ T , for an absolute constant C2.

Proof. As in Lemma 4.2.2 we only have to show that ‖Mn,t‖L2(P) . ‖f‖Hs , ‖Dn,t‖L2(P) .
‖f‖Hs . By a density argument it is sufficient to consider f ∈ S(Rd). By the Burkholder-
Davis-Gundy inequality it follows that

‖Mn,t‖pL2(P)
. E

[
n∑
k=1

∣∣Ak − E
[
Ak| Ftk−1

]∣∣2] . E

[
n∑
k=1

A2
k

]
.

Fourier inversion and (X0) yield for
∑n

k=1A
2
k up to a constant the bound(ˆ

|Ff (u)| |Ff (v)| |Fµ (u+ v)| d (u, v)

) n∑
k=1

(
X

(m)
tk
−X(m)

tk−1

)2
,

which is bounded by C‖f‖2Hs

∑n
k=1

(
X

(m)
tk
−X(m)

tk−1

)2
from Lemma 3.5.3. It holds that

E[
∑n

k=1(X
(m)
tk
− X(m)

tk−1
)2] . 1. Consequently, ‖Mn,t‖L2(P) . ‖f‖Hs . With respect to

Dn,t we find from Fourier inversion and independence via (X0) that ‖Dn,t‖2L2(P) is up to
a constant bounded by

ˆ
|Ff (u1)Ff (u2)| Fµ (u1 + u2) |E [Qt,n (u1)Qt,n (u2)]| d (u1, u2) ,

with Qt,n(u) as in Lemma 4.2.1. Then Lemmas 4.2.1 and 3.5.3(ii) immediately yield
‖Dn,t‖2L2(P) . ‖f‖

2
Hs .

Proof of Corollary 4.1.3. We repeat the argument from Proposition 4.1.1. Let (πn)n≥1

be a sequence of partitions with |πn| → 0 and let 1 ≤ m ≤ d be fixed. As in Proposition
4.1.1 we know that St,πn(f,X(K)) −→ [f(X(K)), X(K)(m)]t in L1(P) for all 0 ≤ t ≤ T
and f ∈ S(Rd) ⊂ C1(Rd). This time, since S(Rd) is dense in Hs(Rd) with respect to
‖·‖Hs , we can extend f 7→ [f(X(K)), X(K)(m)]t uniquely to an operator on Hs(Rd).
Lemma 4.2.3 yields that the operators f 7→ St,πn(f,X(K)) are equicontinuous from
Hs(Rd) to L2(P) and therefore St,πn(f,X(K))

P−→ [f(X(K)), X(K)(m)]t holds also for
f ∈ Hs(Rd). The same localization argument as in Proposition 4.1.1 allows us to
conclude that Sπn(f,X)

P−→ [f(X), X(m)]t for f ∈ Hs
loc(Rd).

4.2.3. Proof of Corollary 4.1.3

Proof. Let (πn)n≥1 be a sequence of partitions with |πn| → 0 and fix 1 ≤ m ≤ d.
We argue as in Corollary 3.1.6. For simplified notation assume X0 = 0 such that the
process X + x0 has initial value x0 ∈ Rd. Let (Ω′,F ′, (F ′t)0≤t≤T ,P′) be an extension
of (Ω,F , (Ft)0≤t≤T ,P) such that there is a random variable Y d∼ N(0, Id) which is
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independent of F and such that Y is F ′0-measurable, where Id is the d-dimensional
identity matrix. On this space the process X+Y satisfies Assumption (X0). Proposition
4.1.2 implies therefore St,πn(f,X + Y )

P′−→ [f(X + Y ), X]t. In particular, x0 7→ [f(X +
x0), X]t is measurable. It follows as in Corollary 3.1.6 by a coupling argument that
St,πn(f,X + x0)

P−→ [f(X + x0), X]t for almost all x0 (argue by almost sure convergence
on the extended space that Zn = |St,πn(f,X + Y ) − [f(X + Y ), X]t| converges almost
surely to zero and apply the bounded test functions 1(ε,∞)(x), ε ∈ Q, to the Zn).

4.2.4. Proof of Theorem 4.1.5

Proof. In order to prove (i) consider the stopping times (ρK)K≥1, processes
(Xt(K))0≤t≤T and localized functions f (K) ∈ FLs(Rd) for f ∈ FLsloc(Rd) from the
proof of Proposition 4.1.1. Let (f

(K)
n ) ⊂ C∞c (Rd) be a sequence of functions converg-

ing to f (K) as n → ∞ with respect to ‖·‖FLs such that ‖f (K)
n ‖FLs ≤ ‖f (K)‖FLs . The

classical Itô formula together with Proposition 1.1. of Russo and Vallois (1996) yields
F (f

(K)
n , X(K)) = G(f

(K)
n , X(K)), where

F
(
f (K)
n , X (K)

)
:= f (K)

n (Xt(K))− f (K)
n (X0(K))−

ˆ t

0
〈∇f (K)

n (Xr(K)), dXr(K)〉

and G(f
(K)
n , X(K)) := 1

2

∑d
m=1[∂mf

(K)
n (X(K)), X(K)(m)]t. f

(K)
n → f (K) with re-

spect to ‖·‖FLs implies also f
(K)
n → f (K) uniformly and thus it follows by dom-

inated convergence for stochastic integrals (Revuz and Yor (1999, Theorem 2.12))
that F (f

(K)
n , X(K)) → F (f (K), X(K)) in probability. Moreover, the proof of Lemma

4.2.2 shows that ‖G(f
(K)
n , X(K))‖L1(P) . ‖f (K)

n ‖FLs and therefore G(f
(K)
n , X(K)) →

G(f (K), X(K)) in probability. From F (f,X) = F (f (K), X(K)) and G(f,X) =
G(f (K), X(K)) on {ρK > t} according to the proof of Proposition 4.1.1, the claim
of (i) follows.
With respect to (ii) the argument is similar. This time f (K) ∈ Hs(Rd) for

f ∈ Hs
loc(Rd) and the sequence (f

(K)
n ) ⊂ C∞c (Rd) converges to f (K) with respect

to ‖·‖Hs with ‖f (K)
n ‖Hs ≤ ‖f (K)‖Hs . Then we can argue as above, noting that

‖G(f
(K)
n , X(K))‖L2(P) . ‖f (K)

n ‖Hs by Lemma 4.2.3 and using that f (K)
n (Xr(K)) →

f (K)(Xr(K)), ∂mf
(K)
n (Xr(K)) → ∂mf

(K)(Xr(K)) in L2(Rd) for all 0 ≤ r ≤ T ,
1 ≤ m ≤ d (argue as in (3.5.1)).
For (iii) assume that X0 = 0 and that Y is as in the proof of Corollary 4.1.3. Then

F (f,X + Y ) = G(f,X + Y ) P′-almost surely by (ii). In particular, F (f,X + x0) =
G(f,X + x0) P-almost surely for all x0 in some set Ẽ ⊂ Rd, where Rd\Ẽ has Lebesgue
measure zero. By taking the intersection with the set E from Proposition 4.1.1(iii), we
can assume without loss of generality that G(f,X+x0) = 1

2

∑d
m=1[∂mf(X+x0), X(m)]t

exists for all x0 ∈ E. This yields (iii).



Appendix A.

Technical tools

This appendix provides a number of important tools for the results in this thesis. We
first define stable convergence for sequences of random variables and describe some of
its properties. Then the localization procedure for continuous Itô semimartingales is
presented, which is frequently applied for proving the central limit theorems and the
generalized Itô formulas. The third section defines and discusses the Fourier-Lebesgue
spaces. We conclude with a short review of Markov semigroup theory and the functional
calculus for normal operators.

A.1. Stable convergence

The central limit theorems in Chapters 2 and 3 are based on the concept of stable
convergence, introduced by Rényi (1963).

Definition A.1.1. Let (Yn)n≥1 be a sequence of random variables on a probability space
(Ω,F ,P) with values in a Polish space (E, E). We say that Yn converges stably to Y ,
written Yn

st−→ Y , if Y is defined on an extension (Ω′,F ′,P′) of the original probability
space and if (Yn, U)

d−→ (Y,U) for all F-measurable random variables U .

Equivalently, Yn
st−→ Y if and only if E[Uf(Yn)] −→ E[Uf(Y )] for all bounded measur-

able functions f and all bounded F-measurable random variables U (Jacod and Shiryaev
(2013, Definition VIII 5.28)). In that sense stable convergence can be deemed weak L1-
convergence. Stable convergence is stronger than convergence in distribution and allows
to standardize estimators when the parameters of interest are random.
Let now Yn and Y be stochastic processes with values in the Skorokhod space
D([0, T ],Rd), T > 0, such that Yn

st−→ Y . It follows that (Yn)t
st−→ Yt for all 0 ≤ t ≤ T if

Y is continuous and that Yn + Zn
st−→ Y + Z, if Zn and Z are processes in D([0, T ],Rd)

with sup0≤t≤T ‖(Zn)t − Zt‖
P−→ 0 (Billingsley (2013, Chapter 3)). The last convergence

sup0≤t≤T ‖(Zn)t − Zt‖
P−→ 0 is also called uniform convergence in probability, which is

denoted by Zn
ucp−−→ Z. For more details on stable convergence we refer to Jacod and

Shiryaev (2013). Examples can be found in Podolskij and Vetter (2010).
Proving stable convergence of stochastic processes is generally difficult. An important

tool is the following theorem, which appeared in its probably earliest form already in
Genon-Catalot and Jacod (1993). We use only a special case adapted to our needs.

Theorem A.1.2 (Jacod and Shiryaev (2013, Theorem 7.28)). Consider on a filtered
probability space (Ω,F , (Ft)0≤t≤T ,P) a sequence of processes Yn defined by (Yn)t =
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∑bt/∆nc
k=1 ξn,k, ∆n = T/n, such that each ξn,k is a real-valued Fk∆n-measurable and square

integrable random variable. Let W = (Wt)0≤t≤T be a continuous d-dimensional Brow-
nian motion with respect to (Ft)0≤t≤T . Assume that there are continuous and adapted
Rd-valued processes (ut)0≤t≤T , (wt)0≤t≤T , zero at t = 0, such that the following condi-
tions are satisfied:

sup
0≤t≤T

‖
bt/∆nc∑
k=1

E
[
ξn,k| F(k−1)∆n

]
−Bt‖

P−→0, (A.1.1)

bt/∆nc∑
k=1

(
E
[
ξ2
n,k

∣∣F(k−1)∆n

]
− E

[
ξn,k| F(k−1)∆n

]2) P−→
ˆ t

0

(
‖ur‖2 + ‖wr‖2

)
dr, (A.1.2)

bt/∆nc∑
k=1

E
[
ξ2
n,k1{|ξn,k|>ε}

∣∣∣F(k−1)∆n

]
P−→0, for all ε > 0, (A.1.3)

bt/∆nc∑
k=1

E
[
ξn,k

(
Wk∆n −W(k−1)∆n

)>∣∣∣F(k−1)∆n

]
P−→
ˆ t

0
u>r dr, (A.1.4)

bt/∆nc∑
k=1

E
[
ξn,k

(
Nk∆n −N(k−1)∆n

)∣∣F(k−1)∆n

] P−→0, (A.1.5)

where (A.1.5) holds for all bounded real valued martingales N which are orthogonal to
all components of W . Then we have the stable convergence

(Yn)t
st−→ Bt +

ˆ t

0
〈ur, dWr〉+

ˆ t

0

〈
wr, dW̃r

〉
as processes on D([0, T ],Rd), where W̃ is a d-dimensional Brownian motion defined on
an independent extension of (Ω,F , (Ft)0≤t≤T ,P).

A.2. The localization procedure

Let X be a continuous Itô semimartingale as in (2.1.1). In the following we assume that
((σtσ

>
t )−1)0≤t≤T is almost surely bounded (cf. Assumption (SM-α-β)). We associate

with X a sequence of càdlàg processes (Fn(X))n≥1 on the same probability space. When
proving limiting statements for Fn(X), it is often convenient to localize X and the
coefficient processes b and σ.
To see how this works note that b being locally bounded implies that there are stopping

times τK with τK → ∞ as K → ∞ such that ‖bt‖ ≤ K for all 0 ≤ t ≤ τK ∧ T . Since
X and σ are càdlàg and because (σtσ

>
t )0≤t≤T is almost surely invertible, we can further

define stopping times ηK = inf{0 < t ≤ T : ‖Xt‖+ ‖σt‖+ ‖(σtσ>t )−1‖ ≥ K}, inf ∅ =∞,
with ηK → ∞ as K → ∞. Let ρK = ηK ∧ τK and set bt(K) = bt∧ρK , σt(K) =
σt∧ρK1{‖σt∧ρK ‖≤K}. We define the process X(K) = (Xt(K))0≤t≤T by Xt(K) = 0 if
ρK = 0 and otherwise by Xt(K) = X0 +

´ t
0 br(K)dr+

´ t
0 σr(K)dWr. Then Xt = Xt(K)

almost surely for all 0 ≤ t ≤ ρK and

sup
0≤t≤T

(
‖Xt(K)‖+ ‖bt(K)‖+ ‖σt(K)‖+ ‖(σt(K)σ>t (K))−1‖

)
≤ K.
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We can now exploit the fact that convergence in probability and stable convergence
are stable under localization. For this assume that there exist also càdlàg processes
Fn(X(K)) associated with X(K).

Proposition A.2.1. Let F (X) and F (X(K)), K ∈ N, be càdlàg processes, possibly
defined on an extension of (Ω,F , (Ft)0≤t≤T ,P). Assume that Fn(X)t = Fn(X(K))t and
F (X)t = F (X(K))t almost surely for all 0 ≤ t ≤ ρK and all n.

(i) If Fn(X(K))
P−→ F (X(K)) as n→∞ for all K, then also Fn(X)

P−→ F (X).

(ii) If Fn(X(K))
st−→ F (X(K)) as n→∞ for all K, then also Fn(X)

st−→ F (X).

A proof can be found in Jacod and Protter (2011, Lemma 4.4.9).

A.3. Some inequalities for Itô semimartingales

The following holds in continuous and in discrete time, as well as conditional on F0.

Theorem A.3.1 (Burkholder-Davis-Gundy inequalities, Revuz and Yor (1999, Theorem
4.1)). For every 0 < p < ∞ there exist two absolute constants cp and Cp such that for
all continuous local martingales M = (Mt)t≥0, M0 = 0, and all t ≥ 0

cpE
[
〈M,M〉p/2t

]
≤ E

[(
sup

0≤s≤t
|Ms|

)p]
≤ CpE

[
〈M,M〉p/2t

]
.

Let X be a continuous Itô semimartingale as in (2.1.1). For ε > 0 and t ≥ 0 let
tε = max(bt/εcε − ε, 0) and tε,h = h ∨ tε such that ε ≤ t − tε ≤ 2ε and (t − h) ∧ ε ≤
t− tε,h ≤ (t− h) ∧ 2ε. Define for 0 ≤ h ≤ t the approximated processes

Xt (ε, h) = Xtε,h + b̃tε,h(t− tε,h) + σtε,h(Wt −Wtε,h), (A.3.1)

X̃t (ε, h) = X(t−h)ε
+ b̃(t−h)ε

(t− (t− h)ε) + σ(t−h)ε
(Wt −W(t−h)ε

). (A.3.2)

We write X̃t(ε) = X̃t(ε, 0). Then the following estimates hold by the Burkholder-Davis-
Gundy inequality, applied componentwise.

Proposition A.3.2. Assume (H-α-β) for 0 ≤ α, β ≤ 1. Then the following holds for
some absolute constant C and all 0 ≤ h ≤ t ≤ T , t+ h ≤ T :

(i) E
[
‖Zt+h − Zt‖2

]
≤ Ch for Z = X,X(ε, h), X̃(ε, h),

(ii) E[‖Xt −Xt(ε, h)‖2|Ftε,h ] ≤ C
(

((t− h) ∧ ε)2β+2 + ((t− h) ∧ ε)2α+1
)
,

(iii) E[‖Xt+h −Xt − (X̃t+h(ε)− X̃t(ε))‖2] ≤ Ch
(
ε2β+1 + ε2α

)
,

(iv) E[‖Xt+h(ε, h)−Xt− (X̃t+h(ε, h)− X̃t(ε))‖2|Ftε ] ≤ Ch
(

(ε+ h)2β+1 + (ε+ h)2α
)
,

(v) E[‖Xt(ε, h)−Xtε,h‖2|Ftε,h ] ≤ C
(

((t− h) ∧ ε)2 + ((t− h) ∧ ε)
)
.
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A.4. Fourier-Lebesgue spaces

We use extensively the following function spaces, which appear in the form below for
example in Catellier and Gubinelli (2016).

Definition A.4.1. Let s ∈ R, p ≥ 1 and denote by FLs,p(Rd) := {f ∈ Lp(Rd) :
‖f‖FLs,p < ∞} the Fourier-Lebesgue spaces of order (s, p) with norm ‖f‖FLs,p =
(
´
|Ff(u)|p(1+‖u‖)spdu)1/p. Denote by FLs,ploc(R

d) the localized Fourier-Lebesgue spaces
which contain all functions f such that fϕ ∈ FLs,p(Rd) for all ϕ ∈ C∞c (Rd).

This definition assumes implicitly for f ∈ FLs,p(Rd) that the Fourier transform Ff
exists as a function in Lp(Rd). For p = 1 we just write FLs(Rd) (or FLsloc(Rd)) and
‖f‖FLs . For p = 2 the spaces Hs(Rd) := FLs,2(Rd) (or Hs

loc(Rd) := FLs,2loc(R
d)) are the

fractional L2-Sobolev spaces of order s with norm ‖·‖Hs := ‖·‖FLs,2 . In particular, a
function f ∈ Hs(Rd) is bsc-times weakly differentiable. The Fourier-Lebesgue spaces are
also related to the Bessel potential spaces for 1 < p <∞ (cf. (Triebel, 2010)). Observe
the following embeddings which follow from properties of the Fourier transform.

Proposition A.4.2. Let s ≥ 0. Then it holds:

(i) FLsloc(Rd) ⊂ Cs(Rd),

(ii) Csc (Rd) ⊂ Hs−ε
loc (Rd), ε > 0,

(iii) Hs
loc(Rd) ⊂ FLs

′
loc(Rd), s > s′ + d/2.

Note that we can gain in regularity for some functions by considering larger p. For
example, the Fourier transforms of the indicator functions 1[a,b], a < b, decay as |u|−1 for
|u| → ∞ and thus 1[a,b] ∈ FL0−(R), but also 1[a,b] ∈ H1/2−(R). Similarly, x 7→ e−|x| lies
in FL1−(R) and in H3/2−(R). For another example of negative regularity see Theorem
3.2.14. More details on these spaces can be found in Adams and Fournier (2003), Di
et al. (2012), Triebel (2010).

A.5. Semigroup theory and the functional calculus

This section recalls the basic objects needed in Section 3.3. For more details on semigroup
theory and the functional calculus see Bakry et al. (2013, Chapters 1.4.1 and A.4), Rudin
(2006, Chapter 13) or Engel and Nagel (1999).
Let X be a Markov process with values in a Polish space S and let µ be any probability

measure S. On the induced Hilbert space (L2(µ), ‖·‖µ) denote by (Pr)r≥0 the Markov
semigroup associated with X which satisfies Prf(x) = E[f(Xr)|X0 = x] for f ∈ L2(µ),
x ∈ S, and Pr+s = PrPs, r, s ≥ 0. The infinitesimal generator of the semigroup is
defined as

Lf = lim
r→0

Prf − f
r

, f ∈ dom(L),

where the limit is taken with respect to ‖·‖µ and where the domain dom(L) ⊂ L2(µ)
is the set of all functions for which this limit exists. If (Pr)r≥0 is strongly continuous,
i.e. Prf −→ f in L2(µ) as r → 0 for all f ∈ L2(µ), then the semigroup is called Feller.
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This is true for most Markov processes in practice, including Lévy processes and many
diffusions. In the Feller case, L is a densely defined closed linear and usually unbounded
operator on its domain with spectrum σ(L) ⊂ {λ ∈ C : Re(λ) ≤ 0}.

In order to define fractional powers of the generator assume that L and thus the
operators Pr are normal, i.e. LL∗ = L∗L, where L∗ is the Hilbert space adjoint of L
with respect to L2(µ). In that case the spectral theorem (Rudin (2006, Theorem 13.33))
guarantees the existence of a resolution of the identity or spectral measure (EA)A∈B(C) on
L2(µ). This means that (EA)A∈B(C) is a family of orthogonal projections EA : L2(µ)→
L2(µ) for Borel sets A ⊂ C such that for every f, g ∈ L2(µ) the map A 7→ 〈EAf, g〉µ is
a complex measure supported on σ(L). Moreover, A 7→ 〈EAf, f〉µ is a positive measure
with total variation 〈ECf, f〉µ = ‖f‖2µ. By the spectral theorem we can associate to any
measurable function Ψ : C 7→ C a densely defined closed operator Ψ(L) by the relation

〈Ψ (L) f, g〉µ =

ˆ
σ(L)

Ψ (λ) d〈Eλf, g〉µ, f, g ∈ L2 (µ) ,

with domain dom(Ψ(L)) = {f ∈ L2(µ) :
´
σ(L) |Ψ(λ)|2d〈Eλf, f〉µ < ∞}. It satisfies

‖Ψ(L)f‖2µ =
´
σ(L) |Ψ(λ)|2d 〈Eλf, f〉µ. In particular, we can define the fractional oper-

ators |L|s/2 on dom(|L|s/2) for 0 ≤ s ≤ 1. At last, by the spectral theorem for normal
semigroups (Rudin (2006, Theorem 13.38)), the semigroup can be realized in its expo-
nential form, i.e. Pr = Ψ(L) with Ψ(x) = erx, r ≥ 0.
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