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Plan1

Review: causal inference in observational studies

Negative controls

Difference-in-Differences

Key references for this lecture

I Shi et al. (2020) for negative controls

I Wing et al. (2018) and Roth et al. (2022) for difference-in-differences

1Acknowledgement: This lecture is built in part upon lecture notes from Xu Shi (UMich) and Linbo Wang
(U Toronto).
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Casual inference in observational studies

I Methods under the no unmeasured confounders assumption

1. Matching (Lecture 2)
2. Outcome regression, IPW, AIPW, and entropy balancing weight (Lecture 3)

I Methods to address unmeasured confounding

1. Sensitivity analysis (Lecture 3)
2. Natural experiment: instrumental variable (Lecture 5), regression discontinuity

design2

3. Causal exclusion (this lecture): negative control exposure/outcome,
difference-in-differences, placebo sample3

2See https://en.wikipedia.org/wiki/Regression discontinuity design. Biggs et al. (2017) applied the
regression discontinuity design to compare those who received abortions and those were denied abortion in the
near-limit group.

3Ye et al. (2022)
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The “randomized” scenario in causal inference

A Y

X

causal effect

I Estimand: the average treatment effect ATE = E [Y (1)]− E [Y (0)] and many
others

I Key assumption: All confounders are measured

- “Randomized” within each stratum of X
- Not empirically verifiable
- Sensitivity analysis quantifies how robust the study conclusion is
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Unmeasured confounding is a threat to causal inference

A Y

X U

causal effect

I Unmeasured confounders U

- Cannot create a “randomized” scenario within stratum of X
- The observed association might be an artifact of confounding bias

I For ease of presentation, X will be omitted from the graph.
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Association (prediction) 6= Causality

I Dog obesity is associated with (predictive of) human obesity.

I Intervention on dog does not reduce owner’s weight. (no causal effect)

Dog’s weight (A) Owner’s weight (Y )

Life style (U)

(Unmeasured confounders)

0
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Association = Causation + Confounding bias

A

flu shot

Y

flu-related
hospitalization

U

health seeking

causal effect

I Unmeasured confounding by health seeking behavior

I How to generate more reliable evidence?

7 / 20



Review: causal inference in observational studies Negative controls Difference-in-Differences References

Instrumental variable

AZ

IV: “random”
encouragement

flu shot

Y

flu-related
hospitalization

U

health seeking

causal effect
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Mendelian randomization: using genetic variants as IVs

AZ

IV: ALDH2 gene4 drinking

Y

blood pressure

U

unmeasured behavioural,
sociodemographic factors

causal effect

4Chen et al. (2008)
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Negative control outcome (NCO)

A

flu shot

Y

flu-related
hospitalization

U

health seeking

W

injury/trauma
hospitalization

causal effect

%

I Find a proxy of health-seeking: injury/trauma hospitalization
I Key knowledge: flu shot does not prevent injury/trauma hospitalization
I Repeat the analysis using the NCO
I Unexpected association indicates unmeasured confounding bias 10 / 20
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Negative control exposure (NCE)

A

flu shot

Y

flu-related
hospitalization

U

health seeking

WZ

annual wellness
visit history

injury/trauma
hospitalization

causal effect

%%

I Find another proxy of health-seeking: annual wellness visit history
I Key knowledge: wellness visit history does not prevent flu-related hospitalization
I Repeat the analysis using the NCE
I Unexpected association indicates unmeasured confounding bias 11 / 20
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Negative control exposure (NCE) and outcome (NCO)

A

treatment

Y

outcome

U

unmeasured confounders

WZ

NCE NCO

causal effect

%%

I Z is NCE if

1. it does not causally affect Y ,W
2. it is associated with U

I W is NCO if

1. it is not causally affected by A,Z
2. it is associated with U

12 / 20



Review: causal inference in observational studies Negative controls Difference-in-Differences References

Identification assumptions

I (Proxy variables) (Z ,A) ⊥ (Y (a),W ) | (U,X )

I (Positivity) 0 < P(A = 1 | U,X ) < 1

I (Full rank/Completeness) Z ,W should have enough variability relative to the
variability of U
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Double negative control: intuition for bias adjustment (Shi et al., 2020)

A

treatment

Y

outcome

U

unmeasured confounders

WZ

NCE NCO

%%

I Confounding bias is a product of U-A and U-Y association
- Effect of A on W is a product of U-A and U-W association
- Problem solved if U has the same effect on Y and W (the strategy taken by DID)

I Otherwise: effect of Z on Y and W can recover the difference
- Effect of Z on W is a product of U-Z and U-W association
- Effect of Z on Y is a product of U-Z and U-Y association 14 / 20
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Nonparametric identification of ATE using double negative control
For binary U,Z ,W ,

ATE = ∆naive −∆bias

∆naive = E [δYA (Z ,X )], ∆bias = E [
δYZ (1− A,X )

δWZ (1− A,X )
δWA (Z ,X )]

where δ?∗(·) is the effect of ∗ on ? conditional on all other observed variables.

I NCO recovers the bias via δWA (·) up to a scale; NCE recovers the scale

I δWA (Z ,X ) = E [W |A = 1,Z ,X ]− E [W |A = 0,Z ,X ]

I δYZ (A,X ) = E [Y |A,Z = 1,X ]− E [Y |A,Z = 0,X ]

I δWZ (A,X ) = E [W |A,Z = 1,X ]− E [W |A,Z = 0,X ]
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Example: do earned income tax credits (EITC) reduce deaths of despair?

(National Conference of State Legislatures) 16 / 20
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Difference-in-Differences (DID) for causal effect

I Challenges from unmeasured confounding: states with EITC laws differ from
states without them in other ways that may be related to deaths of despair

I DID is commonly used for estimating causal effects with panel data
I Prototypical DID application: how do changes in state policies affect individual

- Did Missouri’s handgun purchaser licensing law affects firearm homicide rates?
- Did minimum wage laws change employment levels?
- Motivating application: do EITC reduce deaths of despair?

17 / 20



Review: causal inference in observational studies Negative controls Difference-in-Differences References

DID for Causal Effects

Identify the counterfactual ⇔ Identify the treatment effect
Parallel Trends: Absent treatment, treated and control would evolve over time in the
same way. (functional-form dependent)

t

Yt

1 2

Counterfactual

Trt. eff.

pre-post

E(Y2 − Y1 | G = trt)

E(Y2 − Y1 | G = ctl)

Alternatively: Yigt = λt + αg + DID · Dgt + εigt

Trt.
eff.

= DID

Control group

Before treatment

After treatment
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Statistical methods (Roth et al., 2022)
I If all treated units adopt the treatment at the same time:

- Static Two-way fixed effects (TWFE) model,

Yit = βDit + γTXit + αi + ft + εit

- Dynamic TWFE model, Ei is when unit i initiates the treatment (Ei =∞ if unit i is
never treated)

Yit =
∑

−k≤`≤k̄

β`I (t − Ei = `) + γTXit + αi + ft + εit

I If treated units adopt the treatment at different time (staggered
adoption):

- Use the static TWFE model only if confident in treatment effect homogeneity
- Use the dynamic TWFE model only if confident that there is heterogeneity only in

time since treatment
- Otherwise, consider using a “heterogeneity-robust” estimator, e.g., Callaway and

Sant’Anna (2021)
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Back to the EITC example (Dow et al., 2020)
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