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1. Introduction and motivation

Recall the following definitions from Part II Galois theory. If L ⊃ K
are fields, we call L an extension of K, and this is denoted by L|K.
We can think of L as a vector space over K, and the dimension of this
vector space is called the degree of L over K. The degree is denoted
by [L : K].

Definition 1. A number field is a subfield of the complex numbers C
that is a finite degree extension of the rationals Q.

Example 2. The field of rational numbers Q is a number field.

Example 3. Take your favourite algebraic number α, that is, a root of
a polynomial with integer coefficients. Then Q(α), the smallest subfield
of C containing α, is a number field. Its degree is the degree of the
minimal polynomial of α.

By the primitive element theorem (Part II Galois theory), every num-
ber field is of the form Q(α) for some α ∈ C.

In this course, two families of number fields will recur.

Version of 8 March 2024.
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Example 4 (Quadratic fields). Let m be a square-free integer. Then
Q(m1/2) is a number field of degree 2, called a quadratic field.

Example 5 (Cyclotomic fields). Let n ≥ 3, and let θn = e2πi/n. Ob-
serve that θnn = 1, that is, θn is an n-th root of unity, and n is the
smallest positive exponent with this property. Let ϕ(n) denote the
number of residue classes mod n that are coprime to n. Then Q(θn)
is a number field of degree ϕ(n), called a cyclotomic field.

1.1. Why bother? Number theory is the study of integers. As we
will soon see, the notion of integers can be extended to include certain
elements in number fields, and most questions about rational integers,
that is, Z, can be naturally extended to this setting.

This may not sound very convincing. However, number fields are also
very useful for solving many problems that are entirely about rational
integers. As an example, in this course, we will consider the Fermat
equation

(1) xn + yn = zn, x, y, z ∈ Z.

We first recall the n = 2 case of this equation, whose solutions are
Pythagorean triples. We aim to find all primitive solutions, that is,
those with gcd(x, y, z) = 1. One may get all solutions by multiplying
primitive solutions by arbitrary integers. Furthermore, we will only
look for solutions with x, y, z ∈ Z≥0. Observe that any common prime
factor of x and y must also divide z by the equation, so a primitive
solution also satisfies gcd(x, y) = 1. Now we assume, as we may, that
2 - y, and rewrite the equation as

(z + x)(z − x) = z2 − x2 = y2.

We observe that any common prime factor of (x + z) and (x − z)
must also divide 2x = (z + x) − (z − x) and 2z = (z + x) + (z − x)
and y (because x+ z|y2). Then gcd(z + x, z− x)| gcd(2x, y, 2z) = 1 by
gcd(x, y, z) = 1 and 2 - y. Observe that y2 contains all prime factors
with even multiplicity. When we distribute the prime factors of y2

between z + x and z − x, all instances of the same prime must go to
the same factor, because the two factors are coprime.

Therefore, there are odd m ≥ n ∈ Z≥0 with gcd(m,n) = 1 such
that z + x = m2 and z − x = n2. A simple calculation yields that any
non-negative primitive solution of our equation must satisfy

x =
m2 − n2

2
, y = mn, z =

m2 + n2

2
.

It is easy to verify that all x, y, z in this form are non-negative prim-
itive solutions, provided m and n satisfy the conditions we imposed.
Therefore, we solved the equation.
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Remark 6. It is more customary to write the solution in the equivalent
form

x = 2mn, y = m2 − n2, z = m2 + n2

with the assumptions that m > n ∈ Z≥0, gcd(m,n) = 1 and exactly
one of them is even.

Fermat claimed that there are no solutions of (1) with x, y, z ∈ Z≥1

and n ≥ 3. We try to generalize the above argument. The first step is
a suitable factorization of the equation. The n = 2 case was based on
X2 − 1 = (X + 1)(X − 1). For general n, we have

Xn − 1 =
n−1∏
j=0

(X − θjn).

Indeed, θjn for j = 0, . . . , n − 1 are all the n’th roots of unity. Where
n is odd, which we will now assume, this can be more conveniently
rewritten as

Xn + 1 =
n−1∏
j=0

(X + θjn)

using the substitution X → −X. Now we plug in X = x/y and get

zn = xn + yn =
n−1∏
j=0

(x+ θjny)

Our next step would be to show that (x + θjny) are n’th powers
in Z[θn], but there are two major difficulties. The first, and more
serious one is that our argument in the n = 2 case relied on unique
factorization. However, Z[θn] is a unique factorization domain (UFD)
only for finitely many n’s. This property already fails for n = 23, and,
in fact, for all primes n ≥ 23. The second issue is that even if Z[θn] is
a UFD, an element that contains all primes with multiplicity divisible
by n, may not be an n’th power. All that we can say is that it is
of the form uαn, where α ∈ Z[θn] and u is a unit in Z[θn], that is,
u, u−1 ∈ Z[θn].

Despite these difficulties, Kummer was able to show the following
result in 1850.

Theorem 7 (Kummer). Let p > 2 be a regular prime. Then the equa-
tion

xp + yp = zp, x, y, z ∈ Z≥1

has no solutions.

We will define what a regular prime is later in the course. Here we
just note that there are only three irregular primes less than 100: 37,
59 and 67. Moreover, it has been conjectured (later by Siegel) that
the density of regular primes is e−1/2 ≈ 0.6065 . . ., however even the
infinitude of regular primes is an open problem.
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In any case, this is a great result. Its proof relies on a remarkable
theory of Kummer that “restores” unique factorization in cyclotomic
fields. This has been extended by Dedekind and Kronecker in the sec-
ond half of the 19th century to all number fields using two conceptually
different but equivalent constructions.

1.2. Aims of the course. In this course, we will first discuss what the
appropriate notion of an integer is in general number fields. Then we
will develop a substitute for unique factorization following Dedekind.
Next we will study the structure of units. In the final part of the
lecture we will put most of the fire power we will have acquired to good
use and prove Kummer’s above quoted theorem under the additional
assumption that p - xyz.

2. Rings of integers

Let α be an algebraic number. Recall that there is a unique monic
polynomial P ∈ Q[x] of minimal degree such that P (α) = 0. This
polynomial is called the minimal polynomial of α, and it is necessarily
irreducible in Q[x].

In the field Q(α), all elements have a unique representation of the
form

a0 + a1α + . . .+ ad−1α
d−1

where a0, . . . , ad−1 ∈ Q and d is the degree of α.

Definition 8. A complex number is an algebraic integer if it is alge-
braic and its minimal polynomial has integer coefficients.

Remark 9. If f(α) = 0 for some monic f ∈ Z[x], then α is an algebraic
integer even if f is not the minimal polynomial. Indeed, we must have
f = g · h, where g is the minimal polynomial of α and h ∈ Q[x]
is monic. By Gauss’s lemma (Part IB Groups, Rings and Modules),
we must have g, h ∈ Z[x], so g, the minimal polynomial, has integer
coefficients. (Exercise: think through the details.)

Theorem 10. Algebraic integers form a ring.

This ring is denoted by O.

Definition 11. Let K be a number field. We write OK = O∩K, and
call it the ring of integers of K.

Soon we will see that it is crucial for the theory that we develop
as a substitute for unique factorization that we work with OK rather
than a subring of it. Introducing it was one of the key inventions of
Dedekind and Kronecker when they generalized Kummer’s approach
from cyclotomic fields to general number fields.

The purpose of this section is to prove Theorem 10. Before we start,
we give a few examples.
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Example 12. The ring of integers in Q is Z. Indeed, the minimal
polynomial of a/b with gcd(a, b) = 1 is x− a/b.

Example 13. Let m 6= 0,±1 ∈ Z be square-free, and K = Q(m1/2).
Then

OK =


{
a+ b · 1 +m1/2

2
: a, b ∈ Z

}
if m ≡ 1 mod 4

{a+ bm1/2 : a, b ∈ Z} otherwise.

Hint: Observe that a+ bm1/2 with a, b ∈ Q is a root of the polynomial

(x− a− bm1/2)(x− a+ bm1/2) = x2 − 2ax+ (a2 − b2m),

and it is an algebraic integer if and only if both 2a ∈ Z and a2− b2m ∈
Z. The details are left as an exercise.

Example 14. Let n ≥ 3, let θn = e2πi/n, and let K = Q(θn). Then

OK = Z[θn] = Z⊕ θnZ⊕ . . .⊕ θϕ(n)
n Z.

Later in the course we will prove this in the case where n is a prime.

A number field K is called monogenic if there is some α ∈ K such
that OK = Z[α]. The above examples show that quadratic and cyclo-
tomic fields are monogenic. However, this is not true in general. See
the second example sheet for an example.

We turn to the proof of Theorem 10. It relies an the following alter-
native characterizations of algebraic integers.

Proposition 15. Let α ∈ C. The following are equivalent.

(1) The number α is an algebraic integer.
(2) The ring Z[α] is a finitely generated Z-module, that is, there

are β1, . . . , βn ∈ Z[α] such that

Z[α] = β1Z + . . .+ βnZ.

(3) There is a finitely generated Z-submodule of C that is closed
under multiplication by α.

Proof. If α is an algebraic integer of degree d, then we can write αn

as a linear combination of lower powers with integer coefficients using
the minimal polynomial of α if n ≥ d. (Writing f for the minimal
polynomial, we have αn = (αd − f(α))αn−d.) By induction, we can
show that αn is contained in Z + αZ + . . . + αd−1Z for all n ∈ Z≥0,
hence Z[α] is finitely generated. This proves that item (1) implies item
(2).

Item (2) implies item (3) trivially.
We turn to the proof that item (3) implies item (1). Let β1Z + . . .+

βnZ be a module that is closed under multiplication by α. We want
to show that α is an algebraic integer, and to that end, we exhibit a
monic polynomial in Z[x] that vanishes at α.
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For all i = 1, . . . , n, there are integers mi,1, . . . ,mi,n such that

αβi = mi,1β1 + . . .+mi,nβn.

We consider the matrix M with entries mi,j for i, j = 1, . . . , n, and
observe

M ·

 β1
...
βn

 =

 αβ1
...

αβn

 .

We see that α is an eigenvalue of the matrix M , hence it is a root of
the characteristic polynomial det(x Id−M). �

Proof of Theorem 10. Let α, β ∈ O. We show that α− β and αβ ∈ O,
which is enough to show that O is a ring.

We prove that Z[α, β] is a finitely generated module. This is closed
under multiplication by a− b and αβ, hence a− b, αβ ∈ O by Propo-
sition 15, as needed.

By Proposition 15, Z[α] and Z[β] are finitely generated Z-modules.
Let α1, . . . , αn and β1, . . . , βm be generators for them, respectively.
Then Z[α, β] is generated by {αiβj : i = 1, . . . , n, j = 1, . . . ,m}, and
the theorem is proved. �

Remark 16 (Non-examinable). Theorem 10 can also be proved using
the theory of symmetric polynomials. We briefly sketch this here. For
details, see [2, Chapter 10].

We denote by e0(X1, . . . , Xn), . . . , en(X1, . . . , Xn) the elementary sym-
metric polynomials in n indeterminates. The polynomial ej also de-
pends on n, of course, but we make this explicit in our notation only
when we list the arguments. The key result (from Part II Galois The-
ory) we use is that for any symmetric polynomial f(X1, . . . , Xn), there
is a polynomial g(Y0, . . . , Yn) such that f = g(e0, . . . , en), and the coef-
ficients of g can be taken from the same ring where the coefficients of
f come from.

Now let α and β be two algebraic integers of degrees n and m respec-
tively. We write α1, . . . , αn and β1, . . . , βm for the roots of the minimal
polynomials of α and β respectively. (These lists contain α and β
of course.) We note that (−1)kek(α1, . . . , αn) and (−1)kek(β1, . . . , βm)
are the coefficients of the minimal polynomials of α and β respectively,
and hence they are integers. We claim that ek(. . . , αi + βj, . . .) with i
and j running thorough their respective ranges is an integer for each
k = 1, . . . , nm. Then α + β is the root of a monic polynomial with
integer coefficients, hence it is an algebraic integer.

To show the claim, it is enough to show that for each k, there is a
polynomial g(U0, . . . , Un, V0, . . . , Vm) with integer coefficients such that

ek(. . . , Xi + Yj, . . .) = g(e0(X1, . . . , Xn), . . . , en(X1, . . . , Xn),(2)

e0(Y1, . . . , Ym), . . . , em(Y1, . . . , Ym)).
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This can be proved by two applications of the “key result” mentioned
above. First we consider the left hand side of (2) a symmetric polyno-
mial in Y1, . . . , Ym with coefficients in the ring Z[X1, . . . , Xn], and write
it as a polynomial g0 in el(Y1, . . . , Ym), l = 0, . . . ,m with coefficients
in Z[X1, . . . , Xn]. Now each of the coefficients of g0 is a symmetric
polynomial in X1, . . . , Xn, hence they can be written as polynomials in
el(X1, . . . , Xn), l = 0, . . . , n with integer coefficients.

3. Additive structure of the ring of integers

Let K be a number field with d = [K : Q]. The aim of this section
is to show that there are α1, . . . , αd ∈ OK such that

OK = α1Z⊕ . . .⊕ αdZ.
Such a collection of elements α1, . . . , αd, if exists, is called an integral
basis for K.

Let M be a finitely generated Z-submodule (or equivalently an ad-
ditive subgroup) of K. By the structure theorem of finitely generated
modules (Part IB Groups, Rings and Modules) we know that

M ∼= Zr ⊕ (Z/q1Z)⊕ . . .⊕ (Z/qsZ)

for some r, s and q1, . . . , qs. Since K does not contain any elements of
finite additive order, M ∼= Zr, hence

M = α1Z⊕ . . .⊕ αrZ
for some α1, . . . , αr.

Since α1, . . . , αr are linearly independent over Q, we must have r ≤ d.
In addition, OK contains d linearly independent elements over Q (just
take 1, α, . . . , αd−1 for some α ∈ OK with K = Q(α)). Therefore, if we
knew that OK is a finitely generated module, then we also knew that
an integral basis exists.

In what follows, we attach a quantity called the discriminant to tu-
ples of elements (α1, . . . , αd) ∈ OdK . We will show that the discriminant
is always an integer, and it is 0 if and only if the elements in the tuple
are linearly dependent over Q. We will also show that the discrimi-
nant depends only on the module generated by the tuple and that it
decreases in absolute value when we add new elements to the module.
After this, the existence of an integral basis will follow easily.

3.1. Trace and norm. First we recall some facts and definitions from
Part II Galois Theory. Let L|K be a finite extension of fields. With
α ∈ L, we write mα for the linear transformation on L considered a
vector space over K given by x 7→ α · x. Then the trace and norm of α
is defined as

TrL|K(α) = tr(mα), NL|K(α) = det(mα).

The trace and the norm have the following properties.
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• If α ∈ K, then TrL|K(α) = [L : K]α and NL|K(α) = α[L:K].
• The trace is additive and the norm is multiplicative:

TrL|K(α + β) = TrL|K(α) + TrL|K(β),

NL|K(αβ) = NL|K(α) NL|K(β).

• If M |L|K are finite extensions, then

TrM |K(α) = TrL|K(TrM |L(α)),

NM |K(α) = NL|K(NM |L(α)).

Now let K be a number field with d = [K : Q]. We write Tr and
N for TrK|Q and NK|Q. Recall that there are d distinct embeddings of
K into C, which we denote by σ1, . . . , σd. (If K = Q(α), and f is a
minimal polynomial of α, then the images of α under the embeddings
are precisely the roots of f , and the image of α determines the em-
bedding uniquely.) We can express the trace and the norm using the
embeddings as

Tr(α) = σ1(α) + . . .+ σd(α), N(α) = σ1(α) · · ·σd(α)

for α ∈ K.
Let α ∈ K, and let f(x) = adx

d+ . . .+a1x+a0 ∈ Z[x] be its minimal
polynomial. Then

Tr(α) = −ad−1/ad, N(α) = (−1)da0/ad.

As a corollary of this, we see that traces and norms of algebraic integers
are (rational) integers.

3.2. Discriminants. Let K be a number field of degree d and denote
by σ1, . . . , σd : K → C the complex embeddings, as above.

Definition 17. The discriminant of a d-tuple (α1, . . . , αd) ∈ K is de-
fined as

disc(α1, . . . , αd) = det(σi(αj))
2.

Here and throughout this note, we will write det(aij) for determinants
whose entries are aij with the indices running through their ranges,
which should always be clear form the context.

Example 18. Let α ∈ K such that K = Q(α), and write f for its
minimal polynomial. An important d-tuple is 1, α, . . . , αd−1, because
it is a basis for Z[α] as a Z-module. For this tuple, we have

disc(1, α, . . . , αd−1) =
∏

1≤i<j≤d

(σi(α)− σj(α))2 = (−1)n(n−1)/2 N(f ′(α)).

This can be proved by computing the Vandermonde determinant det(σi(α
j)).

See the first example sheet.
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Lemma 19. We have

disc(α1, . . . , αd) = det(Tr(αiαj)).

If α1 . . . , αd ∈ OK, disc(α1, . . . , αd) ∈ Z.

Proof. Writing [aij]ij for the d×d matrix whose ij entry is aij, we have

[Tr(αiαk)]ik = [σj(αi)]ij[σj(αk)]jk.

Using that the determinant does not change if we take the transpose
of a matrix, and that it is multiplicative, we get

det(Tr(αiαj)) = det(σi(αj))
2,

as required. �

Lemma 20. We have

disc(α1, . . . , αd) = 0

if and only if α1, . . . , αd are linearly dependent over Q.

Proof. If α1, . . . , αd are linearly dependent over Q, then the rows (and
also the columns) of the matrix

[Tr(αiαj)]ij

are linearly dependent, hence its determinant is 0, as required.
For the converse, we suppose to the contrary that α1, . . . , αd are

linearly independent over Q, yet det(Tr(αiαj)) = 0. Then the rows of
[Tr(αiαj)]ij are linearly dependent over Q, hence there are a1, . . . , ad ∈
Q, not all 0, such that

0 = a1 Tr(α1αj) + . . .+ ad Tr(αdαj) = Tr((a1α1 + . . .+ adαd)αj)

for all j.
Since α1, . . . , αd are linearly independent, they form a Q-basis of K.

By linearity of the trace, we have

Tr((a1α1 + . . .+ adαd)β) = 0

for all β ∈ K. Using again the linear independence of α1, . . . , αd, we
see that (a1α1 + . . .+ adαd) 6= 0. We plug in β = (a1α1 + . . .+ adαd)

−1

into the above identity and get

Tr(1) = 0,

which is our desired contradiction. �

Corollary 21. The numbers α1, . . . , αd are linearly independent over
Q if and only if the vectors (σ1(αj), . . . , σd(αj)) ∈ Cd for j = 1, . . . , d
are linearly independent over C.

Proof. Both properties are equivalent to disc(α1, . . . , αd) 6= 0. �
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3.3. Geometric interpretation. We give a geometric interpretation
of discriminants. For now, this is not strictly necessary for our devel-
opment of the theory, and it will just serve as a source of intuition.
However, later on in the course, we will rely on it more.

Let K be a number field of degree d over Q. Recall the d distinct
embeddings σ1, . . . , σd : K → C. We denote by r the number of the real
embeddings, that is those that send K into R. We assume, as we may
that σ1, . . . , σr are the real embeddings. The remaining embeddings
come in pairs of complex conjugates. We write s = (d − r)/2, and
denote by τ1, τ1, . . . , τs, τs the s pairs of complex embeddings of K.
(These are just a relabelling of σr+1, . . . , σd.)

We consider the map Σ : K → Rd defined by

Σ(α) = (σ1(α), . . . , σr(α),Re(τ1(α)), Im(τ1(α)), . . . ,Re(τs(α)), Im(τs(α)))T .

This is clearly a homomorphism of additive groups.

Lemma 22. For α1, . . . , αd ∈ K, we have

(−4)s det(Σ(α1), . . . ,Σ(αd))
2 = disc(α1, . . . , αd).

In particular, Σ(α1), . . . ,Σ(αd) are linearly independent over R if and
only if disc(α1, . . . , αd) 6= 0.

Proof. Fix some k ∈ {1, . . . , s}. Two of the rows of the matrix [σi(αj)]ij
are equal to τk(α1), . . . , τk(αd) and τk(α1), . . . , τk(αd). We add the sec-
ond of these to the first, and then subtract half of the result from the
second. After these row operations, the two rows of the matrix will be
replaced by

2 Re(τk(α1)), . . . , 2 Re(τk(αd)), and −i Im(τk(α1)), . . . ,−i Im(τk(αd)).

We can do this for all k, and get

(2i)s · det(Σ(α1), . . . ,Σ(αd)) = ± det(σi(αj)),

with the sign depending on the sign of the permutation that moves
σr+1, . . . , σd into τ1, τ1, . . . , τs, τs. Squaring the above equation will give
the claim. �

Let Λ be a lattice in Rd, that is, an additive subgroup of the form
v1Z ⊕ . . . ⊕ vdZ for some linearly independent v1, . . . , vd ∈ Rd. A
fundamental domain for Λ is a bounded Borel set F ⊂ Rd that contains
exactly 1 point in each coset u + Λ for u ∈ Rd. (Many authors use a
different notion of a fundamental domain. If you do not know what a
Borel set is, do not despair; it is a regularity condition that allows a
nice definition of volume. For the purposes of this course, you do not
need to know more.)

Example 23. The fundamental parallelepiped, that is the set

[0, 1) · v1 + . . .+ [0, 1) · vd
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is a fundamental domain and it has volume (that is, Lebesgue measure)
det(v1, . . . , vd).

Lemma 24. All fundamental domains of a lattice have the same vol-
ume.

This common value of volume is called the covolume of Λ and it is
denoted by coVol(Λ). We note that

disc(α1, . . . , αd) = (−4)s coVol(Σ(α1)Z + . . .+ Σ(αd)Z)2.

The discriminant can be interpreted a quantity that measures how
dense the lattice spanned by Σ(αj) is in Rd.

Proof. Let F1, F2 be two fundamental domains. Notice that Rd is a
disjoint union of the sets F1 + u for u ∈ Λ. We have

Vol(F2) =
∑
u∈Λ

Vol(F2 ∩ (F1 + u)).

(By the boundedness condition for fundamental domains, the above
sum can be made finite, but if you took Part II Probability and Mea-
sure, you will know that countable sums are OK.) Similarly,

Vol(F1) =
∑
u∈Λ

Vol(F1 ∩ (F2 − u)).

Now the claim follows by

F2 ∩ (F1 + u) = F1 ∩ (F2 − u) + u

and translation invariance of volume. �

3.4. More on discriminants. We show that the discriminant of a
tuple depends only on the module it generates, and then we discuss the
relationship between the discriminants of a module and a submodule.
These follow easily from the above geometric interpretation, but we
give an algebraic proof.

Let K be a number field of degree d over Q.

Proposition 25. Let α1, . . . , αd ∈ K and β1, . . . , βd ∈ K be two tuples
of Q-linearly independent elements. Let A ∈ Qd×d be such that

(β1, . . . , βd)
T = A(α1, . . . , αd)

T .

Then

disc(β1, . . . , βd) = det(A)2 disc(α1, . . . , αd).

If β1, . . . , βd ∈ Zα1 + . . .+ Zαd, then

| disc(β1, . . . , βd)| ≥ | disc(α1, . . . , αd)|.

If the tuples α1, . . . , αd and β1, . . . , βd generate the same module then
their discriminants equal.
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Thanks to this proposition, we can define the discriminant of a mod-
ule as the discriminant of any generating d-tuple. Where the rank of
the module is less than d, its discriminant is 0.

Proof. We note that

[σj(βi)]ij = A[σj(αi)]ij.

Now the claim follows by the definition of discriminants and the mul-
tiplicative property of determinants.

If β1, . . . , βd ∈ Zα1 + . . .+Zαd, then A has integer entries, and hence
det(A)2 ∈ Z≥0. By linear independence, det(A) 6= 0, and

| disc(β1, . . . , βd)| ≥ | disc(α1, . . . , αd)|.
If α1, . . . , αd and β1, . . . , βd generate the same module, we get the

reverse inequality by exchanging the roles of the two bases. The fact
that the two discriminants have the same sign follows from the first
claim, because det(A)2 > 0. This also follows from our observation in
the previous section that the sign of the discriminant depends only on
the number of complex embeddings of K. �

Proposition 26. Let M1 ⊂M2 be two modules in K of rank d. Then

disc(M1) = |M2/M1|2 disc(M2).

This follows from the previous proposition, if we are able to compute
the determinant of the change of basis matrix. This is made easy by
the following result from Part IB Groups, Rings and Modules.

Theorem 27. Let M1 ⊂ M2 be two free Z-modules of rank d. Then
M2 has a basis α1, . . . , αd, and there are a1, . . . , ad ∈ Z such that
a1|a2| . . . |ad and that a1α1, . . . , adαd is a basis for M1.

Proof of Proposition 26. This follows by Proposition 25 and Theorem
27. �

Theorem 28. Let K be a number field of degree d. A tuple α1, . . . , αd ∈
OK is an integral basis if and only if | disc(α1, . . . , αd)| is minimal
among all tuples subject to the condition that it is not 0. In partic-
ular, an integral basis always exists.

Proof. Let | disc(α1, . . . , αd)| 6= 0 be minimal among all tuples in OK .
Write M = Zα1 + . . . + Zαd. Let β ∈ OK . We need to show that
β ∈ M . Consider the module M + βZ. By the previous proposition,
we have

disc(M) = |(M + βZ)/M |2 disc(M + βZ).

By the minimality of | disc(M)|, we have |(M + βZ)/M | = 1, hence
M = M + βZ, and β ∈M .

Since the discriminant only takes integer values, the minimum is
attained, hence an integral basis exists. �
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Definition 29. Let K be a number field. The discriminant disc(K) of
K is defined as the discriminant of any integral basis of OK .

Example 30. Let m ∈ Z be a square free number, and let K =
Q(
√
m). If m ≡ 1 mod 4, then an integral basis of K is

1,
1 +
√
m

2
,

and

disc(K) =

∣∣∣∣∣ 1 1+
√
m

2

1 1−
√
m

2

∣∣∣∣∣
2

=
(1−

√
m

2
− 1 +

√
m

2

)2

= m.

If m 6≡ 1 mod 4, then an integral basis of K is 1,
√
m and

disc(K) =

∣∣∣∣ 1
√
m

1 −
√
m

∣∣∣∣2 = (−
√
m−

√
m)2 = 4m.

Proposition 31. Let α1, . . . , αd ∈ OK be Q-linearly independent. Then
there is q ∈ Z>0 with q2| disc(α1, . . . , αd) such that all elements of OK
can be written in the form

a1α1 + . . .+ adαd
q

for some a1, . . . , ad ∈ Z.

Proof. We take

q =
(disc(α1, . . . , αd)

disc(K)

)2

.

Then we know that

|OK/(Zα1 + . . .+ Zαd)| = q.

Let β ∈ OK . We have qβ ∈ Zα1 + . . . + Zαd, which proves the
claim. �

4. Unique factorization of ideals

The ring of integers of a number field may fail to be a unique factori-
sation domain. Indeed, consider the number field K = Q(

√
−5) and

its ring of integers OK = Z[
√
−5]. Now we have the equation

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5).

Seeing this, one might hope that there are some primes π1, π2, π3, π4

such that

2 = π1π2, 3 = π3π4, 1 +
√
−5 = π1π3, 1−

√
−5 = π2π4.

However, looking at norms, we see that we must have

N(π1)| gcd(N(2), n(1 +
√
−5)) = 2.

Unfortunately, the numbers that occur as norms of elements of OK are
precisely the numbers of the form a2+5b2 with a, b ∈ Z, and ±2 are not
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of this form. So no such π1 may exist. (We cannot have N(π1) = ±1,
because then π1 was a unit. We will discuss this later in the course.)

To remedy this issue, Kummer had a brilliant idea. He was motivated
by geometers who added “ideal points” to the Euclidean plane to make
parallel lines meet, and this way they constructed the projective plane.
(1) He thought that when two numbers that should have a common
prime divisor does not have one, we could introduce an “ideal prime”
that will be this common divisor. He gave a very hands-on construction
of “ideal primes” in cyclotomic fields, and he also described how to
decompose the elements in the ring of integers as products of them.

This construction of Kummer was extremely successful. It has been
generalized to all number fields by Dedekind and Kronecker in two
conceptually different ways. We follow Dedekind. There are two tasks.
We need to construct the set of “ideal numbers”, and then we need to
find out which elements of the ring of integers are divisible by which
“ideal primes”. Dedekind had a brilliant idea to do both of these in
one go. He decided to identify “ideal numbers” with the set of elements
in OK that are divisible by them. This way he only needed to work
out which subsets of OK will correspond to an “ideal number” in that
manner. He arrived at the notion of ideals, which will be familiar from
Part 1B Groups, Rings and Modules.

Definition 32. Let K be a number field. An ideal in OK is a subset
I that is closed under addition and multiplication by elements of OK ,
that is, α ∈ OK and β ∈ I implies αβ ∈ I.

Example 33. The principal ideal generated by an element α ∈ OK is

〈α〉 = 〈α〉OK
= αOK = {αβ : β ∈ OK}.

This way we can associate for each element α ∈ OK a corresponding
ideal 〈α〉, and we have 〈α〉 = 〈β〉 if and only if α = uβ for some unit
u ∈ OK . [Exercise: check this.] This is very nice, because α and β
should have the same prime factorization if and only if α = uβ for some
unit u ∈ OK .

We can introduce a multiplication operation on ideals as follows:

IJ = {α1β1 + . . .+ αkβk : k ∈ Z≥1, αj ∈ I, βj ∈ J}.

This is easily seen to be associative. Observe that for principal ideals,
we have 〈αβ〉 = 〈α〉〈β〉, so the map α 7→ 〈α〉 is homomorphism of
semigroups.

An ideal I ( OK is a prime ideal if whenever αβ ∈ I for some
α, β ∈ OK then at least one of α and β is in I. This is easily seen to
be equivalent to the property that OK/I is an integral domain, that

(1)This is historically inaccurate. He was motivated by the work of Poncelet on
“ideal secants”.
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is, a non-zero (unital, commutative) ring(2) without zero divisors. In
addition, a principal ideal 〈α〉 is a prime ideal if and only if α is a prime
element of OK .

Our next goal is the following remarkable theorem.

Theorem 34. Let K be a number field. Then every non-zero ideal
of OK can be written as a product of non-zero prime ideals and this
decomposition is unique up to the order of the prime ideals.

Definition 35. We call a non-zero prime ideal in OK a prime.

Remark 36. A word of caution. Even though ideals have unique
factorization, this does not mean that we have a unique factorization
domain. While there is a natural way to define addition on ideals by

I + J = {α + β : α ∈ I, β ∈ I},
this does not turn the set of ideals into a ring, and we do not have
〈α〉+ 〈β〉 = 〈α + β〉, in general.

Ideals in OK have three important properties that we will rely on in
this section.

Lemma 37.

(1) Every ideal in OK is finitely generated, that is, it is of the form
α1OK + . . .+ αkOK for some k ∈ Z>0 and α1, . . . , αk ∈ OK.

(2) Every increasing sequence I1 ⊂ I2 ⊂ I3 ⊂ . . . of ideals must
stabilize, that is, Ik = Ik+1 = Ik+2 = . . . for some k.

(3) Every collection of ideals contains one that is maximal with re-
spect to inclusion.

These three properties are, in fact equivalent. When they hold for
some ring, it is called Noetherian.

Proof. Item (1) follows because ideals are finitely generated even as
Z-modules, being submodules of the finitely generated Z-module OK .

For item (2), consider I =
⋃
Ij. This is an ideal, so must be finitely

generated. Then the generators are all contained in Ik for some k,
hence Ik = I for all j ≥ k.

If item (3) was not true, we could find an infinite sequence of strictly
increasing ideals contradicting item (2). �

To state the second property, we need a definition.

Definition 38. An ideal I ( OK is maximal if the only ideals J ⊂ OK
with I ⊂ J are J = I and J = OK .

It follows immediately from the definitions that an ideal I is maximal
if and only if OK/I is a field.

(2)For the purposes of this note, every ring is assumed to be commutative and
unital.
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Lemma 39. Maximal ideals and non-zero prime ideals are the same.

Proof. First we show that the quotient ring OK/I is finite for all ideals
I. Since every ideal contains a principal ideal, it is enough to see this
for principal ideals. If α1, . . . , αd is an integral basis and I = 〈β〉, then
βα1, . . . , βαd generate I freely as a Z-module. Then I has the same
rank as a Z-module as OK , hence OK/I is indeed finite. Now we note
that finite integral domains are all fields. (Show that they are equal to
their quotient fields.) From this it follows that maximal and non-zero
prime ideals are indeed the same. �

Lemma 40. Let α ∈ K Suppose that there is a finitely generated OK-
module M with αM = M , then we have α ∈ OK.

When an integral domain satisfies this property, with its field of
fractions playing the role of K, it is said to be integrally closed.

Proof. Note that finitely generatedOK-modules are the same as finitely
generated Z-modules, because OK is finitely generated as a Z-module.
Hence an α satisfying the above property is an algebraic integer, there-
fore is contained in OK . �

Integral domains that satisfy the conclusions of the above three lem-
mata are called Dedekind domains, and the ideals of these also satisfy
the unique factorization property. For concreteness, we give the proof
for OK , but it carries over to Dedekind domains without significant
change.

4.1. Proof of unique factorization. Let I ⊂ OK be an ideal. By
the Noetherian property the set of proper ideals containing I has a
maximal element P . Then P must also be a maximal ideal and hence
a prime ideal, and P ⊃ I by construction.

Now it would be very helpful if we could also conclude that P |I,
that is, there is some ideal I ′ ⊂ OK such that I = PI ′. This is not
unreasonable to expect. Indeed, for principal ideals, 〈α〉|〈β〉 is trivially
equivalent to 〈α〉 ⊃ 〈β〉, and if J |I for some arbitrary ideals I, J ⊂ OK ,
then J ⊃ I again trivially. We hope that the converse may also be true.
This is not true for general rings, but it holds for OK and even for all
Dedekind domains. This is closely related to Theorem 34, and we will
prove the two things together.

It is useful to extend the notion of ideals.

Definition 41. Let K be a number field. A fractional ideal in K is a
finitely generated OK-submodule of K.

Lemma 42. If I ⊂ K is a fractional ideal, then there is some a ∈ Z
such that

aI = {a · α : α ∈ I}
is an ideal in OK.
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Conversely, if I ⊂ OK is an ideal and α ∈ K, then αI is a fractional
ideal.

Proof. For the first claim, let I = α1OK + . . . + αnOK be a fractional
ideal generated by some α1, . . . , αn ∈ K. Write the αj as Q-linear
combinations of some integral basis of OK , and choose a to be the
common denominator of all the coefficients.

The converse follows easily from the definitions and we leave it as an
exercise. �

We can extend the multiplication operation to fractional ideals using
the same formula as for ideals in OK . It would be very helpful if non-
zero fractional ideals formed a multiplicative group, but we do not
know yet if there is always an inverse. As a first step, we prove this for
prime ideals.

Proposition 43. Let K be a number field, and let P ⊂ OK be a
non-zero prime ideal. Then there is a fractional ideal P ′ such that
PP ′ = 〈1〉.

Begining the proof of Proposition 43. It is natural to try defining

P ′ = {α ∈ K : αP ⊂ OK}.
This is clearly an OK module, and βP ′ ⊂ OK for any β ∈ P , so P ′ is
a fractional ideal. If there is some fractional ideal P ′ with the required
properties, this will be it.

By definition, PP ′ ⊂ OK and it is an ideal. Also, OK ⊂ P ′, hence
PP ′ ⊃ POK = P . Since P is a prime ideal, it is also a maximal
ideal by the second property of OK discussed above. Therefore, either
PP ′ = 〈1〉 or PP ′ = P . To rule out the second case, it is enough
to prove that there is some α ∈ P ′ that is not in OK . Indeed, if we
manage to do this, then PP ′ ⊃ αP 6⊂ P , for otherwise α ∈ OK by
virtue of OK being integrally closed. In what follows, we will exhibit a
suitable α, but this requires some preparations. �

Lemma 44. Let I ⊂ OK be an non-zero ideal. Then there are k ∈ Z≥0

and non-zero prime ideals P1, . . . , Pk (with repetitions allowed) such
that P1 · · ·Pk ⊂ I.

Proof. Suppose to the contrary that the statement of the lemma is not
true for all ideals. Let I be an ideal that is maximal among those ideals
for which the lemma fails. Then I cannot be a prime ideal, for we may
take k = 1 and P1 = I to show that the lemma holds for prime ideals.

Then there are some α, β ∈ OK\I such that αβ ∈ I, for otherwise
I would be a prime ideal. Now 〈α〉 + I, 〈β〉 + I ) I, hence there are
prime ideals P1, . . . , Pk and Q1, . . . , Ql such that P1 · · ·Pk ⊂ 〈α〉 + I
and Q1 · · ·Ql ⊂ 〈β〉+ I. We observe that

P1 · · ·PkQ1 · · ·Ql ⊂ (〈α〉+ I)(〈β〉+ I) = I
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showing that the lemma holds for I, a contradiction. �

Completing the proof of Proposition 43. Let P and P ′ be as in the be-
ginning of the proof. Let β ∈ P be arbitrary. We aim to find a suitable
γ ∈ OK such that γ /∈ 〈β〉 but 〈γ〉P ⊂ 〈β〉. Taking α = γ/β, we have
α /∈ OK , but αP ⊂ OK . In light of the first part of the proof, we will
be done once a suitable γ with the claimed properties is constructed.

Let k be minimal such that there are non-zero prime ideals P1, . . . , Pk
with P1 · · ·Pk ⊂ 〈β〉. We note that P1 · · ·Pk ⊂ P , hence Pj ⊂ P for
some j, because P is a prime ideal. But Pj is also a prime ideal, and
hence a maximal ideal, so P = Pj. We assume, as we may that j = k.

By the minimality of k, we have P1 · · ·Pk−1 6⊂ 〈β〉. Therefore, there
is γ ∈ P1 · · ·Pk−1\〈β〉. On the other hand γP ⊂ P1 · · ·Pk−1P ⊂ 〈β〉.
Therefore, γ satisfies both the required properties, and the proof is
complete. �

From now on we write P−1 for the ideal P ′ in Proposition 43.

Proof of Theorem 34. Let I ⊂ OK be an ideal. We first show that I can
be written as a product of prime ideals. We already observed that there
is some prime ideal P1 such that I ⊂ P1. Write I1 = P−1

1 I. We observe
that I1 ⊂ P−1

1 P1 = OK , hence I1 is an ideal. Also P1I1 = P1P
−1
1 I = I.

Now P1I1 = I implies I1 ⊃ I. On the other hand, I1 = P−1
1 I implies

I1 6= I. Indeed, otherwise, we would have αI ⊂ I for all αP−1
1 , which

would imply P−1
1 ⊂ OK , which is not the case.

We apply the same argument with I1 in the role of I, and find a
prime ideal P2 and an ideal I2 such that I1 = P2I2, hence I = P1P2I2

and I2 ) I1

Continuing the same procedure, we find a sequence of prime ideals
Pj and a sequence of ideals Ij such that Ij ) Ij−1 and I = P1 · · ·PjIj
for all j. This sequence must terminate by the Noetherian property,
which is only possible if Ik = 〈1〉 for some k. Then I = P1 · · ·Pk, as
required.

Finally, we show the uniqueness of prime factorization. To this end,
we prove that if

P1 · · ·Pk = Q1 · · ·Ql

for some prime ideals P1, . . . , Pk, Q1, . . . , Ql, then k = l and Pj = Qσj

for some permutation σ.
We prove this by induction on k+ l. The claim is trivial if k+ l = 0.

We suppose that k + l > 0 and that the claims holds for all smaller
values of k + l. We assume, as we may, that k > 0. Now it is enough
to show that l > 0 and P1 = Qj for some j ≤ l. To this end, we note
that P1 ⊃ Q1 · · ·Ql. This immediately implies that l > 0 and that
Qj ⊂ P1 for some j. Being a prime ideal, Qj is also a maximal ideal,
hence Qj = P1, as required. �
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Corollary 45. Every non-zero fractional ideal I ⊂ K has an inverse,
that is, there is a fractional ideal I−1 such that II−1 = 〈1〉. In other
words, fractional ideals form a group with respect to multiplication.

Proof. We have already proved this for prime ideals. Then all ideals
J ⊂ OK also have inverses. Indeed, we can get the inverse of J by
multiplying together the inverses of all prime factors of J . Finally, a
fractional ideal I can be written in the form I = J1J

−1
2 . (We may even

take J2 to be principal.) We see that the fractional ideal J−1
1 J2 is an

inverse of I. �

Corollary 46. Let I, J ⊂ OK be two ideals. Then I ⊃ J if and only
if there is an ideal I2 ⊂ OK such that II2 = J .

Where one and hence both of the above two equivalent conditions
hold for some ideals I and J , we say that I divides J and denote this
fact by I|J .

Proof. We have already discussed that II2 = J implies I ⊃ J . For the
converse, it is enough to show that I ⊃ J implies I−1J ⊂ OK . To this
end, we observe that αI ⊂ J ⊂ I for all α ∈ I−1J . Thus α ∈ OK as
OK is integrally closed. �

In analogy with Z, for two ideals I and J we define their greatest
common divisor gcd(I, J) as the smallest ideal dividing both I and
J . This may sound odd, but the point is that the smaller the ideal,
the larger the residue ring. Similarly, we define the least common
multiple lcm(I, J) as the largest ideal that is divisible by both I and
J . We observe that for all prime ideals P , its multiplicity in the prime
factorization of gcd(I, J) is the minimum of its multiplicities in I and
J . Similarly, the multiplicity of P in lcm(I, J) is the maximum of its
multiplicities in I and J . We note further that

gcd(I, J) = I + J, and lcm(I, J) = I ∩ J.

We leave the proof of these facts as exercises.

Corollary 47. The ring of integers OK in a number field is a UFD if
and only if it is a PID.

Proof. Every PID is a UFD, and for OK this also follows from the
unique factorisation of ideals.

We show that the converse is also true for OK . Assume that OK is a
UFD. We note that if α ∈ OK is a prime element, then 〈α〉 is a prime
ideal. Thus, every principal ideal in OK is a product of principal prime
ideals. Now let I be an arbitrary non-zero ideal, and let α ∈ I. Then
I|〈α〉, and all prime factors of I are also prime factors of 〈α〉, hence
they must be principal ideals. Then I is a product of principal ideals,
hence it must be a principal ideal, too. �
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5. Norms of ideals

Definition 48. Let K be a number field, and let I ⊂ OK be a non-zero
ideal. The norm N(I) of I is defined as |OK/I|.

Recall that we have already observed that N(I) <∞ for all non-zero
ideals. See the proof of Lemma 39. Recall also from Proposition 26
that if α1, . . . , αd generate I as a Z-module, then

(3) N(I) =
(disc(α1, . . . , αd)

disc(K)

)1/2

.

Proposition 49. The norm of ideals is multiplicative, that is, we have

N(IJ) = N(I)N(J)

for all non-zero ideals I, J ∈ OK.

Proof. We show this in the special case, where J is a prime ideal. Using

this special case repeatedly, we conclude that for all ideals Ĩ with prime
factorization P1 · · ·Pk, we have

N(Ĩ) = N(P1) · · ·N(Pk).

Using this for I, J and IJ , the general case follows.
From now on, we assume that J is a prime ideal. Let α1, . . . , αN(J)

be a system of representatives for the residue classes in OK/J . Let
β ∈ I\IJ . (We have IJ ( I, for equality would contradict the
uniqueness of prime factorization among other things.) We show that
βα1, . . . , βαN(J) is a system of representatives for the residue classes
modulo IJ in I/IJ . This proves N(J) = |I/IJ |, and we can conclude
by |OK/IJ | = |OK/I| · |I/IJ |.

Since β ∈ I, βα1, . . . , βαN(J) are all in I. We show that they rep-
resent all residue classes modulo IJ . To this end, let γ ∈ I. We note
that 〈β〉 = IP1 · · ·Pk for some prime ideals P1, . . . , Pk, none of which
is J . Thus 〈β〉+ IJ = gcd(〈β〉, IJ) = I. This shows that γ − βα ∈ IJ
for some α ∈ OK . We have α − αj ∈ J for some j, so γ − βαj ∈ IJ .
This shows that βα1, . . . , βαN(J) indeed represent all classes in I/IJ .

Now we show that βα1, . . . , βαN(J) represent distinct classes. Sup-
pose that βαi − βαj ∈ IJ for some i, j. We show that then i = j
necessarily. Indeed, we have IJ |〈β〉〈αi − αj〉. We have already ob-
served that 〈β〉 = IP1 · · ·Pk for some prime ideals P1, . . . , Pk, none of
which is J . Then J |〈αi − αj〉, hence i = j, as required. �

Proposition 50. Let α ∈ OK. Then

N(〈α〉) = |N(α)|,
where the N on the right stands for the field norm N = NK|Q.

Proof. Let α1, . . . , αd be an integral basis. By definition

disc(K) = disc(α1, . . . , αd) = det(σi(αj))
2,
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where σ1, . . . , σj : K → C are the complex embeddings. In addition,
αα1, . . . , ααd generate 〈α〉 as a Z-module, and

disc(αα1, . . . , ααd) = det(σi(α)σi(αj))
2.

Pulling out the factor σi(α) from the i’th row for each i, we get

disc(αα1, . . . , ααd) = σ1(α)2 . . . σd(α)2 det(σi(αj))
2 = N(α)2 disc(K).

Now the claim follows by (3). �

6. Ideals in field extensions

In this section, we discuss how to find all primes in a number field.
Let L|K be an extension of number fields. We will discuss how the

primes in L can be related to those of K. For an ideal I ⊂ OK , we can
associate an ideal in OL in a natural way. We define

IOL = {α1β1 + . . .+ αkβk : k ∈ Z≥1, αj ∈ I, βj ∈ OL}.
We observe that IOL is indeed an ideal in L, and it is the smallest
ideal that contains all elements of I.

We can also associate an ideal in OK to an ideal J ⊂ OL by consid-
ering J ∩ OK . Again, it is easy to see that this is indeed an ideal.

We note that

(4) (I1OL)(I2OL) = (I1I2)OL
for any ideals I1, I2 ⊂ OK . On the other hand, (J1 ∩ OK)(J2 ∩ OK)
may differ from J1J2 ∩ OK for J1, J2 ⊂ OL in general.

Lemma 51. Let P ⊂ OK and Q ⊂ OL be primes. Then the following
two statements are equivalent.

(1) Q|POL.
(2) P = Q ∩ OK.

Where either (and hence both) of the two statements hold, we say
that Q lies over (or above) P and P lies under (or below) Q.

Proof. Assume Q|POL. Then Q ⊃ POL ⊃ P , hence P ⊂ Q ∩ OK . In
addition, 1 /∈ Q, so Q ∩ OK ( OK . Since P is a maximal ideal, we
must have P = Q ∩ OK .

Now we prove the other implication. Assume P = Q ∩ OK . Clearly
Q ⊃ (Q ∩ OK)OL = POL, so Q|POL, as required. �

Lemma 52. For every prime Q ⊂ OL, there is a unique prime P ⊂ OK
that lies under it. For every prime P ⊂ OK, there is at least one prime
Q ⊂ OL that lies above it.

Proof. For the first statement, we only need to show that P := Q∩OK
is a prime. We note that 1 /∈ Q, hence 1 /∈ P and P 6= OK . In addition,
OL/Q is finite, but OK is infinite, so there are two distinct α, β ∈ OK
such that α− β ∈ Q. Then necessarily α− β ∈ P so P is non-zero.
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Now we show that P is a prime ideal. To that end, let α, β ∈ OK
with αβ ∈ P ⊂ Q. Since Q is a prime ideal, α ∈ Q or β ∈ Q. Then
necessarily α ∈ P or β ∈ P , as required.

For the second statement, we show that POL ( OL. Then it must
have at least one prime divisor. Suppose to the contrary that POL =
OL. Then (P−1OL)(POL) = OL implies P−1OL = OL. In particular
P−1 ⊂ OL, but also P−1 ⊂ K, hence P−1 ⊂ OL ∩K ⊂ OK . Then

OK = PP−1 ⊂ POK = P,

which is impossible. This contradiction completes the proof. �

Let Q ⊂ OL be a prime that lies above a prime P ⊂ OK . There
are two important numbers attached to the pair Q, P . The first one is
the ramification index e(Q|P ), which is the largest integer e such that
Qe|POL.

To define the second one, we observe that OL/Q and OK/P are both
finite fields and the latter can be naturally identified with a subfield of
the former, because OK ∩Q = P . Now we define the inertial degree of
Q over P as

f(Q|P ) = [OL/Q : OK/P ].

We note that
N(Q) = N(P )f(Q|P ).

We note that the following tower laws hold. Let M |L|K be field
extensions of number fields and let P ⊂ OK , Q ⊂ OL and R ⊂ OM
be primes such that Q lies over P and R lies over Q. Then R also lies
over P and we have

f(R|P ) = f(R|Q)f(Q|P ),

e(R|P ) = e(R|Q)e(Q|P ).

The first of these follows by the tower law for the degrees of field
extensions, and the second follows by (4) and Lemma 52.

Our next goal is the following result about the ramification indices
and inertial degrees of primes lying over a given prime in a field exten-
sion.

Theorem 53. Let L|K be an extension of number fields. Let P ⊂ OK
be a prime and let Q1, . . . , Qr ⊂ OL be the primes lying above P . Then

[L : K] =
r∑
j=1

e(Qj|P )f(Qj|P ).

We note that

N(POL) = N(Q
e(Q1|P )
1 · · ·Qe(Qr|P )

r ) = N(P )e(Q1|P )f(Q1|P )+...+e(Q1|P )f(Q1|P ).

The theorem follows at once if we show that

N(POL) = N(P )[L:K].

This is the content of the next proposition.
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Proposition 54. Let L|K be an extension of number fields. Let I ⊂
OK be a non-zero ideal. Then

N(IOL) = N(I)[L:K].

In the proof, we use the following lemma, which will be proved later
on in the course.

Lemma 55. Let K be a number field and let I ⊂ OK be an ideal. Then
there is some k ∈ Z>0 such that Ik is a principal ideal.

Proof of Proposition 54. Let k be such that Ik = αOK for some α.
Then IkOL = αOL, and we have

N(IkOL) = |NL|Q(α)| = |NK|Q(α)|[L:K].

We also note that (IOL)k = IkOL, hence

N(IOL) = N(IkOL)1/k = |NK|Q(α)|[L:K]/k = N(Ik)[L:K]/k = N(I)[L:K],

as required. �

6.1. Dedekind’s theorem on the factorization of primes in ex-
tensions. Let L|K be an extension of number fields and let P ⊂ OK
be a prime. Our next goal is to find a way to compute the factorization
of POL into primes in L. The next theorem of Dedekind achieves this
in many cases.

Theorem 56. Let K be a number field and let P ⊂ OK be a prime.
Let p be the rational prime that lies under P . Let g ∈ OK [x] be a
monic irreducible polynomial. Let α be a root of g, and let L = K(α).
Assume that p - [OL : OK [α]]. Let g be the image of g in (OK/P )[x].
Let

g = ge11 · · · gerr ,
where gj is an irreducible monic polynomial in (OK/P )[x] for each j.
Let gj ∈ OK [x] be monic and such that gj ≡ gj mod P for each j.

Then
Qj = POL + gj(α)OL

is a prime lying over P and f(Qj|P ) = deg gj for each j. In addition,
the Qj are distinct, and

POL = Qe1
1 · · ·Qer

r .

Dedekind’s theorem allows us to compute the decomposition of all
primes where OL = OK [α], and all but finitely many in general. One
might hope that even if no α exists with OL = OK [α], it might be
possible to choose an α for each prime P depending on P such that the
condition of the theorem is satisfied. Unfortunately, this is not always
possible.

We turn to the proof of the theorem. We first prove half of the last
claim.
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Proposition 57. With the notation and assumptions of Theorem 56,
we have

POL ⊃ Qe1
1 · · ·Qer

r .

Proof. The set P ∪{gj(α)} is a generating set for Qj. We choose ej (not
necessarily distinct) elements from P ∪{gj(α)} for each j, and multiply
together these e1 + . . . + er elements. We collect all of these products
that we can obtain in this way in a set A ⊂ OL. By the definition of
products of ideals, A generates the ideal Qe1

1 · · ·Qer
r . Therefore, it is

enough to show that A ⊂ POL.
All but one element of A contains a factor in P . These are obviously

in POL. The remaining element is

g1(α)e1 · · · gr(α)er ≡ g(α) = 0 mod POL,

hence g1(α)e1 · · · gr(α)er ∈ POL, as required. �

We turn our attention to the quotients OL/Qj.

Proposition 58. With the notation and assumptions of Theorem 56,
the ring OL/Qj is isomorphic to a factor of

(5) (OK/P )[x]/〈gj〉.

We observe that the ring (5) is a field, a degree deg(gj) extension of
OK/P . Fields only have trivial quotients, hence OL/Qj is isomorphic
to either {0} or (5). In the former case, Qj = OL, in the second case
Qj is a prime ideal lying over P with inertial degree deg(gj). We would
like to show that the second case holds always, which we will do later
by considering all Qj’s together.

In the proof of the proposition we show that two rings are isomorphic
by realizing them as quotients of the same ring and then comparing
the kernels. We record a simple fact in ring theory that will help us
computing the kernels. Where A is a subset of a ring R, we write
〈A〉 = 〈A〉R for the ideal generated by A in R.

Lemma 59. Let ϕ1 : R1 → R2 and ϕ2 : R2 → R3 be surjective
homomorphisms of rings. Let A ⊂ R2 be a (possibly infinite) set such
that

Kerϕ2 = 〈A〉R2 .

Let Ã ⊂ R1 be such that ϕ1(Ã) = A. Then

Ker(ϕ1 ◦ ϕ2) = 〈Ã〉R1 + Kerϕ1.

Proof. Since ϕ1(Ã) = A ⊂ Kerϕ2, we have Ã ⊂ Ker(ϕ1 ◦ ϕ2). Also
ϕ1(Kerϕ1) = {0} ⊂ Kerϕ2, hence Kerϕ1 ⊂ Ker(ϕ1 ◦ ϕ2). These two
facts together and that Ker(ϕ1 ◦ ϕ2) is an ideal give

〈Ã〉R1 + Kerϕ1 ⊂ Ker(ϕ1 ◦ ϕ2).



NUMBER FIELDS, LENT 2024 25

Now we show the opposite containment. Let a ∈ Ker(ϕ1 ◦ϕ2). Then
ϕ1(a) ∈ Kerϕ2 = 〈A〉R2 . Therefore, we have

ϕ1(a) = r1a1 + · · ·+ rkak

for some k ∈ Z≥0, r1, . . . , rk ∈ R2 and a1, . . . , ak ∈ A. Using that

ϕ1 is surjective, and the definition of Ã, there are r̃1, . . . , r̃k ∈ R1

and ã1, . . . , ãk ∈ Ã such that ϕ1(r̃j) = rj and ϕ1(ãj) = aj for all j.
Therefore,

ϕ1(a) = ϕ1(r̃1ã1 + · · ·+ r̃kãk).

Now r̃1ã1 + · · · + r̃kãk ∈ 〈Ã〉R1 , and a − r̃1ã1 + · · · + r̃kãk ∈ Ker(ϕ1),
hence

a ∈ 〈Ã〉R1 + Kerϕ1,

as required. �

Proof of Proposition 58. Fix some j ∈ {1, . . . , r}. We first prove that

(6) (OK/P )[x]/〈gj〉 ∼= OK [α]/〈P, gj(α)〉.

We show this by realizing both rings as homomorphic images of OK [x]
and proving that the two kernels are equal.

Let ϕ1 : OK [x]→ (OK/P )[x] and ϕ2 : (OK/P )[x]→ (OK/P )[x]/〈gj〉
be the obvious homomorphisms. Clearly both are surjective. By defi-
nition, Kerϕ2 = 〈gj〉, and ϕ1(gj) = gj. By the lemma

Ker(ϕ1 ◦ ϕ2) = gjOK [x] + Kerϕ1 = gjOK [x] + POK [x].

Let ψ1 : OK [x] → OK [α] be the homomorphism induced by x 7→ α,
and let ψ2 : OK [α]→ OK [α]/〈P, gj(α)〉 be the obvious homomorphism.
Again, both ψ1 and ψ2 are surjective. We have Kerψ1 = gOK [x]. We
note that ψ1(P ∪ {gj}) = P ∪ {gj(α)}, which generates Kerψ2. The
lemma gives

Ker(ψ1 ◦ ψ2) = gjOK [x] + POK [x] + gOK [x].

We note that

g ≡ ge11 · · · gerr mod POK [x],

hence g ∈ g1OK [x] + POK [x]. Therefore,

Ker(ψ1 ◦ ψ2) = gjOK [x] + POK [x] = Ker(ϕ1 ◦ ϕ2).

This proves our claim (6).
Now we relate OL/Qj to OK [α]/〈P, gj(α)〉. Clearly, Qj ∩OK [α] con-

tains 〈P, gj(α)〉OK [α], hence OK [α]/(Qj ∩ OK [α]) is a factor of
OK [α]/〈P, gj(α)〉. It is, therefore, enough to show that

OL/Qj
∼= OK [α]/(Qj ∩ OK [α]).

In other words, we need to show that the homomorphism ϕ : OL →
OL/Qj maps OK [α] onto OL/Qj, which is equivalent to OL = Qj +
OK [α]. This is where we use the condition p - [OL : OK [α]].
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We note that OL/(Qj + OK [α]) is a factor of both OL/Qj and
OL/OK [α]. (Here we work in the category of Abelian groups, rather
than in rings, because OK [α] need not be an ideal in OL.) We note
that [OL : Qj] is a power of p because Qj lies over p. Therefore,

[OL : (Qj +OK [α])]| gcd([OL : Qj], [OL : OK [α]]) = 1.

This proves OL = Qj +OK [α], as required. �

The final ingredient in the proof of Theorem 56 is the following
statement, which we will use to show that the ideals Q1, . . . , Qj are
distinct.

Proposition 60. With the notation and assumptions of Theorem 56,
we have

Qi +Qj = OL
for all pairs of indices i 6= j.

Proof. Fix two indices i 6= j. Since (OK/P )[x] is an Euclidean domain,
and gi and gj are distinct irreducible polynomials, the Euclidean algo-

rithm yields some h1, h2 ∈ OK/P [x] such that h1gi + h2gj = 1. We

pick some h1, h2 ∈ OK [x] that project to h1 and h2 respectively. Then

1 = h1gi + h2gj + h

for some h ∈ POK [x]. Then 1 ∈ Qi +Qj, which proves the claim. �

Proof of Theorem 56. By Proposition 57, we know that there is an ideal
I ⊂ OL such that

POL · I = Qe1
1 · · ·Qer

r .

By Proposition 58, we know that N(Qj) ≤ N(P )deg gj for j = 1, . . . , r.
We conclude that

(7) N(P )[L:K]N(I) ≤ N(P )e1 deg g1+...+er deg gj = N(P )[L:K].

From this we conclude that N(I) = 1, hence I = OL, and

POL = Qe1
1 · · ·Qer

r .

In addition, none of the inequalities N(Qj) ≤ N(P )deg gj can be strict,
for otherwise (7) would be strict, too. Therefore, OL/Qj must be
isomorphic to (OK/P )[x]/〈gj〉 in Proposition 58 for all j. Thus Qj is
indeed a prime lying above P with inertial degree deg gj. Finally, now
that we know that Qj 6= OK for all j, Proposition 60 shows that they
must be distinct primes. The theorem is proved. �

Remark 61 (Non-examinable). A rational prime p ∈ Z is said to be
ramified in a number field K if there is some prime P ⊂ OK lying
over p with e(P |p) > 1. Let K be a monogenic field, that is, assume
that there is some α ∈ OK such that OK = Z[α]. Let g ∈ Z[x] be
the minimal polynomial of α. Let p ∈ Z be a prime. By Theorem 56,
p is ramified in OK if and only if g has a root in a field extension of
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Z/pZ with multiplicity more than 1. This is equivalent to disc(g) = 0,
which in turn is equivalent to p| disc(g). Since OK = Z[α], we have
disc(K) = disc(g). We can conclude that p ramifies in OK if and only
if p| disc(K). This is, in fact, true for all number fields, not just for
monogenic ones, but we will not prove this in this course.

Theorem 62 (Non-examinable). A prime p ∈ Z is ramified in a num-
ber field K if and only if p| disc(K).

6.2. Application to quadratic fields.

Theorem 63. Let m 6= 0, 1 ∈ Z be square-free. Let K = Q(
√
m). Let

p ∈ Z be a prime.

(1) p is ramified in OK, that is, pOK = P 2 for some prime P ⊂ OK,
if and only if p is odd and p|m or p = 2 and m 6≡ 1 mod 4.

(2) p is split in OK, that is pOK = P1P2 for two distinct primes
P1, P2 ⊂ OK, if and only if p is odd and

(
m
p

)
= 1 or p = 2 and

m ≡ 1 mod 8.
(3) p is inert in OK, that is pOK is a prime, if and only if p is odd

and
(
m
p

)
= −1, or p = 2 and m ≡ 5 mod 8.

Here(m
p

)
=


0 if p|m,
1 if there is a 6= 0 ∈ Z/pZ with m ≡ a2 mod p,

−1 otherwise

is the Legendre symbol.

Proof. If p 6= 2 or p 6≡ 1 mod 4, then p - [OK : Z[
√
m]]. Therefore, we

can apply Dedekind’s theorem for the polynomial g(x) = x2−m, which
is the minimal polynomial of

√
m. The claim follows immediately.

If p = 2 and m ≡ 1 mod 4, then OK = Z[(1 +
√
m)/2], and we can

apply Dedekind’s theorem for the polynomial g = x2 − x+ (1−m)/4,
which is the minimal polynomial of (1+

√
m)/2. Where m ≡ 1 mod 8,

g ≡ x2 + x = (x + 1)x mod 2, and Dedekind’s theorem shows that 2
indeed splits in K. Where m ≡ 5 mod 8, g ≡ x2 +x+1 mod 2, which
is irreducible in Z/2Z[x], hence 2 is indeed inert in K. �

7. The class group

As we have seen, a consequence of the unique factorization property
of ideals is that the ring of integers in a number field K is a unique
factorization domain if and only if it is a principal ideal domain.

In this section, we study how far the ring of integers in a number
field can be from being a principal ideal domain, which is also related
to the extent of failure of the unique factorization property.

Consider the set of fractional ideals I = IK in a number field K.
The multiplication operation turns this into a commutative group, and
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the principal ideals P = PK form a subgroup of it. The quotient
Cl(K) = I/P is called the ideal class group of K. Each element of
Cl(K) contains an integral ideal (see Lemma 42). (We call ideals in
OK integral ideals, when we want to stress that they are ideals not just
fractional ideals.) Hence the ideal class group can also be defined as
the equivalence classes of integral ideals with respect to the relation ∼
defined by I ∼ J if and only if there is α ∈ K such that J = αI.

Our goal in this section is to show that the ideal class group is always
finite, and the proof of this will also lead to a method for calculating
it.

Theorem 64. Let K be a number field. Then |Cl(K)| <∞.

The class number of a number field is defined as

h(K) = |Cl(K)|.

The theorem will be deduced from the following result.

Theorem 65 (Minkowski’s bound 1). Let K be a number field of degree
d. Denote by s the number of pairs of complex embeddings of K. Then
every ideal I ⊂ OK contains an element α 6= 0 with

|N(α)| ≤ d!

dd

( 4

π

)s
| disc(K)|1/2N(I).

Remark 66. By Stirling’s approximation,

d!

dd
= (1 + o(1))(2πd)1/2e−d.

Since e > (4/π)1/2, the constant in Minkowski’s bound decreases expo-
nentially as d grows.

In these lectures, we will only prove a weaker version of this result
replacing the conclusion by |N(α)| ≤ | disc(K)|1/2N(I). The proof of
the stronger version is not examinable, but the statement is.

Before we do this, we discuss a few corollaries of Minkowski’s bound
including the finiteness of the ideal class group.

Corollary 67 (Minkowski’s bound 2). Let K be a number field of
degree d. Denote by s the number of pairs of complex embeddings of
K. Then every element of Cl(K) contains an integral ideal I with

N(I) ≤ d!

dd

( 4

π

)s
| disc(K)|1/2.

Proof. Let I be an integral ideal, and let J be an integral ideal in the
class of I−1.

We apply Theorem 65 for J , and find some γ ∈ J with

|N(γ)| ≤ d!

dd

( 4

π

)s
| disc(K)|1/2N(J).
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Since γ ∈ J , J |〈γ〉 and γJ−1 is an integral ideal. In addition

|N(γJ−1)| ≤ d!

dd

( 4

π

)s
| disc(K)|1/2,

and γJ−1 is in the same ideal class as I. �

The above result implies h(K) < ∞, since there are only finitely
many integral ideals of norm bounded by some number X in a number
field. Indeed, all such ideals are products of at most log2(X) primes,
because a prime has norm at least 2. The primes that may occur in
those products lie over rational primes that are at most X. Clearly,
there are only finitely many rational primes at most X, and over each
of them at most [K : Q] primes of K lie. Thus the number of primes
that may occur in the products is also finite.

This argument also leads to a method for computing the class group.
First, compute

X :=
⌊ d!

dd

( 4

π

)s
| disc(K)|1/2

⌋
.

For example, for the quadratic fields Q(
√
m), we get

X =



√
m

2
, if m > 1 and m ≡ 1 mod 4,

√
m, if m > 1 and m ≡ 2, 3 mod 4,

2
√
−m
π

, if m < 0 and m ≡ 1 mod 4,

4
√
−m
π

, if m < 0 and m ≡ 2, 3 mod 4.

Second, list all rational primes up to X. Third, factorize each prime in
OK and list the prime ideals of norm at most X: P1, . . . , Pk. Finally,
find all integer vectors m1, . . . ,mk such that

Pm1
1 · · ·Pmk

k

is a principal ideal. In order to determine whether an ideal I is princi-
pal, a good starting point is to study whether elements of norm N(I)
exist in OK .

Corollary 68 (Minkowski’s bound 3). Let K be a number field of
degree d. Denote by s the number of pairs of complex embeddings of
K. Then we have

| disc(K)| ≥ d2d

(d!)2

(π
4

)2s

.

Proof. This follows from the previous result and N(I) ≥ 1. �

In light of our above comments, the discriminant of a number field
grows at least exponentially with the degree, and it also follows that
| disc(K)| > 1 for all number fields except for K = Q. In light of our
remarks in the previous section, this also implies that in every number
field other than Q at least one prime is ramified.
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7.1. Geometry of numbers. We turn to the proof of the Minkowski
bound, Theorem 65. We first recall the map Σ : K → Rd defined by

Σ(α) = (σ1(α), . . . , σr(α),Re(τ1(α)), Im(τ1(α)), . . . ,Re(τs(α)), Im(τs(α)))T ,

where σ1, . . . , σr are the embeddings of K into C with real image
and τ1, τ1, . . . , τs, τs are the remaining embeddings. We discussed that
Σ(OK) ⊂ Rd is a lattice, that is an additive subgroup generated by d
linearly independent elements. Moreover, we also know that the covol-
ume of Λ, that is, the volume of any fundamental domain is

coVol(Σ(OK)) = 2−s| disc(K)|1/2.

Now let I ⊂ OK be an ideal. Then Σ(I) is a sublattice of Σ(OK),
and

coVol(Σ(I)) = 2−s| disc(I)|1/2 = 2−sN(I)| disc(K)|1/2.
Here disc(I) stands for the discriminant of I as a module, that is the
discriminant of any d-tuple that generates it as a module.

Consider the function N : Rd → R defined by

N (x1, . . . , xd) =
r∏
j=1

|xj|
s∏
j=1

(x2
r+2j−1 + x2

r+2j).

The definition of this function was made so that

|N(α)| = N (Σ(α))

for all α ∈ K.
Now our job is to prove that the lattice Σ(I) has a non-zero point

in the region {x : N (x) < X} for some suitable X. Such problems are
studied in a theory call the geometry of numbers. For our purposes the
most basic result will suffice, which is due to Minkowski.

Theorem 69 (Minkowski). Let Λ ⊂ Rd be a lattice, and S ⊂ Rd a
convex subset that is symmetric to the origin. Assume that

Vol(S) > 2d coVol(Λ).

Then S ∩ Λ contains a non-zero vector.

A set S ⊂ Rd is convex if whenever x, y ∈ S, we also have ax+ (a−
1)y ∈ S for all a ∈ (0, 1), that is, the entire line segment connecting
x to y is in S. A set S is symmetric to the origin if x ∈ S implies
−x ∈ S.

We note that the constant 2d cannot be lowered in the theorem. In-
deed, consider the lattice Λ = Zd and the closed, convex and symmetric
set S = (−1, 1)d. Then coVol(Λ) = 1, Vol(S) = 2d and Λ ∩ S = {0}.
However, if we add the condition, that S is closed then the > relation
can be relaxed to ≥.

The proof of the theorem is based on the following simple lemma.
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Lemma 70. Let Λ ⊂ Rd be a lattice, and let S ⊂ Rd be a Borel set.
If

Vol(S) > coVol(Λ),

then there are x 6= y ∈ S with x− y ∈ Λ.

Proof. Let F be a fundamental domain of Λ, and for each a ∈ Λ, let
S(a) = ((F + a)∩S)− a. It is easy to see that S(a) ⊂ F for all a ∈ Λ.
In addition,∑

a∈Λ

Vol(S(a)) = Vol(S) > coVol(Λ) = Vol(F ).

Therefore, S(a)∩S(b) 6= ∅ for some a 6= b ∈ Λ. Let x ∈ S(a)∩S(b).
Then x + a 6= x + b ∈ S, and (x + a) − (x + b) = a − b ∈ Λ, as
required. �

Proof of Theorem 69. We apply the lemma for the set

1

2
· S = {x/2 : x ∈ S}.

We get some x/2 6= y/2 with x, y ∈ S and 0 6= x/2 − y/2 ∈ Λ. By
symmetry, we have −y ∈ S, and by convexity,

x/2− y/2 = (1/2)x+ (1/2)(−y) ∈ S.
This proves the theorem. �

Proof of Theorem 65. Unfortunately, the sets of the form {x : N (x) <
X} are not convex. However, we can prove the theorem by choosing
a sufficiently large convex subset of it and apply Minkowski’s theorem
for that.

We take

S = {x : |xj| < Y for each j}.
for some number Y > 0. This set is convex and symmetric, and has
volume

Vol(S) = (2Y )d.

Moreover, N (x) ≤ 2sY d for all x ∈ S.
In addition, we take

Λ = Σ(I).

We have already noted that Λ is a lattice with

coVol(Λ) = 2−sN(I)| disc(K)|1/2.
By Minkowski’s theorem, S ∩Λ contains a non-zero vector provided

we take Y large enough so that

2dY d > 2d · 2−sN(I)| disc(K)|1/2.
The conclusion is that we can find some 0 6= x ∈ Λ with N (x) ≤
N(I)| disc(K)|1/2 + ε for any ε > 0. Since Λ has only finitely many
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non-zero points in S, one of these must work for all ε > 0, so we can,
in fact, take ε = 0. This gives some α ∈ I with

|N(α)| ≤ N(I) disc(K)1/2.

As we said, we proved the theorem with a weaker constant. To get
Minkowski’s bound, one needs to take

S = {x ∈ Rd : |x1|+ . . .+ |xr|+ 2((x2
r+1 + x2

r+2)1/2 + . . .) ≤ Y }
for a suitably chosen Y . See Question 14 on the third example sheet.

�

8. Units

Let K be a number field. An algebraic integer α ∈ OK is a unit if α−1

is also an algebraic integer. It is immediate from the definition, that
the product of units is also a unit, and that the multiplicative inverse
of units are also units. Therefore, the units in OK form a group. We
denote this group by O×K .

Lemma 71. Let α ∈ OK. The following are equivalent.

(1) α is a unit.
(2) 〈α〉 = OK.
(3) N(α) = ±1.

Proof. First we prove that (1) ⇒ (3) The norms of algebraic integers
are rational integers. Therefore, if α is a unit, then N(α), N(α−1) ∈ Z.
In addition, N(α)N(α−1) = 1 by multiplicativity of norms. We must
have N(α) = ±1, as required.

Next we prove (3) ⇒ (2). If N(α) = ±1, then N(〈α〉) = 1 and
〈α〉 = OK .

Finally, we prove (2) ⇒ (1). If 〈α〉 = OK , then 1 ∈ αOK and
there is some β ∈ OK such that αβ = 1. Clearly, β = α−1 ∈ OK , as
required. �

The above lemma shows that we cannot distinguish between elements
of OK that differ from each other by a multiplicative factor that is a
unit if we work with ideals. This is one reason, why units are important.

The goal of this section is to describe the structure of units in rings
of integers.

8.1. Quadratic fields. Let m be a square-free integer, and let K =
Q(m1/2). Recall that

OK =

{
{a+ bm1/2 : a, b ∈ Z}, if m 6≡ 1 mod 4,

{a+ b(1 +m1/2)/2 : a, b ∈ Z}, if m ≡ 1 mod 4.

Recall also that

N(a+m1/2b) = (a+m1/2b)(a−m1/2b) = a2 −mb2.
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If m 6≡ 1 mod 4, the characterization N(α) = ±1 of units implies
that the units in K are precisely a + m1/2b, where a, b ∈ Z are the
solutions of the equations

(8) a2 −mb2 = ±1.

If m ≡ 1 mod 4, then the units are of the form (a + m1/2b)/2, where
a, b ∈ Z solve one of the equations

(9) a2 −mb2 = ±4.

We first consider the case where m < 0, that is, when K is an
imaginary quadratic field. If m ≤ −5, then a2 − mb2 > 4 whenever
b 6= 1. In this case, all solutions of (8) or (9) must satisfy b = 0, and
hence the only units in Q(m1/2) are ±1. If m = −1,−2,−3, it is easy
to see that |a|, |b| ≤ 2, and the solutions can be easily found by going
through these cases. The result is that the units in Q((−1)1/2) are
±1,±i, the units in Q((−2)1/2) are ±1, and in Q((−3)1/2) are

±1,
±1± (−3)1/2

2
.

Now we turn to case m > 1, that is, the case of real quadratic fields.
The units in Q(m1/2) are described by the following.

Theorem 72. Let m > 1 be a square-free integer, and let K = Q(m1/2).
Then there is a smallest among all units u ∈ O×K with u > 1, and

O×K = {±un : n ∈ Z}.

The unit u is called the fundamental unit.

Proof. We first observe that a unit u > 1 must be of the form a+bm1/2

with a, b ∈ Q>0. Indeed, ±1 = N(u) = (a+ bm1/2)(a− bm1/2) implies
that

{±a± bm1/2} = {±u±1}.
Since u > 1, these are four distinct numbers and u is the largest among
them. Therefore, a, b > 0 indeed.

The proof of the fact that units greater than 1 exist is not exam-
inable. It follows from the fact that Pell’s equation

a2 −mb2 = 1

always has positive integer solutions, which is proved in the Part II
Number Theory course. Alternatively, it can be proved using Minkowski’s
theorem, as we will see in the next section.

Now we show that there is a smallest one among the units greater
than 1. Suppose not. Then there is an infinite sequence of decreas-
ing units u1 > u2 > . . . > 1. Necessarily, limj→∞ uj/uj+1 = 1. The
elements of the sequence uj/uj+1 are all units greater than 1. How-
ever, any unit greater than 1 must be at least (1 + m1/2)/2 > 1, a
contradiction.
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Now we show that all units are of the form ±un for some n. Let v be
a unit. Clearly, ±v±1 is of the required form if and only if v is, so we
can assume v > 1. We observe that there can be no unit v in the open
interval (un, un+1) for any n ∈ Z≥0, for otherwise 1 < vu−n < u would
contradict the minimality of u. Then v = un necessarily for some n, as
required. �

We can find the fundamental unit by searching thorough all pairs
(a, b) ∈ Z>0 for solutions of the equations (8) or (9). To this end, it is
helpful to observe the following. If a1, b1 and a2, b2 are both solutions
of (8) with some choice of the sign and b1 < b2, then b2

2 ≥ b2
1 + 3, so

a2
1 = mb2

1 ± 1 < mb2
2 ± 1 = a2

2,

and a2 > a1. Thus a1 + b1m
1/2 < a2 + b2m

1/2. This means that in
the m ≡ 2, 3 mod 4 case, the fundamental unit will correspond to the
solution of (8) with either sign such that b > 0 is minimal. A similar
observation applies in the m ≡ 1 mod 4 case, as well.

There is also a very efficient way to find the solutions of (8) using
continued fractions, which was discussed in the Part II Number Theory
course.

8.2. Dirichlet’s unit theorem. The next result describes the struc-
ture of units in arbitrary number fields.

Theorem 73. Let K be a number field with r real and s pairs of
complex embeddings. Write W for the set of roots of unity in K, that
is, numbers α ∈ K that satisfy αk = 1 for some k ∈ Z>0. Then W
is finite, and there are r + s − 1 units u1, . . . , ur+s−1 ∈ O×K such that
every unit can be written uniquely in the form

θun1
1 · · ·u

nr+s−1

r+s−1 ,

where θ ∈ W is a root of unity, and n1, . . . , nr+s−1 ∈ Z.

Therefore, the unit group is isomorphic to the direct product of a
finite group and free Abelian group of rank r + s − 1. A collection
of units u1, . . . , ur+s−1 that satisfies the conclusion in the theorem is
called a fundamental system of units.

For quadratic fields, we have two cases. If m > 1, then r = 2 and
s = 0, so the rank of the free Abelian part is r + s − 1 = 1. The
roots of unity are just W = {±1}. In fact, this is already true for all
number fields that have at least one real embedding, because the only
roots of unity in R are ±1. The the other case is m < 0, where r = 0
and s = 1. Then r + s − 1 = 0, hence the group of units is just W .
These observations are compatible with our discussion in the previous
section.

We turn to the proof of the unit theorem, which is not examinable.
LetK be a number field, and let σ1, . . . , σr be the real and τ1, τ 1, . . . , τs, τ s
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be the pairs of complex embeddings. We consider the map log : K →
Rr+s defined by

log(α) = (log |σ1(α)|, . . . , log |σr(α)|, 2 log |τ1(α)|, . . . , 2 log |τs(α)|)T .

This map is called the logarithmic embedding (even though it has non-
trivial kernel), and it plays a key role in the proof. We first observe
that log is a homomorphism from the multiplicative group of K to the
additive group Rr+s.

We also observe that log(|N(α)|) =
∑r+s

j=1(log(α))j, where (·)j de-
notes the j-th component of a vector. Denote by V the r + s − 1
dimensional subspace of Rr+s whose points satisfy x1 + . . . xr+s = 0.
Since N(α) = 1 for all units α, it follows that log(O×K) ⊂ V .

The theorem follows from the following two statements.

Proposition 74. If α ∈ OK satisfies log(α) = 0, then α is a root of
unity. Additionally, W is finite.

Proposition 75. We have that log(O×K) is a lattice in V , that is, an
additive group generated by r + s− 1 linearly independent elements.

We can deduce the theorem easily from these two statements. In-
deed, we can define u1, . . . , ur+s−1 as the inverse image of a generating
set of the lattice log(O×K) under log. We leave checking the remaining
details as an exercise.

We begin with the proof of Proposition 74. Recall the injective
homomorphism Σ : K → Rd, and that Σ(OK) ⊂ Rd is a lattice. In
particular Σ−1(B) ∩ OK is finite for any bounded set B ⊂ Rd.

Proof of Proposition 74. Let α ∈ OK with log(α) = 0. Since log is a
homomorphism, log(αn) = 0 for all n ∈ Z. This means that |σj(αn)| =
1 and |τj(αn)| = 1 for all j in the relevant ranges.

Consider B ⊂ Rd defined by |xj| ≤ 1 for all j. Then Σ(αn) ∈ B for
all n ∈ Z. Since Σ−1(B)∩OK is finite, there are n < m with αn = αm.
Then αm−n = 1, and α is a root of unity, as required.

The same argument implies that W ⊂ Σ−1(B) ∩ OK , hence it is
finite. �

We turn to the proof of the other proposition. We write B(x,R) for
the ball of radius R around a point x in a metric space.

Lemma 76. Let k ∈ Z>0, and let Λ ⊂ Rk be an additive subgroup.
Furthermore, let R ∈ R>0. Suppose that B(x,R) ∩ Λ is finite and
non-empty for all x ∈ Rd. Then Λ is a lattice.

Proof. We first prove that the linear span of Λ is Rk. Suppose to the
contrary that Λ is contained in a proper subspace V . Let x ∈ Rd be
such that dist(x, V ) > R. Then Λ contains a point in B(x,R), which
cannot be in the subspace. This is a contradiction.
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Let x1, . . . , xd ∈ Λ be a basis of Rd. Denote by Λ′ the lattice gener-
ated by x1, . . . , xd, and let

F = [0, 1) · x1 + . . .+ [0, 1) · xd
be the corresponding fundamental parallelepiped. Then F can be cov-
ered by finitely many balls of radius R, each of which contains only
finitely many points in Λ. Thus F contains only finitely many points
of Λ. On the other hand, F contains a representative of each coset of
Λ′ in Λ, hence [Λ : Λ′] <∞.

Therefore, Λ is a finitely generated Z module, and it is isomorphic
to Zr for some r. Since Λ′ is finite index in Λ, they must have the same
rank, hence r = d. In addition, any generating set of Λ has to span Rd

linearly. This proves that Λ is indeed a lattice. �

Lemma 77. Let K and V be as above. Let R > 0 and x ∈ V . Then
B(x,R) ∩ log(OK) is finite.

Proof. Fix some x and R. There is a number R̃ such that |yj| ≤ R̃ holds
for all y = (yj) ∈ B(x,R). Then all α ∈ OK with log(α) ∈ B(x,R)

satisfy |σj(α)| < exp(R̃) and |τj(α)| < exp(R̃) for all j in the relevant
ranges. Since Σ(OK) is a lattice, OK can contain only finitely many

points with |σj(α)| < exp(R̃) and |τj(α)| < exp(R̃) for all j in the
relevant ranges. This proves the lemma. �

Lemma 78. Let K be as above. Fix some M ∈ Z>0. There is a
number R ∈ R>0 depending only on K and M such that the following
holds. Let α ∈ OK with |N(α)| < M . Then there is a unit u ∈ O×K
with ‖ log(α)− log(u)‖ < R.

Proof. As we have already discussed, there are only finitely many ideals
of norm less than M . Among these, we consider all principal ideals I,
and fix a generator αI , for each of them. We let R ∈ R>0 be such that
‖ log(αI)‖ < R for each principal ideal I of norm less than M .

Now let α ∈ OK with |N(α)| < M , and let I = 〈α〉. Then 〈α〉 =
〈αI〉, hence u = αα−1

I is a unit. In addition,

‖ log(α)− log(u)‖ = ‖ log(αI)‖ < R,

as required. �

Lemma 79. Let K and V be as above. Then there is some M ∈ Z>0

and R ∈ R>0 depending only on K such that the following holds. Let
x ∈ V . Then there is α ∈ OK with |N(α)| < M and ‖ log(α)−x‖ < R.

Proof. Let C0 = | disc(K)|1/2d. Consider

S = {y ∈ Rd :|yj| ≤ C0 exp(xj) for j = 1, . . . , r and

|y2j−r−1|, |y2j−r| ≤ C0 exp(xj/2) for j = r + 1, . . . , r + s}.
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Then S is a symmetric convex set and

Vol(S) = 2dCd
0

r+s∏
j=1

exp(xj) = 2d| disc(K)|1/2,

where we used
∑r+s

j=1 xj = 0. We recall that

coVol(Σ(OK)) ≤ | disc(K)|1/2.
By Minkowski’s theorem, there is some α ∈ OK with Σ(α) ∈ S.

Then |σj(α)| ≤ C0 exp(xj) for j = 1, . . . , r and |τj(α)|2 ≤ 2C2
0 exp(xr+j)

for j = 1, . . . , s. We observe that

|N(α)| =
r∏
j=1

|σj(α)|
s∏
j=1

|τj(α)|2 ≤ 2sCd
0 ,

so we can take any number larger than 2sCd
0 for M .

To estimate the distance between log(α) and x, we also need lower
bounds on |σj(α)| and |τj(α)|. We deduce these from

|σj0(α)| = |N(α)|∏
j 6=j0 |σj(α)|

∏
j |τj(α)|2

|τj0(α)|2 =
|N(α)|∏

j |σj(α)|
∏

j 6=j0 |τj(α)|2
,

and N(α) ≥ 1 together with the upper bounds we already have. We
obtain

|σj0(α)| ≥ 2−sC−d+1
0

∏
j 6=j0

exp(−xj)
∏
j

exp(−xr+j) = 2−sC−d+1
0 exp(xj0)

|τj0(α)| ≥ 2−s+1C−d+1
0

∏
j

exp(−xj)
∏
j 6=j0

exp(−xr+j) = 2−s+1C−d+1
0 exp(xr+j0).

Using the definition of log(α), we get that all coordinates of log(α)−x
is bounded in absolute value by

log(2sCd−1
0 ),

and this proves our claim with an appropriate choice of R. �

Proof of Proposition 75. Combining Lemmata 78 and 79, we find some
R > 0 depending only on K such that for all x ∈ V , there is some unit
u ∈ O×K with ‖ log(u) − x‖ ≤ R. That is, log(O×K) ∩ B(x,R) 6= ∅ for
any x ∈ V . Conversely, by Lemma 77, log(O×K) ∩ B(x,R) is always
finite. By Lemma 76, these two facts together imply that log(O×K) is a
lattice in V . �

9. Cyclotomic fields and Fermat’s last theorem

The goal of this section is to prove Theorem 7 under the additional
assumption that p - xyz.
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9.1. Cyclotomic fields. Recall that for an integer n ∈ Z≥1, we write
θn = e2πi/n. The proof of Theorem 7 involves the cyclotomic filed Q(θp)
for some prime p, and we collect some facts about it in this section.

We first recall some results from Part II Galois theory.

Theorem 80. Let n ∈ Z≥1. Let (Z/nZ)× denote the residue classes
mod n that are relatively prime to n. Let ϕ(n) = |Z/nZ|×.

Then we have [Q(θn) : Q] = ϕ(n). Furthermore, for each j ∈
(Z/nZ)×, there is an embedding σj : Q(θn)→ C such that σj(θn) = θjn.
Moreover, σj(Q(θn)) = Q(θn).

Where p is a prime, the minimal polynomial of θp is

xp − 1

x− 1
= xp−1 + · · ·+ 1.

For composite n, the notation in the theorem slightly differs from
our usual convention that embeddings are indexed by 1, . . . , [K : Q].

In what follows, let p be a rational prime, and let K = Q(θp). We
determine the discriminant, the ring of integers, the factorization of 〈p〉
and the roots of unity in K.

Theorem 81. We have OK = Z[θp] and disc(K) = (−1)(p−1)/2pp−2.
There is prime in P ∈ OK such that 〈p〉 = P p−1. For all i 6= j ∈
{0, . . . , p− 1}, we have

P = 〈θip − θjp〉.
The roots of unity in K are

{±θjp : j = 0, . . . p− 1} = {θj2p : j = 0, . . . , 2p− 1}.

We first prove the claim about roots of unity.

Proof of last part about roots of unity. Write W for the set of the roots
of unity in K. Let t ∈ R>0 be a the smallest number such that e2πit ∈
W . By finiteness of W , the minimum exists.

We claim that if s ∈ R>0 is such that e2πis ∈ W , then s/t ∈ Z.
Indeed, e2πi(s−bs/tct) ∈ W , and 0 ≤ s− bs/tct < t, so the minimality of
t implies s− bs/tct = 0, and the claim follows.

Since e2πi/(2p) ∈ W , it follows that t = 1/(2kp) for some k ∈ Z>0.
We show that k = 1, which completes the proof. We observe that
ϕ(2kp) = [Q(θ2kp) : Q] ≤ p− 1. We cannot have p|k for otherwise we
would have p(p − 1) = ϕ(p2) ≤ ϕ(2kp) ≤ p − 1. Therefore, ϕ(2kp) =
ϕ(2k)(p− 1). Hence we must have ϕ(2k) = 1, which implies k = 1, as
required. �

The next result will be used to prove both the claim about OK and
the factorization of 〈p〉.

Proposition 82. We have

(1− θp) · · · (1− θp−1
p ) = p.
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Moreover, for all i 6= j ∈ {0, . . . , p − 1} there is a unit ui,j ∈ Z[θp]
×

such that

ui,j(θ
i
p − θjp)p−1 = p.

We stress that the claim is that ui,j is a unit in Z[θp], which, a priori,
is stronger than claiming that it is a unit in OK , because we are yet to
prove that these two rings equal.

Lemma 83. For all i, j, k, l ∈ {0, . . . , p− 1} with i 6= j and k 6= l, we
have that

θip − θjp
θkp − θlp

∈ Z[θp]
×.

Proof. It is enough to prove that

θip − θjp
θkp − θlp

∈ Z[θp].

For if we exchange the roles of i, j and k, l, we get that the inverse is
also in Z[θp].

Multiplying both the denominator and the numerator by some power
of θp, which is a unit in Z[θp], we may assume i = k = 0.

Since non-zero residues mod p form a multiplicative group, there
is some m ∈ Z with m 6≡ 0 mod p such that j ≡ ml mod p. Then

1− θjp
1− θlp

=
1− θmlp
1− θlp

= 1 + θlp + . . .+ θ(m−1)l
p ∈ Z[θp],

as required. �

Proof of Propositon 82. The roots of the minimal polynomial of θp are
precisely θp, . . . , θ

p−1
p , hence

(x− θp) · · · (x− θp−1
p ) = xp1 + . . .+ x+ 1.

We plug in x = 1 to get the first claim.
For the second claim, we observe that Lemma 83 implies that

ui,j :=
p

(θip − θ
j
p)p−1

=
(1− θp) · · · (1− θp−1

p )

(θip − θ
j
p)p−1

is a unit in Z[θp]. �

In the next lemma, we compute the discriminant of Z[θp]. This will
imply the claim about disc(K) once we show the claim about the ring
of integers.

Lemma 84. We have

disc(Z[θp]) = (−1)(p−1)/2pp−2.
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Proof. Write f(x) = xn − 1, and g(x) = f(x)/(x− 1); the latter is the
minimal polynomial of θp. We have

disc(Z[θp]) = (−1)(p−1)(p−2)/2 N(g′(θp)).

We note that

f ′(θp) = g′(θp)(θp − 1) + g(θp) = g′(θp)(θp − 1).

Therefore,

N(g′(θp)) =
N(f ′(θp))

N(θp − 1)
.

By Proposition 82, we have N(θp − 1) = (−1)p−1p = p. In addition,

N(f ′(θp)) = N(pθp−1
p ) = pp−1.

Here we used N(θp) = 1, which can be seen from the constant coefficient
of g. We get the claim by putting together our calculations. �

Proof of Theorem 81. We begin by proving OK = Z[θp]. We suppose
to the contrary that OK ) Z[θp].

By disc(Z[θp]) = (−1)(p−1)/2pp−2 and Proposition 31, we know that
all elements of OK are of the form α/d for some α ∈ Z[θp] and d ∈ Z>0

with d2|pp−2. By our assumption, there is some β ∈ OK\Z[θp]. Then
pkβ ∈ Z[θp] for some k ∈ Z>0. We have p = u(1 − θp)

p−1 for some
u ∈ Z[θp]

×. Considering the sequence

ukβ, (1− θp)ukβ, . . . , (1− θp)(p−1)kukβ = pkβ,

whose first element is not in Z[θp], but whose last element is, we can
find some γ ∈ OK\Z[θp] such that (1− θp)γ ∈ Z[θp].

We note that 1, 1 − θp, . . . , (1 − θp)
p−2 is a basis for Z[θp] as a Z-

module. This can be seen by observing Z[1−θp] = Z[θp], which follows
by 1− θp ∈ Z[θp] and θp ∈ Z[1− θp]. Hence

(1− θp)γ = a+ (1− θp)γ′

for some a ∈ Z and γ′ ∈ Z[θp]. Note that p - a, for otherwise, we would
have (1− θp)|a+ (1− θp)γ′ in Z[θp] and hence γ ∈ Z[θp], which is not
the case. Then

a

1− θp
= γ − γ′ ∈ OK .

Furthermore,
1

u

( a

1− θp

)p−1

=
ap−1

p
∈ OK ,

which is impossible. This proves OK = Z[θp].
Now disc(K) = (−1)(p−1)/2pp−2 follows from Lemma 84.
By Proposition 82, we have

〈p〉 = 〈θip − θjp〉p−1
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for all 0 ≤ i 6= j ≤ p − 1. By Proposition 50, we have N(〈p〉) = pp−1.
Multiplicativity of norms implies

N(〈θip − θjp〉) = p,

hence these must be prime ideals for all permitted pairs i, j. By unique-
ness of prime factorization, these are the same prime ideals indepen-
dently of i and j. This fact also follows from Lemma 83. The theorem
is now proved in full. �

9.2. Case I of Fermat’s Last theorem for regular primes. In this
section, we fix some rational prime p ≥ 5, write θ = θp and K = Q[θ].
We say that the prime p is regular if p - h(K), and we assume that this
holds for p. We write P for the unique prime lying over p in K.

Our purpose is to prove Theorem 7 under the additional assumption
that p - xyz. That is, we are going to show that there are no solutions
of

xp + yp = zp, x, y, z ∈ Z≥1

under the assumptions we have already made. The first step is the
following.

Proposition 85. Let p be a regular prime, and let x, y, z ∈ Z be such
that gcd(x, y, z) = 1, p - xyz and xp + yp = zp. Then there is some
α ∈ OK and some unit u ∈ O×K such that

x+ θy = uαp.

Proof. We have already observed that xp + yp = zp can be factorized
as

(x+ y)(x+ θy) · · · (x+ θp−1y) = zp.

We first show that the principal ideals generated by the factors on the
left hand side are relatively prime. Suppose to the contrary that there
is some prime Q that divides both 〈x + θiy〉 and 〈x + θjy〉 for some
0 ≤ i 6= j ≤ p− 1. This means

x+ θiy, x+ θjy ∈ Q.
Taking appropriate linear combinations, we get

(θi − θj)y, (θ−i − θ−j)x ∈ Q.
We note that

Q 6= P = 〈θi − θj〉 = 〈θ−i − θ−j〉,
for Q|〈z〉p and P - 〈z〉p by the assumption p - z. Therefore, we have
Q|〈x〉 and Q|〈y〉.

On the other hand, x and y are coprime in Z, for any common prime
factor would divide also z by zp = xp + yp. Thus ax+ by = 1 for some
a, b ∈ Z. Now x, y ∈ Q implies 1 ∈ Q, a contradiction. We proved that
the ideals

(10) 〈x+ y〉, 〈x+ θy〉, . . . , 〈x+ θp−1y〉
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are pairwise coprime.
The prime factors of 〈z〉p all have multiplicities divisible by p. These

are distributed among the ideals (10) in a manner that each prime goes
to a single factor with its entire multiplicity. Now we have that

〈x+ θy〉 = Ip

for some ideal I ⊂ OK .
It remains to show that I is a principal ideal. We know that Ip is

principal. Since the order of the class group is not divisible by p, there
is no non-unit element in the class group whose p-th power is the unit
element. For this reason, I must be principal, and the proposition is
proved. �

Proposition 86. Let p be a regular prime, and let x, y, z ∈ Z be such
that gcd(x, y, z) = 1, p - xyz and xp + yp = zp. Then x ≡ y mod p.

We write τ for the restriction of complex conjugation on K. This is
an automorphism of K, and in the notation of the previous section, we
have τ = σp−1.

Lemma 87. Let α ∈ OK. Then

αp ≡ τ(α)p mod 〈p〉.

Proof. Let

α = a0 + a1θ + . . .+ ap−2θ
p−2

for some a0, . . . , ap−2 ∈ Z. Using that all binomial coefficients of the
form

(
p
j

)
for j = 1, . . . , p− 1 are divisible by p, we get that

(β1 + β2)p ≡ βp1 + βp2 mod 〈p〉
for all β1, β2 ∈ OK . Using this iteratively, we get

αp ≡ ap0 + (a1θ)
p + . . .+ (ap−2θ

p−2)p mod 〈p〉.
Using θp = 1, it follows that

αp ≡ b mod 〈p〉
for some b ∈ Z.

Since τ is an automorphism of OK , we get

τ(αp) ≡ τ(b) mod τ(〈p〉).
Since τ(p) = p, it follows that τ(〈p〉) = 〈p〉. Using this and τ(b) = b,
we get

τ(αp) ≡ b mod 〈p〉,
and the claim follows. �

Lemma 88. For all unit u ∈ O×K, there is some root of unity ε ∈ OK
such that

τ(u) = εu
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Proof. The automorphisms of K all commute, and, in particular, for
all embedding σ : K → C we have σ ◦ τ = τ ◦ σ. Then

|σ(τ(u))| = |τ(σ(u))| = |σ(u)|.
It follows that |σ(u−1τ(u))| = 1 for all embedding σ. With the notation
of Section 8.2, this means log(u−1τ(u)) = 0, and by Proposition 74,
ε := u−1τ is a root of unity, as required. �

Lemma 89. Assume that

a0 + a1θ + . . .+ ap−1θ
p−1 ≡ b0 + b1θ + . . .+ bp−1θ

p−1 mod 〈p〉
for some integers a0, . . . , ap−1, b0, . . . , bp−1. Assume that there is some
j ∈ {0, . . . , p − 1} such that aj = bj = 0. Then aj ≡ bj mod p for all
j = 0, . . . , p− 1.

Proof. Multiplying both sides of the congruence by θp−1−j and reducing
the exponents of θ mod p, it is enough to consider the case j = p− 1.
That case follows simply from the fact that 1, θ, . . . , θp−2 is an integral
basis for OK , hence p, pθ, . . . , pθp−2 is a basis for 〈p〉 as a Z-module.
Therefore,

(a0 − b0) + (a1 − b1)θ + . . .+ (ap−2 − bp−2)θp−2 ∈ 〈p〉
if and only if p|aj − bj for all j = 0, . . . , p− 2. �

Proof of Proposition 86. Using Proposition 85, we have

x+ θy = uαp

for some u ∈ O×K and α ∈ OK . Using Lemmata 87 and 88, we get

τ(x+ θy) = τ(uαp) ≡ εuαp ≡ ε(x+ θy) mod 〈p〉
for some root of unity ε.

By Theorem 81, we have ε = θj or ε = −θj for some j ∈ Z. First we
consider the former possibility. Then

x+ θp−1y ≡ θjx+ θj+1y mod 〈p〉.
Understanding the exponents j and j + 1 modulo p, we can apply
Lemma 89. Indeed the lemma is applicable because p ≥ 5, hence there
is some k ∈ {0, . . . , p − 1} with k 6≡ 0, p − 1, j, j + 1. Since x, y 6≡ 0
mod p, we have

{0, p− 1} ≡ {j, j + 1} mod p.

This implies j ≡ p− 1 mod p, hence

x+ θp−1y ≡ θp−1x+ y ≡ 〈p〉.
Using Lemma 89 again, this gives us x ≡ y mod p.

It remains to consider the case where ε = −θj. The same calculation
as above then yields x ≡ −y mod p. However, then zp = xp + yp ≡ 0
mod p, since p is odd. This contradicts p - z, so this case is not
possible. �
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Proof of Theorem 7. Suppose to the contrary that the equation xp +
yp = zp has a solution for some integers x, y, z and some regular prime
p ≥ 5 with p - xyz. We assume, as we may, that gcd(x, y, z) = 1.
We apply Proposition 86 for both the equation xp + yp = zp and xp +
(−z)p = (−y)p. We get x ≡ y ≡ −z mod p. From xp + yp + (−z)p =
0, we conclude 3xp ≡ 0 mod p. We must have p = 3 or p|x, but
both possibilities are ruled out by our assumptions. This contradiction
proves the theorem. �
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