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1. INTRODUCTION AND MOTIVATION

Recall the following definitions from Part IT Galois theory. If L D K
are fields, we call L an extension of K, and this is denoted by L|K.
We can think of L as a vector space over K, and the dimension of this
vector space is called the degree of L over K. The degree is denoted

by [L: K].
Definition 1. A number field is a subfield of the complex numbers C
that is a finite degree extension of the rationals Q.

Example 2. The field of rational numbers Q is a number field.

Example 3. Take your favourite algebraic number «, that is, a root of
a polynomial with integer coefficients. Then Q(«), the smallest subfield
of C containing «, is a number field. Its degree is the degree of the
minimal polynomial of a.

By the primitive element theorem (Part I Galois theory), every num-
ber field is of the form Q(«a) for some « € C.
In this course, two families of number fields will recur.
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Example 4 (Quadratic fields). Let m # 0,1 be a square-free integer.
Then Q(m!'/?) is a number field of degree 2, called a quadratic field.

Example 5 (Cyclotomic fields). Let n > 3, and let 6, = ¢**/™. Ob-
serve that 6! = 1, that is, 6, is an n-th root of unity, and n is the
smallest positive exponent with this property. Let ¢(n) denote the
number of residue classes mod n that are coprime to n. Then Q(6,)
is a number field of degree ¢(n), called a cyclotomic field.

1.1. Why bother? Number theory is the study of integers. As we
will soon see, the notion of integers can be extended to include certain
elements in number fields, and most questions about rational integers,
that is, Z, can be naturally extended to this setting.

This may not sound very convincing. However, number fields are also
very useful for solving many problems that are entirely about rational
integers. As an example, in this course, we will consider the Fermat
equation

(1) ak 4 yF = 2P, x,y,z € 7.

We first recall the k£ = 2 case of this equation, whose solutions are
Pythagorean triples. We aim to find all primitive solutions, that is,
those with ged(z,y,z) = 1. One may get all solutions by multiplying
primitive solutions by arbitrary integers. Furthermore, we will only
look for solutions with z,y, 2 € Z>o. Observe that any common prime
factor of x and y must also divide z by the equation, so a primitive
solution also satisfies ged(x,y) = 1. Now we assume, as we may, that
2t y, and rewrite the equation as

(z4+z)(z —2) = 2% — 2 = ¢

We observe that any common prime factor of (z 4 2) and (z — 2)
must also divide 2z = (2 +z) — (2 — x) and y (because x + z|y?). Then
ged(z + ¢,z — )| ged(2z,y) = 1 by ged(x,y) = 1 and 2 t y. Observe
that y? contains all prime factors with even multiplicity. When we
distribute the prime factors of ? between z +x and z — x, all instances
of the same prime must go to the same factor, because the two factors
are coprime.

Therefore, there are odd m > n € Zsq with ged(m,n) = 1 such
that 2 + 2 = m? and z — x = n?. A simple calculation yields that any
non-negative primitive solution of our equation must satisfy

m? — n? m? + n?
r=——, =mn, z2=-———
2 Y 2
It is easy to verify that all x,y, z in this form are non-negative prim-
itive solutions, provided m and n satisfy the conditions we imposed.

Therefore, we solved the equation.
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Remark 6. It is more customary to write the solution in the equivalent

form

r=2mn, y=m>—n% z=m>+n?

with the assumptions that m > n € Zs(, ged(m,n) = 1 and exactly
one of them is even.

Fermat claimed that there are no solutions of (1) with x,y, 2z € Z>
and k > 3. We try to generalize the above argument. The first step is
a suitable factorization of the equation. The k = 2 case was based on
X?—1=(X+1)(X —1). For general k, we have

k—1

Xt —1=][(x - 6.

J=0

Indeed, Qi for j = 0,...,k — 1 are all the k’th roots of unity. Where
k is odd, which we will now assume, this can be more conveniently

rewritten as
k—1

Xt+1=T[(x+6)
5=0
using the substitution X — —X. Now we plug in X = z/y and get

k—1

7=0

Our next step would be to show that (z + G{Cy) are k’th powers
in Z[f], but there are two major difficulties. The first, and more
serious one is that our argument in the k& = 2 case relied on unique
factorization. However, Z[0x] is a unique factorization domain (UFD)
only for finitely many £’s. This property already fails for k£ = 23, and,
in fact, for all primes k > 23. The second issue is that even if Z[fy] is
a UFD, an element that contains all primes with multiplicity divisible
by k, may not be an k’th power. All that we can say is that it is
of the form ua®*, where a € Z[f,] and u is a unit in Z[f;], that is,
u,u”t € Z[6y].

Despite these difficulties, Kummer was able to show the following
result in 1850.

Theorem 7 (Kummer). Let p > 2 be a reqular prime. Then the equa-
tion
al +yP = 2P, Y, 2 € Ly
has no solutions.
We will define what a regular prime is later in the course. Here we

just note that there are only three irregular primes less than 100: 37,
59 and 67. Moreover, it has been conjectured (later by Siegel) that
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the density of regular primes is e~/? a 0.6065. .., however even the
infinitude of regular primes is an open problem.

In any case, this is a great result. Its proof relies on a remarkable
theory of Kummer that “restores” unique factorization in cyclotomic
fields. This has been extended by Dedekind and Kronecker in the sec-
ond half of the 19th century to all number fields using two conceptually
different but equivalent constructions.

1.2. Aims of the course. In this course, we will first discuss what the
appropriate notion of an integer is in general number fields. Then we
will develop a substitute for unique factorization following Dedekind.
Next we will study the structure of units. In the final part of the
course we will put most of the fire power we will have acquired to good
use and prove Kummer’s above quoted theorem under the additional
assumption that p { xyz.

2. RINGS OF INTEGERS

Let a be an algebraic number. Recall that there is a unique monic
polynomial P € Q[z] of minimal degree such that P(a) = 0. This
polynomial is called the minimal polynomial of «, and it is necessarily
irreducible in Q[z].

Definition 8. A complex number is an algebraic integer if it is alge-
braic and its minimal polynomial has integer coefficients.

Remark 9. If f(«) = 0 for some monic f € Z[z], then « is an algebraic
integer even if f is not the minimal polynomial. Indeed, we must have
f = g+ h, where g is the minimal polynomial of o and h € Q[x]
is monic. By Gauss’s lemma (Part IB Groups, Rings and Modules),
we must have g, h € Z[z], so g, the minimal polynomial, has integer
coefficients. (Ezercise: think through the details.)

Theorem 10. Algebraic integers form a ring.
This ring is denoted by O.

Definition 11. Let K be a number field. We write O = ON K, and
call it the ring of integers of K.

Soon we will see that it is crucial for the theory that we develop
as a substitute for unique factorization that we work with O rather
than a subring of it. Introducing it was one of the key inventions of
Dedekind and Kronecker when they generalized Kummer’s approach
from cyclotomic fields to general number fields.

The purpose of this section is to prove Theorem 10. Before we start,
we give a few examples.

Example 12. The ring of integers in Q is Z. Indeed, the minimal
polynomial of a/b with ged(a,b) = 11is x — a/b.
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Example 13. Let m # 0,1 € Z be square-free, and K = Q(y/m).
Then

{a—i—b-%m:a,bEZ} ifm=1 mod 4

{a+by/m:a,beZ} otherwise.

Hint: Observe that a + by/m with a,b € Q is a root of the polynomial
(x —a—bvm)(z — a+bym) = 2% — 2azx + (a* — b*m),

and it is an algebraic integer if and only if both 2a € Z and a® — b*m €
Z. The details are left as an exercise.

Example 14. Let n > 3, let 6,, = €>™/", and let K = Q(6,,). Then
Ok =270, =Z@®0,ZD...®06°"MZ.

Later in the course we will prove this in the case where n is a prime.

Ok =

Consider a number field Q(a), where « is an algebraic number. All
elements of Q(«) have a unique representation of the form

d—1
ag +aax+ ...+ ag_ 1o

where ag,...,as_1 € Q and d is the degree of a.

Lemma 15. Let « be an algebraic integer. Then the elements
(2) ap +ara+ ...+ ag_1a%t

with all ag, ..., a1 € Z form a ring, which is the smallest ring con-
taining « and Z, and we denote it by Z[a.

By Theorem 10, Z[a] C O, but as the example of Q(y/m) for m = 1
mod 4 shows strict containment is possible.

A number field K is called monogenic if there is some o € K such
that Ox = Z]a]. The above examples show that quadratic and cyclo-
tomic fields are monogenic. However, this is not true in general. See
the second example sheet for an example.

Proof of Lemma 15. The elements
a0+a1a+...+akak

for arbitrary k € Z>o and aq, . .., a; € Z certainly form a ring. (Check
directly that they are closed under subtraction and multiplication.) It
is enough to check that these elements can be written in the form (2).

If fact, it is enough to check this for the elements o, because el-
ements of the form (2) are closed under integer linear combinations.
Writing f(z) = 2% + bg_12?™1 + ... + byx + by for the minimal polyno-

mial of @ and using f(a)a*~? = 0, we can write

af = —by_ ot — = b - boak_b,
k

so o may be written as an integer linear combination of lower powers
of o for all £ > d. We may iterate this as long as, we have a power
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higher than £ —1 in our expression. In the end, we get a representation
in the form (2), as required. O

We turn to the proof of Theorem 10. It relies an the following alter-
native characterizations of algebraic integers.

Proposition 16. Let o € C. The following are equivalent.

(1) The number « is an algebraic integer.
(2) The ring Z[a] is a finitely generated Z-module, that is, there
are By, ..., B, € Zla] such that

Zlo)=Z+ ...+ B, 2.

(3) There is a finitely generated Z-submodule of C that is closed
under multiplication by .

Proof. We have already seen that (1) implies (2) in Lemma 15.

[tem (2) implies item (3) trivially.

We turn to the proof that item (3) implies item (1). Let 51Z+ ...+
B2 be a module that is closed under multiplication by a. We want
to show that « is an algebraic integer, and to that end, we exhibit a
monic polynomial in Z[z]| that vanishes at «.

For all ¢ = 1,...,n, there are integers m, 1, ..., m;, such that
aBi =m; 1B+ ... A M.
We consider the matrix M with entries m;; for i,7 = 1,...,n, and
observe
B af
M - : = :
Bn oS
We see that « is an eigenvalue of the matrix M, hence it is a root of
the characteristic polynomial det(xId —M). d

Proof of Theorem 10. Let «, f € O. We show that a — 8 and af € O,
which is enough to show that O is a ring.

We prove that Z[«, f] is a finitely generated module. This is closed
under multiplication by a — 8 and a3, hence a — 3, a8 € O by Propo-
sition 16, as needed.

By Proposition 16, Z[a] and Z[f] are finitely generated Z-modules.

Let aq,...,a, and fi,...,05, be generators for them, respectively.
Then Z[o, f] is generated by {a;6; : ¢ =1,...,n,j =1,...,m}, and
the theorem is proved. U

Remark 17 (Non-examinable). Theorem 10 can also be proved using
the theory of symmetric polynomials. We briefly sketch this here. For
details, see [2, Chapter 10].

We denote by eg( X1, ..., Xn), ..., e.(X1, ..., X,) the elementary sym-
metric polynomials in n indeterminates. The polynomial e; also de-
pends on n, of course, but we make this explicit in our notation only
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when we list the arguments. The key result (from Part IT Galois The-
ory) we use is that for any symmetric polynomial f(X7,..., X)), there
is a polynomial ¢(Yp,...,Y,) such that f = g(eo,...,e,), and the coef-
ficients of g can be taken from the same ring where the coefficients of
f come from.

Now let o and [ be two algebraic integers of degrees n and m respec-
tively. We write o, ..., a, and (3, ..., B, for the roots of the minimal
polynomials of a and f respectively. (These lists contain o and f
of course.) We note that (—1)*ex(ay,. .., a,) and (—=1)ker(B1, ..., Bm)
are the coefficients of the minimal polynomials of a and [ respectively,
and hence they are integers. We claim that eg(...,a; + f3;,...) with ¢
and j running thorough their respective ranges is an integer for each
k=1,...,nm. Then o + 8 is the root of a monic polynomial with
integer coefficients, hence it is an algebraic integer.

To show the claim, it is enough to show that for each k, there is a
polynomial g(Uy, ..., Uy, Vo, ..., V) with integer coefficients such that

(3) ek(. .. 7Xi + }/}, .. ) = g(eo(Xl, .. 7Xn)7 .. 7€n(X1> ce 7Xn)7
eo(Y1,- s Ym), - sem(Yr, ..., V).
This can be proved by two applications of the “key result” mentioned
above. First we consider the left hand side of (3) a symmetric polyno-
mial in Y73, ..., Y, with coefficients in the ring Z[ X1, ..., X,,], and write
it as a polynomial gg in ¢/(Y3,...,Y,,), [ = 0,...,m with coefficients
in Z[Xy,...,X,]. Now each of the coefficients of gy is a symmetric

polynomial in X, ..., X,,, hence they can be written as polynomials in
(X1, ..., Xn), 1 =0,...,n with integer coefficients.

3. ADDITIVE STRUCTURE OF THE RING OF INTEGERS

Let K be a number field with d = [K : Q]. The aim of this section
is to show that there are a4, ..., aqy € Ok such that
OK:Oé1ZEB...@OédZ.

Such a collection of elements aq, ..., aq, if exists, is called an integral
basis for K.

Let M be a finitely generated Z-submodule (or equivalently an ad-
ditive subgroup) of K. By the structure theorem of finitely generated
modules (Part IB Groups, Rings and Modules) we know that

M=Z"®(Z/QW2)® ... & (Z/qZ)
for some r, s and ¢y, ...,qs. Since K does not contain any elements of
finite additive order, M = Z", hence
M=0uZ®.. ®&o7Z

for some aq, ..., a,.
Since ayq, . . ., a, are linearly independent over Q, we must have r < d.
In addition, Ok contains d linearly independent elements over Q (just
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take 1,q,...,a?"! for some a € O with K = Q(«)). Therefore, if we
knew that Ok is a finitely generated module, then we also knew that
an integral basis exists.

In what follows, we attach a quantity called the discriminant to tu-
ples of elements (g, ..., ay) € O%. We will show that the discriminant
is always an integer, and it is 0 if and only if the elements in the tuple
are linearly dependent over Q. We will also show that the discrimi-
nant depends only on the module generated by the tuple and that it
decreases in absolute value when we add new elements to the module.
After this, the existence of an integral basis will follow easily.

3.1. Trace and norm. First we recall some facts and definitions from
Part II Galois Theory. Let L|K be a finite extension of fields. With
a € L, we write m, for the linear transformation on L considered a
vector space over K given by x — «a-x. Then the trace and norm of «
is defined as

Trp k(o) = tr(ma), Npk(a) = det(mg).
The trace and the norm have the following properties.
o If o € K, then Try () = [L: K]ow and Npjg(a) = alFK.
e The trace is additive and the norm is multiplicative:
Trpr(a+ B) = Tryx () + Tryr(8),
NL|K<046) = NL|K(04) NL\K(B)-
e If M|L|K are finite extensions, then

TI‘M|K(CK) = TrL|K<TrM|L(a))>
Nasjre (@) = Npjge (Nagz(@)).

Now let K be a number field with d = [K : Q]. We write Tr and
N for Trg|q and Ngq. Recall that there are d distinct embeddings of
K into C, which we denote by oy,...,04. (If K = Q(«), and f is a
minimal polynomial of «, then the images of o under the embeddings
are precisely the roots of f, and the image of a determines the em-
bedding uniquely.) We can express the trace and the norm using the
embeddings as

Tr(a) = o1(a) + ...+ o4(a), N(a)=o01(a)---o4(a)

for o € K.
Let o € K, and let f(z) = 2%+ ...+ ayx + ap € Z[x] be its minimal
polynomial. Then

Tr(a) = —ag_1, N(a)=(—1)%y.

As a corollary of this, we see that traces and norms of algebraic integers
are (rational) integers.
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3.2. Discriminants. Let K be a number field of degree d and denote
by o1,...,04 : K — C the complex embeddings, as above.

Definition 18. The discriminant of a d-tuple (o, ...,aq) € K is de-
fined as

disc(ay, . . ., aq) = det(oy(a;))?.
Here and throughout this note, we will write det(a;;) for determinants
whose entries are a;; with the indices running through their ranges,
which should always be clear form the context.

Example 19. Let @ € K such that K = Q(«), and write f for its
minimal polynomial. An important d-tuple is 1, c,...,a?!, because
it is a basis for Z[a| as a Z-module. For this tuple, we have

disc(1, a, ..., a4 ) = H (0:(a) — oj(a))? = (=1)""V2N(f'(a)).

This can be proved by computing the Vandermonde determinant det(c;(a?)).
See the first example sheet.

Lemma 20. We have
disc(ay, ..., aq) = det(Tr(oey)).

If oy ... a4 € Ok, disc(a, ..., aq) € Z.

Proof. Writing [a;;];; for the d x d matrix whose ij entry is a;;, we have
[Tr(cian)liw = [o()lisloj ()] n-

Using that the determinant does not change if we take the transpose
of a matrix, and that it is multiplicative, we get

det(Tr(oya;)) = det(o(a;))?,
as required. O

Lemma 21. We have

disc(a,...,aq) =0
if and only if aq, ..., a4 are linearly dependent over Q.
Proof. 1f ay, ..., a4 are linearly dependent over Q, then the rows (and

also the columns) of the matrix
[Tr(cwa;)]i;

are linearly dependent, hence its determinant is 0, as required.

For the converse, we suppose to the contrary that aq,...,aq are
linearly independent over Q, yet det(Tr(c;c;)) = 0. Then the rows of
[Tr(c;v5)]i; are linearly dependent over Q, hence there are ay, ..., aq €

Q, not all 0, such that
0=a; Tr(ma;) + ...+ a4 Tr(oge;) = Tr((ar0q + . .. + agag);)
for all j.
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Since aq, ..., aq are linearly independent, they form a Q-basis of K.
By linearity of the trace, we have
Tr((ar0q + ...+ agaq)B) =0

for all g € K. Using again the linear independence of ay, ..., aq, we
see that (ajaq + ...+ agay) # 0. We plug in 8 = (a1 + . .. + agag) ™"
into the above identity and get

Tr(1) =0,
which is our desired contradiction. O
Corollary 22. The numbers ayq,...,aq are linearly independent over

Q if and only if the vectors (o1(),...,04(e;)) € C* for j=1,....d
are linearly independent over C.

Proof. Both properties are equivalent to disc(ay, ..., aq) # 0. O

3.3. Geometric interpretation. We give a geometric interpretation
of discriminants. For now, this is not strictly necessary for our devel-
opment of the theory, and it will just serve as a source of intuition.
However, later on in the course, we will rely on it more.

Let K be a number field of degree d over Q. Recall the d distinct
embeddings 1, ...,04 : K — C. We denote by r the number of the real
embeddings, that is those that send K into R. We assume, as we may,
that o1,...,0, are the real embeddings. The remaining embeddings
come in pairs of complex conjugates. We write s = (d — r)/2, and
denote by 71,71,...,7s,7s the s pairs of complex embeddings of K.
(These are just a relabelling of 0,1, ...,04.)

We consider the map ¥ : K — R? defined by

Y(a) = (o1(a), ..., 0.(q), Re(ri (), Im(71(c)), . .., Re(rs(a)), Im(7s ()"

This is clearly a homomorphism of additive groups.

Lemma 23. For ay,...,aq € K, we have
(—4)*det(S(an), . .., X(ag))? = disc(ay, . . ., aq),

where the determinant on the left is a combination of d column vectors
listed. In particular, ¥(aq), ..., X(aq) are linearly independent over R
if and only if disc(ay, ..., aq) # 0.

Proof. Fixsome k € {1,...,s}. Two of the rows of the matrix [o;(;)];;
are equal to (1), ..., Tk(aq) and Tx(aq), . .., Te(q). We add the sec-
ond of these to the first, and then subtract half of the result from the
second. After these row operations, the two rows of the matrix will be
replaced by

2Re(mi()), ..., 2Re(mp(q)), and —ilm(rx(aq)),..., —iIm(m(aq)).
We can do this for all k£, and get

(—24)° - det(X(ar), ..., E(g)) = £ det(oi(ey)),
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with the sign depending on the sign of the permutation that moves
Orils--.,0q 100 74,77, ...,Ts, Ts. Squaring the above equation will give
the claim. U

Let A be a lattice in R?, that is, an additive subgroup of the form
nZ @ ... ® vgZ for some linearly independent vq,...,v4 € R4 A
fundamental domain for A is a bounded Borel set ' C R? that contains
exactly 1 point in each coset u + A for u € R%. (Many authors use a
different notion of a fundamental domain. If you do not know what a
Borel set is, do not despair; it is a regularity condition that allows a
nice definition of volume. For the purposes of this course, you do not
need to know more.)

Example 24. The fundamental parallelepiped, that is the set
0,1) v 4+...4+]0,1) - vy

is a fundamental domain and it has volume (that is, Lebesgue measure)
| det(vy, ..., vq)|

Lemma 25. All fundamental domains of a lattice have the same vol-
ume.

This common value of volume is called the covolume of A and it is
denoted by coVol(A). We note that

disc(ay, ..., aq) = (—=4)* coVol(X(a)Z + . .. + X(ag)Z)>.

The discriminant can be interpreted as a quantity that measures how
dense the lattice spanned by ¥(«;) is in R®.

Proof. Let Fi, F5 be two fundamental domains. Notice that R? is a
disjoint union of the sets F; 4+ u for v € A. We have

Vol(Fy) = > Vol(Fy N (Fy + u)).

(By the boundedness condition for fundamental domains, the above
sum can be made finite, but if you took Part II Probability and Mea-
sure, you will know that countable sums are OK.) Similarly,

Vol(Fy) = > " Vol(Fy N (Fy — u)).

u€eA

Now the claim follows by
FQﬂ(Fl—FU,) :Flﬁ(FQ—u)+u

and translation invariance of volume. O
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3.4. More on discriminants. We show that the discriminant of a
tuple depends only on the module it generates, and then we discuss the
relationship between the discriminants of a module and a submodule.
These follow easily from the above geometric interpretation, but we

give an algebraic proof.
Let K be a number field of degree d over Q.

Proposition 26. Let aq,...,aq € K and By, ..., 54 € K be two tuples
of Q-linearly independent elements. Let A € Q™% be such that

(Bi,...,Ba)" = Ao, ..., a9)".
Then
disc(fB1, . .., Ba) = det(A)*disc(ay, . . ., aq).
If Bi,....Ba € Loy + ... + Zay, then
| disc(By, ..., Ba)| > |disc(ay, . .., aq)l.

If the tuples o, ..., aq and By,..., B4 generate the same module then
their discriminants equal.

Thanks to this proposition, we can define the discriminant of a mod-
ule as the discriminant of any generating d-tuple. Where the rank of
the module is less than d, its discriminant is 0.

Proof. We note that

[0(6:)]i; = Aloj(ai)lis-
Now the claim follows by the definition of discriminants and the mul-
tiplicative property of determinants.

If B1,...,8q4 € Zay+. ..+ Zag, then A has integer entries, and hence
det(A)? € Z>(. By linear independence, det(A) # 0, and

| disc(By, ..., Ba)| > |disc(ay, . .., aq)l.

If aq,...,aq and By, ..., Bq generate the same module, we get the
reverse inequality by exchanging the roles of the two bases. The fact
that the two discriminants have the same sign follows from the first
claim, because det(A)? > 0. This also follows from our observation in
the previous section that the sign of the discriminant depends only on
the number of complex embeddings of K. U

Proposition 27. Let M, C My be two modules in K of rank d. Then
diSC(Ml) = |M2/M1|2diSC(M2).

This follows from the previous proposition, if we are able to compute
the determinant of the change of basis matrix. This is made easy by
the following result from Part IB Groups, Rings and Modules.

Theorem 28. Let M, C My be two free Zi-modules of rank d. Then
My has a basis ay,...,aq, and there are ay,...,aq € Z such that
ailas] ... laq and that ajon, . .., agaq is a basis for M.
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Proof of Proposition 27. This follows by Proposition 26 and Theorem

28. Il
Theorem 29. Let K be a number field of degree d. A tuple oy, . ..,aq €
Ok is an integral basis if and only if |disc(ay,...,aq)| is minimal

among all tuples subject to the condition that it is not 0. In partic-
ular, an integral basis always exists.

Proof. Let | disc(ay, ..., aq)| # 0 be minimal among all tuples in Ok.
Write M = Zay + ...+ Zay. Let § € Og. We need to show that
£ € M. Consider the module M + $Z. By the previous proposition,
we have
disc(M) = |(M + BZ)/M|? disc(M + BZ).

By the minimality of | disc(M)|, we have |(M + BZ)/M| = 1, hence
M =M+ [Z,and 5 € M.

Since the discriminant only takes integer values, the minimum is
attained, hence an integral basis exists. U

Definition 30. Let K be a number field. The discriminant disc(K') of
K is defined as the discriminant of any integral basis of Og.

Example 31. Let m € Z be a square free number, and let K =
Q(v/m). If m =1 mod 4, then an integral basis of K is

14+ +m

2 )

1,
and
1 =

1 =

3

disc(K) =

L

_ (1—2\/ﬁ_ 1+2\/E)2:m

)
If m # 1 mod 4, then an integral basis of K is 1,/m and

disc(K) = ‘ } _\/\/_mm = (—v/m — v/m)? = 4m.

Proposition 32. Let ay,...,aq € Ok be Q-linearly independent. Then
there is q¢ € Zwo with ¢*|disc(ay, ..., aq) such that all elements of Ok
can be written in the form

a1 + ...+ agoyg
q

for some aq,...,aq € 4.

Proof. We take

B <disc(a1, . ,ad)>2
1= disc(K) '
Then we know that

Ok /(Zoy + ...+ Zag)| = q.
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Let 8 € Og. We have ¢8 € Zay + ... + Zag, which proves the
claim. ]

4. UNIQUE FACTORIZATION OF IDEALS

The ring of integers of a number field may fail to be a unique factori-
sation domain. Indeed, consider the number field K = Q(v/—5) and
its ring of integers Ok = Z[v/—5]. Now we have the equation

2:-3=6=(1++v-5)(1—+/-5).

Seeing this, one might hope that there are some primes 7y, mo, 73, 74
such that

2:71'17'('2, 3:7T37T4, 1+ V —5:71'171'37 1-— V —5:7T27T4.
However, looking at norms, we see that we must have
N(m)|ged(N(2),n(1++v—=5)) = 2.

Unfortunately, the numbers that occur as norms of elements of O are
precisely the numbers of the form a?+5b% with a,b € Z, and £2 are not
of this form. So no such 7 may exist. (We cannot have N(m) = %1,
because then m was a unit. We will discuss this later in the course.)
To remedy this issue, Kummer had a brilliant idea. He was motivated
by geometers who added “ideal points” to the Euclidean plane to make
parallel lines meet, and this way they constructed the projective plane.
(1) He thought that when two numbers that should have a common
prime divisor does not have one, we could introduce an “ideal prime”
that will be this common divisor. He gave a very hands-on construction
of “ideal primes” in cyclotomic fields, and he also described how to
decompose the elements in the ring of integers as products of them.
This construction of Kummer was extremely successful. One of the
crucial insights needed to generalize it to arbitrary number fields is
that one needs to work with the ring of integers rather than another
subring of K. Kummer was lucky that Oq,) = Z[0,] for cyclotomic
fields, so the “obvious” ring he chose to work with was also the right
one. To illustrate the issue, consider the following calculation in the

ring Z[v/5]:

(1+5)? =16 +8V5 =2 (2+ V5).
Now (24 +/5) is a unit, because (2++/5)(v/5—2) = 1, hence (1++/5)*
and 23 should have the same factorization to “ideal primes”, because

they are associates. On the other hand 1 + V5 and 2 are not asso-
ciates, so they should have different factorizations. (Indeed, neither

(1 ++/5)/2, nor 2/(1 ++/5) = (v/5 — 1)/2 are in the ring Z[v/5].)

This problem is resolved if we work in the ring of integers, which is

(W This is historically inaccurate. He was motivated by the work of Poncelet on
“ideal secants”.
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Z[(1+ v/5)/2]. Indeed, in that ring (1 4+ v/5)/2 is a unit, hence 2 and
1+ \/5 are associates.

The generalization to arbitrary number fields was achieved by Dedekind
and Kronecker in two conceptually different ways. We follow Dedekind.
There are two tasks. We need to construct the set of “ideal numbers”,
and then we need to find out which elements of the ring of integers are
divisible by which “ideal primes”. Dedekind had a brilliant idea to do
both of these in one go. He decided to identify “ideal numbers” with
the set of elements in Ok that are divisible by them. This way he only
needed to work out which subsets of Ok will correspond to an “ideal
number” in that manner. He arrived at the notion of ideals, which will
be familiar from Part 1B Groups, Rings and Modules.

Definition 33. Let K be a number field. An ideal in O is a subset
I that is closed under addition and multiplication by elements of Ok,
that is, a € Ok and § € I implies af € I.

Example 34. The principal ideal generated by an element o € Ok is
(o) = ()0, = a0k ={ap: 5 € Ok}.

This way we can associate for each element @ € Ok a corresponding
ideal (a), and we have (o) = (f) if and only if & = uf for some unit
u € Ok. [Exercise: check this.] This is very nice, because a and /3
should have the same prime factorization if and only if & = uf for some
unit v € Ok.

We can introduce a multiplication operation on ideals as follows:

IJ:{Oélﬂl—F...—i-Oékﬂk2/€€ZZl,OéjEI,ﬁjEJ}.

This is easily seen to be associative. Observe that for principal ideals,
we have (af) = («a)(f), so the map a — («) is homomorphism of
semigroups.

An ideal I C Ok is a prime ideal if whenever af € I for some
a, B € Ok then at least one of o and [ is in I. This is easily seen to
be equivalent to the property that Ok /I is an integral domain, that
is, a non-zero (unital, commutative) ring®® without zero divisors. In
addition, a principal ideal () is a prime ideal if and only if « is a prime
element of O.

Our next goal is the following remarkable theorem.

Theorem 35. Let K be a number field. Then every non-zero ideal
of Ok can be written as a product of non-zero prime ideals and this
decomposition is unique up to the order of the prime ideals.

Definition 36. We call a non-zero prime ideal in Ok a prime.

()For the purposes of this note, every ring is assumed to be commutative and
unital.
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Remark 37. A word of caution. Even though ideals have unique
factorization, this does not mean that we have a unique factorization
domain. While there is a natural way to define addition on ideals by

I+J={a+p:acl,pel},

this does not turn the set of ideals into a ring, and we do not have
(o) + (B) = (a+ B), in general.

Ideals in O have three important properties that we will rely on in
this section.

Lemma 38.
(1) Ewvery ideal in Ok 1is finitely generated, that is, it is of the form

10k + ...+ Ok for some k € Zi—y and aq,...,qp € Ok.
(2) Every increasing sequence I C Iy C I3 C ... of ideals must
stabilize, that is, Iy = Iy 1 = Ixyo = ... for some k.

(3) Ewvery collection of ideals contains one that is mazximal with re-
spect to inclusion.

These three properties are, in fact equivalent. When they hold for
some ring, it is called Noetherian.

Proof. Ttem (1) follows because ideals are finitely generated even as
Z-modules, being submodules of the finitely generated Z-module O.
For item (2), consider I = JI;. This is an ideal, so must be finitely
generated. Then the generators are all contained in I for some k,
hence I, = [ for all j > k.
If item (3) was not true, we could find an infinite sequence of strictly
increasing ideals contradicting item (2). O

To state the second property, we need a definition.

Definition 39. Anideal I C Oy is maximal if the only ideals J C Ok
with I C J are J = [ and J = Ok.

It follows immediately from the definitions that an ideal I is maximal
if and only if Of/I is a field.

Lemma 40. Maximal ideals and non-zero prime ideals are the same.

Proof. First we show that the quotient ring O /1 is finite for all ideals
I. Since every ideal contains a principal ideal, it is enough to see this
for principal ideals. If oy, ..., aq is an integral basis and I = (), then
Baq, ..., Bag generate I freely as a Z-module. Then [ has the same
rank as a Z-module as Ok, hence Ok /I is indeed finite. Now we note
that finite integral domains are all fields. (Show that they are equal to
their quotient fields.) From this it follows that maximal and non-zero
prime ideals are indeed the same. U

Lemma 41. Let o € K Suppose that there is a finitely generated O -
module M with oM = M, then we have a € Ok
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When an integral domain satisfies this property, with its field of
fractions playing the role of K, it is said to be integrally closed.

Proof. Note that finitely generated Ox-modules are the same as finitely
generated Z-modules, because Ok is finitely generated as a Z-module.
Hence an « satisfying the above property is an algebraic integer, there-
fore is contained in Og. O

Integral domains that satisfy the conclusions of the above three lem-
mata are called Dedekind domains, and the ideals of these also satisfy
the unique factorization property. For concreteness, we give the proof
for Ok, but it carries over to Dedekind domains without significant
change.

4.1. Proof of unique factorization. Let [ C Ok be an ideal. By
the Noetherian property the set of proper ideals containing I has a
maximal element P. Then P must also be a maximal ideal and hence
a prime ideal, and P D [ by construction.

Now it would be very helpful if we could also conclude that P|I,
that is, there is some ideal I’ C O such that I = PI’. This is not
unreasonable to expect. Indeed, for principal ideals, (a)|(3) is trivially
equivalent to () D (8), and if J|I for some arbitrary ideals I, J C Ok,
then J D I again trivially. We hope that the converse may also be true.
This is not true for general rings, but it holds for Ok and even for all
Dedekind domains. This is closely related to Theorem 35, and we will
prove the two things together.

It is useful to extend the notion of ideals.

Definition 42. Let K be a number field. A fractional ideal in K is a
finitely generated Og-submodule of K.

Lemma 43. If I C K 1is a fractional ideal, then there is some a € Z
such that
al ={a-a:acl}

is an ideal in Ok.
Conversely, if I C Ok is an ideal and o € K, then ol is a fractional
1deal.

Proof. For the first claim, let I = a1Ok + ... + @, Ok be a fractional
ideal generated by some oy,...,a, € K. Write the a; as Q-linear
combinations of some integral basis of O, and choose a to be the
common denominator of all the coefficients.

The converse follows easily from the definitions and we leave it as an
exercise. O

We can extend the multiplication operation to fractional ideals using
the same formula as for ideals in Og. It would be very helpful if non-
zero fractional ideals formed a multiplicative group, but we do not
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know yet if there is always an inverse. As a first step, we prove this for
prime ideals.

Proposition 44. Let K be a number field, and let P C Ok be a
non-zero prime ideal. Then there is a fractional ideal P' such that
PP =(1).

Begining the proof of Proposition 44. It is natural to try defining
P'={a € K:aP C Ok}

This is clearly an Og module, and P’ C Ok for any § € P, so P is
a fractional ideal. If there is some fractional ideal P’ with the required
properties, this will be it.

By definition, PP" C Ok and it is an ideal. Also, O C P’, hence
PP > POg = P. Since P is a prime ideal, it is also a maximal
ideal by the second property of Ok discussed above. Therefore, either
PP = (1) or PP = P. To rule out the second case, it is enough
to prove that there is some a € P’ that is not in Og. Indeed, if we
manage to do this, then PP’ D aP ¢ P, for otherwise a € O by
virtue of Ok being integrally closed. In what follows, we will exhibit a
suitable «, but this requires some preparations. Il

Lemma 45. Let I C Ok be an non-zero ideal. Then there are k € Z>
and non-zero prime ideals Py, ..., P, (with repetitions allowed) such
that Py--- P, C I.

In the following proof, we introduce a proof technique called Noe-
therian induction.

Proof. Suppose to the contrary that the statement of the lemma is not
true for all ideals. Let I be an ideal that is maximal among those ideals
for which the lemma fails. Then I cannot be a prime ideal, for we may
take k =1 and P, = [ to show that the lemma holds for prime ideals.

Then there are some «a, f € Og\I such that af € I, for otherwise
I would be a prime ideal. Now (a) + I,(f) + I 2 I, hence there are
prime ideals Py,..., Py and Qq,...,Q; such that P, --- P, C {(a) + 1
and Q-+ Q; C (5) + I. We observe that

P PQu--QuC (@) + DB) +1) 1

showing that the lemma holds for I, a contradiction. U

We will need the following observation in the upcoming proof. If I, J
are ideals and I.J C P for a prime ideal P, then I C P or J C P. Note
that for principal ideals I = («) and J = (), this is just the defining
property of prime ideals. It is easy to verify the above more general
statement. Indeed, suppose to the contrary that I ¢ P and J ¢ P.
Then there are « € I\P and g € J\P. Hence aff € P, but o, 5 ¢ P,
a contradiction.
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Completing the proof of Proposition 44. Let P and P’ be as in the be-
ginning of the proof. Let § € P be arbitrary. We aim to find a suitable
v € Ok such that v ¢ (B) but (y)P C (). Taking v = v/, we have
a ¢ Ok, but aP C Ok. In light of the first part of the proof, we will
be done once a suitable v with the claimed properties is constructed.

Let k be minimal such that there are non-zero prime ideals Py, ..., P
with P, --- P, C (8). We note that P,--- P, C P, hence P; C P for
some j, by the observation we made before the proof. But P; is also a
prime ideal, and hence a maximal ideal, so P = P;. We assume, as we
may that j = k.

By the minimality of k, we have P; --- P,_; ¢ (f). Therefore, there
is vy € P -+ P._1\(B8). On the other hand yP C Py--- P,_1P C (B).
Therefore, v satisfies both the required properties, and the proof is
complete. Il

From now on we write P~! for the ideal P’ in Proposition 44.

Proof of Theorem 35. Let I C Ok be an ideal. We first show that I can
be written as a product of prime ideals. We use Notherian induction
again. Suppose to the contrary that there are some ideals that are not
products of prime ideals, and let I be a maximal one among such ideals.
We have already observed that there is some prime ideal P; such that
I c P. Write J = Pfll. We observe that J C PflPl = Ok, hence J
is an ideal. Also P, J = P1P1_1] = 1. Now P;J = [ implies J D I. On
the other hand, J = P; I implies J # I. Indeed, otherwise, we would
have af C I for all a € P!, which would imply P! C Of, which is
not the case.

By the maximality of I, J can be written as a product J = P, --- Py
of prime ideals, and hence I = P,J = P, - - - P, a contradiction proving
our claim.

Finally, we show the uniqueness of prime factorization. To this end,
we prove that if

ProPe=0Q1--Q
for some prime ideals Py, ..., Py, Q1,...,Q, then k =l and P; = Q,;
for some permutation o.

We prove this by induction on k4. The claim is trivial if £ +1 = 0.
We suppose that £+ [ > 0 and that the claims holds for all smaller
values of £+ [. We assume, as we may, that £ > 0. Now it is enough
to show that [ > 0 and P, = ); for some j < [. To this end, we note
that P, D @ ---Q;. This immediately implies that [ > 0 and that
Q; C P, for some j. Being a prime ideal, (); is also a maximal ideal,
hence @); = P, as required. O

Corollary 46. Every non-zero fractional ideal I C K has an inverse,
that is, there is a fractional ideal 17" such that II7' = (1). In other
words, fractional ideals form a group with respect to multiplication.
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Proof. We have already proved this for prime ideals. Then all ideals
J C Ok also have inverses. Indeed, we can get the inverse of J by
multiplying together the inverses of all prime factors of J. Finally, a
fractional ideal I can be written in the form I = J;J; . (We may even
take Jo to be principal.) We see that the fractional ideal J; 'J, is an
inverse of [. U

Corollary 47. Let I,J C Ok be two ideals. Then I D J if and only
if there is an ideal Iy C Ok such that 11, = J.

Where one and hence both of the above two equivalent conditions
hold for some ideals I and J, we say that I divides J and denote this
fact by I]J.

Proof. We have already discussed that I'l, = J implies I D J. For the
converse, it is enough to show that I O J implies I='J C Ok. To this
end, we observe that af € J C I for all « € I7'J. Thus a € Ok as
Ok is integrally closed. O

In analogy with Z, for two ideals I and J we define their greatest
common divisor ged(/,J) as the smallest ideal dividing both I and
J. This may sound odd, but the point is that the smaller the ideal,
the larger the residue ring. Similarly, we define the least common
multiple lem(7, J) as the largest ideal that is divisible by both I and
J. We observe that for all prime ideals P, its multiplicity in the prime
factorization of ged (7, J) is the minimum of its multiplicities in / and
J. Similarly, the multiplicity of P in lem(7,J) is the maximum of its
multiplicities in [ and J. We note further that

ged(I,J)=1+J, and lem(l,J)=1NJ.
We leave the proof of these facts as exercises.

Corollary 48. The ring of integers Ok in a number field is a UFD if
and only if it is a PID.

Proof. Every PID is a UFD, and for Ok this also follows from the
unique factorisation of ideals.

We show that the converse is also true for Ox. Assume that O is a
UFD. We note that if o € Ok is a prime element, then (a) is a prime
ideal. Thus, every principal ideal in O is a product of principal prime
ideals. Now let I be an arbitrary non-zero ideal, and let o € I. Then
I|{a), and all prime factors of I are also prime factors of («), hence
they must be principal ideals. Then [ is a product of principal ideals,
hence it must be a principal ideal, too. O

5. NORMS OF IDEALS

Definition 49. Let K be a number field, and let I C Ok be a non-zero
ideal. The norm N(I) of I is defined as |Ok/I|.
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Recall that we have already observed that N(/) < oo for all non-zero
ideals. See the proof of Lemma 40. Recall also from Proposition 27
that if aq, ..., a4 generate I as a Z-module, then

" N = ()

Proposition 50. The norm of ideals is multiplicative, that is, we have
N(IJ)=N(I)N(J)
for all non-zero ideals I, J € Ok.

Proof. We show this in the special case, where J is a prime ideal. Using
this special case repeatedly, we conclude that for all ideals I with prime
factorization P --- Py, we have

N(I) = N(P,) -+ N(Py).

Using this for I, J and I.J, the general case follows.

From now on, we assume that J is a prime ideal. Let a, ..., an(
be a system of representatives for the residue classes in Ok /J. Let 8 €
I\NIJ. (Wehave IJ C I, for equality would contradict the uniqueness of
prime factorization among other things.) We show that Sas, ..., Ban()
is a system of representatives for the residue classes modulo I.J in
I/1J. This proves N(J) = |I/1J|, and we can conclude by |Ok/IJ| =
O /11 |1/1J].

Since € I, Boy, ..., Baxe) are all in I. We show that they rep-
resent all residue classes modulo IJ. To this end, let v € I. We note
that (8) = IP; --- Py for some prime ideals P, ..., Py, none of which
is J. Thus (8) + I.J = ged({(),1J) = I. This shows that v — fa € I.J
for some o € Ok. We have a — «; € J for some j, so v — Bo; € IJ.
This shows that Sas,. .., Bax(s) indeed represent all classes in I/1.J.

Now we show that Sai, ..., Ban() represent distinct classes. Sup-
pose that fo; — Ba; € IJ for some 7,j. We show that then i = j
necessarily. Indeed, we have I.J|(5)(o; — a;). We have already ob-
served that (8) = IP; --- P, for some prime ideals P, ..., Py, none of
which is J. Then J|(o; — «;), hence i = j, as required. O

Proposition 51. Let « € Ok. Then
N({@)) = [N(a)],
where the N on the right stands for the field norm N = Ng|q.
Proof. Let aq,...,aq be an integral basis. By definition
disc(K) = disc(ay, . . ., ag) = det(o;(a;))?,

where 01,...,0; : K — C are the complex embeddings. In addition,
aqq, ..., aaq generate () as a Z-module, and

disc(aay, ..., aay) = det(o;(a)oi(a;))?.
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Pulling out the factor o;(«) from the i’th row for each i, we get
disc(aay, ..., aaq) = o1(a)?. .. o4(a)* det(o;(a;))? = N(a)? disc(K).
Now the claim follows by (4). O

6. IDEALS IN FIELD EXTENSIONS

In this section, we discuss how to find all primes in a number field.

Let L|K be an extension of number fields. We will discuss how the
primes in L can be related to those of K. For a fractional ideal I C K,
we can associate a fractional ideal in L in a natural way. We define

IOL:{Oélﬂl—F...—FOékﬂk21{36221,04]' El,ﬁj EOL}.

We observe that IOy, is indeed a fractional ideal in L, and it is the
smallest fractional ideal that contains all elements of I.

We can also associate a fractional ideal in K to a fractional ideal
J C L by considering J N K. Again, it is easy to see that this is indeed
a fractional ideal.

We note that

(5) (1101)(1201) = (I113)0y,

for any fractional ideals I, I C K. On the other hand, (J1NK)(JoNK)
may differ from J;Jo N K for Jy, JJo C L in general.

If I € Og and J C O are ideals, then IO and J N K are also
ideals.

Lemma 52. Let P C Ok and QQ C Oy, be primes. Then the following
two statements are equivalent.

(1) QIPOL.
(2) P=0QnN0Ok.

Where either (and hence both) of the two statements hold, we say
that @ lies over (or above) P and P lies under (or below) Q.

Proof. Assume Q|POpr. Then Q D POy D P, hence P C QN Ok. In
addition, 1 ¢ @, so Q@ N O € Ok. Since P is a maximal ideal, we
must have P = ) N O.

Now we prove the other implication. Assume P = Q N Ok. Clearly

QD (QN0OK)OL = POy, so Q|POy, as required. O

Lemma 53. For every prime () C Oy, there is a unique prime P C Ok
that lies under it. For every prime P C Ok, there is at least one prime
Q C Oy, that lies above it.

Proof. For the first statement, we only need to show that P := QN Ok
is a prime. We note that 1 ¢ @, hence 1 ¢ P and P # O. In addition,
O/Q is finite, but O is infinite, so there are two distinct «, 5 € O
such that o — 8 € Q). Then necessarily « — f € P so P is non-zero.
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Now we show that P is a prime ideal. To that end, let o, 8 € Ok
with a8 € P C (). Since @ is a prime ideal, « € QQ or 8 € (). Then
necessarily o € P or # € P, as required.

For the second statement, we show that PO; C Op. Then it must
have at least one prime divisor. Suppose to the contrary that PO, =
Or. Then (P7'Or)(POL) = Op implies P70 = Or. In particular
P~ c Oy, but also P! ¢ K, hence P~' ¢ O, N K C Ok. Then

Ok = PP™' C POk = P,
which is impossible. This contradiction completes the proof. U

Let Q C Op be a prime that lies above a prime P C Og. There
are two important numbers attached to the pair @), P. The first one is
the ramification index e(Q|P), which is the largest integer e such that
Q°¢|POy.

To define the second one, we observe that O, /Q and Ok /P are both
finite fields and the latter can be naturally identified with a subfield of
the former, because O N () = P. Now we define the inertial degree of
Q) over P as

f(QIP)=[0L/Q : Ok/P].
We note that
N(Q) = N(p)f(Q\P)'

We note that the following tower laws hold. Let M|L|K be field
extensions of number fields and let P C Ok, Q C Op and R C Oy
be primes such that @) lies over P and R lies over ). Then R also lies
over P and we have

f(R[P) = f(RIQ)[(QIP),
e(R|P) = e(R|Q)e(Q|P).
The first of these follows by the tower law for the degrees of field
extensions, and the second follows by (5) and Lemma 53.
Our next goal is the following result about the ramification indices

and inertial degrees of primes lying over a given prime in a field exten-
sion.

Theorem 54. Let L|K be an extension of number fields. Let P C Ok
be a prime and let Q1, ..., Q, C Of be the primes lying above P. Then

T

[L: K] =) "e(Q;|P)f(Q;]P).

j=1
We note that
N(POL) _ N(QT(QHP) . Qi(@r\P)) — N(P)e(Ql|P)f(Q1|P)+---+€(Q1|P)f(Q1\P).

The theorem follows at once if we show that
N(PO.) = N(P)51,

This is the content of the next proposition.
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Proposition 55. Let L|K be an extension of number fields. Let I C
O be a non-zero ideal. Then

N(10.) = N(I)=K],

In the proof, we use the following lemma, which will be proved later
on in the course.

Lemma 56. Let K be a number field and let I C Ok be an ideal. Then
there is some k € Zq such that I* is a principal ideal.

Proof of Proposition 55. Let k be such that I* = aOg for some a.
Then I*O; = a0y, and we have

N(1*Op) = [Nyjq(a)| = | Nijq(a)| .
We also note that (10)F = I*O, hence
N(IOp) = N(]kOL)l/k _ |NK‘Q<Q)‘[L:K]/k _ N(Ik)[L:K]/k _ N(])[L:K]7
as required. B

6.1. Dedekind’s theorem on the factorization of primes in ex-
tensions. Let L|K be an extension of number fields and let P C Ok
be a prime. Our next goal is to find a way to compute the factorization
of POy into primes in L. The next theorem of Dedekind achieves this
in many cases.

Theorem 57. Let K be a number field and let P C Ok be a prime.
Let p be the rational prime that lies under P. Let g € Ok[z] be a
monic irreducible polynomial. Let o be a root of g, and let L = K(a).
Assume that p 1 (O : Oklal]. Let G be the image of g in (Ox/P)|x].
Let
9=91" G’
where g; is an irreducible monic polynomial in (O /P)[z] for each j.
Let g; € Ok[x] be monic and such that g; =g; mod P for each j.
Then

Qj = POL + gj(a)OL
is a prime lying over P and f(Q;|P) = degg; for each j. In addition,
the Q; are distinct, and

POL = Q7+ Qy

Here and everywhere in these notes, where we write that two poly-
nomials are congruent modulo an ideal, we mean this coefficient-wise.

Dedekind’s theorem allows us to compute the decomposition of all
primes where O, = OkJa], and all but finitely many in general. One
might hope that even if no a exists with O = Og[a], it might be
possible to choose an « for each prime P depending on P such that the
condition of the theorem is satisfied. Unfortunately, this is not always
possible.
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We turn to the proof of the theorem. We first prove half of the last
claim.

Proposition 58. With the notation and assumptions of Theorem 57,
we have

POLD Q- Qr

Proof. The set PU{g;(a)} is a generating set for ();. We choose e; (not
necessarily distinct) elements from PU{g;(a)} for each j, and multiply
together these e; 4 ... + e, elements. We collect all of these products
that we can obtain in this way in a set A C Op. By the definition of
products of ideals, A generates the ideal Q7' --- QS . Therefore, it is
enough to show that A C POy.

All but one element of A contains a factor in P. These are obviously
in POp. The remaining element is

g1(a) - g.(a) =g(a) =0 mod POy,
hence g1 () - - - g () € POy, as required. O
We turn our attention to the quotients O /Q);.

Proposition 59. With the notation and assumptions of Theorem 57,
the ring Or/Q; is isomorphic to a factor of
(6) (Ok/P)z]/(g;)-

We observe that the ring (6) is a field, a degree deg(g;) extension of
Ok /P. Fields only have trivial quotients, hence Oy /@Q); is isomorphic
to either {0} or (6). In the former case, Q; = Oy, in the second case
(), is a prime ideal lying over P with inertial degree deg(g;). We would
like to show that the second case holds always, which we will do later
by considering all @);’s together.

In the proof of the proposition we show that two rings are isomorphic
by realizing them as quotients of the same ring and then comparing
the kernels. We record a simple fact in ring theory that will help us

computing the kernels. Where A is a subset of a ring R, we write
(A) = (A)g for the ideal generated by A in R.

Lemma 60. Let ¢; : Ry — Ry and o : Ry — R3 be surjective
homomorphisms of rings. Let A C Ry be a (possibly infinite) set such
that

Ker s = (A},

Let A C Ry be such that p1(A) = A. Then

Ker(p1 0 3) = (A)g, + Ker ;.

Proof. Since gol(;f) = A C Kery,, we have A C Ker(p; 0 7). Also
1(Ker 1) = {0} C Ker g, hence Ker ¢y C Ker(p; 0 ¢3). These two
facts together and that Ker(p; o p9) is an ideal give

(A)r, + Kerpr C Ker(pr 0 ¢2).



26 PETER P. VARJU

Now we show the opposite containment. Let a € Ker(p0¢s). Then
v1(a) € Ker pg = (A)g,. Therefore, we have

pi(a) = rar + -+ rpag

for some k € Z>g, r1,...,7x € Ry and ay,...,a; € A. Using that
1 is surjective, and the definition of A, there are 71,...,7, € R
and ay,...,a, € A such that ¢(7;) = r; and ¢i(a;) = a; for all j.
Therefore,

©®1 (a) = <p1('77151 + -+ ?k’dk)
Now rma; + - -+ + rpag € <Z>R1, and a — ra; + - - - + 1pa, € Ker(ypy),
hence _

a € (A)g, + Ker ¢y,

as required. O
Proof of Proposition 59. Fix some j € {1,...,r}. We first prove that
(7) (Ox/P)[x]/{g;) = Okla]/(P, gj(a)).

We show this by realizing both rings as homomorphic images of Ok |[z]
and proving that the two kernels are equal.

Let @1 : O[] = (Ok/P)lz] and @, : (O / P)[x] = (Ok/P)[x]/(g;)
be the obvious homomorphisms. Clearly both are surjective. By defi-
nition, Ker oy = (g,), and ¢1(g;) = g,. By the lemma

Ker(yy 0 ¢g) = g;Ok[z] + Ker ¢y = g;0k[z] + POk|z].

Let ¢ : Ok[z] = Ok[a] be the homomorphism induced by = — «,
and let 19 : Ogla] = Okla]/(P, gj(«)) be the obvious homomorphism.
Again, both ¢; and 1)y are surjective. We have Ker¢; = gOkl[z]. We
note that ¢, (P U{g;}) = P U{g;(«)}, which generates Ker. The
lemma gives

Ker(iy 0 19) = ¢;0k|z] + POk [z] + gOk|x].
We note that
g=gi' g7 mod POklz],
hence g € g10k|z] + POk|z|. Therefore,

Ker(1 0 ¢) = g;Ok[z] + POk [x] = Ker(pq 0 ¢2).

This proves our claim (7).

Now we relate Op,/Q; to Okla]/(P, gj()). Clearly, Q; N Ok|a] con-
tains (P, gj(a))oga); hence Ogla]/(Q; N Okla]) is a factor of
Okla]/(P, g;(a)). It is, therefore, enough to show that

01/Q; = Okla]/(Q; N Okla]).

In other words, we need to show that the homomorphism ¢ : O —
01/Q; maps Ok[a] onto Op/Q;, which is equivalent to O = Q; +
Okla]. This is where we use the condition p 1 [Of : Okla]].
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We note that Op/(Q; + Okla]) is a factor of both Op/Q; and
OL/Okla]. (Here we work in the category of Abelian groups, rather
than in rings, because Og[a] need not be an ideal in Or.) We note
that [Of, : Q] is a power of p because @; lies over p. Therefore,

(O : (@ + Okla])]|ged([OL : Q4, [Or = Okle]]) = 1.

This proves O, = Q; + Ok|a], as required. O

The final ingredient in the proof of Theorem 57 is the following
statement, which we will use to show that the ideals Q1,...,@Q; are
distinct.

Proposition 61. With the notation and assumptions of Theorem 57,
we have

Qi+Q; =0
for all pairs of indices i # j.
Proof. Fix two indices i # j. Since (O /P)[z] is an Euclidean domain,
and g; and g; are distinct irreducible polynomials, the Euclidean algo-
rithm yields some hy, hy € Og/P[z] such that hig; + heg; = 1. We
pick some hq, hy € Ok[z] that project to h; and hy respectively. Then

1= hlgi + hggj + h
for some h € POg|z]|. Then 1 € Q); + @);, which proves the claim. [

Proof of Theorem 57. By Proposition 58, we know that there is an ideal
I C Oy, such that

PO, - T=Q Q.
By Proposition 59, we know that N(Q;) < N(P)¥&9% for j =1,...,r.
We conclude that

(8) N(p)[L:K] N(I) < N(P)el deggi+...+erdegg; _ N(P)[L:K].
From this we conclude that N(I) = 1, hence I = O, and
POL: il...Qir.

In addition, none of the inequalities N(Q;) < N(P)°€% can be strict,
for otherwise (8) would be strict, too. Therefore, Or/Q; must be
isomorphic to (Ok/P)[r]/(g;) in Proposition 59 for all j. Thus Q; is
indeed a prime lying above P with inertial degree deg g;. Finally, now
that we know that ); # Ok for all j, Proposition 61 shows that they
must be distinct primes. The theorem is proved. U

Remark 62 (Non-examinable). A rational prime p € Z is said to be
ramified in a number field K if there is some prime P C Ok lying
over p with e(P|p) > 1. Let K be a monogenic field, that is, assume
that there is some a € Ok such that Ox = Z[a]. Let g € Z[x] be
the minimal polynomial of a. Let p € Z be a prime. By Theorem 57,
p is ramified in Ok if and only if g has a root in a field extension of
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Z/pZ with multiplicity more than 1. This is equivalent to disc(g) = 0,
which in turn is equivalent to p|disc(g). Since Ok = Z[a], we have
disc(K) = disc(g). We can conclude that p ramifies in Ok if and only
if p|disc(K). This is, in fact, true for all number fields, not just for
monogenic ones, but we will not prove this in this course.

Theorem 63 (Non-examinable). A prime p € Z is ramified in a num-
ber field K if and only if p|disc(K).

6.2. Application to quadratic fields.

Theorem 64. Let m # 0,1 € Z be square-free. Let K = Q(y/m). Let
p € 7 be a prime.
(1) p is ramified in O, that is, pOx = P? for some prime P C Ok,
if and only if p is odd and plm orp =2 and m #Z1 mod 4.
(2) p is split in Ok, that is pOx = PPy for two distinct primes
P, P, C Og, if and only if p is odd and (%) =1orp=2and
m =1 mod 8.
(3) p isinert in Ok, that is pOf is a prime, if and only if p is odd
and (%) =—1,0orp=2and m=5 mod 8.

Here
0 if pim,
m
(—) =<1 ifthereisa## 0 € Z/pZ with m =a* mod p,
p

—1 otherwise
is the Legendre symbol.

Proof. If p#2 or p# 1 mod 4, then pt [Ok : Z[y/m]]. Therefore, we
can apply Dedekind’s theorem for the polynomial g(z) = 2* —m, which
is the minimal polynomial of y/m. The claim follows immediately.
If p=2and m =1 mod 4, then O = Z[(1 + y/m)/2], and we can
apply Dedekind’s theorem for the polynomial g = 22 — x + (1 — m) /4,
which is the minimal polynomial of (14+/m)/2. Where m =1 mod 8,
g=12>+2 = (z+ 1)z mod 2, and Dedekind’s theorem shows that 2
indeed splits in K. Where m =5 mod 8, g = 22 +x+1 mod 2, which
is irreducible in Z/2Z[z], hence 2 is indeed inert in K. O

7. THE CLASS GROUP

As we have seen, a consequence of the unique factorization property
of ideals is that the ring of integers in a number field K is a unique
factorization domain if and only if it is a principal ideal domain.

In this section, we study how far the ring of integers in a number
field can be from being a principal ideal domain, which is also related
to the extent of failure of the unique factorization property.

Consider the set of fractional ideals 7 = Zx in a number field K.
The multiplication operation turns this into a commutative group, and
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the principal ideals P = Pg form a subgroup of it. The quotient
CI(K) = Z/P is called the ideal class group of K. FEach element of
CI(K) contains an integral ideal (see Lemma 43). (We call ideals in
Oy integral ideals, when we want to stress that they are ideals not just
fractional ideals.) Hence the ideal class group can also be defined as
the equivalence classes of integral ideals with respect to the relation ~
defined by I ~ J if and only if there is a € K such that J = al.

Our goal in this section is to show that the ideal class group is always
finite, and the proof of this will also lead to a method for calculating
it.

Theorem 65. Let K be a number field. Then | C1(K)| < oco.

The class number of a number field is defined as
hK) =|CIK)]|.
The theorem will be deduced from the following result.
Theorem 66 (Minkowski’s bound 1). Let K be a number field of degree

d. Denote by s the number of pairs of complex embeddings of K. Then
every ideal I C Ok contains an element o # 0 with

IN(a)| < j—i(%)ﬂ disc(K)[Y2N(J).
Remark 67. By Stirling’s approximation,
d!
dd
Since e > (4/m)'/2, the constant in Minkowski’s bound decreases expo-
nentially as d grows.

= (1+0(1))(2rd)?e 1.

In these lectures, we will only prove a weaker version of this result
replacing the conclusion by | N(a)| < |disc(K)[*/2N(I). The proof of
the stronger version is not examinable, but the statement is.

Before we do this, we discuss a few corollaries of Minkowski’s bound
including the finiteness of the ideal class group.

Corollary 68 (Minkowski’s bound 2). Let K be a number field of
degree d. Denote by s the number of pairs of complex embeddings of
K. Then every element of CI(K) contains an integral ideal I with

dl r4\s
N(I) < ﬁ(;) | disc(K)| V2.
Proof. Let I be an integral ideal, and let J be an integral ideal in the
class of I

We apply Theorem 66 for J, and find some v € J with

d (2)"Iise() N,

N()| < &
INI = (-
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Since v € J, J|{7) and yJ 7! is an integral ideal. In addition
dl r4Ns
NG < 5 (%) Tdise(K)2,
di \m

and v.J~! is in the same ideal class as I. U

The above result implies h(K) < oo, since there are only finitely
many integral ideals of norm bounded by some number X in a number
field. Indeed, all such ideals are products of at most log,(X) primes,
because a prime has norm at least 2. The primes that may occur in
those products lie over rational primes that are at most X. Clearly,
there are only finitely many rational primes at most X, and over each
of them at most [K : Q] primes of K lie. Thus the number of primes
that may occur in the products is also finite.

This argument also leads to a method for computing the class group.
First, compute

X = Lj—; (é>s| disc(K)|1/2J :

T
For example, for the quadratic fields Q(y/m), we get

(\/m

2 )
vm, ifm>1and m=2,3 mod 4,
X =4q42v/—m

W=
\ o7
Second, list all rational primes up to X. Third, factorize each prime in
Ok and list the prime ideals of norm at most X: Pj,..., P.. Finally,
find all integer vectors my, ..., my such that

m1 mi
PP

is a principal ideal. In order to determine whether an ideal I is princi-
pal, a good starting point is to study whether elements of norm N(7)
exist in O.

Corollary 69 (Minkowski’s bound 3). Let K be a number field of
degree d. Denote by s the number of pairs of complex embeddings of

K. Then we have
X d2d T 2s
| disc(K)| > W<Z> .
Proof. This follows from the previous result and N(/) > 1. O

ifm>1land m=1 mod 4,

, fm<O0Oand m=1 mod 4,

, ifm<0and m=2,3 mod 4.

In light of our above comments, the discriminant of a number field
grows at least exponentially with the degree, and it also follows that
| disc(K)| > 1 for all number fields except for K = Q. In light of our
remarks in the previous section, this also implies that in every number
field other than Q at least one prime is ramified.
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7.1. Geometry of numbers. We turn to the proof of the Minkowski
bound, Theorem 66. We first recall the map ¥ : K — R? defined by

Y(a) = (o1(a),...,0.(a),Re(ri(a)), Im(mi(a)),. .., Re(s(a)), Im(rs(a))) 7,

where o04,...,0, are the embeddings of K into C with real image
and 7,71, ...,7s, 7s are the remaining embeddings. We discussed that
Y(Ok) C R% is a lattice, that is an additive subgroup generated by d
linearly independent elements. Moreover, we also know that the covol-
ume of %(Ok), that is, the volume of any fundamental domain is

coVol(2(Ok)) = 27¢| disc(K)|/2.

Now let I C Ok be an ideal. Then 3([) is a sublattice of X(Ok),
and

coVol(X(1)) = 27| disc(I)|V/? = 27* N(I)| disc(K)| /2.

Here disc(/) stands for the discriminant of I as a module, that is the
discriminant of any d-tuple that generates it as a module.
Consider the function N : RY — R defined by

T S
N(w1,. .. 2q) = H |51 H(‘T72~+2j—1 + 745
=1 =

The definition of this function was made so that
IN(a)] = N (E(a))

for all a € K.

Now our job is to prove that the lattice X(/) has a non-zero point
in the region {x : N'(z) < X} for some suitable X. Such problems are
studied in a theory call the geometry of numbers. For our purposes the
most basic result will suffice, which is due to Minkowski.

Theorem 70 (Minkowski). Let A C R® be a lattice, and S C R? a
convex subset that is symmetric to the origin. Assume that

Vol(S) > 2% coVol(A).
Then S N A contains a non-zero vector.

A set S C R is convex if whenever x,y € S, we also have az + (a —
1)y € S for all a € (0,1), that is, the entire line segment connecting
x toyisin S. A set S is symmetric to the origin if x € S implies
—xelS.

We note that the constant 2 cannot be lowered in the theorem. In-
deed, consider the lattice A = Z? and the closed, convex and symmetric
set S = (—1,1)¢. Then coVol(A) = 1, Vol(S) = 2¢ and AN S = {0}.
However, if we add the condition, that S is closed then the > relation
can be relaxed to >.

The proof of the theorem is based on the following simple lemma.
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Lemma 71. Let A C R? be a lattice, and let S C R? be a Borel set.
If

Vol(S) > coVol(A),
then there are x #y € S with x —y € A.

Proof. Let F' be a fundamental domain of A, and for each a € A, let
S(a) = ((F+a)NS)—a. It is easy to see that S(a) C F for all a € A.
In addition,

> Vol(S(a)) = Vol(S) > coVol(A) = Vol(F).

Therefore, S(a)NS(b) # @ for some a # b € A. Let x € S(a)NS(b).
Then x +a #x+b € S, and (x+a) —(x+b) =a—b e A, a
required. Il

n

Proof of Theorem 70. We apply the lemma for the set
1
E-S:{x/Z:xGS}.

We get some z/2 # y/2 with x,y € S and 0 # /2 —y/2 € A. By
symmetry, we have —y € S, and by convexity,

x/2—y/2=(1/2)z+ (1/2)(—y) € S.
This proves the theorem. O

Proof of Theorem 66. Unfortunately, the sets of the form {z : N(z) <
X} are not convex. However, we can prove the theorem by choosing
a sufficiently large convex subset of it and apply Minkowski’s theorem
for that.

We take

S =A{z:|z;| <Y for each j}.

for some number Y > 0. This set is convex and symmetric, and has
volume

Vol(S) = (2Y)<.
Moreover, N'(z) < 2°Y4 for all x € S.
In addition, we take
A =X(I).
We have already noted that A is a lattice with
coVol(A) = 275 N(I)| disc(K)|*/2.

By Minkowski’s theorem, S N A contains a non-zero vector provided
we take Y large enough so that

29y 4 > 2% 275 N(I)| disc(K)|"/>.

The conclusion is that we can find some 0 # x € A with N(z) <
N(I)|disc(K)|/? + & for any ¢ > 0. Since A has only finitely many
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non-zero points in S, one of these must work for all € > 0, so we can,
in fact, take € = 0. This gives some « € I with

| N()| < N(I)| disc(K)["2,

As we said, we proved the theorem with a weaker constant. To get
Minkowski’s bound, one needs to take

S={r e R |z|+.. 4|z, +2((x?, +22)*+..) <Y}

for a suitably chosen Y. See Question 14 on the third example sheet.
O

8. UNITS

Let K be a number field. An algebraic integer o € Ok is a unit if !
is also an algebraic integer. It is immediate from the definition, that
the product of units is also a unit, and that the multiplicative inverse
of units are also units. Therefore, the units in Ok form a group. We
denote this group by Oj.

Lemma 72. Let o € Og. The following are equivalent.
(1) « is a unit.
(2) () = Ok.
(3) N(a) = +£1.

Proof. First we prove that (1) = (3) The norms of algebraic integers
are rational integers. Therefore, if v is a unit, then N(a),N(a™!) € Z.
In addition, N(a) N(a™!) = 1 by multiplicativity of norms. We must
have N(«a) = £1, as required.

Next we prove (3) = (2). If N(a) = %1, then N({a)) = 1 and
<Oé> = OK.

Finally, we prove (2) = (1). If (o) = Ok, then 1 € aOk and
there is some 3 € Ok such that a8 = 1. Clearly, 8 = a~! € O, as
required. Il

The above lemma shows that we cannot distinguish between elements
of Ok that differ from each other by a multiplicative factor that is a
unit if we work with ideals. This is one reason, why units are important.

The goal of this section is to describe the structure of units in rings
of integers.

8.1. Quadratic fields. Let m be a square-free integer, and let K =
Q(m'/?). Recall that

O — {a +bm'?:a,bc Z}, if m#1 mod 4,
BT M {a+b(1+m?)/2:a,b€Z}, ifm=1 mod 4.
Recall also that
N(a +m'?b) = (a +m'?b)(a — m*/?b) = a®> — mb®.
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If m # 1 mod 4, the characterization N(«) = £1 of units implies
that the units in K are precisely a + m'/?b, where a,b € Z are the
solutions of the equations

9) a? —mb* = +1.

If m =1 mod 4, then the units are of the form (a + m'/?b)/2, where
a,b € Z solve one of the equations

(10) a® —mb? = +4.

We first consider the case where m < 0, that is, when K is an
imaginary quadratic field. If m < —5, then a®> — mb® > 4 whenever
b # 1. In this case, all solutions of (9) or (10) must satisfy b = 0,
and hence the only units in Q(m!/?) are £1. If m = —1, -2, -3, it is
easy to see that |al,|b| < 2, and the solutions can be easily found by
going through these cases. The result is that the units in Q((—1)'/?)
are +1, 44, the units in Q((—2)'/?) are &1, and in Q((—3)'/2) are
+1 4 (—3)1/2

2

Now we turn to case m > 1, that is, the case of real quadratic fields.
The units in Q(m'/?) are described by the following.

+1,

Theorem 73. Let m > 1 be a square-free integer, and let K = Q(m?!/?).
Then there is a smallest among all units u € OF with u > 1, and

O ={£u" :n e Z}.
The unit « is called the fundamental unit.

Proof. We first observe that a unit v > 1 must be of the form a4 bm!/?
with a,b € Qso. Indeed, +1 = N(u) = (a + bm'/?)(a — bm!/?) implies
that
{xa 4 bm*?} = {£u*').

Since u > 1, these are four distinct numbers and u is the largest among
them. Therefore, a,b > 0 indeed.

The proof of the fact that units greater than 1 exist is not examinable
in this course. It follows from the fact that Pell’s equation

a’> —mb?> =1

always has positive integer solutions, which is proved in the Part II
Number Theory course. Alternatively, it can be proved using Minkowski’s
theorem, as we will see in the next section.

Now we show that there is a smallest one among the units greater
than 1. Suppose not. Then there is an infinite sequence of decreas-
ing units uy > ug > ... > 1. Necessarily, lim;_,o u;/ujy1 = 1. The
elements of the sequence u;/u;1 are all units greater than 1. How-
ever, any unit greater than 1 must be at least (1 +m'/?)/2 > 1, a
contradiction.
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Now we show that all units are of the form +u" for some n. Let v be
a unit. Clearly, 0% is of the required form if and only if v is, so we
can assume v > 1. We observe that there can be no unit v in the open
interval (u™, u"™!) for any n € Zs, for otherwise 1 < vu™™ < u would
contradict the minimality of u. Then v = u™ necessarily for some n, as
required. O

We can find the fundamental unit by searching thorough all pairs
(a,b) € Z+ for solutions of the equations (9) or (10). To this end, it is
helpful to observe the following. If ay,b; and as, by are both solutions
of (9) with some choice of the sign and b; < by, then b2 > b? + 3, so

al=mb: +£1<mb;+£1=a3,

and ay > a;. Thus a; + bym'/? < ay + bym!/2. This means that in
the m = 2,3 mod 4 case, the fundamental unit will correspond to the
solution of (9) with either sign such that b > 0 is minimal. A similar
observation applies in the m =1 mod 4 case, as well.

There is also a very efficient way to find the solutions of (9) using
continued fractions, which was discussed in the Part II Number Theory
course.

8.2. Dirichlet’s unit theorem. The next result describes the struc-
ture of units in arbitrary number fields.

Theorem 74. Let K be a number field with r real and s pairs of
complex embeddings. Write W for the set of roots of unity in K, that
is, numbers o € K that satisfy o = 1 for some k € Zwy. Then W
is finite, and there are r + s — 1 units uy, ..., u1s—1 € O such that
every unit can be written uniquely in the form

ni Nr4s—1
eul T U’r+571 ’
where 0 € W is a root of unity, and ny,...,n. s 1 € 4.

Therefore, the unit group is isomorphic to the direct product of a
finite group and a free Abelian group of rank r + s — 1. A collection
of units uy,...,u1s_1 that satisfies the conclusion in the theorem is
called a fundamental system of units.

For quadratic fields, we have two cases. If m > 1, then r = 2 and
s = 0, so the rank of the free Abelian part is r + s —1 = 1. The
roots of unity are just W = {z1}. In fact, this is already true for all
number fields that have at least one real embedding, because the only
roots of unity in R are £1. The the other case is m < 0, where r = 0
and s = 1. Then r +s — 1 = 0, hence the group of units is just W.
These observations are compatible with our discussion in the previous
section.

We turn to the proof of the unit theorem. Let K be a number
field, and let oy, ..., 0, be the real and 7,71, ..., 7, Ts be the pairs of
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complex embeddings. We consider the map Log : K — R defined
by

Log(a) = (log oy ()|, ..., log|o. ()], 21log |m ()], ..., 2]og |Ts(a)|)T.

This map is called the logarithmic embedding (even though it has non-
trivial kernel), and it plays a key role in the proof. We first observe
that Log is a homomorphism from the multiplicative group of K to the
additive group R"**.

We also observe that log(| N(«)|) = Z;:f(Log(&))j, where (+); de-
notes the j-th component of a vector. Denote by V the r + s — 1
dimensional subspace of R"** whose points satisfy x; + ...+ z,,s = 0.
Since N(a) = 1 for all units «, it follows that Log(Oj) C V.

The theorem follows from the following three statements.

Proposition 75. If « € Ok satisfies Log(a) = 0, then « is a root of
unity. Additionally, W is finite.

Proposition 76. The group Log(Oj) is a free Abelian group generated
by R-linearly independent elements in V. In particular, the rank of
log(OF%) is at most r +s — 1.

Proposition 77. The rank of Log(O) is r+ s — 1.

The proofs of Propositions 75 and 76 are examinable, while the proof
of Proposition 77 is not.

Propositions 76 and 77 together imply that Log(O5%) is a lattice in
V.

We can deduce Dirichlet’s unit theorem easily from these statements.
Indeed, we can define wuy,...,u, s 1 as some inverse images of a gen-
erating set of the lattice Log(O) under Log. We leave checking the
remaining details as an exercise.

Remark 78. The above propositions also allow us to visualize the
unit group of a number field. The logarithmic embedding maps the
fundamental system of units to a basis of the vector space V', and
Log(Oy) is the lattice spanned by this basis.

We begin with the proof of Proposition 75. Recall the injective
homomorphism ¥ : K — R? and that 3(Og) C R? is a lattice. In
particular X7!(B) N Ok is finite for any bounded set B C R.

Proof of Proposition 75. Let a € Ok with Log(a) = 0. Since Log
is a homomorphism, Log(a™) = 0 for all n € Z. This means that
loj(@™)] =1 and |7;(a™)| =1 for all j in the relevant ranges.

Consider B C R? defined by |z;] <1 for all j. Then X(a") € B for
all n € Z. Since X1 (B) N Ok is finite, there are n < m with o = a™.
Then o™ ™ =1, and « is a root of unity, as required.

The same argument implies that W C X71(B) N Ok, hence it is
finite. U
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We turn to the proof of Proposition 76. We write B(z, R) for the
ball of radius R around a point x in a metric space.

Lemma 79. Let k € Z+o, and let A C R* be an additive subgroup.
Suppose that B(0, R) N A is finite for all R € R~o. Then A is a free

Abelian group generated by R-linearly independent elements.

In fact, it is enough to assume the hypothesis for any single R > 0,
but we do not need to know this.

Proof. We assume, as we may, that the elements of A span R*. Indeed,
if this was not the case, we could simply work in the linear span of A
instead of R¥. Let x1,...,2, € A be a basis of R*. Denote by A’ the
lattice generated by z, ..., xx, and let

F=[0,1)-2zy+...4[0,1) - x

be the corresponding fundamental parallelepiped. Then F' can be cov-
ered by a ball B(0, R) of suitably large radius radius R, which contains
only finitely many points in A. Thus F' contains only finitely many
points of A. On the other hand, F' contains a representative of each
coset of A’ in A, hence [A : A'] < 0.

Therefore, A is a finitely generated Z module. Since A’ is finite index
in A, they must have the same rank, hence » = k. In addition, any
generating set of A has to span RF linearly, so it must be R-linearly
independent. Il

Lemma 80. Let K and V be as above. Let R > 0. Then B(0,R) N
Log(Ok) is finite.

Proof. Fix some R. Then all o € Ok with Log(a) € B(0, R) satisfy
loj(a)| < exp(R) and |7j(cr)| < exp(R) for all j in the relevant ranges.
Since ¥(Ok) is a lattice, Ok can contain only finitely many points with
loj(a)| < exp(R) and |7j(cr)| < exp(R) for all j in the relevant ranges.
This proves the lemma. U

Proof of Proposition 76. The proposition follow immediately by com-
bining Lemmata 79 and 80. O

Finally, we prove Proposition 77, which is not examinable.

Lemma 81 (Not examinable). Let k € Zwq, and let A C R* be an
additive subgroup. Suppose that there is some R € R~y such that
B(z,R) N A is non-empty for all x € R¥. Then A is not contained
in any proper linear subspace of RF

Proof. Suppose to the contrary that A C U for a proper linear subspace
U c R*. Let x € R* be point of distance more than R from U. Then
AN B(z,R) C UN B(z, R) is empty, a contradiction. O
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Our next task is to construct a unit u such that Log(u) approximates
a prescribed point x € V. Below we will describe a procedure to find
an element with small norm instead of a unit. The next lemma will
allow us to modify such an element to get a unit without changing its
logarithmic embedding by much.

Lemma 82 (Not examinable). Let K be as above. Fixz some M € Z-y.
There is a number R € R~ depending only on K and M such that the
following holds. Let o € Ok with |[N(a)| < M. Then there is a unit
u € O with || Log(a) — Log(u)|| < R.

Proof. As we have already discussed, there are only finitely many ideals
of norm less than M. Among these, we consider all principal ideals I,
and fix a generator ay, for each of them. We let R € R~ be such that
|| log(avr)|| < R for each principal ideal I of norm less than M.

Now let o € O with |N(a)| < M, and let I = (o). Then (a) =
(ar), hence u = aa; ' is a unit. In addition,

| Log(a) — Log(u)|| = || Log(as)|| < R,
as required. Il

Lemma 83 (Not examinable). Let K and V be as above. Then there
1s some M € Z~y and R € R+ depending only on K such that the
following holds. Let x € V. Then there is a € Ok with | N(«a)| < M
and || Log(a) — z|| < R.
Proof. Let Cy = | disc(K)|*/??. Consider
S ={y € R":|y;| < Cyexp(x;) for j=1,...,7 and

|y2j_7~_1|, |y2j_r| S C() exp(xj/Q) fOI" j =7r+4 1, Lo, T + S}.
Then S is a symmetric convex set and

r+s

Vol(S) = 2°Cyf [ [ exp(x;) = 2¢) disc(K)['/?,
j=1
where we used Z;j z; = 0. We recall that

coVol(2(Ok)) < | disc(K)|*2.

(We have equality if s = 0.) By Minkowski’s theorem, there is some
a € Ok with X(a) € S.

Then |o;(a)| < Coexp(x;) forj =1,...,rand |7j(a)|? < 2C exp(z,4)
for j =1,...,s. We observe that

N@)| =T los @) [] (@) < 23,

so we can take any number larger than 2°C¢ for M.
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To estimate the distance between Log(«) and z, we also need lower
bounds on |o;(a)| and |7;(«)|. We deduce these from

05, ()] = | N(e)]

” Hj;éjo |0 ()] Hj |7 () |?
|7_. (Oé)|2: |N(O~/)|

” Hj |0 ()] Hj;éjo |7j(a)?

and N(a) > 1 together with the upper bounds we already have. We
obtain

o ()] = 27°Cr ™ [ exp(—a;) [ [ exp(—rsy) = 27°C ™ exp(x;,)

J#Jo J
mio(@)]? = 27 Cr T [ T exp(—a;) [ ] exp(—ray) = 277 Cr™ exp(ar4, )-
j J#io

Using the definition of Log(«), we get that all coordinates of Log(a) —x
are bounded in absolute value by

Log(2°Cg ™),
and this proves our claim with an appropriate choice of R. O

Proof of Proposition 77. Combining Lemmata 82 and 83, we find some
R > 0 depending only on K such that for all x € V', there is some unit
u € O with || Log(u) — z|| < R. That is, Log(Oj) N B(x, R) # @ for
any € V. By Lemma 81, this implies that Log(Oj) is not contained
in a proper subspace of V, so its rank is at least r + s — 1. O

9. CYCLOTOMIC FIELDS AND FERMAT’S LAST THEOREM

The goal of this section is to prove Theorem 7 under the additional
assumption that p { xyz.

9.1. Cyclotomic fields. Recall that for an integer n € Z>3, we write

0,, = e2™/™. The proof of Theorem 7 involves the cyclotomic filed Q(6,)

for some prime p, and we collect some facts about it in this section.
We first recall some results from Part II Galois theory.

Theorem 84. Let n € Z>y. Let (Z/nZ)* denote the residue classes
mod n that are relatively prime to n. Let p(n) = |Z/nZ|*.

Then we have [Q(6,) : Q] = w(n). Furthermore, for each j €
(Z/nZ)*, there is an embedding o; : Q(6,,) — C such that o;(6,) = 67,.
Moreover, 0;(Q(6,)) = Q(6,).

If p is a prime, the minimal polynomial of 0, is

P —1

r—1

=2+ L
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For composite n, the notation in the theorem slightly differs from
our usual convention that embeddings are indexed by 1,...,[K : Q].

In what follows, let p be an odd rational prime, and let K = Q(6,).
We determine the discriminant, the ring of integers, the factorization
of (p) and the roots of unity in K.

Theorem 85. We have O = Z[f,] and disc(K) = (—1)P~1/2pp=2,
There is a prime P C Ok such that (p) = PP~'. For alli # j €
{0,...,p— 1}, we have
P = (6~ 09).
The roots of unity in K are

(£62:5=0,...p—1}={6},:5=0,...,.2p—1}.

We first prove the claim about roots of unity. We first observe that
the two sets in the claim are indeed the same, which follows from

_%pﬂ)/z — e m2mi(p+1)/2p _ 2mi((p+1)/2p—p/2p) _ 27i/2p _ 92p

and 6, = 63
We will also use the following properties of Euler’s totient function .
If m,n are coprime, then ¢(mn) = @(m)p(n). If m|n, then ¢(m)|p(n).

Proof of last part about roots of unity. Write W for the set of the roots
of unity in K. Let t € R+ be a the smallest number such that > ¢
W. By finiteness of W, the minimum exists.

We claim that if s € Ryg is such that ¢*™ € W, then s/t € Z.
Indeed, e2™(=1s/t1) ¢ W and 0 < s — |s/t]t < t, so the minimality of
t implies s — |s/t]t = 0, and the claim follows.

Since ?™/(P) ¢ W, it follows that ¢t = 1/(2kp) for some k € Z,.
We show that £ = 1, which completes the proof. Since 9, € Q(6,),
©(2kp) = [Q(Oaxp) : Q] < [Q(H,) : Q] < p— 1. We cannot have p|k for
otherwise we would have p(p—1) = p(p?) < ¢(2kp) < p—1. Therefore,
©(2kp) = ¢(2k)(p — 1). Hence we must have ¢(2k) = 1, which implies
k =1, as required. O

The next result will be used to prove both the claim about Og and
the factorization of (p).

Proposition 86. We have
(1=0) - (1=0"") =p.
Moreover, for all i # j € {0,...,p — 1} there is a unit u;; € Z[0,]*
such that
Uy, (9; — 9;)10*1 =Pp.
We stress that the claim is that w; ; is a unit in Z[6,], which, a priori,

is stronger than claiming that it is a unit in Ok, because we are yet to
prove that these two rings equal.
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Lemma 87. For alli,j,k,1 € {0,...,p—1} withi # j and k # 1, we
have that

0 — 67
P e Z[0,)*.
ok — 0. P
Proof. 1t is enough to prove that
0: — 0
L e 7]6,).
ok — 0! P

For if we exchange the roles of 7,7 and k, [, we get that the inverse is
also in Z[6,].

Multiplying both the denominator and the numerator by some power
of 0, which is a unit in Z[f,], we may assume ¢ = k = 0.

Since non-zero residues mod p form a multiplicative group, there
is some m € Z with m £ 0 mod p such that j = ml mod p. Then

1—-63  1—0m -
g = T =Lt oY e 2],
P p
as required. -

Proof of Propositon 86. The roots of the minimal polynomial of 6, are
precisely 6,,...,657", hence
(x—0p) - (x—F ) =aP +..  +a+1

We plug in z = 1 to get the first claim.
For the second claim, we observe that Lemma 87 implies that
_ p (=00
’LLZ‘J‘ = =

R U
is a unit in Z[6,]. O

In the next lemma, we compute the discriminant of Z[6,]. This will
imply the claim about disc(/K) once we show the claim about the ring
of integers.

Lemma 88. We have
diSC(Z[QpD = (_1)(p—1)/2pp_2.

Proof. Write f(z) = 2™ — 1, and g(z) = f(x)/(z — 1); the latter is the
minimal polynomial of ¢,. We have

dise(Z[6,) = (~1)0 VDN 6,),
We note that
f/(ep) = g'(ep)((% —1)+g(6,) = g/(ep)(ep —1).

Therefore,
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By Proposition 86 (and Theorem 84), we have N(6,—1) = (—1)?"!p =
p. In addition,

N(f'(6,)) = N(poy~") = p"~".

Here we used N(6,) = 1, which can be seen from the constant coefficient
of g. We get the claim by putting together our calculations. U

Proof of Theorem 85. We begin by proving Ok = Z[0,]. We suppose
to the contrary that Ox D Z[6,].

By disc(Z[60,]) = (—1)®~1/2pP=2 and Proposition 32, we know that
all elements of Ok are of the form a//d for some o € Z[,] and d € Z-,
with d?|pP~2. By our assumption, there is some 8 € Ok \Z[f,]. Then
pkB € Z[0,] for some k € Zo. We have p = u(1 — 6,)P~! for some
u € Z[0,]*. Considering the sequence

uk/Ba (1 - Qp)ukﬁa sy (1 - ep)(p_l)kukﬁ = pkﬁa

whose first element is not in Z[6,], but whose last element is, we can
find some v € Ok \Z[f,] such that (1 —0,)y € Z[6,].

We note that 1,1 —6,,...,(1 — 6,)P"% is a basis for Z[f,] as a Z-
module. This can be seen by observing Z[1 —6,] = Z[6,], which follows
by 1 —6, € Z[0,] and 6, € Z[1 — 6,]. Hence

(I=0)y=a+(1- ep)’Y/

for some a € Z and v € Z[#,]. Note that p 1 a, for otherwise, we would
have (1 —6,)|a + (1 —6,)7 in Z[6,] and hence v € Z[6,], which is not

the case. Then
a

1-0,

=~v—~"€O.

Furthermore,

1 a p=1  qP!
— = €O
U (1 — 9p> P 5

which is impossible. This proves Ok = Z[6,].
Now disc(K) = (—1)®=Y/2pr=2 follows from Lemma 88.
By Proposition 86, we have

(p) = (0, — 03)""
for all 0 < i # j < p— 1. By Proposition 51, we have N((p)) = p*~1.
Multiplicativity of norms implies

N((0, — 05)) = p,

hence these must be prime ideals for all permitted pairs ¢, j. By unique-
ness of prime factorization, these are the same prime ideals indepen-
dently of ¢ and j. This fact also follows from Lemma 87. The theorem
is now proved in full. O
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9.2. Case I of Fermat’s Last theorem for regular primes. In this
section, we fix some rational prime p > 5, write § = 6, and K = Qlf].
We say that the prime p is regular if p { A(K'), and we assume that this
holds for p. We write P for the unique prime lying over p in K.

Our purpose is to prove Theorem 7 under the additional assumption
that p 1 xyz. That is, we are going to show that there are no solutions
of

P +yP = 2P, Y, 2 € Ly
under the assumptions we have already made. The first step is the
following.

Proposition 89. Let p > 5 be a reqular prime, and let x,y,z € Z be
such that ged(z,y,2) = 1, p f zyz and 2P + y? = 2P. Then there is
some o € Ok and some unit u € O such that

x + 0y = ua?.

Proof. We have already observed that z? + y? = 2P can be factorized
as

(x+y)(x+0y) - (v + 0" y) = 2P
We first show that the principal ideals generated by the factors on the
left hand side are relatively prime. Suppose to the contrary that there
is some prime @ that divides both (z + @%y) and (x + 67y) for some
0 <i# j <p—1. This means
x4+ 0y, x+ 60y cqQ.
Taking appropriate linear combinations, we get
(0 = )y, (97 = 9 € Q.
We note that
Q#P=(0'—0")=(07"—077),
for Q|(z)? and P 1 (z)? by the assumption p 1 z. Therefore, we have
Q|(x) and Q|(y).

On the other hand, x and y are coprime in Z, for any common prime
factor would divide also z by zP = P 4+ yP. Thus ax + by = 1 for some
a,b € Z. Now x,y € (Q implies 1 € (), a contradiction. We proved that
the ideals

(11) (x+9), (x+0y),.... (x+61y)

are pairwise coprime.

The prime factors of (z) all have multiplicities divisible by p. These
are distributed among the ideals (11) in a manner that each prime goes
to a single factor with its entire multiplicity. Now we have that

(x 4+ 0y) =17

for some ideal I C Og.
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It remains to show that I is a principal ideal. We know that I? is
principal. Since the order of the class group is not divisible by p, there
is no non-unit element in the class group whose p-th power is the unit
element. For this reason, I must be principal, and the proposition is
proved. O

Proposition 90. Let p > 5 be a reqular prime, and let x,y,z € Z
be such that ged(z,y,2) =1, pfayz and 2P +y? = zP. Thenz =y
mod p.

We write 7 for the restriction of complex conjugation on K. This is
an automorphism of K, and in the notation of the previous section, we
have 7 = 0),_1.

Lemma 91. Let o« € Of. Then
a? = 7(a)’ mod (p).
Proof. Let
a=ag+ a0+ ...+ ap,29p’2

for some ay,...,a,—2 € Z. Using that all binomial coefficients of the
form (5’) for j =1,...,p— 1 are divisible by p, we get that

(B1+ B2)P = 7 + 7 mod (p)
for all £, B2 € Ok. Using this iteratively, we get
o = af + (a10)” + ... + (a,26° %)’ mod (p).
Using 07 = 1, it follows that
a? =b mod (p)

for some b € Z.
Since 7 is an automorphism of O, we get

7(a?) = 7(b) mod 7({(p)).

Since 7(p) = p, it follows that 7({p)) = (p). Using this and 7(b) = b,
we get
() =b mod (p),

and the claim follows. O

Lemma 92. For all units u € OF, there is some root of unity ¢ € Ok
such that
T(u) = eu

Proof. The automorphisms of K all commute, and, in particular, for
all embedding o : K — C we have 0 o7 =7 00. Then

o (7(u))| = [7(o(u))| = |o(u)].
It follows that |o(u~'7(u))| = 1 for all embedding o. With the notation
of Section 8.2, this means Log(u~'7(u)) = 0, and by Proposition 75,

€ := w7 is a root of unity, as required. Il
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Lemma 93. Assume that
ap+ a0+ ...+ ap_19p_1 =by+b00+...+ bp_19p_1 mod (p)

for some integers ag,...,ap_1,bo,...,bp_1. Assume that there is some
j €{0,...,p—1} such that a; = b; = 0. Then a; = b; mod p for all
1=0,...,p—1.

Proof. Multiplying both sides of the congruence by 8?1~/ and reducing
the exponents of # mod p, it is enough to consider the case j = p—1.
That case follows simply from the fact that 1,0,...,0P2 is an integral
basis for Ok, hence p,pf,...,phP~2 is a basis for (p) as a Z-module.
Therefore,

(ap — bo) + (ay — b1)0 + ... + (ap_o — by_2)0" "2 € (p)
if and only if pla; —b; for all 7 =0,...,p —2. O
Proof of Proposition 90. Using Proposition 89, we have
x + 0y = ua®
for some u € O and a € Ok. Using Lemmata 91 and 92, we get
T(x + 0y) = 7(ua?) = cua® = e(x + 0y) mod (p)

for some root of unity e. ’ .
By Theorem 85, we have € = 67 or ¢ = —67 for some j € Z. First we
consider the former possibility. Then

v+ 0y =02+ 67y mod (p).
Understanding the exponents j and 7 + 1 modulo p, we can apply
Lemma 93. Indeed the lemma is applicable because p > 5, hence there
is some k € {0,...,p— 1} with k # 0,p — 1,4, + 1. Since z,y #Z 0
mod p, we have
{0.p—1}={j,j+1} modp.
This implies j = p— 1 mod p, hence
T+ 0Py =0 e 4y = (p).

Using Lemma 93 again, this gives us x =y mod p.

It remains to consider the case where ¢ = —#7. The same calculation
as above then yields © = —y mod p. However, then 2P = 2P 4+ y? =0
mod p, since p is odd. This contradicts p 1 z, so this case is not
possible. O

Proof of Theorem 7. Suppose to the contrary that the equation x? +
yP = 2P has a solution for some integers x, ¥y, z and some regular prime
p > 5 with p 1 zyz. We assume, as we may, that ged(z,y,z) = 1.
We apply Proposition 90 for both the equation x” 4+ y? = 2P and 2P +
(—2)? = (—y)P. We get x =y = —z mod p. From 2P + ¢ + (—2)? =
0, we conclude 3z = 0 mod p. We must have p = 3 or plz, but
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both possibilities are ruled out by our assumptions. This contradiction
proves the theorem. Il
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