
DIFFERENTIAL GEOMETRY EXAMPLES 3

P.M.H. Wilson, Lent 2016

Comments/corrections are welcome, and may be e-mailed to me at pmhw@dpmms.cam.ac.uk.

1. Let α : I → S be a geodesic. Show that if α is a plane curve and α̈(t) 6= 0 for some t ∈ I, then
α̇(t) is an eigenvector of the differential of the Gauss map at α(t). [Hint: without loss of generality
suppose that α is parametrized by arc-length and observe that the normal to α and the normal to
the surface have to be collinear around t.]

2. Show that if all geodesics of a connected surface are plane curves, then the surface is contained
in a plane or a sphere [Hint: use the previous problem and Problem 12 of Example sheet 2].

3. Let f : S1 → S2 be an isometry between two surfaces.
(i) Let α : I → S1 be a curve and V a vector field along α. Let γ := f ◦α, and W (t) := dfα(t)(V (t))

the corresponding vector field along γ. Show that DW/dt = dfα(t)(DV/dt), and hence that V parallel
along α implies that W is parallel along γ.

(ii) Deduce that f maps geodesics to geodesics.

4. Show that the equations for geodesics on a smooth surface may be written locally in terms of
coordinates (u(t), v(t)) as
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5. Consider the surface of revolution from Problem 9, Example sheet 2.
(i) Write down the differential equations of the geodesics;
(ii) Establish Clairaut’s relation: f2u̇ is constant along geodesics. Show that if θ is the angle that

a geodesic makes with a parallel and r is the radius of the parallel at the intersection point, then
Clairaut’s relation says that r cos θ is constant along geodesics.

(iii) Show that meridians are geodesics; when is a parallel a geodesic?

6. Show that there are no compact minimal surfaces in R3.

7. The existence of isothermal coordinates is a hard theorem. However for the case of minimal
surfaces without planar points it is possible to give an easy proof along the following lines.

(i) Let S be a regular surface without umbilical points. Prove that S is a minimal surface if and
only if the Gauss map N : S → S2 satisfies

〈dNp(v1), dNp(v2)〉 = λ(p)〈v1, v2〉
for all p ∈ S and all v1, v2 ∈ TpS, where λ(p) 6= 0 is a number which depends only on p.

(ii) By considering stereographic projection and (i) show that isothermal coordinates exist around
a non planar point in a minimal surface.

For the next five questions we consider the Weierstrass representation of a minimal surface deter-
mined by functions f and g on a simply connected domain D ⊆ C as we saw in lectures.

8. Show that if φ is the parametrization defined by the Weierstrass representation, then φ is an
immersion if and only f vanishes only at the poles of g and the order of its zero at such a point is
exactly twice the order of the pole of g.
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9. Find D, f and g representing the catenoid and the helicoid.

10. Show that the Gaussian curvature of the minimal surface determined by the Weierstrass repre-
sentation is given by

K = −
(

4 |g′|
|f | (1 + |g|2)2

)2

.

Show that either K ≡ 0 or its zeros are isolated. [There is a way of doing this problem almost
without calculations. Think about the relation between g and the Gauss map and the fact that
stereographic projection is conformal.]

11. The Weierstrass representation is not unique: if φ(f,g) : D → R3 is the associated parametriza-
tion and α : W → D is a bijective holomorphic map, then φ(f,g) ◦ α is another representation of
the same minimal surface and it must have the same form with different f and g (which should be
specified). By choosing α(z) = g−1(z), show that, locally around regular points of g at which g′

is non-zero, we can assume that our pair (f, g) is of the form (F, id), for some local holomorphic
function F . We denote such a representation by φF .

12. Show that the minimal surfaces given by φe−iθF for θ real are all locally isometric. With an
appropriate choice of F , show that the catenoid and the helicoid are locally isometric. Show however
that the catenoid comes from embedding C∗ into R3, whilst the helicoid comes from embedding C.

13*. The intrinsic distance of a smooth embedded surface S ⊂ R3 is defined as follows. Given p
and q in S let d(p, q) = infα∈Ω(p,q) `(α). Show that d is a metric, which is compatible with the
topology of S. If S is complete (and without boundary) the Hopf-Rinow theorem asserts that given
two points p and q there exists a geodesic γ joining the points such that d(p, q) = `(γ) and geodesics
are defined for all t ∈ R.

(i) Show that if f : S1 → S2 is an isometry, then d2(f(p), f(q)) = d1(p, q) for all p and q in S1.
(ii) A geodesic γ : [0,∞)→ S is called a ray leaving from p if it realizes the distance between γ(0)

and γ(s) for all s ∈ [0,∞). Let p be a point in a complete, noncompact surface S. Prove that S
contains a ray leaving from p. [You may assume that geodesics vary smoothly (hence continuously)
with their initial conditions.]

14*. Show that any geodesic of the paraboloid of revolution z = x2 + y2 which is not a meridian
intersects itself an infinite number of times [Hint: use Clairaut’s relation. You may assume that no
geodesic of a surface of revolution can be asymptotic to a parallel which is not itself a geodesic. You
will need to show that for a geodesic which is not a meridian, u(t) does not approach some u0 as
t→∞.]


