Introductory Reading

[R] M. Reid, Undergraduate Algebraic Geometry, Cambridge University Press (1988).

[W] P.M.H. Wilson, Part IIB Algebraic Curves Notes, Lent 1998.

https://www.dpmms.cam.ac.uk/~pmhw/AlgC98.pdf

Standard Reference for Commutative Algebra

[AM] M. Atiyah and I. MacDonald, Introduction to Commutative Algebra, Addison—Wesley (1969)

Main references for course

[K] G.R. Kempf, Algebraic Varieties, Cambridge University Press (1993) (primary reference).

[S] I. Shafarevich, Basic Algebraic Geometry, Springer (1974) (useful for some parts of the course).

More advanced but the standard text

[H] R. Hartshorne, Algebraic Geometry, Springer (1977).

Historical reference for material in course (beautifully written)

[FAC] J.-P. Serre: Faisceaux algébriques cohérents. Annals of Math. 61 (1955), 197-278.

Plan of course

- §0 Preliminaries on classical Algebraic Geometry and commutative algebra [R, W, AM]
- §1 Sheaf Theory [K, H]
- §2 Construction and properties of abstract varieties [K, H]
- §3 Locally free and coherent modules [K, H, FAC]
- §4 Sheaf cohomology [K, H, FAC]
- §5 Differentials and Riemann-Roch for curves [K, H]

§0. Preliminaries on classical Algebraic Geometry and Commutative Algebra

In this section, I shall make explicit basic concepts and results that I am assuming from elsewhere. For more details of the Algebraic Geometry, the reader is referred to my Algebraic Curves Notes [W] on the web for a rapid introduction to the basic material; more details than that will not be required. The first chapter on Sheaf Theory will take about 5 lectures and will only incidentally need any algebraic geometry, and so the reader has a couple of weeks to familiarise himself/herself with the material in §0.

A little classical algebraic geometry.

(Throughout the course, we shall take the base field k to be **algebraically closed**.)

Affine varieties: An affine variety $V \subseteq \mathbf{A}^n(k)$ (where, once one has chosen coordinates, $\mathbf{A}^n(k) = k^n$) is given by the vanishing of polynomials $f_1, \ldots, f_r \in k[X_1, \ldots, X_n]$. If $I = \langle f_1, \ldots, f_r \rangle \triangleleft k[X_1, \ldots, X_n]$ is any ideal, we set

$$V = V(I) := \{ z \in \mathbf{A}^n : f(z) = 0 \ \forall f \in I \}.$$

Projective varieties: First set $\mathbf{P}^n(k) := (k^{n+1} \setminus \{\mathbf{0}\})/k^*$ with homogeneous coordinates $(x_0 : x_1 : \ldots : x_n)$. A projective variety $V \subseteq \mathbf{P}^n$ is given by the vanishing of homogeneous polynomials $F_1, \ldots, F_r \in k[X_0, X_1, \ldots, X_n]$. If I is the ideal generated by the F_i (a homogeneous ideal, i.e. if $F \in I$, then so are all its homogeneous parts), we set

$$V = V^h(I) := \{ z \in \mathbf{P}^n : F(z) = 0 \ \forall \text{ homogeneous } F \in I \}.$$

Coordinate ring of an affine variety.

If
$$V = V(I) \subseteq \mathbf{A}^n$$
, set

$$I(V) := \{ f \in k[X_1, \dots, X_n] : f(x) = 0 \ \forall x \in V \}.$$

Observe: V(I(V)) = V (tautology) and $I(V(I)) \supseteq \sqrt{I}$ (obvious). Recall that the radical \sqrt{I} of the ideal I is defined by $f \in \sqrt{I} \iff \exists m > 0 \text{ s.t. } f^m \in I$.

Hilbert's Nullstellensatz (note $k = \bar{k}$): $I(V(I)) = \sqrt{I}$. ([R] §3, [AM] pp 82-3).

Coordinate ring: $k[V] := k[X_1, ..., X_n]/I(V)$. This may be regarded as the ring of polynomial functions on V, and it is a finitely generated reduced k-algebra. Recall that a k-algebra is a commutative ring containing k as a subring; it is finitely generated if it is the quotient of a polynomial ring over k, and reduced if $a^m = 0 \Rightarrow a = 0$.

Given an affine subvariety $W \subseteq V$, have $I(W) \supseteq I(V)$ defining an ideal of k[V], also denoted $I(W) \triangleleft k[V]$.

Corollary of 0-satz: If **m** is a maximal ideal of k[V], then $\mathbf{m} = \mathbf{m}_P$ for some $P \in V$, where \mathbf{m}_P is the maximal ideal $\{f \in k[V] : f(P) = 0\}$.

Proof. 0-satz implies $I(V(\mathbf{m})) = \sqrt{\mathbf{m}} = \mathbf{m} \neq k[V]$. So $V(\mathbf{m}) \neq \emptyset$, since otherwise $I(V(\mathbf{m})) = k[V]$. Choose $P \in V(\mathbf{m})$; then $\mathbf{m}_p \supseteq \mathbf{m}$. Since \mathbf{m} maximal, this implies $\mathbf{m}_P = \mathbf{m}$.

Observe that $\{P\} = V(\mathbf{m}_P) = V(\mathbf{m})$, and so there exists a natural bijection

$$\{\text{points of affine variety } V\} \longleftrightarrow \{\text{maximal ideals of } k[V]\}$$
 (†)

Definition. A variety W is *irreducible* if there do not exist proper subvarieties W_1, W_2 of W with $W = W_1 \cup W_2$.

Lemma 0.1. A subvariety W of an affine variety V is irreducible $\iff \mathcal{P} = I(W)$ is prime, i.e. $\iff k[W]$ is an ID (integral domain).

Proof. (\Rightarrow) If I(W) not prime, there exist $f, g \notin I(W)$ such that $fg \in I(W)$. Set $W_1 := V(f) \cap W$ and $W_2 := V(g) \cap W$; then W_1, W_2 are proper subvarieties with $W = W_1 \cup W_2$, i.e. W not irreducible.

 (\Leftarrow) If W_1, W_2 are proper subvarieties with $W = W_1 \cup W_2$, choose $f \in I(W_1) \setminus I(W)$ and $g \in I(W_2) \setminus I(W)$; then $fg \in I(W)$, i.e. I(W) not prime.

For a projective variety $V \subseteq \mathbf{P}^n$, we let $I^h(V) \triangleleft k[X_0, X_1, \dots, X_n]$ be the homogeneous ideal of V, by definition generated by the homogeneous polynomials vanishing on V.

Exercise. Show that a projective variety V is irreducible $\iff I^h(V)$ is prime. $((\Leftarrow)$ as in (0.1), (\Rightarrow) by considering homogeneous parts of polynomials.)

Generalizing (†), for V an affine variety, we have a bijection given by $W \mapsto I(W)$,

{irreducible subvarieties W of an affine variety V} \longleftrightarrow {prime ideals of k[V]}.

Proof. Given a prime ideal $\mathcal{P} \triangleleft k[V]$, the Nullstellensatz implies $I(V(\mathcal{P})) = \sqrt{\mathcal{P}} = \mathcal{P}$ in k[V], so there is an inverse map.

Projective Nullstellensatz. Suppose I is a homogeneous ideal in $k[X_0, X_1, \ldots, X_n]$ and $V = V^h(I) \subseteq \mathbf{P}^n$. The Projective Nullstellensatz ([R] p82, [W]) says: If $\sqrt{I} \neq \langle X_0, X_1, \ldots, X_n \rangle$ (the *irrelevant* ideal), then $I^h(V) = \sqrt{I}$.

Proof. An easy deduction from the Affine Nullstellensatz, noting that I also defines an affine variety in \mathbf{A}^{n+1} , the affine cone on the projective variety $V \subseteq \mathbf{P}^n$.

Decomposition of variety into irreducible components.

For V an affine or projective variety, there is a decomposition $V = V_1 \cup \ldots \cup V_N$ with the V_i irreducible subvarieties and the decomposition is essentially unique.

Proof. Suppose V is affine (similar argument for V projective): If there does not exist such a finite decomposition in the above form, then there exists a strictly decreasing sequence of subvarieties

$$V = V_0 \supset V_1 \supset V_2 \supset \dots$$

(If $V = W \cup W'$, then at least one of W, W' has no such decomposition and let this be V_1 ; continue in same way using Countable Axiom of Choice to obtain sequence.)

Hence in k[V], $0 = I(V_0) \subseteq I(V_1) \subseteq \ldots$ Hilbert's Basis Theorem implies that there exists N such that $I(V_{N+r}) = I(V_N)$ for all $r \ge 0$. Hence $V_{N+r} = V(I(V_{N+r})) = V(I(V_N)) = V_N$ for all $r \ge 0$, a contradiction.

An easy "topological" argument ([R] Exercise 3.8, [W]) with the Zariski topology (see below) shows that the decomposition is essentially unique.

Zariski topology. Let V be a variety (affine or projective), then the Zariski topology is the topology on V whose closed sets are the subvarieties. This is the underlying topology for this course

We check this is a topology. Wlog take V affine. Clearly V and \emptyset are closed. Observe that for ideals $(I_{\alpha})_{\alpha \in A}$ of k[V], we have $V(\sum_{\alpha} I_{\alpha}) = \bigcap_{\alpha} V(I_{\alpha})$ is closed. Finally we claim for ideals I, J of k[V] that $V(IJ) = V(I) \cup V(J)$ (= $V(I \cap J)$) is closed.

Proof. Clearly $V(IJ) \supseteq V(I \cap J) \supseteq V(I) \cup V(J)$. Suppose however there exists a point $P \in V(IJ) \setminus (V(I) \cup V(J))$: we can choose $f \in I$ such that $f(P) \neq 0$ and $g \in J$ such that $g(P) \neq 0$. Then $fg \in IJ$ with non-zero value at P, a contradiction.

Note that V being irreducible as a topological space corresponds to the previous definition. Also, we have a well-defined concept of connectedness.

When V is affine, we have a basis of open sets of the form D(f) for $f \in k[V]$, where $D(f) := \{x \in V : f(x) \neq 0\}$; any open set is of the form $V \setminus V(f_1, \ldots, f_r) = \bigcup_{i=1}^r D(f_i)$. If $V = \mathbf{A}^1$, get cofinite topology; in fact Zariski topology is only Hausdorff for a finite set of points. For V projective, we have a basis of open sets of the form $D^h(F) = V \setminus V^h(F)$, for F a homogeneous polynomial.

Exercise. The Zariski topology is compact in the usual sense (called precompact in some terminology since it is not Hausdorff), i.e. any open cover of V has a finite subcover.

Function fields of irreducible varieties

If V is an *irreducible* affine variety, then the *field of rational functions* or the *function* $field \ k(V) := fof \ k[V]$. Here k[V] is an integral domain and fof denotes the field of fractions. In fact, we define the dimension of V by $\dim V := \operatorname{tr} \deg_k k(V)$.

For $V \subseteq \mathbf{P}^n$ an irreducible projective variety, we define

 $k(V) := \{F/G : F, G \text{ homogeneous polynomials of the same degree}, G \notin I^h(V)\}/\sim$

where the zero polynomial has any degree and where $F_1/G_1 \sim F_2/G_2 \iff F_1G_2 - F_2G_1 \in I^h(V)$. Need V irreducible here, i.e. $I^h(V)$ prime, to show that \sim is transitive, and hence an equivalence relation.

If $V \subseteq \mathbf{P}^n$ an irreducible projective variety and U a non-empty affine piece of V (say $U = V \cap \{X_0 \neq 0\}$), then U is an affine variety, $U \subseteq \mathbf{A}^n$ with affine coordinates $x_i = X_i/X_0$ for $i = 1, \ldots, n$, the equations for U coming from those for V by "putting $X_0 = 1$ ". (The property of being covered by open affine varieties will in due course generalise to abstract varieties.) It is an easy check now that U is irreducible and $k(V) \cong k(U)$, the isomorphism being given by "putting $X_0 = 1$ ".

We say that $h \in k(V)$ is regular at $P \in V$ if it can be written as a quotient f/g with $f, g \in k[V], g(P) \neq 0$ (affine case), or F/G with F, G homogeneous polynomials of the same degree, $G(P) \neq 0$ (projective case).

Define $\mathcal{O}_{V,P} := \{h \in k(V) : h \text{ regular at } P\}$, the local ring of V at P, with maximal ideal $\mathbf{m}_{V,P} := \{h \in \mathcal{O}_{V,P} : h(P) = 0\}$, the kernel of the evaluation map $\mathcal{O}_{V,P} \to k$ given by evaluation at P. $\mathcal{O}_{V,P}$ is a local ring, i.e. $\mathbf{m}_{V,P}$ is the unique maximal ideal. Since $\mathcal{O}_{V,P} \setminus \mathbf{m}_{V,P}$ consists of units of $\mathcal{O}_{V,P}$ and any proper ideal consists of non-units, any proper ideal is contained in $\mathbf{m}_{V,P}$, and hence $\mathbf{m}_{V,P}$ is the unique maximal ideal.

Morphisms of affine varieties

For $V \subseteq \mathbf{A}^n$, $W \subseteq \mathbf{A}^m$, a morphism $\phi: V \to W$ is a map given by elements $\phi_1, \ldots, \phi_m \in k[V]$. This yields a k-algebra homomorphism $\phi^*: k[W] \to k[V]$ (where $\phi^*(f) = f \circ \phi$; so if y_j a coordinate function on W induced from polynomial Y_j , we have $\phi^*(y_j) = \phi_j$). Conversely, given a k-algebra homomorphism $\alpha: k[W] \to k[V]$, we define a morphism $\alpha^* = \psi: V \to W$ given by elements $\alpha(y_1), \ldots, \alpha(y_m) \in k[V]$. Note that $\psi(P)$ is in W, since for all $g \in I(W)$, $g(\psi(P)) = g(\alpha(y_1), \ldots, \alpha(y_m))(P) = (\alpha(g(y_1, \ldots, y_m)))(P) = 0$ since $g(y_1, \ldots, y_m) = 0$ in k[W].

Observe: For $\phi: V \to W$, we have $\phi^{**} = \phi$; for $\alpha: k[W] \to k[V]$, we have $\alpha^{**} = \alpha$. For $\psi: U \to V$ also a morphism of affine varieties, we have $\phi \psi$ a morphism $U \to W$ with $(\phi \psi)^* = \psi^* \phi^*$. For $\beta: k[V] \to k[U]$ a morphism of k-algebras, we have $(\beta \alpha)^* = \alpha^* \beta^*$.

We deduce that affine varieties V, W are isomorphic (i.e. there is an invertible morphism between them) $V \cong W \iff k[W] \cong k[V]$ as k-algebras. Recall: the k-algebras which occur as coordinate rings are the finitely generated reduced k-algebras. So formally, there is an equivalence of categories between the category of affine varieties over k and their morphisms, and the opposite of the category of finitely generated reduced k-algebras and their morphisms, i.e. there is a contravariant equivalence between the category of affine varieties and the category of finitely generated reduced k-algebras.

Thus affine algebraic geometry over k is a branch of commutative algebra. Commutative Algebra may be interpreted as affine algebraic geometry once one has generalized varieties to schemes.

For (irreducible) *affine* varieties, we can reconstruct the variety (up to isomorphism) from its ring of everywhere regular rational functions by (0.2) below; for irreducible projective varieties, the only everywhere regular rational functions are the constants (see Corollary 2 to Proposition 2.2).

Lemma 0.2. For V an irreducible affine variety,

$$\{f\in k(V)\ :\ f\ \text{regular everywhere}\}=k[V].$$

Proof. See Example Sheet 1.

Remark. A projective variety $V \subseteq \mathbf{P}^n$ is covered by finitely many Zariski open sets which are affine varieties, e.g. the open sets $U_i := V \cap \{X_i \neq 0\} \subseteq \mathbf{A}^n$, with affine coordinates

 $X_0/X_i, \ldots, X_{i-1}/X_i, X_{i+1}/X_i, \ldots, X_n/X_i$. This idea of patching together affine varieties leads to the concept of general abstract varieties — definition later via sheaf theory.

A little Commutative Algebra

Let A be a commutative ring (with a 1).

Definition. A module M over A is finitely generated if $\exists n > 0$ and $x_1, \ldots, x_n \in M$ such that $M = Ax_1 + \cdots + Ax_n$ ($\iff M$ is a quotient of the free module A^n).

Nakayama's lemma ([AM] p21)

If M is a finitely generated module over a local ring (A, \mathbf{m}) , where \mathbf{m} is the unique maximal ideal of A, such that $M = \mathbf{m}M$, then M = 0.

A useful corollary of this is with above notation and $N \subseteq M$ a submodule with $M = \mathbf{m}M + N$, then M = N (apply Nakayama to quotient module M/N).

Rings and modules of fractions. Let A be a commutative ring, $S \subseteq A$ a multiplicative subset (i.e. $1 \in S$ and $s, t \in S \Rightarrow st \in S$). We can define an equivalence relation \sim on $A \times S$ by $(a, s) \sim (a', s') \iff t(as' - a's) = 0$ for some $t \in S$ (easy check that \sim is an equivalence relation). Let a/s denote the equivalence class of (a, s) and $S^{-1}A$ the set of such classes a/s. Define addition and multiplication in the obvious way. Then $S^{-1}A$ is a commutative ring and there exists a natural ring homomorphism $\phi: A \to S^{-1}A$, namely $\phi(a) = a/1$. $S^{-1}A$ is called the ring of fractions of A w.r.t. S.

There is a universal property: If $g: A \to B$ is a homorphism of rings with $g(S) \subseteq U(B)$ (units of B), then $\exists ! \ g': S^{-1}A \to B$ with $g'\phi = g$ (namely $g'(a/s) = g(a)g(s)^{-1} \in B$).

 $S^{-1}A$ has a 1 (= 1/1) and a zero (= 0/1). Then $a/s = 0 \iff ta = 0$ for some $t \in S$; hence $S^{-1}A = 0 \iff 1/1 = 0/1 \iff 0 \in S$.

The map $A \to S^{-1}A$ is an isomorphism $\iff S \subseteq U(A)$ (for (\Leftarrow) , take B = A in universal property).

Let $T \subset A$ be the set of non divisors of zero, a multiplicative subset. Set $T^{-1}A = tot(A)$, the total ring of fractions — we have an injection $A \hookrightarrow tot(A)$. If A is an integral domain (ID), then tot(A) = fof(A) (taking $T = A \setminus \{0\}$). For a reducible affine variety V, we should replace the function field k(V) by the ring Rat(V) := tot(k[V]) of rational functions on V.

Relevant examples

- (1) If $f \in A$, let $f^{\mathbf{N}} = \{1, f, f^2, \ldots\} = S$. Write A_f for $S^{-1}A$ in this case.
- (2) If \mathcal{P} is a prime ideal of A, then $S = A \setminus \mathcal{P}$ is a multiplicative subset. Write $A_{\mathcal{P}}$ for $S^{-1}A$, called the *localisation* of A at \mathcal{P} , a local ring with unique maximal ideal $\mathcal{P}A_{\mathcal{P}}$ consisting of elements a/s with $a \in \mathcal{P}$, $s \notin \mathcal{P}$ (all the other elements of $A_{\mathcal{P}}$ are units).

If now M is an A-module, $S \subseteq A$ a multiplicative subset, the module of fractions $S^{-1}M$ (both an A-module and an $S^{-1}A$ -module) is defined analogously, with $m/s = m'/s' \iff t(s'm - sm') = 0$ for some $t \in S$. The $S^{-1}A$ -module structure is defined via (a/s).(m/t) = (am)/(st).

Tensor products

Definition, The tensor product $M \otimes_A N$ of A-modules M and N is an A-module equipped with an A-bilinear map $g: M \times N \to M \otimes_A N$ with the following universal property:

Given any A-bilinear map $f: M \times N \to P$, $\exists !$ morphism of A-modules $h: M \otimes_A N \to P$ which factorizes f = hg.

 $M \otimes_A N$ is defined up to isomorphism by this property (easy application of universal property). The existence of such a module is straightforward and unenlightening (see [AM] p 24) — take the free module F over A on the set $M \times N$ and quotient out by the appropriate submodule of bilinear relations. We omit the subscript A where no confusion would result in doing so. We denote by $x \otimes y$ the image of (x, y) in $M \otimes_A N$.

Elementary properties (all proved from universal property, [AM] p 26)

If M, N, P are A-modules, there exist isomorphisms of A-modules

- $M \otimes N \cong N \otimes M$, where $x \otimes y \mapsto y \otimes x$.
- $(M \otimes N) \otimes P \cong M \otimes (N \otimes P)$, where $(x \otimes y) \otimes z \mapsto x \otimes (y \otimes z)$.
- $(M \oplus N) \otimes P \cong (M \otimes P) \oplus (N \otimes P)$, where $(x, y) \otimes z \mapsto (x \otimes z, y \otimes z)$.
- $A \otimes M \cong M$, where $a \otimes x \mapsto ax$.

Change of ring: Given a morphism of rings $f: A \to B$ (NB f(1) = 1), we call B an A-algebra – this generalises previous concept of k-algebras. Given an A-algebra structure on $B, f: A \to B$, and an A-module M, set $M_B := B \otimes_A M$; this is also a B-modules in an obvious way with B acting on the first factor.

Proposition 0.2. Let M be an A-module.

- (a) If $I \triangleleft A$ and B = A/I, then $B \otimes_A M \cong M/IM$.
- (b) If $S \subseteq A$ is a multiplicative subset and $B = S^{-1}A$, then $B \otimes_A M \cong S^{-1}M$ (this is therefore an alternative definition).
- *Proof.* (a) The obvious bilinear map $(A/I) \times M \to M/IM$ induces (using universal property) a morphism of A-modules $(A/I) \otimes_A M \to M/IM$, where for any $a \in A$, $x \in M$, we have $\bar{a} \otimes x \mapsto \bar{a}\bar{x}$. The inverse morphism $M/IM \to (A/I) \otimes_A M$ is given by $\bar{x} \mapsto 1 \otimes x$ (check well-defined).
- (b) Use universal properties of both S^{-1} and \otimes_A see [AM] p 40.

Proposition 0.3. If M, N are A-modules, $I \triangleleft A$, S a multiplicative subset of A, then

(a)
$$(A/I) \otimes_A (M \otimes_A N) \cong (M/IM) \otimes_{A/I} (N/IN)$$
,

(b)
$$S^{-1}(M \otimes_A N) \cong S^{-1}M \otimes_{S^{-1}A} S^{-1}N$$
.

Proof. Example Sheet 1.

For instance, if \mathcal{P} a prime ideal of A, then $(M \otimes_A N)_{\mathcal{P}} \cong M_{\mathcal{P}} \otimes_{A_{\mathcal{P}}} N_{\mathcal{P}}$ (where we define $M_{\mathcal{P}} = (A \setminus \mathcal{P})^{-1}M$, etc.).

R-algebras. Given a commutative ring R and R-algebras $\theta_1: R \to A$, $\theta_2: R \to B$, a morphism $A \to B$ of R-algebras is given by morphism of rings $f: A \to B$ such that $f\theta_1 = \theta_2$. Given R-algebras A and B, the tensor product $A \otimes_R B$ has the structure of an R-algebra:

- Multiplication given by $(a \otimes b)(a' \otimes b') = (aa') \otimes (bb')$, and extend linearly.
- The ring homomorphism $R \to A \otimes_R B$ given by $r \mapsto \theta_1(r) \otimes 1 = 1 \otimes \theta_2(r)$.

Also have R-algebra morphisms $\alpha: A \to A \otimes_R B$ and $\beta: B \to A \otimes_R B$ given by $a \mapsto a \otimes 1$, respectively $b \mapsto 1 \otimes b$. These satisfy a universal property that, given any R-algebra morphisms $\alpha': A \to C$ and $\beta': B \to C$, $\exists ! R$ -algebra morphism $\phi: A \otimes_R B \to C$ such that $\alpha' = \phi \alpha$ and $\beta' = \phi \beta$. Moreover $A \otimes_R B$ is determined (up to isomorphism) by this universal property (check).

Using this, we can deduce for R-algebras A, B, C that $A \otimes_R (B \otimes_R C) \cong (A \otimes_R B) \otimes_R C$ etc. are naturally isomorphic as R-algebras (rather than just R-modules).