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Theorem 6.1 (Dedekind)

Suppose f ∈ Z[X] is a monic polynomial of degree n with distinct roots in a splitting

field (i.e. discriminant D 6= 0). Suppose p is a prime such that the reduction f̄ of f mod p

also has distinct roots (i.e. p does not divide D). If f̄ = g1 . . . gM is the factorization of

f̄ ∈ Fp[X] into distinct irreducible factors, with deg gi = ri, then Gal(f) ≤ Sn has an

element of cycle type (r1, . . . , rM ).

Proof (non-examinable). Given f as in the statement of (6.1) with roots α1, . . . , αd,

we set L = Q(α1, . . . , αd) its splitting field. Note that L/Q is finite (say of degree N) with

a spanning set (not usually a basis)

{αi1
1 . . . α

id
d : 0 ≤ ij < d}. (∗)

Because f ∈ Z[X] is a monic polynomial, these also form a set of generators for the

ring R = Z[α1, . . . , αd] considered as a Z-module, i.e. an abelian group. So R ⊂ L is a

torsion-free finitely generated abelian group of some rank r, i.e. R ∼=
⊕r

i=1 Z, and the

Galois group G = Gal(L/Q) acts on R by permuting the αi.

Taking (free) generators of this free abelian group, and the corresponding elements

a1, . . . , ar ∈ R, then these are also linearly independent over Q, i.e. are linearly indepen-

dent in L/Q. Therefore r ≤ N = [L : Q].

However, given a basis e1, . . . , eN for L/Q, note that each ei may be written in terms

of a linear combination of the spanning set (∗) with coefficients in Q, and hence by taking

appropriate multiples we may assume that all the ei ∈ R. Hence e1, . . . , eN are independent

elements of the above free abelian group, and so N ≤ r.

Summing up: R is a free abelian group of rank N = [L : Q], with R =
⊕N

i=1 Zei, for

suitable e1, . . . , eN ∈ R. Moreover pR 6= R and R/pR is a finite ring with pN elements.

Now choose a maximal ideal of R/pR (Zorn’s lemma clearly not needed for this!),

yielding a maximal ideal P / R with P ⊇ pR. The quotient ring F = R/P is then a

finite field of characteristic p, since Z ↪→ R induces a field homomorphism Z/pZ ↪→ R/P ,

a finite extension of degree m say. Under the quotient homomorphism φ : R → F ,

the factorization f =
∏

i(X − αi) is mapped to a factorization f̄ =
∏

i(X − ᾱi), where

ᾱi = φ(αi) and F = Fp(ᾱ1, . . . , ᾱd), where by assumption the ᾱi are also distinct. So we

have a bijection specified between the roots of f in L and the roots of f̄ in F .

The action of G on R (permuting the αi) descends to an action on R/pR; let H ′ ≤ G
be the subgroup sending the maximal ideal P to itself. Therefore any σ ∈ H ′ gives rise

to an automorphism of F over Fp defined by x+ P 7→ σ(x) + P , giving a homomorphism

H ′ → H := Gal(F/Fp). Moreover an element of H ′ ≤ Sd has the same cycle type as its

image in H = Gal(F/Fp) ≤ Sd, and so in particular the above homomorphism H ′ → H is

injective.
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If we can prove that H ′ ↪→ H is surjective also, there then exists σ′ ∈ H ′ with the

same cycle type as the Frobenius generator of H, which we saw before cyclically permutes

the roots of each gj , and so has cycle type (r1, . . . , rM ) as claimed. We are therefore

reduced to proving:

MAIN CLAIM. The map H ′ ↪→ H is a bijection.

Let {Pi : 1 ≤ i ≤ s} denote the set of maximal ideals containing pR (or, recalling

the well-known result that a finite integral domain is a field, equivalently the set of prime

ideals containing pR), and let mi := [R/Pi : Fp] for each i. If P1 = P , then m1 = m.

Now apply the Chinese Remainder Theorem:

R/

s⋂
i=1

Pi
∼= R/P1 × · · · ×R/Ps,

where the LHS has order ≤ |R/pR| = pN and the RHS has order pt, where t =
∑s

i=1mi.

Therefore N ≥
∑s

i=1mi.

Suppose images of P under G are {P1 = σ1(P ), . . . , Pr = σr(P )}, where r ≤ s and

with say P1 = P , then we have induced isomorphisms σ̄i : R/P → R/Pi for 1 ≤ i ≤ r.

Thus for 1 ≤ i ≤ r,

mi = [R/Pi : Fp] = [R/P : Fp] = m = |H|.

In particular N ≥ rm.

But |H| ≥ |H ′| implies that rm = r|H| ≥ r|H ′| = |G| by the orbit–stabilizer theorem,

where |G| = N . Thus rm = N and |H ′| = N/r = m = |H|. Therefore the identification

H ′ ↪→ H is an isomorphism, proving the MAIN CLAIM, and hence the theorem.

Remark. In fact, we have also shown above that r = s and that
⋂s

i=1 Pi = pR.
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