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Theorem 6.1 (Dedekind)

Suppose f € Z[X] is a monic polynomial of degree n with distinct roots in a splitting
field (i.e. discriminant D # 0). Suppose p is a prime such that the reduction f of f mod p
also has distinct roots (i.e. p does not divide D). If f = g; ... g is the factorization of
f € F,[X] into distinct irreducible factors, with deg g; = r;, then Gal(f) < S, has an
element of cycle type (r1,...,7n).

Proof (non-examinable). Given f as in the statement of (6.1) with roots aq, ..., aq,
we set L = Q(ay, ..., aq) its splitting field. Note that L/Q is finite (say of degree N) with
a spanning set (not usually a basis)

{af .. alf © 0<i; < d}. (*)

Because f € Z[X] is a monic polynomial, these also form a set of generators for the
ring R = Z[a, ..., aq4) considered as a Z-module, i.e. an abelian group. So R C L is a
torsion-free finitely generated abelian group of some rank 7, i.e. R = @;_, Z, and the
Galois group G = Gal(L/Q) acts on R by permuting the «;.

Taking (free) generators of this free abelian group, and the corresponding elements
ai,...,a. € R, then these are also linearly independent over Q, i.e. are linearly indepen-
dent in L/Q. Therefore r < N = [L : Q).

However, given a basis e1,...,eyx for L/Q, note that each e; may be written in terms
of a linear combination of the spanning set () with coefficients in Q, and hence by taking
appropriate multiples we may assume that all the e; € R. Hence eq, ..., ey are independent
elements of the above free abelian group, and so N < r.

Summing up: R is a free abelian group of rank N = [L : Q], with R = @fvzl Ze;, for
suitable eq,...,ex € R. Moreover pR # R and R/pR is a finite ring with p”¥ elements.

Now choose a maximal ideal of R/pR (Zorn’s lemma clearly not needed for this!),
yielding a maximal ideal P < R with P D pR. The quotient ring F = R/P is then a
finite field of characteristic p, since Z < R induces a field homomorphism Z/pZ — R/P,
a finite extension of degree m say. Under the quotient homomorphism ¢ : R — F,
the factorization f = [],

a; = ¢(a;) and F = F,(aq,...,0q), where by assumption the &; are also distinct. So we
have a bijection specified between the roots of f in L and the roots of f in F.

(X — «;) is mapped to a factorization f = [[,(X — a;), where

The action of G on R (permuting the a;) descends to an action on R/pR;let H' < G
be the subgroup sending the maximal ideal P to itself. Therefore any o € H’ gives rise
to an automorphism of F' over F,, defined by « + P — o(z) + P, giving a homomorphism
H' — H := Gal(F/F,). Moreover an element of H' < Sy has the same cycle type as its
image in H = Gal(F/F,) < Sq, and so in particular the above homomorphism H" — H is
injective.



If we can prove that H' — H is surjective also, there then exists ¢/ € H’ with the
same cycle type as the Frobenius generator of H, which we saw before cyclically permutes
the roots of each g;, and so has cycle type (r1,...,7a) as claimed. We are therefore
reduced to proving:

MAIN CLAIM. The map H' < H is a bijection.

Let {P; : 1 < i < s} denote the set of maximal ideals containing pR (or, recalling
the well-known result that a finite integral domain is a field, equivalently the set of prime
ideals containing pR), and let m; := [R/P; : F,] for each i. If P, = P, then m; = m.

Now apply the Chinese Remainder Theorem:
R/(\Pi=R/P, x - x R/P,
i=1

where the LHS has order < |R/pR| = p" and the RHS has order p’, where t = Y 7_ m;.
Therefore N > 37 | m,.

Suppose images of P under G are {P, = 01(P),...,P. = 0,.(P)}, where r < s and
with say P, = P, then we have induced isomorphisms &; : R/P — R/P; for 1 < i < r.
Thus for 1 <i <r,

m; = [R/P; : F,] = [R/P:F,] =m = |H]|.

In particular N > rm.

But |H| > |H'| implies that rm = r|H| > r|H'| = |G| by the orbit—stabilizer theorem,
where |G| = N. Thus rm = N and |H'| = N/r = m = |H|. Therefore the identification
H’ — H is an isomorphism, proving the MAIN CLAIM, and hence the theorem.

Remark. In fact, we have also shown above that r = s and that (),_, P, = pR.



