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Theorem (3.12). Let M/L/K be finite extensions and x ∈M . Then

NM/K(x) = NL/K(NM/L(x)), TrM/K(x) = TrL/K(TrM/L(x))

For trace (which is easy) this was proved in the lectures.
In fact it is easier (as often happens!) to prove a more general statement. Suppose that V
is a finite-dimensional vector space over L, and u : V → V is an L-endomorphism of V .
Then u is also K-linear. Write detL(u), trL(u) for the determinant/trace of u regarded as
an endomorphism of the L-vector space V , and detK(u), trK(u) for them when we view
V as a K-vector space. Theorem 3.12 is the special case V =M , u = θx of:

Theorem. detK(u) = NL/KdetL(u) and trK(u) = TrL/KtrL(u).

Proof. We first make an additional assumption: that u is cyclic, meaning that the L[u]-
module V is cyclic. Recall (from IB GRM) that this means that there exists e0 ∈ V such
that the elements

e0, e1 = u(e1), . . . , en−1 = un−1(e1) (n = dimL V )

form a basis of V over L. Then we have

un(e0) = −
n−1∑
i=0

aiei, ai ∈ L

and Xn+
∑n−1

i=0 aiX
i ∈ L[X] is both the minimal and the characteristic polynomial of u.

The matrix of u in terms of the basis (ei) is
0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
... . . . ...

...
0 0 . . . 1 −an−1


and so detL(u) = (−1)na0, trL(u) = −an−1. (Compare proof of 3.9.)
Now choose a basis f1, . . . , fm for L/K, and let Ai ∈ Mn(K) be the matrix of Tai , the
K-endomorphism x 7→ aix of L. Then the mn elements of V

e0f1, . . . , e0fm, e1f1, . . . , en−1fm
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form a K-basis for V , and the matrix of u, as a K-endomorphism of V , with respect to
this basis is 

0 0 . . . 0 −A0

Im 0 . . . 0 −A1

0 Im . . . 0 −A2
... . . . ...

...
0 0 . . . Im −An−1


which has trace −tr(An−1) = −TrL/K(an−1) = TrL/KtrL(u) by the above.
Applying a cyclic permutation of the columns to the right m times, we see that its deter-
minant is

(−1)m(mn−1)

∣∣∣∣∣∣∣∣∣
−A0 0 . . . 0
−A1 Im . . . 0

... . . . ...
−An−1 0 . . . Im

∣∣∣∣∣∣∣∣∣ = (−1)mndet(A0) = NL/K((−1)ma0).

This proves the theorem for a cyclic endomorphism.
In general, we know by module theory that V is a direct sum

⊕
Vi of cyclic L[u]-modules.

Let ui be the cyclic endomorphism of Vi thus obtained. Now, determinant is multiplicative
for direct sums, and trace is additive. Since NL/K is multiplicative and TrL/K is additive,
we have

detK(u) =
∏
i

detK(ui) =
∏
i

NL/KdetL(ui) = NL/K(
∏
i

detL(ui)) = NL/KdetL(u)

and similarly for trace.

Characteristic polynomials. Replacing M/L/K with M(T )/L(T )/K(T ), we can de-
duce that if x ∈M , then

fx,M/K(T ) = NL(T )/K(T )fx,M/L(T )

where fx,M/L ∈ L[T ] is the characteristic polynomial of the L-endomorphism θx of M .
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