- 1. (i) Let K be a field of characteristic p > 0 and let α be algebraic over K. Show that α is inseparable over K if and only if $K(\alpha)$ is not equal to $K(\alpha^p)$, and that if this is the case then p divides $|K(\alpha):K|$. Deduce that if $K \subseteq L$ is any finite inseparable extension of fields of characteristic p then p divides |L:K|.
- 2. (i) Let $K \subseteq L$ be a finite field extension. Show that there is a unique intermediate field $K \subseteq F \subseteq L$ such that $K \subseteq F$ is separable but $F \subseteq L$ is purely inseparable, i.e. no element $\alpha \in L \setminus F$ is separable over F. (F is called the separable closure of K in L.)
- (ii) Given a purely inseparable finite extension of characteristic p fields $F \subset L$ and $\alpha \in L$, show that there exists an integer $r \geq 0$ such that $\alpha^{p^r} \in F$. Deduce that if E is any extension of F, then there is at most one F-homomorphism of L into E.
- 3. Let $K = \mathbf{F}_p(X, Y)$ be the field of rational functions in two variables over the finite field \mathbf{F}_p (that is, the field of fractions of $\mathbf{F}_p[X, Y]$), and let k denote the subfield $\mathbf{F}_p(X^p, Y^p)$. For any $g \in K$, show that $g^p \in k$, and hence deduce that the extension K/k is not simple.
- 4. *Suppose K, L are fields and $\sigma_1, \ldots, \sigma_m$ are distinct embedding of K into L. Prove that there do not exist elements $\lambda_1, \ldots, \lambda_m$ of L (not all zero) such that

$$\lambda_1 \sigma_1(x) + \ldots + \lambda_m \sigma_m(x) = 0$$

for all $x \in K$.

[Hint: If there were a non-trivial such relation between the σ_i with r > 1 non-zero λ_i , show that there would also be one with s non-zero λ_i , for some 0 < s < r.]

5. If K/k is a finite separable field extension of degree n, we consider a field extension L/k for which there are precisely n embeddings $\sigma_i: K \hookrightarrow L$ extending $k \hookrightarrow L$ (such an extension L/k exists by Theorem 3.6). Regarding k as a subfield of L, prove (cf. argument for Proposition 3.9) that for any $\alpha \in K$, we have

$$\prod_{i=1}^{n} (X - \sigma_i(\alpha)) = f^r,$$

where $r = [K : k(\alpha)]$ and f is the minimal polynomial of α over k. Deduce that

$$\operatorname{Tr}_{K/k}(\alpha) = \sum_{i=1}^n \sigma_i(\alpha)$$
 and $\operatorname{N}_{K/k}(\alpha) = \prod_{i=1}^n \sigma_i(\alpha)$.

Using the previous question, deduce that the linear map $\operatorname{Tr}_{K/k}: K \to k$ is surjective.

- 6. For any finite group G, show that one can write down a Galois extension K/k, for appropriate fields K and k, such that Gal(K/k) = G.
- 7. Let K = k(X) be the field of rational functions over k. We define maps σ and τ by $\tau(h(X)) = h(1/X)$ and $\sigma(h(X)) = h(1-1/X)$ for $h \in k(X)$. Show that these are k-automorphisms of K and that they determine an action of S_3 on K. If $h(X) = \frac{(X^2 X + 1)^3}{X^2(X 1)^2}$, show that h is fixed. Using Artin's Theorem, show that the fixed field is k(h).

- 8. Show that $K = \mathbf{Q}(\sqrt{2}, i)$ is a Galois extension of \mathbf{Q} and find its Galois group G. Write down the lattice of subgroups of G and the corresponding lattice of intermediate fields $\mathbf{Q} \subseteq L \subseteq K$.
- 9. Suppose that G is a transitive subgroup of S_p , where p is a prime, and that G contains a transposition. Prove that G contains all transpositions and hence $G = S_p$. [Hint: Define an equivalence relation \sim on $\{1, 2, \ldots, p\}$ by $x \sim y$ iff x = y or $(x, y) \in G$.]
- If $f \in \mathbf{Q}[X]$ irreducible of degree p, with p a prime, and f has precisely two complex roots, prove that the Galois group is S_p . Considering f of the form $X^p + mp^2(X-1)(X-2)\dots(X-(p-2)) p$ for suitably large m, produce an example of f irreducible with Galois group S_p .
- 10. Show that the cubics $X^3 3X + c$ are irreducible over **Q** for c = 1 and 3; find their Galois groups. What happens when c = 2?
- 11. Show that the extension $\mathbf{Q}(2^{1/4}, i)$ over \mathbf{Q} is Galois and that the Galois group has order 8. Find an element σ of order 4 in G and an element τ of order 2 which does not commute with σ . Deduce that $G \cong D_8$.

Write down the lattice of subgroups for D_8 (Warning: Most students I've supervised in the past have even got this wrong). Deduce the lattice of intermediate fields L with $\mathbf{Q} \subseteq L \subseteq \mathbf{Q}(2^{1/4},i)$ — here each L should be explicitly described by generators, e.g. $L = \mathbf{Q}(2^{1/2},i)$ or $L = \mathbf{Q}(2^{1/4}(i+1))$. For which of the fields L you find is L/\mathbf{Q} Galois?

12. Let $\alpha = \sqrt{(2+\sqrt{2})} \in \mathbf{R}$; show that the roots of its minimal polynomial over \mathbf{Q} are $\pm \alpha$ and $\pm \sqrt{(2-\sqrt{2})} = \pm \sqrt{2}/\alpha$. Deduce that $\mathbf{Q}(\alpha)$ is a Galois extension of \mathbf{Q} . *Find its Galois group.

- 13. If $k \subseteq K$ is a finite inseparable extension of fields, show that $\operatorname{Tr}_{K/k} : K \to k$ is the zero map (use Question 1 and the transitivity of the trace map, Lemma 3.10).
- 14. *Let p_1, p_2, \ldots, p_n denote distinct primes, and let $L = \mathbf{Q}(\sqrt{p_1}, \sqrt{p_2}, \ldots, \sqrt{p_n})$. Show that L/\mathbf{Q} is Galois of degree 2^n with Galois group $(C_2)^n$. [Hint: Induction on n.]
- 15. Suppose that K/k is a Galois extension with Galois group $\{\sigma_1, \ldots, \sigma_n\}$. Show that $\{\beta_1, \ldots, \beta_n\}$ is a basis for K as a k-vector space if and only if $\det(\sigma_i(\beta_j)) \neq 0$.
- 16. Suppose that K = k(X) is the field of rational functions over a field k with $\operatorname{char}(k) = p > 0$. Let 1 < n < p and σ the k-automorphism of K which sends X to nX. Determine the fixed field of this action.
- 17. If h = f/g is a non-constant rational function in k(X) where f, g are coprime polynomials, show that the polynomial $g(Z) hf(Z) \in k(h)[Z]$ is irreducible. Hence deduce that $[k(X):k(h)] = \max\{\deg(f),\deg(g)\}$. [Hint: Gauss's Lemma.]

If σ is a k-automorphism of K = k(X), show that there exist $a, b, c, d \in k$ with $ad \neq bc$ such that $\sigma(X) = (aX + b)/(cX + d)$, and conversely that such elements do determine a k-automorphism of K.