Example Sheet 3

- (1) Let Δ denote the $\bar{\partial}$ -Laplacian for compactly supported smooth functions f on \mathbb{C}^n with the standard metric (and taking the holomorphic bundle to be trivial). Show that $\Delta(f) = -\frac{1}{2} \sum_{i} (\partial^2 f / \partial x_i^2 + \partial^2 f / \partial y_i^2)$.
- (2) Let M be a complex torus. After choosing a basis for the complex holomorphic 1-forms, show that $H^{1,1}(M) \cap H^2(M, \mathbf{R})$ is isomorphic to the space V of hermitian $n \times n$ matrices. Under this identification, what does the n-fold product map $\alpha \mapsto \alpha^n \in H^{2n}(M, \mathbf{R}) = \mathbf{R}$ on $H^{1,1}(M) \cap H^2(M, \mathbf{R})$ correspond to? Show that the classes of real (1,1)-forms corresponding to Kähler metrics on M form a certain open cone in V, and that the Kähler classes κ with $\kappa^n = 1$ may be identified as the quotient space $SL(n, \mathbf{C})/SU(n)$.
- (3) Calculate the dimensions of the cohomology groups $H^i(\mathbf{P}^n(\mathbf{C}), \mathcal{O}_{\mathbf{P}^n}(r))$ for all values of n, i and r.
- (4) Let M be the Hopf manifold $\mathbf{C}^d \setminus \{\mathbf{0}\}/\sim$, where $(w_1,\ldots,w_d) \sim (z_1,\ldots,z_d)$ iff $w_j = 2^s z_j$ for all j (for some fixed $s \in \mathbf{Z}$). For d > 1, show that $h^0(M,\Omega_M^r) = 0$ for all $1 \le r \le d$ (you may assume that any holomorphic function on $\mathbf{C}^d \setminus \{\mathbf{0}\}$ extends to one on \mathbf{C}^d if d > 1).
- (5) Let $W = \mathbb{C}^2 \setminus \{0\}$, and α a complex number with $0 < |\alpha| < 1$. If $G = \langle g \rangle$ acts on $\mathbb{C} \times W$ by

$$g(t, z_1, z_2) = (t, \alpha z_1 + t z_2, \alpha z_2),$$

show that the quotient $M = (\mathbf{C} \times W)/G$ is a complex manifold, with an obvious map to \mathbf{C} ; the fibres M_t for $t \in \mathbf{C}$ form what is called an *analytic family*.

Show, if $t \neq 0$, that $M_t \cong M_1$. *On the other hand, prove $M_0 \not\cong M_1$ (much harder!). Is M a Kähler manifold?

- (6) Let E be a holomorphic line bundle on a compact complex manifold M, and suppose that L is a positive holomorphic line bundle. For all i > 0, show that $H^i(M, E \otimes L^{\otimes k}) = 0$ for all k >> 0. Assuming the Kodaira embedding theorem, namely that for all k >> 0, $L^{\otimes k}$ corresponds to a hyperplane bundle for some projective embedding of M, and Bertini's theorem that a general hyperplane section of a complex projective manifold is a complex submanifold, show that $h^0(M, E \otimes L^{\otimes r})$ is a polynomial in r for all r >> 0.
- (7) Let M be a compact Kähler manifold. Using the exponential short exact sequence, show that any integral class in $H^{1,1}(M)$ is the Chern class of some line bundle on M.

(8) Let V be a codimension one complex submanifold of a complex manifold M of dimension n, and let $1 \le p \le n$; show that there exist short exact sequences of sheaves

$$0 \to \Omega_M^p(-V) \to \Omega_M^p \to \Omega_M^p|_V \to 0$$
 on M ,

$$0 \to \Omega_V^{p-1}(-V) \to \Omega_M^p|_V \to \Omega_V^p \to 0$$
 on V ,

defining carefully the sheaves involved.

- (9) Suppose in the previous question that the line bundle [V] is positive on a compact complex manifold M; deduce that $h^{p,q}(M) = h^{p,q}(V)$ for p + q < n 1, and $h^{p,q}(M) \le h^{p,q}(V)$ for p+q = n-1. Deduce the Lefschetz Hyperplane theorem for the betti numbers, that $b_i(M) = b_i(V)$ for i < n-1 and $b_i(M) \le b_i(V)$ for i = n-1. Give an example of a smooth surface $V \subset \mathbf{P}^3(\mathbf{C})$ for which $b_2(\mathbf{P}^3) < b_2(V)$.
- (10) Let M be a compact Kähler manifold of dimension n, with Kähler form ω . We define the operator L on r-forms by $L(\eta) := \omega \wedge \eta$, and let $\Lambda = L^* = (-1)^r * L*$ be its formal adjoint. An r-form η is called *primitive* if $\Lambda(\eta) = 0$. Show that any *closed* primitive (p, p)-form on M is harmonic.

Given a non-zero (1,1)-form α on M, show that there exists a unique element $\theta \in A^{1,0}(T_M')$ whose contraction with $\omega \in A^{1,1}(M) = A^{0,1}(T_M'^*)$ satisfies $i(\theta)(\omega) = \alpha$.

Suppose now that α is real and primitive; show that $i(\theta)(\alpha) = -\frac{1}{2}\Lambda(\alpha \wedge \alpha)$. (You may find the formula for Λ at the top of page 114 of Griffiths and Harris useful for this part.) Furthermore, for any real (1,1)-form β , prove that

$$i(\theta)(\beta) \wedge \omega^{n-1} = -(n-1)\alpha \wedge \beta \wedge \omega^{n-2}.$$

When α is also closed, deduce that its cohomology class satisfies $[\alpha]^2 \cup [\omega]^{n-2} < 0$. In this case, show that $i(\theta)(\alpha)$ is a closed form if and only if the form $\alpha \wedge \alpha$ is harmonic.