Example Sheet 1

(1) If $f = (f_1, ..., f_n) : \mathbf{C}^n \to \mathbf{C}^n$ is holomorphic, where $f_j = u_j + iv_j$ and $z_k = x_k + iy_k$, show that

$$\det\left(\frac{\partial(u_1,v_1,\ldots,u_n,v_n)}{\partial(x_1,y_1,\ldots,x_n,y_n)}\right) = \left|\det\left(\partial f_j/\partial z_k\right)\right|^2.$$

Deduce that any complex manifold is orientable.

- (2) If X is a smooth manifold, U a connected open subset of X and $P \in U$, show that the natural map $\mathcal{A}_X(U) \to \mathcal{A}_{X,P}$ is always surjective, but not in general injective. If M is a complex manifold, $P \in U$ as before, show that the map $\mathcal{O}_M(U) \to \mathcal{O}_{M,P}$ is always injective, but not in general surjective.
- (3) For $\phi: \mathcal{F} \to \mathcal{G}$ a morphism of sheaves on a topological space X, show that
 - (a) ϕ is injective $\iff \phi_P : \mathcal{F}_P \to \mathcal{G}_P$ is injective for all $P \in X$.
 - (b) ϕ is an isomorphism $\iff \phi_P : \mathcal{F}_P \to \mathcal{G}_P$ is an isomorphism for all $P \in X$.
- (4) If two holomorphic vector bundles of rank r on a complex manifold M have the same transition functions for trivializations with respect to some open cover $\{\mathcal{U}_{\alpha}\}$, show that they are isomorphic as holomorphic vector bundles.
- (5) Suppose $\mathcal{U} = \{U_{\alpha}\}$ is an open cover of a topological space X, and that on each U_{α} we have a sheaf of abelian groups \mathcal{F}_{α} . If on each $U_{\alpha} \cap U_{\beta}$ we have an isomorphism of sheaves

$$g_{\alpha\beta}: \mathcal{F}_{\beta}|_{U_{\alpha}\cap U_{\beta}} \to \mathcal{F}_{\alpha}|_{U_{\alpha}\cap U_{\beta}}$$

such that $g_{\alpha\alpha} = \text{id}$ over U_{α} , and over each non-empty $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$ the compatibility relation $g_{\alpha\gamma} = g_{\alpha\beta}g_{\beta\gamma}$, show there exists a sheaf \mathcal{F} on X with $\mathcal{F}|U_{\alpha} \cong \mathcal{F}_{\alpha}$ for all α .

- (6) Let $\mathcal{O}_{\mathbf{C}^n,\mathbf{0}}$ denote the **C**-algebra of germs of holomorphic functions at $\mathbf{0} \in \mathbf{C}^n$. If w_1, \ldots, w_n are the holomorphic coordinate functions on \mathbf{C}^n , let $\partial/\partial w_i$ denote $\partial/\partial w_i|_{\mathbf{0}}$, i.e. the map $\mathcal{O}_{\mathbf{C}^n,\mathbf{0}} \to \mathbf{C}$ given by $f \mapsto (\partial f/\partial w_i)(\mathbf{0})$. Show that the $\partial/\partial w_i$ are complex derivations of $\mathcal{O}_{\mathbf{C}^n,\mathbf{0}}$ for $i=1,\ldots,n$, and that they form a basis for $T'_{\mathbf{C}^n,\mathbf{0}}$ over \mathbf{C} .
- (7) Let $M = \mathbb{C}^n/\Lambda$ be a complex torus and N a complex submanifold of dimension d. Prove that the space of global holomorphic r-forms on N has dimension at least $\binom{d}{r}$ for all $r \leq d$.
- (8) Given a point $x \in \mathbf{P}^n(\mathbf{C})$, let [x] denote the line through the origin in \mathbf{C}^{n+1} representing x. Show that the set $\coprod_{x \in \mathbf{P}^n} [x]$ can be given the natural structure of a line bundle on $\mathbf{P}^n(\mathbf{C})$, the *tautological* line bundle L. Show that L is dual to the hyperplane bundle [H].

(9) Let M be an n-dimensional complex manifold M. Suppose that a holomorphic vector bundle $E = L_1 \oplus \ldots \oplus L_{n-r}$ is a sum of holomorphic line bundles on M, and that V is an r-dimensional submanifold of M defined by the vanishing of some global holomorphic section of E; prove that $N_V \cong E|_V$. Find a formula for the canonical bundle K_V .

Suppose $V \subset \mathbf{P}^n(\mathbf{C})$ is a projective variety defined by the vanishing of homogeneous polynomials $F_1 = \ldots = F_{n-r} = 0$, with rank $(\partial F_i/\partial X_j) = n-r$ at all points of V, where r > 0. Prove that V is an r-dimensional complex submanifold of $\mathbf{P}^n(\mathbf{C})$ (you may assume the fact that V is connected). If $\deg F_i = d_i$ for $i = 1, \ldots, n-r$, such a V is called a complete intersection of type (d_1, \ldots, d_{n-r}) in $\mathbf{P}^n(\mathbf{C})$ — we can clearly assume here that $1 < d_1 \le d_2 \le \ldots \le d_{n-r}$. Prove that the canonical bundle

$$K_V \cong [(d_1 + \ldots + d_{n-r} - n - 1)H]|_V.$$

Hence find all the types of 3-dimensional complete intersections with K_V trivial.

(10) Let M be a complex manifold, $V \subset M$ a codimension one complex submanifold and \mathcal{E} a torsion-free \mathcal{O}_M -module. Let $\{U_\alpha\}$ be an open cover of M such that the ideal sheaf $\mathcal{I}(V)|_{U_\alpha} = f_\alpha \mathcal{O}_{U_\alpha} \subset \mathcal{O}_{U_\alpha}$ for all α . Considering the \mathcal{O}_{U_α} -module $\mathcal{F}_\alpha = \mathcal{E}|_{U_\alpha}$ for each α , and defining isomorphisms of $\mathcal{O}_{U_\alpha \cap U_\beta}$ -modules

$$g_{\alpha\beta}:\mathcal{F}_{\beta}|_{U_{\alpha}\cap U_{\beta}}\to\mathcal{F}_{\alpha}|_{U_{\alpha}\cap U_{\beta}}$$

by $g_{\alpha\beta}(\sigma) = \frac{f_{\alpha}}{f_{\beta}}\sigma$ for all sections of $\mathcal{F}_{\beta}|_{U_{\alpha}\cap U_{\beta}}$, deduce the existence of a corresponding \mathcal{O}_{M} module, called the sheaf of meromorphic sections of \mathcal{E} with at most a simple pole along Vand denoted $\mathcal{E}(V)$ — locally its sections may be considered of the form m/f for m a local
section of \mathcal{E} and f a local generator for the ideal of V. If \mathcal{E} is the sheaf of holomorphic
sections of a holomorphic vector bundle E, show that $\mathcal{E}(V)$ is isomorphic to the sheaf of
holomorphic sections of $E \otimes [V]$.

(11) With the notation as in the previous question, consider the subsheaf $\Omega_M^r(\log V)$ of $\Omega_M^r(V)$ consisting of meromorphic r-forms ω with locally both $f\omega$ and $fd\omega$ holomorphic. Show that $\Omega_M^r(\log V)$ is a well-defined locally free \mathcal{O}_M -module, and when r=n that $\Omega_M^n(\log V) = \Omega_M^n(V)$.

Given $\omega \in \Gamma(U, \Omega_M^r(\log V))$, write $\omega = df/f \wedge \omega' + \omega''$, with $\omega' \in \Gamma(U, \Omega_M^{r-1})$ and $\omega'' \in \Gamma(U, \Omega_M^r)$, and then take the restriction $\omega'|_V$;

defines a morphism of sheaves $\Omega_M^r(\log V) \to \Omega_V^{r-1}$ on M, where Ω_V^{r-1} here denotes the \mathcal{O}_M -module $\iota_*\Omega_V^{r-1}$, with ι denoting the inclusion map $V \subset M$. Deduce that there is an exact sequence of \mathcal{O}_M -modules

$$0 \to \Omega_M^r \to \Omega_M^r(\log V) \to \Omega_V^{r-1} \to 0.$$

[The map defined above is called the *Poincaré Residue map*, and generalizes the concept of residues from the case n = 1.]

(12) In the case when V is a hypersurface in M, by taking r = n in the previous question, deduce the adjunction formula.