Example Sheet 4

- (1) If $\phi: X \to Y$ is an affine morphism of varieties, \mathcal{F} a quasi-coherent sheaf on X and \mathcal{G} a quasi-coherent sheaf on Y, show that $\phi_*(\mathcal{F} \otimes_{\mathcal{O}_X} \phi^* \mathcal{G}) \cong \phi_* \mathcal{F} \otimes_{\mathcal{O}_Y} \mathcal{G}$. [This result may be compared with the *projection formula*, in which ϕ is an arbitrary morphism but \mathcal{G} is a locally free sheaf of finite rank.]
- (2) Let X be an irreducible variety; an \mathcal{O}_X -module \mathcal{M} is called torsion-free if for any open set U, and $m \in \mathcal{M}(U)$, $f \in \mathcal{O}_X(U)$ such that fm = 0, we have either m = 0 or f = 0. If X is a smooth curve, show that any coherent torsion-free \mathcal{O}_X -module is locally free.
- (3) Let A denote the coordinate ring over k for the affine cuspidal cubic $y^2 = x^3$ in \mathbf{A}^2 ; show that the A-module $\Omega^1_{A/k}$ has torsion.
- (4) Let P be a point on a variety V, and

$$d_P: m_P/m_P^2 \to \Omega_{V,P}^1/m_P\Omega_{V,P}^1$$

be the linear map of vector spaces over k defined in Chapter 5. Prove that d_P is an isomorphism.

- (5) Show that the canonical sheaf of \mathbf{P}^n is isomorphic to $\mathcal{O}_{\mathbf{P}^n}(-n-1)$.
- †(6) For integers $d_0, d_1, \ldots, d_n \geq 0$, show that the homogeneous ideal $\langle X_0^{d_0}, X_1^{d_1}, \ldots, X_n^{d_n} \rangle$ of $k[X_0, \ldots, X_n]$ contains all homogeneous polynomials of degree $d = \sum_{i=0}^n d_i$. Using Čech cohomology, deduce that $H^n(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}) = 0$ for all n > 0.

Assuming standard general properties of cohomology, by arguing by inductively on n > 0, deduce that

$$H^n(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(-r)) = 0$$

for all $r \leq n$. Why is this consistent with the statement of Serre duality on \mathbf{P}^n ?

- (7) Given a smooth projective curve $W \subset \mathbf{P}^2$ of degree d > 0 (defined by an irreducible homogeneous polynomial of degree d), prove that $K_W \cong \mathcal{O}_W(d-3)$, and hence that $g(W) = \frac{1}{2}(d-1)(d-2)$.
- (8) Prove that a smooth quadric surface $X \subset \mathbf{P}^3$ (i.e. defined by a quadratic form of rank 4) may be regarded with respect to suitable coordinates as the image of $\mathbf{P}^1 \times \mathbf{P}^1$ in \mathbf{P}^3 under the Segre embedding. Suppose now Y is a smooth curve on X, defined by an irreducible polynomial $F(X_0, X_1; Y_0, Y_1)$, homogeneous of degree a in the first set of variables, and homogeneous of degree b in the second set. Find a formula for the genus g(Y).
- (9) For $V \subset \mathbf{P}^2$ a smooth plane cubic, investigate the group $\operatorname{Pic}(V)$. In particular, if $\operatorname{Pic}^0(V)$ denotes the kernel of the degree map $\operatorname{Pic}(V) \to \mathbf{Z}$, show that there is a natural bijection between $\operatorname{Pic}^0(V)$ and the points of V. For V a smooth projective curve of arbitrary genus q > 0, show that there is a natural surjection $S^g V \to \operatorname{Pic}^0(V)$, which however when

- g > 1 is not a bijection. [We can in fact give both the symmetric product S^gV and $Pic^0(V)$ the structures of a smooth varieties, in the latter case it is called the *Jacobian variety*, and then the above surjection is a birational morphism that contracts certain subvarieties.]
- (10) Let X be an irreducible smooth curve and \mathcal{F} a locally free \mathcal{O}_X -module; by analogy with the general definition of rational functions on a variety, we can define the k-algebra of rational sections $\text{Rat}(\mathcal{F})$ of \mathcal{F} . We define the sheaf of principle parts $\text{Prin}(\mathcal{F})$ of \mathcal{F} by $\text{Prin}(\mathcal{F})(U) = \bigoplus_{P \in U} \text{Rat}(\mathcal{F})/\mathcal{F}_P$, for U open in X. The $\mathcal{O}_{X,P}$ -module $\text{Rat}(\mathcal{F})/\mathcal{F}_P$ is called the module of principle parts at P. We consider the property that for any finite collection of points $P_i \in X$ and any choice of the principal parts at the P_i , there is an element of $\text{Rat}(\mathcal{F})$ inducing the given principal part at each point; show that this property is equivalent to the condition $H^1(X,\mathcal{F}) = 0$. [There are a number of possible proofs of this: one uses a long exact sequence of cohomology; another argues directly from Čech cohomology.]
- (11) If (X, \mathcal{O}_X) is a ringed space and \mathcal{F} , \mathcal{G} are \mathcal{O}_X -modules, show that $(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G})_P \cong \mathcal{F}_P \otimes_{\mathcal{O}_X P} \mathcal{G}_P$ for all $P \in X$.
- †(12) Suppose $f: X \to Y$ is a continuous map on topological spaces, that \mathcal{F} is a sheaf of abelian groups on X and \mathcal{G} a sheaf of abelian groups on Y. An f-morphism $\phi: \mathcal{G} \to \mathcal{F}$ is defined by giving homomorphisms of abelian groups $\phi(U): \mathcal{G}(U) \to \mathcal{F}(f^{-1}U)$ for all U open in Y which are compatible with restrictions thus the f-morphisms correspond to sheaf morphisms in $\operatorname{Hom}_Y(\mathcal{G}, f_*\mathcal{F})$. Show that any such f-morphism ϕ induces induces homomorphisms on stalks $\phi_{f(P)}: \mathcal{G}_{f(P)} \to \mathcal{F}_P$ for all $P \in X$.

With notation as above, show that there is a natural f-morphism $\theta: \mathcal{G} \to f^{-1}\mathcal{G}$ with the property that any f-morphism $\phi: \mathcal{G} \to \mathcal{F}$ determines a unique morphism $\psi: f^{-1}\mathcal{G} \to \mathcal{F}$ of sheaves on X with $\phi(U) = \psi(f^{-1}U) \circ \theta(U)$ for all U open in Y. [Hint: To define the image of a section $s \in (f^{-1}\mathcal{G})(V)$ for V open in X, you may need to glue together certain sections of \mathcal{F} over some open cover of V.]

Deduce that there is a natural bijection between $\operatorname{Hom}_X(f^{-1}\mathcal{G},\mathcal{F})$ (morphisms of sheaves on X) and $\operatorname{Hom}_Y(\mathcal{G},f_*\mathcal{G})$.

- (13) Let G(r,n) denote the set of r-dimensional vector subspaces of $V=k^n$, or equivalently (r-1)-dimensional linear subspaces of $\mathbf{P}(V)=\mathbf{P}^{n-1}$. Prove that G(r,n) has the natural structure of a projective variety, embedded in $\mathbf{P}(\wedge^r V)$, of dimension r(n-r). Show that G=G(2,4) is a quadric hypersurface in \mathbf{P}^5 . If l_1,l_2 are skew lines in \mathbf{P}^3 , show that the set $Q \subset G$ representing lines meeting both is the intersection of G with a 3-plane $\mathbf{P}^3 \subset \mathbf{P}^5$, and so is a quadric surface. Show in general that there is a naturally defined locally free sheaf of rank r on G(r,n).
- (14) Let X be an affine variety and $\Delta \subset X \times X$ the diagonal; which elements of the coordinate ring $k[X \times X] = k[X] \otimes_k k[X]$ vanish on Δ ? Let I denote the ideal corresponding to Δ . Considering $k[X] \otimes_k k[X]$ as a k[X]-module via action on the first factor, show that there is a natural identification of the k[X]-module $\Omega^1_{k[X]/k}$ with I/I^2 , under which da corresponds to the class of $1 \otimes a a \otimes 1 \in I/I^2$.

For an arbitrary variety X we let \mathcal{I} denote the ideal sheaf corresponding to the diagonal Δ (closed in $X \times X$); deduce that the quotient $\mathcal{I}/\mathcal{I}^2$ may be regarded as an \mathcal{O}_{Δ} -module, which corresponds to the sheaf Ω^1_X under the obvious isomorphism of X with Δ .