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Lecture 1

11t October 12:00

A plan of the course

(1) Preliminaries on classical algebraic geometry & commutative algebra [Rei88],

[Wil|, [AMG69]. (4 lectures)

(2) Sheaf theory [Kem93|, [Har92]. (4 lectures)

(3) Construction and properties of abstract varieties [Kem93|, [Har92]. (4
lectures)

(4) Locally free and coherent modules [Kem93|, [Har92]. (4 lectures)

(5) Sheaf cohomology [Kem93|, [Har92|. (5 lectures)

(6) Differentials and Riemann-Roch for curves [Kem93|], [Har92|. (2 lec-
tures)

The main reference for the course is the book of Kempf [Kem93| which es-
sentially covers the whole course. Some introductory reading is the book of Reid
[Rei88]. You might find it useful to consult my notes on the (old) Part II Alge-
braic Curves course [Wil]. Some useful reading for parts of the course is the book
of Shafarevich [Sha74]. For some background reading and lots of examples, see the
book of Harris [Har92]. A more advanced text is the book of Hartshorne [Har77|
which is a standard reference for the subject. A standard reference for commu-
tative algebra is the book of Atiyah & Macdonald [AMG69]. And for a historical
reference for the material in the course, there is the beautifully written paper of
Serre [Ser55].

1.1. Some classical algebraic geometry. Throughout the following we take

an algebraically closed field k = k.

Definition 1.1. An affine variety V ¢ A"(k) (=k") (same as k", except we’ve just
forgotten the coordinates), given by the vanishing of polynomials

fiseo s fnek[ X, ..., X0
Equivalently, if I =(fy,..., f-) <k[X] then
V=V({I)={zeA™ f(z)=0for all fel}.
For projective varieties, we have projective space

P (k) = (K" \{0}) /K
where v ~ Av for A # 0 with homogeneous coordinates (zg:x1:--: zy).

Definition 1.2. A projective variety V ¢ P™ is given by the vanishing of homoge-
neous polynomials

fl,...,fr Ek[Xo,...7Xn]
A homogeneous ideal is an ideal that satisfies: if f € J, then so are its homogeneous
parts of each degree. For any homogeneous I c k[ Xy, ..., X, ], we define

V =V"(I)={zeP"F(2) =0, for all homogeneous F ¢ I}
1.2. Coordinate ring of an affine variety. If V = V(I) c A", set I(V) =
{f e K[X]: f(x) =0, for all x € V}. Observe that tautologically V = V(I(V)).
However, one obviously has \/T c I(V(I)) (f € v/T iff there exists an integer r > 0

such that f" e I) and Hilbert’s nullstellensatz says that for algebraically closed
fields, I(V(I)) = VT (see [Rei88, § I1I] or [AM69, pp. 82-83)).

Definition 1.3. The coordinate ring of a variety V' is k[V] = k[ X]/I(V'), the ring
of polynomial functions on V.

dfn:coordinate-ring



LECTURE 1

Remark. k[V] is a finitely generated, reducedﬂ k-algebra.

Given a sub-variety W ¢ V', we have I(V) c I(W) defines an ideal of k[V] also
denoted I(W) <« k[V].

Corollary 1.1 (corollary to nullstellensatz). If m is a maximal ideal of k[V], then
one has

=m, ={fek[V]: f(p) =0}
for somepeV.

PROOF. The nullstellensatz implies that I(V(m)) = vm = m # k[V]. So
V(m) # @. Choose p € V(m). Then m c m;,. But m is maximal, so m, = m. O

Remark. Observe that {p} = V(m,) = V(m) and so there is a bijection
{points of V} «— {maximal ideals of k[V]}

Definition 1.4. A variety W is irreducible if there do not exist proper subvarieties
Wi, Wo of W with W = W u Whs.

Lemma 1.2. A sub-variety W of an affine variety V is irreducible iff p = I(W) is
prime, i.e. k[W] is an integral domain.

Proor. If I(W) is not prime then there exists f,g ¢ I(W) such that fg €
I(W). Set Wy = V(f)nW and W = V(g) n W - then Wy, W, are proper sub-
varieties with W = W7 u W5 i.e. W is not irreducible.

If W1, W, are proper sub-varieties and W = W7 u Wy, choose f € I(W)\I(Wl)
and g € I(W)\I(W3). Then fge I(W), so I(W) is not prime.

For a projective variety V c P", we have homogeneous ideals
I"(V) ck[Xo,...,X,]

generated by having polynomials vanishing on V. FEzercise: show that V is irre-
ducible iff I"(V) is prime.
Generalising the earlier argument, we have a bijection

irreducible sub-varieties W .
{ of an affine variety V } < {prime ideals p c k[V]}
W — I(W)

PROOF. Given a prime ideal p c k[V'], the nullstellensatz implies that I(V (p)) =
VP =p in k[V] and so we have the inverse map.

Theorem 1.3 (Projective nullstellensatz). Suppose that I is a homogeneous ideal
in k[Xo,...,Xn] and V = V*(I) € P*. Then if VI # (Xo,...,X,) (called the
irrelevant ideal), then I"(V) = /1.

PROOF. See Reid’s book [Rei88| pp. 82] - easy deduction from the affine null-
stellensatz. 0

Theorem 1.4. Suppose that V is a variety then we can write V = Vi u---uV,
with V; irreducible sub-varieties and this decomposition is essentially unique (up-to
reordering).

IReduced means that if f™=0then f=0.
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PROOF. Suppose that V is affine (similar proof works for a projective variety).
If such a decomposition does not exist, then there is strictly decreasing sequence of
sub-varieties
o EVaEVIEVp=V
(because if V' =W uW’, then at least one of the W, W' has no such decomposition
either, and let this be Vj, then continue by induction using the ascending chain
condition (1)). Hence in k[V] we have

0=I(Vo)cI(Vh)cI(Va)c...

and Hilbert’s basis theorem implies that k[V] is Noetherian, so there is N such
that I(Viyy) = I(Vy) for all 7 2 0. So Vi = V(I(VNsr)) = V(I(VN)) = Vy
for all » > 0. So the process described () must terminate, and we end up with
a decomposition into irreducibles. See Reid’s book [Rei88l ex. 2.8] for an easy
‘topological’ argument showing that the decomposition is essentially unique. U

Lecture 2
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We'll carry on with the preliminary stuff.

2.1. Zariski topology. Let V be a variety (affine or projective). The Zariski
topology is the topology on V' where the closed sets are the subvarieties. We should
check that it is a topology. Without loss of generality, let V' be affine. Clearly V'
and @ are closed. Observe that for ideals (In)aea on k[V], we have

V(X 1) =NV (la)

is closed. Similarly, V(IJ) = V(I)uV(J) = V(I nJ) is closed as well (clearly
V(IJ)2V(InJ)2V(I)uV(J). Suppose that P e V(IJ)\(V(I)uV(J)) then we
can choose f € I such that f(P) # 0 and g € J such that g(P) # 0. Then fge IJ
with value non-zero at P, a contradiction.) When V is affine, then we have a basis
of open sets D(f) for f € k[V] where

D(f) ={xeV:f(x) =0}

and any open set is of the form

VAV (f1,..., fr) =uiD(fi)
If V = A', we get the cofinite topology, so the Zariski topology is not Hausdorff.
Ezercise: the Zariski topology is compact, i.e. any open cover of V admits a finite
subcover. A little warning here: in some French texts, compactness means compact
and Hausdorff, and they say precompact for what we mean by compact.

Example. Let us determine all the closed subsets X c Al. Such a set is given by
a system of equations Fy(T) =--- = F,,,(T) = 0 in one variable T. If all the F; are
identically 0 then X = A!. If the F; don’t have any common factor, then they don’t
have any common roots, and X does not contain any points. If the highest common
factors of all the F; is P(T') then P(T) = (T - «1)...(T - o) and X consists of
the finitely many points T = aq,...,T = ay.

Example. Let us determine all the closed subsets X c A%. A closed subset is given
by a system of equations

(2.1) F(T)=--=F,(T)=0,
where now T = (Ty,T5). If all the F; are identically 0 then X = A2. Suppose this
is not the case. If the polynomials F7,..., F,, do not have a common factor then

the system of equations (2.1) has only a finite set of solutions (possibly empty).
7
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Finally, suppose that the highest common factor of all the F;(T) is P(T). Then
F,(T) = P(T)G;(T), where now the polynomials G;(T) do not have a common
factor. Obviously, then X = X; u Xy where X is given by G1(T) =...Gn(T) =0
and X» is given by the single equations P(T") = 0. As we have seen, X is a finite
set. The closed sets defined in A2 by one equation are the algebraic plane curves.
Thus a closed set X c A? either consists of a finite set of points (possibly empty),
or the union of an algebraic plane curve and a finite set of points, or the whole of
A2,

Let us recall some stuff from part II.

2.2. Function field of irreducible varieties. If V is an irreducible affine
variety, the field of rational functions or the function field is

(V) = fof k[V]

where fof means field of fractions. In fact, define the dimension of V' by dimV :=
trdeg,k(V). For V ¢ P" an irreducible projective variety, define

k(V) = {F/G/: F,G homogeneous polynomials of same degree, G ¢ I"(V)}/ ~

where F|/G1 ~ Fy/Go iff F1Gy — F2Gy € I"(V) (need V irreducible, i.e. I"(V)
prime, for transitivity to hold).

Function fields are very crude invariants. One example of this is: if V ¢ P"
is irreducible and U is an affine piece of V (say U = V n{Xy # 0}) then U is
an affine variety, U c A" and with the usual affine coordinates, the functions in
X1/Xo,...Xn/Xo, where the equations for U come from those for V' by “putting
Xp =17. There is an easy check now that U is also irreducible and k(V') 2 k(U)
(this isomorphism is given by “putting X =17).

We say that h e k(1) is regular at P e V if it can be written as

o f/g with f,gek[V], g(P) 0 (affine case).
e F/G with F'/G homogeneous of same degree, G(P) # 0 (projective case)

Now we define
Ov.p ={h e k(V) such that h is regular at P}
the local ring of V' at P with unique maximal ideal

al
myp= {h S ﬁv7pih(P) = 0} = ker(ﬁv’p evip k’)
This is the unique maximal ideal since Oy, p\my, p consists of units (i.e. invertible
elements) and any proper ideal consists of non-units and so is contained in my,p.

2.3. Morphism of affine varieties. I'll do the affine case, you can work out
the projective case yourself. When we do abstract varieties then we will do the
projective case as well. For V ¢ A™ and W ¢ A™, a morphism ¢:V — W is given by
elements ¢1,...,¢, € k[V]. This yields a k-algebra (recall this is a ring in which
k is embedded) homomorphism ¢*:k[W] — k[V] (where ¢*(f) = f o ¢; so if y;
is a coordinate function on W, then ¢*(y;) = ¢;). Conversely, given a k-algebra
homomorphism a: k[W] — k[V], we define a morphism

o =PV ->W
given by elements a(y1),...,a(ym) (where y; € k[W] is the coordinate function
corresponding to polynomial Y;).

Now there are a couple of remarks to be made here. Observe that for ¢:V - W
then ¢** = ¢ and for a: k[W] — k[V'] then a** = a. For ¢:U - V, then ¢3p:U - W
a morphism with (¢)* = p*¢*. For B:k[V] — k[U], then (Ba)* = a*B*. So all

8
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this formalism allows us to deduce that affine varieties V, W are isomorphic V 2 W
iff K[W] = k[V] as k-algebras. So formally, there exists an equivalence of categories

and morphisms

affine varieties over k . finitely generated reduced k-algebras p
and their homomorphisms

So affine algebraic geometry is a branch of commutative algebra and consequently is
not very interesting. Then we could look at arbitrary rings, then this is the theory
of affine schemes - this course is really a course in affine schemes.

Lemma 2.5. For V an irreducible affine variety over k, then
{f ek(V): f reqular everywhere} = k[V']
PROOF. Exercise on example sheet 1. O

This is not true for the projective case because the only ones regular everywhere
there, are the constant ones - think about holomorphic functions on a compact
Riemann surface.

Remark. A projective variety V ¢ P™ is covered by finitely many open set which

are affine varieties, e.g. the open sets U; n {X; # 0} ¢ A" (affine coordinates

Xo X )(n)
X, X X

Lecture 3
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3.1. A little commutative algebra. A will always denote a commutative
ring (with a 1). Result you learnt today in commutative algebra: Nakayama’s
lemma - if you aren’t taking that course then a reference is [AMG9, pp. 21].

Lemma 3.6 (Nakayama). If M is a finitely generated A-module over a local ring
A with mazimal ideal m such that M =mM, then M =0.

Remark. Different from version in commutative algebra class because that one is
more amenable to rephrasing for the non-commutative case.

3.2. Rings & modules of fractions. Let A be aring, S ¢ A a multiplicative
subset (i.e. 1 € S and if s,t € S then st € S), we can define an equivalence relation
on A xS by

(a,s) ~(a',s") < t(as' —a’'s) =0 for some t € S
(easy to check that ‘~’ is an equivalence relation). Let a/s denote the equivalence
class of (a,s) and let S™'A denote the set of such elements a/s. Define addition
and multiplication on S~'A in the obvious way. Then S'A is a ring and there
exists a homomorphism ¢: A - S™'A given by a + a/1. S'A is called the ring of
fractions of A with respect to S.

There is a universal property: if g: A — B is a homomorphism with g(S) c U(B)
(where U(B) is the set of units of B) then there exists a unique g’: S™*A - B with
g6 = g (namely ¢'(afs) = g(a)g(s)"' € B).

S71A has a unit (= 1/1) and a zero (= 0/1). Also we have

als =0 < ta=0 for some t €S

and S7'A = 0iff 1/1 = 0 iff 0 € S. The map A - S~'A is an isomorphism iff
S cU(A) (for the ‘<’ direction, let B = A and use the universal property).

Let T = the set of non zero-divisors - this is a multiplicative set. Then A - S™1A
is an injection iff S ¢ T. Call T7'A = tot (A), the total ring of fractions, so we
have an injection A < T7*A. If A is an integral domain, then tot (A) = fof (A)

9
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(T = A\{0}) (for a reducible affine variety V', we should replace the fraction field
k(V) by the ring Rat (V) := tot (k[V']) of rational functions.)
Some relevant examples

(1) If fe A let fN={1,f,f%...} =5. Write A; for S™1A in this case.

(2) If p is a prime ideal of A, then take S = A\p. Then we write A4, for S~*A
and this is called the localisation of A at p. This is a local ring with unique
maximal ideal denoted pA, consisting of elements a/s with a € p,s ¢ p (all
the other elements are units).

If now M is an A-module and S € A is a multiplicative subset, then the module
of fractions is defined in the obvious way, S™'M (an A and S~ A-module).

3.3. Tensor products.

Definition 3.5. Given A-modules M, N, define M ® 4 N to be an A-module
equipped with an A-bilinear map from M x N - M ® N with the universal property:
given any A-bilinear map f:M x N — P, then there exists a unique morphism of
A-modules h making the following diagram commute

M x N

s
\ h///
s
s

Mes N

and M ® 4 N is defined up to isomorphism by this property (the existence of such
a module is straightforward to prove but boring (see [AMG69] pp. 24])). We denote
x ®y to be the image of (x,y) in M ®4 N.

Some elementary properties of this (see [AMG69, pp. 26]: for M,N,P A-
modules, we have

MeN=NeM
(MeN)@P=2=M®(N®P)
(MeN)ePz(MeoP)a(N®P)

Ao M > M

and these are all proved just using the universal property.

3.4. Change of ring. Given a homomorphism f:A - B (N.B. f(1) = 1) of
rings we call B an A-algebra. Given an A-algebra structure on B, f: A - B and an
A-module M, set Mg = B®4 M - also a B-module in the obvious way, B acting
on the first factor.

Proposition 3.7 (0.4).
(1) If a is an ideal of A then Ala®4 M = M/aM.
(2) Let S c A be a multiplicative subset then STTA®4 M = S™1M.

PROOF.
(1) Use the universal property of the tensor product and define the map.
(2) Use the universal property of both S™' and the tensor product - see
[AMG9, pp. 40].
O

Proposition 3.8 (0.5). If M, N are A-modules, a < A, S c A a multiplicative
subset, then

(1) AJa® (M ®4 N) ’EM/CIM@A/G N/aN.
(2) ST (M®sN)=2S'M®g145'N

10
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PrROOF. Exercise on example sheet 1. ]
Example. If p is a prime ideal of A, then
(M®AN)y=M,®a, Ny
(where M, = (A\p)~'M).

3.5. R-algebras. Given a ring R and R-algebras A, B, a morphism of R-
algebras is given by a commutative diagram

R,
N
B

Given R-algebras A, B, AQg B has the structure of an R-algebra, multiplication
is given by
(a®b)(a' ®b") = (aa") ® (bV")
and a ring homomorphism
R—-A®rB
r=>01(r)®1=110(r)

and we have equality here because recall A, B are R-algebras, and we have (for r € R)
r-a=01(r)aand r-b:=0s(r)bforaec A,be Bsor(a®b)=01(r)a®b=a®0s(r)b.
We also have R-algebra homomorphisms

A B
\ %
A®rB

given by a» a®1 and b~ 1 ®b. So there is a universal property: given R-algebra

homomorphisms
A B
Y‘ V
C

then there exists a unique R-algebra homomorphism such that o’ = o and 8’ = ¢
and A ®p B is determined (up to isomorphism) by this universal property.

A—2 s AerB 2B

’
(03

I

16 f

¥ B

Using this, we deduce for instance that for R-algebras A, B,C, then one has
A®R (B@RC) = (A®RB) ®RC

are naturally isomorphisms of R-algebras (rather than just R-modules).

Lecture 4
18" October 12:00
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4.1. §1: Sheaf theory. Let X be a topological space.

Definition 4.6. A presheaf .7 of algebras (resp. rings) on X consists of data

(1) for every open U ¢ X, an algebra (resp. ring) & (U),

(2) for inclusion of open sets V' ¢ U, a homomorphism (called restriction)

PV Z(U) - Z(V) such that
(a) Z(2)={0},
(b) pY: F(U) = Z(U) is the identity,
(c) if W €V cU are open, then pyy, o p¥ = p¥,.

Remark. If U denotes the category of open sets in X (where the morphisms are
inclusion) then a presheaf of Abelian groups on X is just a contravariant functor

F:U — Ab i.e. an element of the category, AbY"” (where Ab is the category with
objects Abelian groups and morphisms group homomorphisms).

An element s € #(U) is called a section of % over U. For s € % (U) we denote
pY(s) by s|y for open V c U .
Definition 4.7. A presheaf .# on X is a sheaf if it satisfies two further conditions
(A) If U is open and U = U; V; is an open cover, and if s € % (U) is such that
sly, =0 for all 4, then s = 0.
(B) If U = U, V; as above and we have elements s, € #(V;) such that for all
1,7 we have
silviav; = sjlviay;
then there exists s € #(U) such that s|y, = s; for all i.

Example.
(1) Let X be a topological space, and A any algebra (resp. a ring). The
constant sheaf &7 determined by A is defined as follows
o /(@) ={0}.
e For U + @ open in X then

&/ (U) = {locally constant maps U - A}

an Abelian group (resp. ring) under the the obvious pointwise op-

erations. With the obvious restriction maps, &7 is a sheaf (a map

is locally constant if every point in the domain has a neighbourhood

such that the map is constant when restricted to this neighbourhood).
If U + @ is a connected open set, then o/ (U) = A, but more generally if
U + & is open and its connected components are also open (e.g. true in a
locally connected topological space), then 7 (U) is a direct sum of copies
of A.

(2) If X is a differentiable (say C*°) manifold, then we can define the sheaf
of C*°-functions (real or complex valued, it doesn’t matter) on X, a sheaf
of rings. Similarly if X is a complex manifold, we can define the sheaf of
holomorphic functions on X. In both cases the sheaf is called the structure
sheaf 0y - checking conditions 1,2 is fine because this sheaf is defined in
terms of functions.

(3) The great generalisation of Serre: for V' an (irreducible) variety (affine,
projective, or quasi—projectiveﬂ), we try to get a structure sheaf: we con-
sider V' as a topological space with the Zariski topology and then corre-
sponding to the structure sheaf previously, there is an obvious definition:
for U open in V, set Oy (U) to be the regular functions on U which is

{f € k(V):f is regular on U}

2Quasi—pro jective: an open subset of a projective variety.

12
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then Oy is a sheaf of rings with respect to the Zariski topology, the struc-
ture sheaf of the variety V. A reminder: exercise 0.2 on the first example
sheet implies that &y (V) = k[V].

Definition 4.8. If .% is a presheaf on X and P € X, we define the stalk .%p of &
at P to be
Fp = lim F (U)
UsP

i.e. an element of Fp is represented by a pair (U,s) where U 3 P is an open
neighbourhood and s € #(U) where (U,s) and (V,t) define the same element of
Zp if there exists an open neighbourhood W > P with W € U nV such that
slw = tlw. The elements of .Zp are called germs. If % is a sheaf of algebras, rings,

... then .%, is an algebra, ring, ... in an obvious way.
Example.
(1) For the constant sheaf o, assigned to an algebra, ring, ..., A, then it is

clear that «/p = A.
(2) For X a C* (resp. complex) manifold with structure sheaf Ox, the stalk
Ox.p at P consists of germs of C* (resp. holomorphic) functions at P.
(3) For V an (irreducible) variety with structure sheaf &y, the stalk at P e V
is
Ovy,p = local ring at P

as detailed before.
Definition 4.9. If # ¥ are (pre-)sheaves on X, a morphism ¢:.% — ¢ consists

of homomorphisms .#(U) - 4(U) for each open U ¢ X such that for V ¢ U the
following diagram commutes

7)) 2% gy

lpg . Jpg
7)Y g(v)

ie. plog(U) =p(V)opY or ¢(U)(s)|lv = d(V)(slv) for all s € .#(U). A morphism
¢:.F - 4 induces a homomorphism ¢p: . Fp > ¥p for each P e X, i.e.
op[(U, )] = (U, ¢(U)(s))

is well-defined.
Definition 4.10. A morphism ¢:.# — ¢ of (pre-)sheaves is injective if Z#(U) —
% (U) is injective for all U, e.g. sheaves of subgroups (resp. subrings) where % (U) ¢
@ (U) for all U then if this is the case then .% is called a subsheaf of . A morphism
¢ F — 4 is called an isomorphism if there exists an inverse morphism :¥ — .Z.
This is equivalent to the statement that ¢(U): #(U) - 4(U) is bijective for all U,
similarly we can define ¢(U) = ¢(U)~! gives inverse.
Lemma 4.9 (1.1). If ¢:. % - 9 is a morphism of sheaves, then

(1) ¢ is injective iff ¢p is injective for all P e X.

(2) ¢ is an isomorphism iff ¢p is an isomorphism for all P e X.

PROOF. Next time. O

Lecture 5
215t October 12:00
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LECTURE 5

5.1. Stalks & morphisms of sheafs.

Lemma 5.10 (1.1). If ¢:.% - 9 is a morphism of sheaves, then
(1) ¢ is injective iff ¢p is injective for all P e X.
(2) ¢ is an isomorphism iff ¢p is an isomorphism for all P e X.

PROOF.

(1) ‘=’ Suppose that there exists a germ sp € . such that ¢p(sp) = 0 in

9p, i.e. there exists an open neighbourhood W c U with P € W such that
@(U)(s)|w = 0. Therefore by commutativity of the maps of a morphism,
(W) (s|lw) =0. But ¢ is injective therefore sy = 0.
‘«” Let ¢p be injective for all P, and let U be open: then it remains to
prove that ¢(U): #(U) - 4(U) is injective. Suppose that there exists
0+ seF(U) such that ¢(U)(s) =0 in 4(U). Let sp denote the germ
of sat PeU : 0=¢(U)(s)p = ¢pp(sp) for all P € U. This implies that
sp =0 in Zp for all P € U and this implies that for all P € U, there
exists an open neighbourhood W s P with W ¢ U such that s|y =0, and
therefore U is covered by open sets U, such that s|y, = 0 for all a and
this implies that s = 0 by the identity condition (sheaf condition (A)).

(2) ‘=’ Clear.

‘< ¢p(U):F(U) - 4(U) is an injection for all open U by part (1). It
remains to prove that ¢(U) is also surjective. Suppose then that ¢t € 4(U)
and let tp € ¥p be its germ at P € U. Since ¢p is surjective, there exists
sp € Fp such that ¢p(sp) =tp. Suppose that sp is represented by a pair
(V,s) with PeV cU and s € #(U). Then tp is represented by ¢(V)(s)
ie. (U,t) x (V,¢(V)(s)). By shrinking V, we may assume that we have

an open neighbourhood U 2 Vp 5 P such that

o(V)($)lve =tlvi
therefore denoting o = s|v, € #(Vp), we have ¢(Vp)(o) = t|y,. In this
way, we can cover U by open sets U = U, U, with sections s, € .#(Uy,)
such that ¢(Uy)(sq) =t|lu,. On overlaps U,g = U, N Ug, we have

¢(Uap)(Salv.s) = tlu,s = #(Uap)(sslu.s)
Since . is a sheaf, the s, patch together to give a section s € % (U) such
that s|ly, = s (condition (B) for .#). But then ¢(U)(s)|v, = #(Ua)(5a) =
t|y,, for all @. Then sheaf condition (A) for ¢4 implies that ¢(U)(s) =t.
(I

Definition 5.11. A morphism of sheaves ¢:.% — ¥ is called surjective in the
category of sheavesﬁf ¢p: Fp > 9p is surjective for all P.

Definition 5.12. Given a presheaf/sheaf % on a topological space X and a con-
tinuous map f: X — Y we have an induced presheaf/sheaf f,.% on Y defined by

(fF)U) = Z(f7'U)

for U open in Y with obvious restriction maps
[+ F(U) —— fuF (V)

F(fU) —— Z(f7V)

30ne must make a distinction between surjectivity in the category of sheaves and surjectivity
in the category of presheaves.

14
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for VcU.

Definition 5.13. A ringed space is a pair (X, Ox), X a topological space, Ox a
sheaf of rings. Given ringed spaces (X, Ox), (Y, Oy ), a morphism of ringed spaces
(X,0x) —» (Y,0y) is a pair (f, f!) where f: X — Y is a continuous map and
ft: 0y — f.Ox is a morphism of sheaves of rings on Y. So f! defines homomor-
phisms Oy (U) — Ox(f~'U) for all U open in Y compatible with restrictions.

Definition 5.14. If R is a commutative ring (e.g. a field), a ringed space over
R is a ringed space (X, Ox) with Ox a sheaf of R-algebras (restriction maps are
homomorphisms of R-algebras). A morphism of ringed spaces over R is defined in
the obvious way.

Definition 5.15. A ringed space (X, Ox) is a locally-ringed space (another name:
geometric space) if the stalks Oy p are local rings. A morphism of locally-ringed
spaces is given by a pair (f, f!) as above, with the induced maps

fh:0yv ppy > Ox.p
being local homomorphisms of local rings.

Remark. Regarding the induced maps above: setting ¢ = f! the homomor-

phisms Oy (U) 44 Ox(f'U) for U 5 f(P) induces a homomorphism Oy t(p) 4

Ox p, namely a germ [(V,s)] with f(P) € V ¢ U goes to a germ defined by
[(f7*V,¢v(s))], and this is a well-defined homomorphism.

Definition 5.16. A homomorphism ¢: (A, m4) — (B, mp) of local rings is called
local if ¢~*(mp) = ma, or equivalently (exercise) ¢(ma) € mp.

Example.
(1) (X,Z) with the constant sheaf, Z is a ringed space, but not locally-ringed.
(2) If X is a C*°-manifold (resp. complex manifold) with structure sheaf O,
then the pair (X, Ox) is a locally ringed space over R (resp. C). A smooth
(resp. holomorphic) map f: X — Y yields a sheaf morphism of R-algebras
(resp. C-algebras), namely

jﬁ 653/ - j}_é?)(
g=gof
(since a smooth (resp. holomorphic) function on Y pulls back to one on

X). Clearly g(f(P)) =01iff fi(g)(P)=0and so fh(my ¢py) cmx p. So
(f, f!) is a morphism of locally ringed spaces on R (resp. C).

Lecture 6
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Continuing with the examples

(3) Let (V, Oy ) be the ringed space given by an (irreducible) affine variety and
its structure sheaf. This is a locally ringed space over the base field k. If
¢:V — W is a morphism of affine varieties in the sense that we have come
across classically, then there exists a morphism of locally ringed spaces

(6,¢"):(V, Ov) — (W, Ow)
i.e. for g € Ow (U), ¢t(g) = go ¢ € Oy (¢ U) (before we denoted ¢! as
o).
15
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Lemma 6.11 (1.2). If VW are irreducible affine varieties and

(f, fD: (V. 0v) — (W, Ow)
is @ morphism of locally-ringed spaces over k, then f is induced from a morphism
of varieties ¢:V — W with ft = ¢! defined as in (3) above.
Remark. Once we have defined &y on a reducible affine variety (with &y = k[V])
the same result can be proved for the general case with essentially same proof.

PROOF. Suppose that V ¢ A™ and W ¢ A™. Define g; = f#(y;) € Oy (V) )

k:[V]H where y; is the j' coordinate function on W. Define ¢ = (g1,...,9m), a
morphism V — A™. Suppose now that f(P) = (by,...,by,) € W for P e V. We
have y; — b; € myy, (py for all j thus fi(y; - b;) = yj o f - b; € my p because f is
local which implies that ¢;(P) — b; = 0 for all j which implies that ¢(P) = f(P),
therefore ¢:V — W is the same map as f on the topological spaces. Since f#(y;) =
gj =yj o ¢ =dt(y;), it follows that f# = ¢f on both k[W] and k(W) and hence on
any Ow (U) with k[W]c Ow (U) c k(W) for U open in W. O

Because of the result just proven, we make the following definition.

Definition 6.17. So for V,W irreducible quasi-projective varieties, we define a
morphism of varieties V — W to be a morphism of the corresponding locally-ringed
spaces over k, (V,0y) - (W, Ow).

6.1. Ox-modules.
Definition 6.18. Let . be a sheaf of Abelian groups on a ringed space (X, Ox),
then .# is said to be an Ox-module if for every open set U ¢ X, .#(U) is an
Ox (U)-module and for any W € U open, a € Ox (U), m e #(U), we have

(am)lw = (alw)(m|w)
Similarly we have the obvious definition for a morphism of &'x-modules ¢: . # - A".
Example. For V an (irreducible) quasi-projective variety with structure sheaf &y,
and W c V a closed subvariety, we have a sheaf of ideals %y c Oy, a subsheaf of
Oy given by
fw(U) = {f € ﬁv(U) f|WﬁU = 0}
This is clearly an &y -module.

Everything we’ve done so far goes through unchanged for &'x-modules (apart
from one technicality) e.g. if .# is an Ox-module, then any stalk .#p is an Ox p-
module, etc. So what is the technicality: the small change involves the push-forward
of an Ox-module .# under a morphism of ringed spaces

d=(f,f")
(X,0x) — (Y, 0y)

The sheaf f,.# is then an f,Ox-module via the morphism f!}: 0y — f,0x - we
can consider f,.# also as an Oy-module, which we then denote ¢,.#. Explicitly,
for U open in Y,
fol (U) = A (f7U)
is a module over f,O0x(U) = Ox(f~'U). But
10y (U) = f.0x(U) = 6x(f7'U)
and so . (f~'U) is also a module over Oy (U).

6.2. Sheafification. Given a presheaf .# on X, there exists an associated
sheaf # +E| and a morphism 6:.% — .%* and this morphism has a universal property:

4From examples sheet 2.
5Some books denote it with two pluses, the one plus case is a “mono-presheaf”.
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for any sheaf 4 and morphism ¢: F - ¢, there exists a unique morphism of sheaves
V. F* - 4 such that ¢ =1 06.
We construct .#* as follows: for U open in X, set

Functions s:U — ], #p such that:
(1). for each P eU, s(P) € #p, and
F(U) = (2). for each P € U, there exists an open neighbourhood
W of Pin U, W cU and an element t € % (W) such
that s(Q) =tg for all Q e W.

It is clear that .# ™ is a sheaf (since the sections are given in terms of functions) and
there exists a morphism .# — %% where 0(U):.#(U) - F*(U) by 0 ~ s where
s(P) =op for all P € U. Moreover, if we start from a sheaf .#, the sheaf conditions
imply that a section of .Z*(U) patches together to give a section of . (U) (noting
that if we have ¢,t" € 7 (W) such that tq = t, for all Q € W, then t = ¢' by sheaf
condition (A)), so there exists an inverse morphism and so 6 is an isomorphism. In
general, it’s clear that #* has the same stalks as Z.

Lecture 7
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There is an example sheet on the web-page, and there will be an example class at
the beginning of the week after next.

7.1. Universal property of sheafification. Let 0:.% — .7 " be as last time.
Given ¢:.% — ¢ with ¢4 a sheaf, we have morphisms of stalks ¢p:.%p — ¥p for all
P ¢ X and hence a unique ¢: F* > 4" 24 such that ¢ = 00 (on stalks, it’s clear
that ¢p = (V0 0)p =1pp 0o Op and then use sheaf condition (A) on ¥ - see example
sheet 1, question 7).

The standard argument with universal properties shows that the pair (F*,6)
is unique up to isomorphism.

Corollary 7.12 (1.3). Suppose that B is a base of open sets for X which is closed
under finite intersectionﬂ and F is a B-sheaf (i.e. data specified only with respect
to open sets in B and satisfying sheaf conditions (A) and (B) with respect to open
sets in B). Then there exists a sheaf F' on X and isomorphisms F(U) - .F'(U)
for U € B compatible with restriction (i.e. F = F'|g as B-sheaves and F' is unique
up to isomorphism).

PrROOF. The ‘4’ construction used above may be extended to the case where
Z is only a B-presheaf yielding a sheaf on X, by only taking open sets W € B in
condition (2) on sections. If ¢ is a presheaf on X, it is clear that the sections of
@+ correspond to the sections of ¢ (the B-presheaf you get by only looking at
the elements of the basis B i.e. % is the B-presheaf 4|3 ie. 4 =9"). The F*
described will just be .#*. There exists an obvious morphism

o(U): Z(U) > F*(U)

for U € B compatible with restriction. Furthermore, the B-sheaf conditions on %
imply that a section of F*(U) for U € B, patches together to give a section of
F(U). We have that 8(U) is an isomorphism for all U € B i.e. # = #'|5. If now
F'" is a sheaf on X such that & = .Z"|g, then

gl! ~ (yl/)-f- — (gl!|3)+ ~ gﬁ+ — y’
6The condition that it is closed under finite intersections is necessary to make sense as a sheaf

- they need to agree when you restrict to intersections, so the intersection had better also be in B
as well.

17
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as sheaves on X. |

7.2. Kernels of sheaf morphisms. If ¢:.% — ¢ is a morphism of (pre)-
sheaves of abelian groups, define a presheaf ker(¢) by

(ker ¢)(U) = {s € F(U):¢(U)(s) = 0}

a sub-sheaf of .#. If ¥ is a sheaf, then clearly ker ¢ satisfies sheaf condition (A).
If however U = U, and s, € (ker ¢)(U,) satisfying the compatibility condition on
overlaps, then they patch together to give an element s € .7 (U) such that s, = s|u, .
But ¢(U)(s)|u, = ¢(Ua)(sa) = 0 for all a which implies that ¢(U)(s) = 0 from
condition (A). If ¢ is a morphism of &x-modules, then ker ¢ is an &x-module.

Lemma 7.13 (1.4). If ¢: % — 4 is a morphism of presheaves & ker ¢ is defined as
above then (ker ¢)p = ker ¢p for all P.

PROOF. One has sp = [(U,s)] € ker(¢pp: Fp - ¥p) iff (p(U)(s))p =0¢€ %p
iff there exists an open neighbourhood W c U of P such that ¢(W)(s|lw) = 0 iff
slw € (ker¢)(W) for some open neighbourhood W ¢ U of P, which is true iff
sp e (kero)p. O

7.3. Cokernels of sheaf morphisms. If ¢:.% — ¢ is a morphism of sheaves
of Abelian groups, then we can define a presheaf € in an obvious way: €(U) =
G(U)/d(U)F(U) for all U. This is not in general a sheaf.

Definition 7.19. We define the sheaf cokernel of ¢, coker ¢ = 4/p.7 := €*. Con-
sider the morphism of presheaves ¥4 — ¢, then for P € X we have an induced
homomorphism on stalks ¥p — €p (it is a trivial check that the kernel we have in
this case is just ¢pFp). There exists isomorphisms

gp/(bpgap ~%p 5 ng

So the sheaf morphism ¢ is surjective (i.e. ¢p is surjective for all P) iff coker ¢ = 0.
In general, a sheaf morphism ¢:.% — ¢ induces a sheaf morphism ¢ 1—; € = coker ¢,

a surjection (since it’s surjective on stalks).

Definition 7.20. If ¢:.# — ¢ is a morphism of sheaves, then the image sheaf
Im ¢ = ¢(.F) is the subsheaf of ¢ given by ker(¥ % coker ?).

Remark. We did not make the obvious definition, we could just have taken the
image presheaf of ¢ i.e. & (U) = ¢(U).Z (U), but this will not be a sheaf in general,
but of course we then could go and sheafify it and then in fact, one has &/ = Im ¢
(see below). But defining the image sheaf the way that we did gives the new sheaf
naturally as a subsheaf of the original sheaf, so it is preferable for this reason.

Claim. «/* = Im¢.

PROOF. There exists a morphism of presheaves

o - 4 € ¢

P
. 0 . .
where the composite is zero. Hence &/ — ker v induces a morphism of sheaves
ot —— (keryp)t —— kerep

18
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Since &/ (U) = ker(4(U) - €(U)) and lemma implies that

JZ%P ker gp —_— ch

for all P so the induced map on stalks
Ay 2 ap —2 5 (kertp)p —— kertpp

an isomorphism on stalks for all P, the morphism &% — kert is an isomorphism
of sheaves (lemma (part 2)). O

Lecture 8
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Examples class: 4pm, Wednesday 6" November, MR5.
Recall that given a morphism ¢:.% — ¢ of sheaves, we have a morphism ¢: ¥4 —
coker ¢ := € where € is the presheaf cokernel. We had

(8.2) Gp|opFp=Cp > Cp
and we defined Im ¢ = ker 1.
Remark. If we define &7 (U) = ¢(U).Z (U) for all U, then Im ¢ = o7*.

Remark. Given ¢:.# — ¢, a morphism of sheaves, we have a morphism of presheaves
¢:.F — o/ and hence a morphism of sheaves ¥ —» &/ 2Im ¢ c 4. Now, one has

(Im¢)p = (ker¢) p . Fg Ko ¥p =Imop

(see[7.13)

for all P since
kerp =ker( ¥p —— €} —544p/opFr ) =o¢prTp

which implies that .# — Im ¢ is a surjective morphism of sheaves. For all s € #(U),
one has

d(U)(s) eker(9 - €)(U) cker(9 - ) (U) = (Im¢)(U)
and so we have a factorisation # — Im¢ - ¢ for ¢ with ker(%# — Im ¢) = ker ¢.

Remark. For sheaves of &x-modules and their morphisms, we can construct the
cokernel /kernel/image as sheaves of Abelian groups and observe that these have a
natural structure as Ox-modules. Similarly, if & is a sheaf of rings, .# a sheaf of
ideals in @, then we can define the sheaf &/.7, a sheaf of rings.

Definition 8.21. A sequence of sheaf morphisms

F_ 9 g _°,

is exact (at ¢) if the corresponding sequence of maps on stalks
Tp s @, _oP o
is exact at ¥p for all P (i.e. Im0p = ker ¢p).

Proposition 8.14 (1.5).
(1) The sequence % Ly is exact at 4 iff Im@ = ker¢ as

subsheaves of 4.

19
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(2) If 0 Fsg - s exact, then

o(U) 3(U)

0—— Z(U) G(U) 2(U)

is exact for all U open in X.

PROOF. (1) ‘«<’: if Im @ = ker ¢ then (Im0) p = (ker ¢) p for all P € X. Therefore
Imép = kerpp for all pe X (see remark 2, (lemma [7.13))). Therefore

Fp —— Yp —— Hp

is exact at ¥p for all P.
(1) ‘=’: conversely, suppose that Fp —— ¥p —— Hp is exact at ¥p

for all P, then in particular (¢0)p = ¢pfp =0 for all P therefore ¢ = 0, thus with
image presheaf as above, the morphism &/ - J# is zero and hence the morphism
of sheaves

gt ——Imb —— G —— H

is zero i.e. Im#@ c ker ¢. Since we have equality on stalks, this implies that Im6 =
ker ¢ by lemma

(2) Let & =ker ¢ =Im6 c & by (1), therefore 8 induces a (surjective) morphism
of sheaves 0:. % — #. But #p = Im@p = ker ¢p, and so the corresponding maps
on stalks .%p — #p are isomorphisms. Lemma then implies that :.% > ¢ is
an isomorphism, hence §(U):.Z(U) 5> # (U) for all U where # (U) = (ker ¢)(U).
Therefore

o(U) (V)

0—— F(U)

4 (U) H(U)
is exact for all U. O

Remark. Even if one starts with a short exact sequence

0 F g H 0

then the induced maps on sections 4(U) — 7 (U) will not in general be surjective.
This is one of the reasons that we introduce sheaf cohomology to try to mend this
lack of surjectivity.

Example. To see an example where the surjectivity fails, let X = P! and %p =
ideal sheaf of P € X, k the field of definition, #p.q = ideal sheaf of {P,Q}, say
P # Q. Define the skyscraper sheaf 75 at Q) by

k ifQeU

1@@0:{0 ifQ¢U

so #g has stalk k at () and zero elsewhere. There exists a short exact sequence of
Ox-modules (cf. example sheet 1, question 11)

eval
F—F(Q)

0—— jP+Q - Ip Jfo 0

Now I want to go back to something that I sort of left hanging.
20
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8.1. Case of reducible varieties. For V' ¢ A" any affine variety, we define
the regular functions on V' to be the polynomial functions, i.e. Oy (V) := k[V] the
coordinate ring. An open set has the form U = VA\V(f1,...,fn) = UD(f;) for
fi € k[V'], where

D(f)={PeV:f(P)+0}
Then {D(f): f € k[V]} forms a basis of open sets for V, closed under finite intersec-
tions. Now D(f) may be given the structure of an affine variety W c V x Al c A"*!
defined by the equations for V' and the extra equation X, 1 f(X1,...,X,) =1. If
m:W — D(f) is given by
(1, @p1) = (21, ..., Ty)

then 7 is a homeomorphism (with the Zariski topology) with inverse homeomor-
phism a: D(f) - W given by z ~ (21,...,2n,1/f(z)). Define

functions on D(f) which are pullbacks
of regular functions on W

Oy (D(F)) = o KW = {

(one has that this is = k[V'];, noting that k[W]z k[V][X]/(Xf-1) 2k[V]s).

Remark. In the case when V is irreducible, this corresponds to the previous def-
inition, since an everywhere regular function on D(f) pulls back from one on W,
i.e. an element of k[W] by lemma [2.5

An obvious question now is: is it independent of the choice of f? We will deal
with this next time.

Lecture 9
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Let V c A" be an affine variety, and let f € k[V]. Let W c V x A! be given by the
extra equation

X1 f(Xq,...,X,) =1
and take
D(f) W

T = (I1,7$n71/f(£))

a homeomorphism. Define the following
Oy (D(f)) = {functions on D(f) which are pullbacks of regular functions on W'}
=a*k[W]zk[V];

This does not depend on the choice of f € k[V]: if D(f) = D(g) then D(f) =
D(fg) = D(g). Since g = g(Xi,...,X,) is nowhere vanishing on W, then the

nullstellensatz implies that g is a unit in k[W]. If now we define W’ c V x Al
defined by the extra equation X, .1 fg =1 then there is an obvious isomorphism

GW > W
(xla-"7xn+1) = (-le--;xmxm-l/g)

with an obvious inverse (which we denote by v). The diagram

dfn:regular-function
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commutes. Therefore Oy (D(f)) depends only on the open set D(f) and not on
the choice of f € k[V']. The basic open sets D(f) are regarded as affine pieces.

Remark. More generally, for V' projective (or quasi-projective) we can cover V
by a finite number of affine pieces and so we obtain a basis B of affine open sets,
closed under finite intersections. This is true for abstract varieties (see §2).

For arbitrary open U c V', we can define

a finite open affine cover U = UU,; with f|y, regular for all ¢

continuous functions f:U — k such that there exists
93) Ov(U) = { f }
Remark. We have taken the easy way out here (Kempf does this in his book as
well) because we use functions to define the structure sheaf here but I will say
something about the other way to do this as well (§9.1]).

What we need to check for this definition: if U is an affine variety covered
by affine pieces {U;} and f|y, € k[U;] for all i, then f € k[U] (f)(i.e. definition
is well-defined). We have seen that @y (D(f)) is naturally isomorphic to Ay
(A = k[V], V an affine variety). Also if D(f) = D(g), then there exists natural

isomorphisms
Ay Ay
Af g

Moreover the restriction maps Oy (V') - Oy (D(f)) are identified with natural ring
homomorphisms

A—>Af

arafl

N.B. restriction maps are not in general injective. The statement (1) follows from
the next thing

Lemma 9.15 (1.6). Suppose U = U; D(f;) is a (finite) cover of an affine variety
U and g; € k[U]y, such that for each i,j, the images g;/1 and g;/1 in k[U]y,y, are
equal, then there exists g € k[U] such that g/1 = g; in k[U]ly, for all j.

PROOF. Set A = k[U] (since U is compact, we can, without loss of generality,
take U = UN, D(f;) a finite cover). Moreover, choose r sufficiently large such
that g; = a;/f] in Ay, with of course a; € A. Now since my assumption was that
9i/1=g;/1in Ay, there exists n > 0 such that (fif;)"(fjai - fla;)=0in A. As
A is reduced, we may take n =1 in this case so

(9.4) [ fiai = 7 fia5=0

in A for all 4,j. So far all we have done is thrown around the definition. So now:
since V(fI*h, ... fvY) =V (f1,...,fn) = @, and so the nullstellensatz implies that
this is the whole ring so therefore there exists e; € A such that 1= Ye; f7*. Set
g=>e;fia; € A. For each j, then if we look at fj”lg we find

1 1 1
g =>eifif] rai = Y eifi T fia; = fia,
i [

(using ie. fi(fig—a;) =0 which implies that g/1 = a;/f] = g; in Ay, for all
. 0
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9.1. Alternative approach to defining structure sheaf. We have a basis
B of affine open sets closed under finite intersection. We can define a B-presheaf by
Oy (U) =k[U] for all U € B. It is an easy check (examples sheet 2, question 1) that
sheaf condition (A) is satisfied over B. Lemma is saying that sheaf condition
(B) is satisfied - in fact we can avoid using reducedness in the proof of lemma [9.15
We have a B-sheaf here, thus corollary (1.3) implies that there exists a unique
extension (up to isomorphism) to a sheaf &y on V. This approach is needed if

(1) we work with schemes rather than varieties, or
(2) we're interested in &x-modules on a variety /scheme (for more details see

§3).

9.2. §2: Construction of abstract varieties. If ¥ is a sheaf on X and
U is open in X, we have a sheal .%|y on U (restriction of .# to U) defined by
(Flo)(W) = F(W) for W c U open. If (X,0x) is a locally ringed space over R
and U is open in X, let Oy denote Ox|y, then (U, Oy ) is a locally ringed space
over R.

Definition 9.22. If ¢ = (f, f1): (X, Ox) — (Y, Oy) is a morphism of locally ringed
spaces over R, then we say that ¢ is an isomorphism if f is a homeomorphism and
ft: Oy — f.0Ox is an isomorphism of sheaves of R-algebras. In this case, there exists
an inverse morphism ¢! = (g, g!) where g = f~! and g': Ox — g. Oy is defined by
setting the required homomorphisms (for W open in X) Ox (W) — Oy (g7'W) to
be the inverse of the isomorphism Oy (U) - Ox (f~*U) where U = g7'W.

Lecture 10
15 November 12:00

Recall that the following are locally-ringed spaces over k:

(1) take k=R, Y c R™ open, then we have 0y the sheaf of C*° functions;

(2) take k = C, Y c C" open, then we have Oy the sheaf of holomorphic
functions on Y

(3) take k = k, Y an affine variety over k with the Zariski topology, then we
have Oy the sheaf of regular functions on Y.

Definition 10.23. A C'*°-manifold is a locally-ringed space (X, Ox) over R such
that

(1) X is paracompadﬂ and Hausdorff,
(2) for every P € X, there exists an open neighbourhood P € U ¢ X such that
(U, Oyy) is isomorphic as a locally-ringed space over R to (Y, Oy ) as in (1)
above.
For complex manifolds, we substitute locally-ringed over C and locally isomorphic
to (Y, Oy ) asin (2) above. A C*°-map (resp. holomorphic) map between C* (resp.
complex) manifolds is defined to be a morphism of them as locally-ringed spaces
over R (resp. C).

"Let {Wa}aer be a cover of a topological space X (we do not assume that it is an open
cover).

Definition 10.24. A cover {T;3}ge is called a refinement of {Wa }er if for all 8 € J, there exists
o € I such that Ts c Wa.

Definition 10.25. A collection {Wq }qer of subsets of X is called locally finite if each x € X has
an open neighbourhood whose intersection with W, is non-empty for only finitely many a.

Definition 10.26. A topological space X is called paracompact if every open cover of X has a
locally finite refinement.
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FEzercise: the above definitions correspond to the usual ones in terms of charts
and atlases (see examples sheet 1, question 14).

Definition 10.27. A prevariety over k = k is a locally ringed space (X, Ox) over
k such that

(1) X =UU; for a finite collection of open sets Uj;,
(2) each (U;, Oy,) is isomorphic, as a locally ringed space over k, to some
affine variety (Y, Oy) over k. The U, are called affine pieces.
Example. Consider X to be
X Ol

><02

the line with two origins i.e. take two copies of A! and identify all corresponding
points except the origins. The topology is the quotient topology from the Zariski
topology on Al. Let X = U; u U, where U; = X\{O} and U; = X\{O;} and
each U; is identified with A}. These identifications determine a locally-ringed space
structure over k, (X, Ox). Note that if U 5 {O1,02} and f € Ox(U), then f(O;) =
f(O2) i.e. we cannot separate O; and Os by regular functions. We wish to rule out
this kind of prevariety.

Remark. Observe that a topological space is Hausdorff iff the diagonal A ¢ X x X
is closed in the product topology, i.e. if you give me a point (P, Q) ¢ A then there
exists a basic open set UxV 3 (P,Q) with (UxV)nA=@gie U3P and V3Q
and UnV =g@.

10.1. Products of pre-varieties. If V c A", and W c A™ are affine varieties,
then the product V x W c A™™ has the natural structure of an affine variety. On
this we have the Zariski topology. Given two pre-varieties (X, 0x) and (Y, Oy )
with X = UU; and Y = UV} finite unions with (U;, Oy,) and (V}, Oy,) affine for all
i,J, we can stipulate a topology on X xY by G ¢ X xY is open iff Gn (U; x V;) is
Zariski open in U; x Vj for all 7,j. An easy topological check: this doesn’t depend
on the choice of decomposition of X,Y into open sets (given Uy, V), we have

(Ui x Vi) 0 (U x V) = (Ui nUy) x (Vi n V)
open in U; x V}). Moreover, there exists a basis of open sets in this topology

B ={G c U, x V; Zariski open for some i, 5}
and B is closed under finite intersections. We call the above topology the Zariski
topology on X x Y.

Definition 10.28. A pre-variety (X, Ox) is called separated if the diagonal Ax c
X x X is closed in the Zariski topology. We then call (X, Ox) a variety over k.

Remark. An exercise is to show that the line with two origins defined above is not
a variety.

The idea now is to show you that the old things we called varieties are also
varieties under this new definition.

Example. Given projective varieties V ¢ P™ and W < P™, we can embed V x W 4
an+n+m by

(o rxn) X (Wo:-:Ym) = (200 201 ¢t Znm)
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where z;; = x;y;, called the Segre embedding. If V is defined by homogeneous
polynomials {F,(xo : - : Zpn)}aeca, and W is defined by homogeneous polynomials
{Gﬂ(yo Dl ym)}BEB7 then d)(V X W) defined by equations ZijRilyl = Zqgl Zqt and

{Fa(zoj FITRELEE znj):a eA,0<j<m}
{Gp(zio: 21+ Zim): e B,0<i<n}
and ¢(z xy) = (2i;) where z € V and y €e W and z;; = x;y; satisfies these equations,
since if y; # 0, then
(zoj i+ i zmg) = (o1 1 2y)
and if z; # 0 then
(zio i+ 2im) = (Yo Y1+t Ym)
Conversely, if (z;;) satisfies these equations and without loss of generality let z,4 # 0,
then

(ZOq:"':an) X (zp0:~~-:zpm) > 25
eV eW
Finally observe that ¢ is injective, since points € V and y € W are recovered
uniquely by this recipe. So the image ¢(V x W) has the natural structure of a
projective variety e.g. for V = P! = W, then P! x P! < P3| is the image of the
smooth quadric zp02z11 = 201210-

Lecture 11
4™ November 12:00

11.1. More on the Segre embedding; complete varieties. The examples
class is on Wednesday at 4pm in MRS5.

Let V cP™ and W c P™ be projective varieties, then we talked about the Segre
embedding

¢: V x W . Pmn+n+m
(z) x (y) ind (wij)

where w;; = x;y; with 0 < ¢ <n and 0 < j <m. The image ¢(V x W) is naturally
a projective variety. If now Vg c V, Wy ¢ W are the affine pieces of V, W given by
Xo # 0 (resp. Yy # 0), the image of Vj x Wy under Segre in the affine piece of V x W
is given by Zgyo # 0. Moreover, there exists an isomorphism of this affine piece with
Vo x Wy c A™ x A™ = Ant™

Zij 210 Zn0 201 Tom
— >, — | X|—. ..., —
200 200 200 200 200
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with obvious inverse - this is reassuring. Identifying V x W with its image under
Segre (i.e. V x W a projective variety) we see that G ¢ V x W is open in the
usual projective Zariski topology iff G n (V; x W;) is open in the Zariski topology
on V; x W; ¢ A™™ for all 4,j which is true iff G ¢ V x W is open in the Zariski
topology as defined above. This is also reassuring. In particular, it’s clear that
the diagonal Ay ¢ V x V is closed in this case, since it’s just given by the extra
equations z;; = z;; (4,5 =0,...,n). This is comforting.

Corollary 11.16 (2.1). A quasi-projective variety (U, Oy) is a variety.

PROOF. Observe first that U is covered by a finite number of affine pieces.
It is sufficient to prove this when U is open in an affine variety V c A". If
U =V\V(fi,...fn), then U = UY, D(f;) for basic open sets D(f;), where by
the definition of Oy, the locally-ringed space (D(f;), Op(y,)) over k is isomorphic
to an affine variety W ¢ A"*!| and where 0y (D(f;)) 2 k[V];,. Hence (U, 0y) is a
pre-variety. If now U is open in a projective variety U, the topology on U x U is
just the subspace topology U x U, and so Az c U x U is closed, which implies that
Ay cU x U is closed, therefore (U, Oy ) is a variety. O

Remark. Given any two varieties (X, Ox) and (Y, Oy), the product space (with
the Zariski topology) can be given the structure of a variety. So how do we do
this? For each basic open set G c U; x Vj, we can define Ox,y (G) = Oy,xv,(G),
the regular functions on GG. Thus we can define a continuous function on any open
subset of X xY to be regular if its restriction to these basic affine pieces are regular
(alternatively use corollary to define Oxxy from the B-sheaf on a base B
defined before). For fact that X x Y is separated, observe

Axyy = WI;(A)() ﬂwgi(Ay) cXxYxXxY
where the maps w13 and o4 are continuous and hence A x,y closed.

The Zariski topology is hardly ever Hausdorff so it’s a rubbish property, but
we have reinterpreted it in a way that is useful to us here. Compactness is also
a rubbish property, but we have interpreted that also in a way that has made it
useful to us.

Definition 11.29. Given varieties (X, 0x) and (Y, 0y ), we then consider the
continuous map of topological spaces m: X xY — Y (in fact a morphism of varieties).
The variety (X, Ox) is called complete if 7 is a closed map, for any variety Y.

Remark. Isaid for any Y here, but I can take sort of special Y here: if Y = U, a
finite decomposition of Y into open affine pieces, and Z c Y, then Y\Z = U; (U;\U;n
Z), therefore Z is closed iff Z nUj; is closed in U; for all ¢, therefore without loss
of generality we may take Y to be affine, Y ¢ A”. Moreover, since Z is closed in
Y, this implies that Z is closed in A™, we may even take Y = A”. E.g. Al is not
complete, since the projection A’ x A 5 Al is not closed (image of zy = 1 is A\ {0}
under the map (z,y) &> ).

Proposition 11.17 (2.2). Any projective variety V c P™ is complete.

PRrOOF. It is sufficient to prove that P™ is complete i.e. if Z c P" x A™ is closed,
then the image 7(Z) is closed in A™.

Suppose that P has homogeneous coordinates Xg, ..., X,, and A™ has affine
coordinates Yi,...,Y,, (I won’t be careful here in making a distinction between
coordinate functions and coordinates). Then Z c P™ x A™ is given by the vanishing
of some polynomials

Fo(Xo,...Xa;Y1,...,Y )
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homogeneous in the X; but not necessarily in the Y; (follows easily from the above
decomposition of P™ x P™ that the closed sets are given by polynomials in the Z;;,
and hence bi-homogeneous polynomials in each homogeneous set of variables) i.e.
zxyeZ cP"x A™iff F,(x,y) = 0 for all a, therefore for y € A™, the set Znn(y)
consists of non-zero solutions of {F,(X;Y)}aea (for A a finite set), i.e. y e 7(Z) iff
the equations F, (X;y) = 0 have a non-trivial solution. Let

A™7(Z)=U ={yeA™: F,(X;y) = 0 have no non-trivial solution}

It remains to prove that A™\U is closed, i.e. U is open. Denote by Jy the space of
homogeneous polynomials of degree N in Xy, ..., X,,. The projective nullstellensatz
says that the above equations have no non-zero solutions iff the ideal (Fi(X;y)}aca
in k[Xo,...,X,] has radical containing (Xo, ..., X,) the “irrelevant ideal”. This
is true iff the ideal (F,(X;y)) contains Jy for some N. Let

Un ={ye A" (Fo(X5y)) 2 In}

Since U = Uy Uy, it is sufficient to prove that each A™\Uy is closed. We’ll finish
this in the next class. O

Lecture 12

6™ November 12:00
We will finish the proof.
PRrROOF. Recall: {F,(X;Y)}aea a finite set of polynomials, homogeneous in
X0, Xp. For y e A™, the equations Fi,(X;y) = 0 have no non-trivial solutions
iff the radical of the ideal (F,,(X : y)) < k[Xo, ..., X, ] contains (Xo, ..., X,,) which

is true iff (Fo (X, y))aca 2 Jy for some N > 0, where Jy = space of homogeneous
polynomials of degree N. Set

Un ={y e A" (Fo(X;y)) 2 In}

It is sufficient to prove that each A™\Uy is closed. Suppose that Fi,(X;y) has
degree N, in the X;’s and let {M, ;:i=1,...,5,} denote the set of monomials of
degree N — N, in Xg,..., X,,. For y € A™, consider the linear space spanned by

{Mo,i(X)Fo(X,y):1<i< sy, forallae A} cJy
Thus y ¢ Uy iff this space is not equal to Jy, which is true iff
rank{coefficients of M, ;(X)F,(X;y)} <dimJy =7 (say)

with respect to some basis of Jy, which is true iff the r x » minors of the matrix
of coefficients all vanish, which is true iff y satisfies a certain set of polynomial
equations. 0

Corollary 12.18 (1). The image of a projective variety V under a morphism
¢V — P™ is a projective variety.

Proor. Consider the graph of the morphism ¢ denoted by I'y ¢ V' xP™, where
Ly ={(P,¢(P)):PeV}

ie. Ty = (¢ xid) ™ Apm, a closed subset. Thus m2(I'y) = ¢(V) closed in P™ by
proposition and so is the underlying set of a projective variety. ]

Corollary 12.19 (2). The only everywhere regular functions on an irreducible
projective variety are constants.
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PRrROOF. We prove this for any complete variety X. A global regular function

f € Ox(X) defines a closed graph I'y ¢ X x P! where
Ty={(P,f(P))eX =P}

(clear by looking at affine pieces of X). But X is complete which implies that
m2(Lf) = f(X) c Al is closed in P'. So either f(X) is A' or a finite set. But A' is
not closed in P!, so it is a finite set S. We could then write X = U,cg f*(s) which
would contradict that X is irreducible. This implies that f(X) is a point which
implies that f is constant. O

Corollary 12.20 (3). A quasi-projective variety U is complete iff it is projective.
PRrOOF. Let us suppose that U & V c P", with V' = U projective with
P=(1:0:---:0) e V\WW
by choosing our coordinates appropriately. Consider Z c U x A" defined by equa-

tions Xo-y; = X; (i=1,...,n). It is clear that 0 € mo(Z) (since o is continuous
and 0 = mo(P) € m2(Z) where Z c V x A™) but 0 ¢ m5(Z) since P ¢ U. d

Remark. There are obvious topological definitions for a variety being irreducible,
connected, etc. Clear (from affine case) that any variety is compact with respect to
the Zariski topology. Any variety X has a base of affine open sets.

12.1. Rational functions from the structure sheaf. We want to define
rational functions via the structure sheaf rather than vice-versa.

Definition 12.30. A rational function on a variety X is an equivalence class of
pairs (U, ¢) where U is an open dense subset and ¢ € Ox (U) where (U, ¢) ~ (V, )
iff there exists an open dense W ¢ U nV such that ¢|lw = ¥|w. The rational
functions form a ring Rat (X). The domain of definition of a rational function f,
is
dom(f) ={x e X:x € U for some (U, ¢) representing f}
If U is an open dense subset of X (e.g. open, dense, affine), it is clear that
Rat (X) = Rat (U)

If X is irreducible, Rat (X)) is a field, called the function field k£(X) of X (observe
that X is irreducible iff any non-empty open set contained in it is dense). So for
X quasi-projective, this coincides with the previous definition. Then for P € X,
there exists an injection Ox , = k(X)) (since an element of Oy ,, is also represented
by a pair (U,¢) with P € U and ¢ € Ox(U)). Thus for X irreducible, Ox(U) =
Npev Ox p © k(X). Note that for W c U open and g,h € Oy (W) agree on an open
(dense) subset, then g = h.

dfn:birationauy_equiv‘_ilemtDeﬁnition 12.31. Two varieties X and Y are birationally equivalent if there

exists open dense subsets U ¢ X, V c Y and an isomorphism of varieties (U, Oy) -
(V. 0v).

Ezercise: (on example sheet 2, question 2) two varieties X and Y are bira-
tionally equivalent iff Rat (X) = Rat (V') as k-algebras.

I’ll tell you a result now that I won’t prove, but it gives one example of the
importance of this idea.

Theorem 12.21 (Chow). Let Y be a complete irreducible variety. Then there
exists a projective variety X and a birational morphism ¢: X =Y (i.e. a morphism
inducing an isomorphism on suitable open subsets.)

PROOF. Straightforward - see [Kem93| pp. 34]. O
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Remark. The converse is clearly true using proposition and using the dia-
gram

X x A™
(¢xid) A™

Y x A™

Lecture 13
8th November 12:00

13.1. §3: Locally free and coherent x-modules. Notation: (X,0x) is
locally-ringed space over k - in due course we’ll specialise to varieties over k = k.

Given two Ox-modules #, 4 on X, we define .# & ./ in the obvious way.
To define an arbitrary sum @,.; .#; of Ox-modules, in general we have to sheafify
(because glueing together an infinite set of sections may not be possible in the
presheaf sum). If however every open subset of X is compact, then this is not a
problem and we can define @,.r.#; is the simple minded way, since eventually the
sheaf coordinates will involve only finitely many non-zero entries). For U ¢ X open
and .# an Ox-module, we have an Oy-module .

Definition 13.32. An Ox-module .# is locally free of rank r if for each P ¢ X,
there exists an open neighbourhood U 3 P such that .#|y = O}, (i.e. OF).

Example. If (X,0x) is a C*® (or complex) manifold and £ - X a rank-r C'*
(resp. holomorphic) vector bundle over X, we can define a locally free &x-module
& of rank-r, where &(U) = C*° (resp. holomorphic) sections ¢ of E over U. Since
E is locally trivial (i.e. U xR", resp. U x C") it’s clear that & is locally free of rank
T

Ely

wp .

For the case of varieties X, we can define an algebraic vector bundle E over X in
the obvious way and obtain a sheaf of regular sections, a locally free &x-module.

Notation: sections of a presheaf/sheaf .# over an open set U, then we write
FU)=T(U,ZF) = H"(U, %)
(we will see later that it is the zeroth cohomology group as well, so the latter
notation is sensible). So for E - X a vector bundle, and & a sheaf of sections, then
(U, E)=T(U&).
For .# a locally free Ox-module of rank r, we have an open cover {U;} of
X (when # is a variety we may take it to be a finite, affine, open cover) and

trivialisation .|y, Otr,- This then gives rise to isomorphisms on the overlaps
U,*j = Ui n Uj

Pji
T
ﬁUU

>~

// Uij

g

ij
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i.e. elements v;; € I'(U;;, GL(r, Ox)) satisfying the compatibility conditions
e 1;; =id on Uj,
o ij =3} on Uy,
o wkjwji = wki over Uijk =U;n Uj N Uyg.

Remark. These maps v;; are called transition functions.

Proposition 13.22 (3.1). Two Ox-modules A, N which are locally trivialised by
the same data {U;},{1;;} are isomorphisms as sheaves of Ox-modules.

PROOF. Take the given isomorphisms

My, = Op, =N

Ui

This induces an isomorphism on stalks .#p — A#p for all P € X and these isomor-
phisms are well-defined (independent of U;) since the transition functions are the
same by assumption, i.e. if ;: |y, > Of; and B;: N |y, — OF; , then the following

diagram commutes
ﬁfjﬁ
2N
Uij Yji N
k‘ A
T
ﬁUU

ie. M|y, > N|v, is well-defined. Consider now sheaves .#* and A" - A#*
consists of sections s:U — [ peyy #p, locally given by a section of A4, i.e. s(Q) =tg
on some neighbourhood. Under the above isomorphisms on stalks, s yields a section
§":U — Ipep A5, locally given by a section of .4 - i.e. we obtain a morphism of

Ox-modules .#* — A4 inducing isomorphisms on stalks i.e. .#Z* = A4*. Since
MM, N 2 N we deduce A = N as Ox-modules. O

M

Ui

Definition 13.33. A locally free &x-module of rank 1 is called invertible (which
then corresponds to a line bundle, and so we often refer to invertible &'x-modules
as line bundles).

Definition 13.34. Given Ox-modules .#,./ on (X, Ox), define a presheaf 7
by T(U) = A (U) ®¢y A (U) for all open U, and this is clearly a presheaf of
Ox-modules. Define # ®, .4/ to be the sheafification .7, and this is clearly an
O%-module and hence an Ox-module.

Remark. We studied this in example sheet 1, question 9 where I told you to write
down the universal property satisfied by this.

Definition 13.35. Define a sheaf Hom (///"/Vﬂ by
Hom g (M, N )(U) =Hom g, (M, N |v)

(~ morphisms of &y-modules)

with obvious restriction maps.

8n class, he denotes this by Hom and in Hartshorne it is denoted .##om, but Hom looks
better I think - this is what Ravi Vakil uses.
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Remark. In the above, an element ¢y € Hom g, (A |y, 4 |y) may be interpreted
as an element of Hom g (4" |v, A *|v) ie.

¢U:H¢P1H///P—>H</Vp
PeU PeU PeU
with the property that for any section s € .#* (V) for VU (i.e. $:V = [ pey Ap
with given local coordinates), we have ¢y o s € A (V). It is clear from this that
Hom g, (M, N) is a sheaf. The Ox-module structure is clear: given
v My ~> Ny

and f € Ox(U), we have a morphism foé|y: 4|y - N u.
Definition 13.36. The dual .#V of A, is 4" = Hom o (M ,0x).

There exists a morphism of &x-modules # ® g, .#" — Cx defined as follows:
(next time!).

Lecture 14

11th November 12:00
Let .# be an Ox-module, then we have the dual .#" = Hom o, (M , O ), and then
there exists a morphism of &x-modules # ® .#" — Cx defined as follows: let .7
be the presheaf of &x-modules given by 7 (U) = #(U) ® g, .#"(U) and define a
morphism of presheaves 7 — Ox given by

me ¢ — ¢(U)(m)

for U ¢ X open, and where m € # = . |y(U) and ¢ € 4" (U) = Hom g, (A |, Ov),
and this respects the Ox (U)-module structure. The universal property of sheafifi-
cation yields a morphism of sheaves of &x-modules

Mey M =T — Ox
If now . is locally free of rank 1, then locally we have .#|y = Oy and
%V|U = .7‘[0111 Ou (ﬁU, ﬁU) I~ ﬁU
and thus the induced map on stalks (# ®g, #")p - Ox p are all isomorphisms
i.e.
M ®oy A Ox
by lemma [5.10)
Definition 14.37. The Picard group Pic(X) of the ringed space (X, Ox) is the
Abelian group whose elements are isomorphism classes of invertible sheaves, com-

position is given by ®¢, , the identity element is Ox and the inverse of an invertible
sheaf .# is its dual .Z".

Remark. By proposition [13.22f we do have a set (!), and the rest is clear.

14.1. Pulbacks of sheaves. Let % be a sheaf of Abelian groups over a topo-
logical space Y and f: X - Y a continuous map. We define the pullback or inverse
image sheaf f~1.% as follows: for U c X open, set

s:U — ]_[ Z¢(py such that s(P) e Zypy, forall PeU

PeU
(f’lﬁ)(U) .- ] and for any P € X, there exists open neighbourhoods V, W

with f(P)eW and P eV c f~'W and a section t € .Z (W)
with s(Q) =ts(q) for all Q € V/

If Z = Oy, we get a sheaf of rings f~'0y over X. Claim: if (f, f1):(X,0x) -
(Y, 0Oy) is a morphism of varieties over k (or manifolds), there exists a natural
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morphism of sheaves of rings on X, f~10y — Ox. The obvious question is: is this
surjective? The answer is no, as you will see on the second examples sheet.
Proof of claim: given U open in X, define (f~10y)(U) - Ox(U) by

{s:U - ][ Oy,s(py such that...} »g
PeU

where locally s(Q) = hy(g) for some he Oy (W) and all Q€ V ¢ f~'W c X then

9(Q) = h(f(Q)) = FH(1)(Q)
for all @Q € V (we have equality by the familiar argument - cf. lemma and
questions 10, 14 on examples sheet 1 - uses (f, f!) a morphism of locally-ringed
spaces). We have ft: 0y (W) — Ox(f'W) and locally g = ft(h)|y € Oy (V) as
required.

Definition 14.38. Given a morphism of varieties/prevarieties f: X — Y, the in-
verse image sheaf f~1.# of an Oy-module .# on Y is naturally an f~!@y-module
on X. Define the inverse image Ox-module f*.# by f' M ®;-14, Ox.

Remark. We have
[ Oy =10y ®s10, Ox=0x

Example. If Y is a point, then an &y-module is a k-vector space .#. Clearly
fYO0y =k the constant sheaf (the germs of functions on a point, so it follows), and
in this case f~10y < Ox is the obvious inclusion map. f~1.# is the constant sheaf
M on X and f*.# is the free Ox-module # @ Ox.

Definition 14.39. An Ox-module .Z on a variety (X, Ox) over k is said to be

(a) finitely generatedﬂ,

(b) quasi-coherent,

(¢) coherent,
if for any P € X, there exists an open neighbourhood U > P and an exact sequence
of Oy-modules,

(a) OF My 0 where p is finite depending on U,

(b) o8 og’ M)y —> 0 where I,J are indexing sets de-

pending on U,

(c) OF oy, M|y 0 where p,q are finite, depending on
U.

Remark. We'll see later that for varieties one has that (a) and (b) together imply
(c) and this is essentially Hilbert’s basis theorem.

Definition 14.40. The support of a sheaf .% is defined
Supp.¥# ={PeX: Fp =0}

Lemma 14.23 (3.3). If A is a finitely generated Ox-module on a ringed space
(X, Ox), then Supp (&) is closed.

PROOF. It is required to prove that if .#Zp = 0, then there exists an open
neighbourhood on which .#g = 0 for all @) € the neighbourhood. There exists an

open U > P such that 0} —— #|u 0 1is exact i.e. « is surjective on

stalks. Therefore there are elements si,...,sq € 4|y where the germs generates

9S0metimes called “of finite type”.
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Mg for all Q € U. Assuming .#p = 0, the germ of each s; at P is zero implies that
there exists a neighbourhood P € W c U such that s;|y = 0 for all 4 which implies
that #g =0 for all Q e W. O

Lecture 15

13t November 12:00

Examples class 2 will be on Tuesday the 26'® November in here (MR4). I will give
out the solutions the day before.

15.1. Coherent sheaves on affine varieties. Suppose that (X, 0x) is an
affine variety: from the definition of 0y we have
(1) Ox(X) =k[X] (see beginning of §8.1)),
(2) for any fek[X], Ox(D(f))zk[X]; (also see §3.1),
(3) for any P e X with maximal ideal mp < k[V] then Ox p 2 k[ X ],
It is an easy check to show that (2) implies (3).

Definition 15.41. If M is a k[X]-module and B is a basis of affine open sets of
the form D(f) for f € k[ X], we define a B-sheaf M by

M(D(f)) =M ®xx) Ox(D(f)) = M ®x) k[X]f = My

Clearly M is a B-presheaf and arguing as in lemma (but not reducing to the
case of n = 1) we deduce that M is a B-sheaf (see examples sheet 2, question 1).

M extends to a sheaf on X by corollary and this sheaf also denoted
M ®y[x] Ox i.e. the sheafification of the obvious presheaf of &x-modules. M
satisfies
(1) M(X)=M,
(2) for any f € k[X], one has M (D(f)) = M;,
(3) for any P € X, one has Mp = My,

If we express M as a cokernel k[X]®/ —— k[X]®/ —— M —— 0 then we

have an exact sequence

R[X]$ —— k[X]) —— My —— 0
for any f e k[X] (exercise: if P - @ — R is an exact sequence of A-modules
and S is a multiplicatively closed subset of A, then S™'P - S7'Q — S™'R is
an exact sequence of S™'A-modules - see the commutative algebra class or else
[AM®69]). Therefore we have a corresponding morphism of sheaves 0%/ - 0%/

and M = coker(@i‘?l - ﬁ’;‘?‘] ) as they are both B-sheaves and hence by corollary
[[.12] as sheaves. Therefore

o o2’ M 0

is exact and so M is quasi-coherent.

Recall that an A-module is Noetherian if it has the ascending chain condition
on submodules. A ring A is Noetherian iff it is Noetherian as an A-module. The
standard argument: M is Noetherian iff every submodule is finitely generated. If

0 M, Mo M; 0 is a short exact sequence A-modules,

then it is easy to see that My is Noetherian iff M7, M3 are both Noetherian. In
particular, if A is a Noetherian ring, then A®" is a Noetherian module and so too is
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any finitely generated A-module. For an affine variety X, Hilbert’s Basis theorem
implies that k[ X ] is Noetherian.
If M is a finitely generated k[ X ]-module, then there exists a surjection

E[X]P— M —— 0
with kernel also being finitely generated and thus there exists an exact sequence
E[X]? —— k[X]P — M —— 0

therefore we see that M is coherent.

Theorem 15.24 (3.4). Any quasi-coherent Ox-module # on an affine variety X
is of the form M for the k[ X]-module M = .#(X).

Remark. For X an affine variety, a sequence of quasi-coherent & x-modules

0 M Mo M 0

is exact iff the corresponding sequence on global sections

0 M, M, M; 0

is exact. Proof: since #; = M; for i = 1,2,3, the sequence on sheaves is exact iff
the sequence on stalks is exact iff the sequence

0 Ml,m M2,m I M3,m — 0

is exact for any m a maximal ideal of k[ X] (by the nullstellensatz, since m = mp
for some P € X). This is true iff the sequence

0 M, Mo M; 0

is exact (standard result from commutative algebra - examples sheet 2, question
11).

PrROOF. If .# is quasi-coherent then there exists a finite cover by basic affine
open sets X = U D(g;) and for each ¢ we have an exact sequence

0
ﬁgé!h) ﬁg{gi) '/llD(gi) —0

for some I,J (perhaps depending on 7). Set A = k[X]. For a given i, let ¢ =
0(D(g;)) : AS" — A2 a homomorphism of A, -modules. Therefore

el eJ
Ay A Coker¢p —— 0
and hence we get an exact sequence of sheaves over D(g;),

I J .
ﬁ’g(gi) — ﬁg(gi) —— (Coker ¢)” —— 0

and hence an isomorphism (Coker ¢)~ = .#p(4,) where
Coker ¢ =T'(D(g:), (Coker ¢)™) =T'(D(g:), 4 |p(g:)) = A (D(9g:))

So for all i, we have .#|pg,) = (.#(D(g:)))”. So we have proved the result we
want but only for the cover, so we need to ‘globalise’ the argument.

For any f € A, we have a restriction map M = #(X) — .# (D(f)). The univer-
sal property of modules of fractions implies that we have induced homomorphisms
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My — .4 (D(f)) i.e. homomorphisms M (D(f)) A A (D(f)) for all f e K[x]. Our
claim is that these are isomorphisms for all f and hence .Z = M (if we have an iso-

morphism of B-sheaves, there exists isomorphisms of sheaves via the +-construction
corollary [7.12)). We’ll finish next lecture. O

Lecture 16
15t November 12:00

16.1. More on coherent 0x-modules. The following is quite a crucial re-
sult of the course - we continue the proof from last time.

Theorem 16.25 (3.4). A quasi-coherent Ox-module ./ on an affine variety (X, Ox)
is of the form M = M for M = #(X).

PROOF. There exists a finite open cover X = UD(g;) such that .Z|p,,) =
(A (D(g;))". The natural map
M =.#(X) > .#(D(f))

induces a homomorphism

Mj = M(D(f)) > .#(D(f))

for all f € k[V] by the universal property. Our claim is that this is an isomorphism
for all fek[V].

First we show injectivity: if m e . (X) such that m|psy = 0, then it is required
to prove that there exists [ such that f'm =0 in M. Sinc

m|p(rg) € A (D(fgi)) = M\ pg)(D(fg:)) = A (D(g:)) 5

and since m|p(yy = 0and D(fg;) = D(f)ND(gs) thus m|p(yg,) = 0inside .# (D(g:))
so there exists [ such that flm|D(gi) = 0. Choosing [ > 0, we can assume flm|D(gi) =

0 for all 4, then sheaf condition (A) for .# implies that f'm =0.
Next we show that 6 is surjective, which we are going to have to work a little
harder for. Given x € .#(D(f)), consider the restriction

T p(rg) € A (D(9:)) 11

say @|p(rg;) = ti/f' for t; € .#(D(g;)) then pick I > 0 large enough so that it
works for all ¢ (just choose an [ for each 7 then take the maximum). Consider
(ti =tj)D(gig;) € #(D(gig;))- Since

(ti = t)|D(fg:05) = fl(I|D(fgi9j) = D(f9.9,)) =0,

the injectivity argument previous implies that there exists m > 0 (independent of
i,7) such that f™(t; —t;) = 0 in .#(D(gig;)). Therefore we have sections f™t; €
# (D(g;)) which agree on overlaps, then this implies (using sheaf condition (B))
that there exists s € .#(X) = M such that s|p(,,) = f™t;. Taking the image o in
A (D(f)) of s/f™* e My, we have

olp(ray = (F D) p(ran /I = tilpiran /I = 2lD(s0)
for all 7. Then using the sheaf condition (A) we have that o =2 in #Z(D(f)). O
Corollary~ 16.26 (3.5). The coherent Ox-modules on the affine variety X are of
the form M for M a finitely generated k[ X ]|-module.

10A1s0 see Hartshorne [Har77) 11, lem. 5.3].
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PROOF. We have done most of this, there is only one extra thing to prove: if M
is coherent, then the global sections M = .#(X) is finitely-generated (the converse
has already been proved). We know that there exists an open cover X =Uj_; D(f;)

such that M\D(fj) is generated by elements say a1, .., ;) € M(D(f;)) = My,.

This tells me that a1, ..., a;4(;) generate My, as an Ay, -module. Write avj; = aji/f]l»
with a;; € M for all ¢, j, and [ > 0 is chosen sufficiently large so that it is independent
of 7, j. Consider the finitely generated submodule N =¥, ; Aaj; ¢ M (a submodule

of M). Now we observe that if we restrict Z\~7|D(fj) = ]\;[|D(fj) for all j. So what

does this now say? The induced inclusion of &x-modules N — M is in fact an
isomorphism. Therefore N = M is finitely generated. (]

Just briefly, we will say some things about tensor products

(1)

if M is an A-module, then ® 4 M is right exact on the category of A-
modules, i.e. given an exact sequence of A-modules

N P Q 0

then the sequence
NesM—— PO3a M — Qs M —— 0

is exact (see [AMG69, prop. 2.18]).
If (X, Ox) is a ringed space and #,¥ are Ox-modules, then
(F ®6,9)p=%p ®ox p Yp

for all P € X. There is a more general categorical statement here: tensor-
ing commutes with direct limits. Let 7 (U) = 7 (U) ® ¢, () 4 (U) define
the presheaf tensor product. For any U > P, the Ox p-product structure
on .Fp ®py p Yp induces an Ox (U)-module structure on Fp ®¢, , Yp.
For U > P open, define

OéUly(U) Xg(U) —>gp ®@>X7P gp
(S7t) —SspQ®tp

This induces an Ox (U )-module morphism

F(U)®oyn)9(U) - Fp oy, 9P
and hence a morphism

(F @0y G)p=Tp —> Fp®oy , Ip
Define :.%p x ¥p — Tp by

(spstp) = (Sluav @ tluav)p

(where sp = (U, s) and tp = (V,t)) and this is plainly bilinear over x p
and hence defines a morphism

Fp ®ox. p Yp > Ip

which is inverse to 6.
For .# an Ox-module, (1) and (2) together imply that ® ¢, .# is right
exact.
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Lecture 17
18t November 12:00

Proposition 17.27 (3.6). If ¢: X - Y is a morphism of affine varieties, inducing
a homomorphism of k-algebras A = k[Y] - B = k[X], then for any A-module M,
we have ¢*M = (M ®4 B)"~.

ProOF. There exists an exact sequence

(17.5) A®T A®J M 0

inducing an exact sequence

02! 02’ M 0
which implies that
¢—1 ﬁsl ¢—1 ﬁ$‘] ¢—1M 0

is also exact (because ¢! is an exact functor, since the stalk sequence at P of
¢ LF - ¢4 — ¢1# is by construction just the stalk sequence of .# — 4 — H
at ¢(P)). Tensoring with ®,4-14, Oy, we obtain

(17.6) 0 —— 0% —— ¢*M —— 0

by fact 3. However, this sequence is also obtained by tensoring ® 4 B the sequence
(117.5))

Be! B®J BesM——0

which is exact by fact 1, yields

(17.7) o¢! oy’ (B M) —— 0
Since the first morphisms of (17.6) and (17.7) are the same, we deduce that ¢* M
(B®a M)".

Corollary 17.28 (3.7). For ¢:(X,O0x) — (Y, Oy) a morphism of varieties, # a
(quasi-)coherent Oy -module, then ¢* A is a (quasi-)coherent Ox-module.

O e

PrRoOOF. Reduce to the affine case. O

17.1. Closed subvarieties. Let (X, 0x) be a variety over k and Y ¢ X a
closed subset. Let .# be the sheaf of ideals given by
JU) ={f e Ox(U): flynv = 0}
One has %y ¢ Ox. On the affine piece U c X, set S (U) =1 =I(UnY) < k[U] and
then #|y = I (one would just check this on the basic open sets D(f)). Hilbert’s
basis theorem implies that I is finitely generated so .# is coherent. Moreover there
exists a short exact sequence

0 5 ﬁX ﬁx/f%()

and hence Ox /.7 is also coherent. The stalks of Ox /% at P ¢ Y are zero. Let 1:Y <
X, then for any open set U c X, the definition of ;™! yields natural isomorphisms

(Ox|N)NU) ——= (Ox]5) (V) — o ¢ (Ox/F)(UNY)

restriction
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Define Oy = 171 (0x/.#), a sheaf of rings on Y. If U € X is open and affine, then
by the remark following theorem the sequence

0 I E[U] (Ox]I)U) — 0

is exact and so Oy (Y nU) =2 (Ox[I)(U) 2 k[U]/I = k[Y nU]. So Oy restricts to
the correct structure on affine pieces and therefore (Y, Oy ) is a variety (it is clearly
separated since Y is closed in X). Such varieties are called closed subvarieties of
X.

Remark. Any sheaf of ideals 7 c 0x determines a closed subvariety; it determines
a closed subset Supp (0x/7) =Y by lemma|14.23| and hence a closed subvariety.

Remark. If U c X is open, then (U, Oy ) is also a variety, and an open subvariety
of X.

Definition 17.42. Given Y & X closed, .Z any sheaf on Y, we call ¢,.% the
extension of .#. Clearly

egzp ifPeY

0 otherwise

(teF)p = {

therefore Supp (1+#) € Y. Often we don’t distinguish between a sheaf on Y and
its extension by zero on X since

(tL:F)U)=F({UNY)
for all U open in X.

Example. If Y is a closed subvariety of X, then 1.0y = Ox /% (¥ = sheaf of
reduced ideals corresponding to Y) (clearly true on any open affine piece). Hence
there exists a short exact suquence of 0x-modules

0 Sy Ox L+ Oy 0

(usually written as

0 fy ﬁX ﬁY 0 )

Any Oy-module % yields an Ox-module ¢,.% via Ox — 1, Oy .

17.2. The invertible sheaves 0p~»(m). Suppose X is an irreducible variety;
an (irreducible) subvariety Y c X is called locally principal if there exists an open
affine cover X = UJ; U; such that

I(Y nU;) = (fi) Q k[Ui]

Remark. codim(Y') =1 by the standard dimension theory - e.g. Krull’s principal
ideal theorem.

Then theorem [15.24] implies that %y |y, = f;Oy, and so #y is invertible. The
transition functions are obtained by fig; = fjg; on U; nU; ie. g; = j9; with
¥ = fi/ fj. We also have a sheaf of rational functions with at worst a simple pole
along Y (and regular elsewhere) denoted Ox (Y') where

(U, 0x(Y)) ={hek(X): fihe Ox(UnU;) for all i}
Ox c k(X) the constant sheaf and Ox (Y )|y, = %ﬁUi. So Ox (Y) is invertible with
transition functions v;; = f;/f; i.e. #y and Ox(Y') are dual. Notation: we usually
denote .#y in this case as Ox (-Y).

Suppose X =P" with the standard open affine cover {U;}, U; given by X; # 0
and H a hyperplane given by L = 0 for some homogeneous linear form L. Therefore
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H is given locally on U; by L/X; € Opn(U;), thus Opn(-H) defined by transition
functions ¢ = x;/z; and Opn (H) defined by transition functions ;; = z;/z;. So we
see that the isomorphism classes of Opn (H) (respectively Opn (—H)) doesn’t depend
on H. Denote these invertible sheaves Opn (1) (respectively Opn(-1)). For m € Z,
denote

ﬁ]}m(l)®m m >0

Opn(m) = Opn (mH) = {@Pn(_l)@Iml m<0

Remark. Suppose we have Y c P a hyperplane instead, defined by irreducible
homogeneous polynomials F'( X, ..., X,) of degree m, then Op»(Y) 2 Op»(m) and
ﬁ]})n(—Y) = ﬁ]pn(—m).

Lemma 17.29 (3.7). T'(P", Opn(m)) = 0 if m < 0 and is isomorphic to the vector
space of homogeneous polynomials of degree m if m > 0.

PROOF. Exercise on examples sheet 3. O
Remark. The result implies Opn (1) 2 Opn (s) iff Opn(r—s) 2 Opn iff r = s.

It is a fact that any invertible sheaf on P™ is of the form &pn(m) for some m € Z
i.e. Pic(P") = Z.

Lecture 18

20" November 12:00
Addendum to last time:

Definition 18.43. Given a projective variety V' 4 P™, we have invertible sheaves
Oy(m) on V defined by Oy(m) = 1*Opn(m), restrictions of Opn(m). Aliter:
Oy (U) = Oy(V n H), etc. - the transition functions are just restrictions of these
for Opn(m).

18.1. §4: Sheaf cohomology.

Definition 18.44. A sheaf .# of Abelian groups on a topological space X is called
flabby (flasque) if for all U open in X, the retriction map #(X) - Z#(U) is
surjective.

An important example: if Z is an arbitrary sheaf/presheaf, we define a sheaf
D(F) by

D(Z)(U) :={s:U - || #p such that s(P) ¢ Zp}
PeU

- cf. the definition of .#*. D(.%#) is clearly a flabby sheaf.

We want to construct resolutions by flasque sheaves - the next result helps us
to do this. The idea is that to understand the cohomology of some sheaf, we try to
understand the cohomology of the resolution of that sheaf by flasque sheaves.

Lemma 18.30 (4.1). Suppose that 0 F1 Fo Fs 0 s
a short exact sequence of sheaves of Abelian groups on X, then
(1) if F1 is flabby, then the sequence

0—— F(U) —— Fo(U) — F3(U) — 0,

1s exact for all U c X open,
(2) if F1,F are flabby, then so too is Fs.
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PROOF. (1). It is required to prove that o € #3(U) lifts to a section of %5 (U)
(then the rest follows from proposition . Let 7 be a lifting of o|y, where
V c U is open. If for any proper subset V ¢ U and lifting 7 of oy, we can always
find an extension of 7y to a strictly larger open subset V' c U such that 7/ is a
lifting of oy, then we keep extending until we get a lifting to all of U (for general
case, there is an implicit use of Zorn’s lemma here - for X compact, X a variety,
then Zorn’s lemma is not needed).

So it is required to prove such an extension of 7y always exists. Given a
point in U\V, there exists an open neighbourhood W such that o|y lifts to T €
Fo(W) (map on stalks is surjective). If 7w|vaw = Tv|vaw, we can patch to get
a section Ty, which lifts o|yuw. If not, we modify our choice of y: let p =
Tvivew — Twlvaw € F2(V n W), then the image of p in %#5(V nW) is zero and
hence p comes from a section of % (V n W) by proposition (b). Since Z is
flabby, we may extend this to a section of .#;(X), and hence we have p' € #2(X)
which extends p € F(V n W), with p’ coming from a section of .#1(X). Set
Ty = Tw + p'|lw € F2(W); the exactness of

0 —— F(W) —— Fo(W) —— F3(W),

implies that the image of 7y}, is still p|y and now by construction
A !
Twlvew = Twlvew +p'lvew = Twlvaw +p = vivaw.

Hence we can patch 7'y and 7y to give a lift of o|yuw, proving part (1).
(2) It is required to prove that r: #5(X) - Z3(U) is surjective for all U open
in X. We have a commutative diagram

Fo(X) 2 7y (x)

Z(U) 2L zy(U)

where part (1) implies that ¢(U) is surjective since .%; is flabby. But 7’ is surjective
since %5 is flabby. Hence r is surjective. O

The construction is as follows. Given a sheaf of Abelian groups X, we construct
a short exact sequence of sheaves

0 F — D(F) —— D(F)|F —— 0

and the idea is to iterate the sequence (the D(#)/.Z isn’t flabby) - iterate as
follows:

cC(F)=7
D'(.Z)=D(C'F)
C*YF)=D(C'F)|C"F
and then the sequence
0—— C(F) —— D(C'F) —— C*Y(F) —— 0
is exact for all i. Putting these sequences together, we get an (exact) resolution

0——>F — DU(F) —> DY(F) — ...

of .Z by a complex D*(.%) where the sheaves D'.% are all flabby.
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Definition 18.45. The ith cohomology group H(X,.%) is the ith cohomology of
the complex T'(X, D*.%) i.e.

_ker(T(D".%) -» (D7)

~im(T(D-L.7) - I'(D.F))

HY(X,%)
Since we have
00— I'(X,#) —— I'(X,D'F) —— I'(X,C1.F) —— I'(X, D F)
(is exact at I'(X, D"#) by proposition (b)) and we have

H°(X,.7) =ker(I'(D"7) - T(D'.7) = T(X,.%)

So the global sections of a sheaf .F are denoted .Z(X), I'(X, %) and H°(X, %)
Suppose that

0 «?1 yg yS 0

is a short exact sequence of sheaves. We then have an exact sequence of morphisms
of sheaves

0 —— D*#) —— D" %y —— D" F3 —— 0

i.e. a diagram

0—— D% —— D% —— D% —— 0

0—— D'% —— D'% —— D'F3 —— 0

(the construction of the diagram follows easily from the universal property of cok-
ernels: the first step is to observe that

0 0 0

0 72 Fo F3 0

0—— D' —— D% —— D'F3 —— 0

Clyl E— 0192 E— Clyg

and then deduce that 0 - C1.#; —» C'.%, - C1.%3 - 0 is exact by checking on
stalks - i.e. use the corresponding result in the category of modules. Then iterate.)
Taking global sections and using lemma [18.30] (a), one obtains
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0 —— I'(D"%,) —— I'(D'%,) —— T(D°.%3) —— 0

0 —— I'(D'.%)) —— I'(D*%#,) —— T(D'.%3) —— 0

0 —— I(D%.%)) —— I'(D%2%,) —— ['(D*%3) —— 0

which by the standard homological algebra (examples sheet II, question 14) yields
a long exact sequence of cohomology groups:

0 —— H(F) —— H(F) —— H(F3)

HY(F) —— H'(F2) —— H'(F3)

HX(F) —— ...

where the 6§ = 6% H"1(X,.%3) - H'(X,.#,) are called the connecting maps. Re-
mark: our construction of cohomology is functorial.

Lecture 19
22" November 12:00

19.1. Local vanishing principle.
Lemma 19.31 (4.2). If .7 is a flabby sheaf, then H(X,.%) =0, for all i > 0.

PRrOOF. Using lemma [18.30] we have that D(.%)/.% is flabby and the exact
sequence

00— I'( X, #%) —T'(X,D(¥)) — I(X,DZ#|F) —— 0
Repeating this argument shows that the whole complex

0—— I'(X,¥#) —— I'(X,D'F) — I'(X,D'F) —— ...
is exact and hence H'(X,.%) =0 for all i > 0. O

Lemma 19.32 (4.3, Resolution principle). Let

0 7z F0 T

be a resolution of .F by sheaves F* such that H(X,.#%) =0 for all i and for all
j>0. Then HY(X,.F) is naturally isomorphic to the ith cohomology of the complex

rNx,s% — (X, 7" — ...
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PROOF. We have a short exact sequence 0 - .# — .#° - % — 0 and an (exact)
resolution of ¢

0 % F1 F?

~ 7

F)g

and proposition (b) proves the claim for ¢ = 0 as before. For i = 1, since
H(Z°) = 0 by hypothesis, the above construction implies that we have an exact
sequence

(19.8) Nx,7%) — I(X,9) — HY(X,7) — 0.
But proposition (b) implies that
(19.9) 00— I'(X,¥9) —— I'(X, F!) — I'(X, F?),

is exact and therefore we have induced isomorphisms

HYX,.7)=T(X,9)/ImT'(X,.7°) from (19.8)
ker(I'(X, 7)) - T'(X,.Z7?))

= f 19.9

Im (0(X, . 7°) — (X, 71)) rom (19.9)

= first homology of complex T'(X, ™)

If i > 1, then 6: H"1(¥) —» H'(.%) is an isomorphism by hypothesis on H7(X,.Z%),
and by induction on i, H""1(¢) is the (i — 1)-homology of the complex

X, 7)) — (X, 7?) — ...
i.e. the ith homology of I'(X,.%*) O

Now we prove a locally vanishing principle. If U is an open subset of a topo-
logical space X and i:U < X, we have a sheaf

Uﬁ = Z*(9|U)
ie. yF(V) = F(UnV) for V open in X. There exists an obvious morphism of
sheaves .# — y.% given by F (V) - yZ# (V) =#(UnV) for all open V in X.

Remark. (-) is not right exact, e.g. take U = C\{0} c C and the exponential
short exact sequence.

Proposition 19.33 (4.4). Let B be a basis of open sets in X, closed under finite
intersections, .F a sheaf of Abelian groups on X, and suppose H¥(V, Z|y) =0 for
0<j<i and for all V € B. Then for any o € H(X,.%), we can find an open cover
X =Uq Wo with W,, € B such that the image of o in H'(X,w, F) is zero for each
a.

Remark. The proof in Kempt’s book [Kem93] is quite hard to understand because
he doesn’t draw the commutative diagram out (see below).

PROOF. Suppose that i = 1 - in which case there are no conditions on H’ (V,.Z|y).
The universal property of cokernels implies that for any open W in X, there exists
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a commutative diagram

0 7 DF DF|F 0
0 wF wDF —— (wDF)[(wF) —— 0

(to see (WDZF)/(wF) > w(DF|F) is injective - take U open in ywD.F - if we
have something in the image zero, then its preimage via y D.# must locally be zero
by our construction herﬂ. The cohomology class o € H'(X,.7) is represented by
a section 7 of D(.%)/.7 over X since by lemma [19.31]

H(X,DZF|%) » H'(X,.7),

because D.% is flabby. Choose a cover X =W, with W, € B such that 7|y, lifts
to a section of D(F)(W,) for all a. Set W = W, in the above diagram and take
sections over X. So the image of 7 in I'(X, w (D% [.%)) =T (W, D.7 | #) lifts to an
element of I'(X, wD.%) = T'(W, D.#), and so the image of 7 in I'(X, wD.Z [w.%)
comes from this same element (using the fact that I'(X,wD.Z# [w.Z injects into
I'(X,w(D%|%))). Hence by the functoriality of our construction of cohomology,
the image of ¢ in H'(X,w.#) must be zero (since it comes from an element of
H(X,wDZF)) for W =W, for all a.
Suppose now i > 1 and W € B. Our claim is

(a) there exists a commutative diagram

0 F DF DF|F — 0

(b) the sheaf D(F)/.Z satisfies the assumption of the proposition with 4 re-
placed by (i-1)
Proof: (a) Recalling that T'(V, w¥) =T(W nV,¥) for any ¢4, we obtain

0 F DF DF|F 0

It is required to prove that wD(.%) — w(D.%|.%#) is a surjection. For any V € B,
we have W NV e B and so H' (W nV,.Z) = HY(W nV, Zway) =0 by assumption.
Therefore

0——T(WnV, %) ——T(WnV,DF) ——T(WnV,DF|F) —— 0
is exact, i.e.

0 —TI(ViwF) — I'(V,wDF) — I(V,w(DF/[F)) — 0

HErom examples class 2.
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is exact. Since this is true for all V' € B, we deduce the stalk sequences are exact
and hence claim (a) follows.

Furthermore, H(V,D.%|%) & HI*Y(V, %) for j > 0 from the cohomology of
the flasque sheaf (lemma and so (b) follows from our previous assumptions
on Z#.

As D(%#) and wD(F) are flabby, claim (a) above implies that there exists
isomophisms in the commutative diagrams as shown

Hi"Y(X,DF|F) ——> H/(X,F)

| |

H™Y(X,w(DF|F)) —— H(X,wF)

and so the proposition follows from claim (b) and induction on i. O

Lecture 20
25t November 12:00

Theorem 20.34 (4.5, Serre). Let 7 be a quasi-coherent Ox-module on an affine
variety X. Then H'(X,.7) =0 for alli>0.

PrROOF. By induction on i. We consider our standard basis of affine open
sets B consisting of sets D(f) for f € k[X]. B is certainly closed under finite
intersections and we now apply the result we proved last time (proposition [19.33]):
given o € H'(X,.7), there exists a finite open cover Uy, . .., Uy by elements of B such
that the image in H'(X,y,-%) is zero for each [ (using the induction hypothesis).
Consider the short exact sequence

00— F —— @y, F —— G —— 0

where Z(U) = @, . Z(UnU;) for all U (sheaf condition (A)). For each D(f) € B,
() is also a quasi-coherent €x-module (namely, if .# corresponds to a k[X]-
module M, the p).# corresponds to the k[ X ]-module M) and so using theorem
it follows that .# is also quasi-coherent (in fact & = coker(M — @; My,)”).
So by the cohomology long exact sequence a = §(3) for some € H"1(X,9). If
¢ > 1, then induction yeilds that 5=0so0 a=0. If i = 1, then a =0 since T'(X, -) is
an exact functor, for quasi-coherent sheaves on an affine variety X (see the remark
following theorem and the fact that the long exact sequence on cohomology
is exact. Therefore o = 0 in this case too. (]

Definition 20.46. A morphism ¢: X — Y is called affine if for every open affine
piece V of Y, ¢71(V) is an open affine piece of X.

Remark. You may see a different definition in the books, but this is equivalent
(see [Kem93|, §11.4]).

Lemma 20.35 (4.6). Let ¢: X — Y be an affine morphism of varieties and ¥ a
quasi-coherent Ox -module. Then there exists a natural isomorphisms H*'(X, %) =

H'(Y,§+7).

PrOOF. Let 0 > # - %™ be a flabby-resolution of .%. Then for all affine open
sets V in Y, by theorem [20.34| above, we have H(¢™'V,.%) = 0 for all i > 0. and so

0 ——TIL(¢'V,7) —>D(¢'V,7°) —= T(¢V.F') — ...
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is exact. Hence

0 0T b0 FO G T — .

induces an exact sequence on stalks, i.e. 0 > ¢..#% — ¢,. %" a flabby resolution of
¢+.7 (clearly if #! is flabby then ¢,.#" is flabby). Therefore H' (Y, ¢..%) is the
ith cohomology of I'(Y, ¢..%*), which is the ith cohomology of I'(X,.#*) which is
= H(X,7). O

Remark. For ¢: X — Y affine, .# quasi-coherent/coherent on X, then theorem
implies that ¢..% is quasi-coherent/coherent on Y (for any affine piece U of
Y with A = k[U], then ¢}(U) has coordinate ring B with ¢*: A - B and if .7 is
given by a B-module M, then ¢,.% is given by M considered as an A-module).

Example. Let 1: X - P", X a projective variety, % a quasi-coherent sheaf on X,
then H*(X, #) = H*(P",1,.%) i.e. we may take the cohomology on X or P" and
get the same results.

20.1. Cohomology of A™\{0} and P". T am going to give a sketch of this
and refer you to Kempf [Kem93| §1X.1] for the details. Since On (U) is a k[A"] =
k[X4,...,X,]-module for any open U c A™\{0}, the cohomology groups

H'(A™\{0}, O4n)
will all be k[X4,..., X, ] modules in a natural way.

Proposition 20.36 (4.7). One has the following

(1) HY(A™\{0},0pn) =0 unlessi=0 ori=n-1,

(2) Ifn=1, then H°(A"\{0}, Op1) = k[ X1, X7'] and H'(A"\{0}, Op1) =0 for
>0,

(3) if n>1, HY(A™\{0}, Opn) = k[ X1,...,X,,] and

H" N (A™{0},01) = @ kXD ... XEr

peZ,pi<—1
(with the obvious module structure, i.e. X kills kX' ... XE» if p;+a >0).

PROOF: (SKETCH). See Kempf [Kem93| §IX.1.1] for the details. We induct
on n. The case n = 1: A'\{0} = D(X}) an affine variety with H°(D(X1),0y1) =
k[ X1, X7'] and H(D(X1),01) =0 for i > 0. The case n > 1: there exists a short
exact sequence

0 —— Oun\joy — D(x,)Oam\foy —— D Oumy(oy X" —— 0

pns<-1

(over affine pieces D(X;), i # n, this corresponds to

(X1, X, X o k[ X, X, XU X - @@ k[X, ., X, XN XE

pn<-1

Over D(X,,), we have (A""1\{0})n D(X,,) = @ and so sections of right-hand sheaf
are zero and we just have

E[X1,. . X, XN 5 k[ X, ..., X0, X1~ 0) U
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Lecture 21

27th November 12:00

Proposition 21.37 (4.7). One has the following
(a) HY(A™\{0},0un) =0 unless i=0 ori=n-1, 4
(b) Ifn=1, then H(AN\{0}, Oy1) = k[ X1, X7'] and H'(A'\{0}, 041 ) = 0 for
1>0,
(c) ifn>1, H'(A™\{0}, Opn) = k[X1,..., X,] and
H" Y (A™{0},00m) = @ kX' ... XP»

peZ,p;i<-1
(with the obvious module structure, i.e. X kills kX' ... XE» if p;+a >0).
PROOF: (SKETCH). n >1. We have a sequence

0 —— Opn\joy — D(X,) Onr\foy — Bp,c-1 Onn-\(o} XJm —— 0

We have that this sequence is exact on each D(X;) for all ¢ and so we have a
short exact sequence of sheaves on A™\{0}. Since D(X,,) is affine and the inclusion

D(X,) = A" "\{0} is an affine map, Serre duality [20.34| and lemma [20.35| implies
the middle sheaf has no higher H* for ¢ > 0 and so we have

HO( ) =k[Xy,..., X0, X ']

The long exact sequence on cohomology enables us to prove results by induction
on n - for more details see Kempf [Kem93, pp. 113-114]. O

Corollary 21.38 (4.8).
(a) HY(P", Opn(d)) =0 unlessi=0,n,
(b) H°(P", Opn(d)) = k[Xo, ..., Xn]degd ((corollary e.g. =0 ford<0
in particular this is zero if d > -(n+1)),
(¢) H*(P™, Opn(—n—1)) is 1-dimensional and the multiplication

HO(P", Opn(d)) x H*(P", Opn (-n—1-d)) - H"(P", Opn(-n—-1)) 2 k
18 mon-degenerate for all d > 0.

Remark. People who know about duality may recognise statement (c) as a man-
ifestation of Serre duality - the thing on the right H™(P", Opn(-n — 1)) is the
‘canonical’ sheaf on projective space.

PROOF: (SKETCH). See Kempf [Kem93| IX.1.2] for the ‘gory’ details. Consider

the projection map 7: A"*1\{0} — P™. There exists a basis B of open affine D" (F)
—_——
“Pr\Vh(F)

of P" (F a homogeneous polynomial) such that 7~1(D"(F)) = D(F) c A™*!\{0} is
an open affine subset of A"*1\{0} therefore the conclusion and the proof of (4.6)
apply. Now show that

Ty ﬁAn+l I~ @ ﬁ]pn(d),
deZ

where Opn(d) = Opn(dH) where without loss of generality H is the hyperplane
Xo =0 (see example sheet I1I, question 5). Moreover, if we let k* act on A™*1\{0},
and hence on Opn+1\10y in the obvious way, we identify Opn(d) as the part of

T4 Opn+1\(oy Which is homogeneous of degree d i.e. A € k™ acts by s \s. Therefore
lemma [20.35| implies that

HY (A0}, Opnnr) 2 H (P, 1. Opnen\0y) = D H (P, Opn (d))
deZ

(for all ) where the degree d part of the left hand side corresponds to H*(P", Opx (d)).
This enables Kempf to deduce corollary [21.38| from proposition O
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21.1. Cech cohomology. Let X be a topological space, U = {Uy,...,U;} an
open cover. For % a sheaf of Abelian groups, define a complex

CH U, Z):C0U, 7)) S G, 2) S G, ) S L
where

cr(W,F)= B T(Wy..,F)

10<%1<...<lp
where (U;,..5, = Uiy n---nU;, ) and differentials 6,, given by d,, () = 38, where
Bioyoviinis = 2, (Ve 5o o

.....

0<j<n Wig, i1
As usual, 62 = 8,416, = 0 and C*(U,.F) is a complex. Moreover, we have an
injection
0-D(X,.7)5C0%U,.%)
where s — (8g,...,54), $; = s|ly,. Moreover, note that

d(e(s))ij=s

Definition 21.47. The Cech cohomology H'(U,.%) is the ith cohomology of the
complex C* (U, F).

uij—Suijzo

Remark. H°(U,.7) = ker §y consists of giving section (s1,...,sq) with s; € Z(U;)
such that s;ly;; = sjlu,, for all i, j and so the sheaf conditions imply that ¢ induces
an isomorphism

N(X,.7) 5> H(U,.%)
Lemma 21.39 (4.9). IfU; = X for some 1 <1<d, then the complex C* (U, .F) is
exact and H'(U,.Z) =0 fori> 0.

PROOF. For n >0, we define maps
kn:C™(U, . Z) - C" (U, .F)

such that
(2110) 511—1 kn + kn+15n = ldén
namely k,(«) = 8 where

k . . .
B .= (-1)ig,.odyiny i g1 <D<y
50y esin-1 — .
0 o otherwise

(aside: this is called a chain homotopy) (n.b. Kempf is missing the (-1)* factor)
(it is an easy check that is true (see example sheet III, question 7)). So
given a € C"(U,.Z) such that §,a = 0, we have o = §,_1 (k,) and so the complex
is exact. O

Proposition 21.40 (4.10). If 7 is a quasi-coherent sheaf on a variety X which
has an open affine cover W= {Uy,...,Uq}, then H(X,F) = H'(U,.F) for all i.

PROOF. For the given U, we define sheaves C*(.%) for i = 0,1,... as follows for
V c X open, set C*(Z)(V) = C*(W,.%), where U is the open cover of V given by
UpnV,...,UsnV and where the restriction maps are obvious. Since % is a sheaf,
s0 too are the C*(.#). We then get a complex of sheaves C* (%), and a sequence

0—— F —— CUF) —— CY(F) — ...

We’ll finish this next time. O
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Lecture 22
29th November 12:00

22.1. Cohomology of coherent sheaves.

Proposition 22.41 (4.10). If F is a quasi-coherent sheaf on a variety X with
open affine cover U= {Uy,..., Uy}, then H' (X, F) 2 H'(U, F).

PrOOF. We constructed a complex of sheaves
0—— F —— CUF) —— CHF) — ...

If we can show that .# — C*(F) is a resolution and H’(X,C*(.#)) = 0 for all i
and all j > 0, the result follows from lemma [19.32] The first statement is local,
so we may assume that X = U; and the exactness follows lemma [21.39] To show
vanishing note that
Oz(y) = @ Ukoﬁ'“ﬂUkiy
k‘0<k1<--~<ki

As X is separated, U; nU; 2 Ax n (U; x Uj) is affine and so too is Uy, N --- N Uy,,
and moreover the inclusion v: Uy, n---nUg, - X is an affine map. For U open affine
in X, Uy, n---nU, nU is affine. We have

Hj(Xa (Ukoﬂ...Uki)y) = H] (X7 L*(ng.|UkoﬂmﬂUk, ))

=~ Hj(U;CO n---nN Uki,kaon.“nUki) (by lemma, [20.35))
=0 (for j > 0) (by theorem [20.34) O

Remark. In particular, H/(X,.%#) = 0 for j > d, e.g. if X is a projective variety,
Z a quasi-coherent sheaf on X, then H’(X,.%) =0 for j > dim X (since by a basic
result in dimension theory, all components of a general hyperplane section of X
have codimension 1, and so we can cover X by dim X + 1 affine pieces).

Lemma 22.42 (4.11). Suppose V c PN is a projective variety with affine pieces
U, = Vn{X; # 0} and F a quasi-coherent sheaf on X. Given o € T'(Uy, F),
there exists m > 0 such that o extends to a section in I'(V,.#(m)), where F(m) =
y@ﬁv ﬁv(m)

PRrROOF. Consider % (m) as .Z(mH) = % ®¢, Oy(mH) for H a hyperplane
Xo =0. So Z |y,2 F(m) |y, for all m. Set 79 = 0 € I'(Up,&). For j > 0, let
A =Ek[U;] and M = .F(Uy) - if f = Xo/X; € A, 0 |yynv, corresponds to an element
of My and so f™o |U0mUj corresponds for some m > 0 to an element of M i.e.

extends to a section 7; € .Z (U;). Without loss of generality, choose m > 0 to work
for all j > 0. Now, we have

oo = () 7
TjlUijnUo = Til|Us;nU
J o Xj g o

for all 4,7 > 0. Choosing U;; as an affine piece with U;; n Uy is given by Xo/X; #0,
then for some r >0 we have

(3) o= () () =
— | Tilu,, = | = — | Tilu,.
Xj 31Uq; Xj Xj i|\Ujj
(Xq, )TTL+7'( XO )7'
i e
X; X;
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Without loss of generality, the same r works for all pairs i, 7 > 0 and we may replace

7; by
(XO )7' (XO )7TL+T‘
- Tj =\ g
X; X;

and replace m by m+r. So for some m > 0, we have sections 7; € % (U;) such that

&)
T = = Ti
Usj Xj

Uij

J Uij

for all 7,5 > 0. By construction

Xo\™
Tj|U0j = (7) 7—O|Uoj

X
for all j. This however, is precisely the data needed to define a global section of
Z(m), by examples sheet III, question 8. O

Theorem 22.43 (4.12). Let.F be a coherent sheaf on a projective variety X c PV,
Then

(a) HY(X,.Z) finite dimensional over k for all i,
(b) there exists ng such that H*(X,.% (n)) =0 fori>0, n>ng.

Remark. This result and the previous are the two most significant ones from FAC
[Ser55].

PROOF. First we do some mumbling, so that we can just take X = PV, Given
any coherent &x-module ¢, there exists natural morphisms of prn-modules (ex-
amples sheet II, question 11). Consider

Ly F ®ﬁPN 1+Y —> L*(j oy %)

By considering affine pieces, some commutative algebra gives us that we get an
isomorphism on stalks and hence an isomorphism on sheaves. Take 4 = Ox(m) =
t*Opn (n). By examples sheet I, question 13, we have

L*g = L*ﬁx ®(j]PN ﬁ[pN (n)
Noting that

1T ®o,y 1. Ox —> 1, F
(clear have B — A, therefore M ® 5 A =~ M) we deduce that

L ®p, Opn(n) 21, (F(n))

Moreover, by corollary [16.26 ¢,.Z is a coherent @p~-module (over AY it corre-
sponds to a finitely generated k[X7, ..., Xy]-module). Therefore without loss of
generality we can take X = PV,

The proof is by downward induction on i. If ¢ > N, we know the cohomology
is zero. For i < N: on AN = Up, we have a surjection of sheaves

o B
by corollary [16.26] i.e. F|y~ is generated by sections s1,...,s, € ['(A",.#). By

lemma [22.42{above, then extend to give sections 31, ..., 5, of % (m) for some m > 0.

We deduce that ¢ extends to a morphism ﬁﬂfN 2, Z (m), surjective on stalks over
Uy. Taking the sum of such maps for i =0,..., N, we get a surjective morphism

v
Ogx —> F(m)
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for some suitable m > 0. Now consider the short exact sequence
(22.11) 0— Y —— ﬁgl\,(—m) —— F ——0

where ¢ is coherent by corollary [16.26) ' ,
Now we prove (a). By corollary [21.38| we have H!(PN,.7) =~ H*1(PN,4) for
1<i< N -1. We have

HYNY(PN, 7) > HY (PY,9)

There exists a surjection

D HY (BN, 0p(-m)) » HY (Y,.7)

i=1
Local map implies that H™ (PY,.%) is finite dimensional (since the left-hand-side is
finite dimensional by corollary 21.38) Therefore (a) is true for i = N. For i < N, the
result follows by downward induction from H**!'(PY %) being finite dimensional.

(b) The result follows from Opn(n) by corollary and induction on 7,

tensoring equation by Opn~(n) and passing to the long exact sequence of
cohomology. O

Definition 22.48. For .# a coherent sheaf on a projective variety X of dimension
d, we define the Euler characteristic of .% to be
d . .
X(X, 7) = (-1)'h'(X,.7)
i=0

where h'(X, %) = dim, H (X, %) (which makes sense because of the last result).

Lecture 23

2"d December 12:00
Examples class IIT is Friday the 17'" January at 4pm in MR3 (pavilion E).
The solutions to the problems will be in my pigeon-hole from Wednesday the 15"

January - help yourself to one copy.

23.1. §5: Differentials & Riemann-Roch for curves. Suppose that V is
an irreducible (it is possible to do this also in the general case) variety of dimension
n = tr deg;, k(V'). The space of rational 1-forms on V', denoted Q,lc(v)/k is the k(V')-

vector space which is universal with respect to k-derivations into k(V') vector spaces
M.

d
k(V) Qevyn

Concretely, it is the k(V)-vector space generated by elements dg for g € k(V)
quotiented by the relations

d(f +g) =df +dg,
d(fg) = fdg+gdf,
da =0,
for f,g € k(V) and a € k (we say that such a d is a k-derivation). The space of
related r-forms is

r times
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Ezercise: if x1,...,x, is a separating transcendence basis for k(V')/k i.e.
k(v)/k(xla s 7'1:1'7,)
is separable, and finite, then dx1, ..., dz,, is a basis for Q}C(V)/k over k(V). It follows
that

. r n
dlmk(v) Qk‘(V)/k‘ = (7’)

Definition 23.49. An r-form w is regular at P € V if it can be written

W:Zfidgil /\"'/\dgir

with f; and g; in Oy, p.

Given U open in V| set Q"(U) to be the regular r-forms on U, a module over
Ov(U). So we get a sheaf of regular r-forms Qf,, an Oy-module. Suppose that
V c AV affine and A = k[V]. Let Q}L‘/k be the universal A-module with respect
to k-derivations in A-modules M, i.e. given D: A - M a k-derivation, then there
exists a factorisation

A d 0l
and we define 7, ,, = A"Q}L

Alk
D e
P
k// EI!
Alk Alk*

If A=k[Xy,...,Xn]/I, then leq/k is the A-module generated by dX;,...,dXy
with relations () df =0 for all fe 1.
Claim: w e QZ(V)//« isregular at PeV iffwe QZx/k ® Oy,pc QZ(V)/k.

PROOF. The direction ‘<’ is clear. For the direction ‘=’ note that for g =
hjue Oy,p (h,ue A,u(P) #0), then we have dg = + dh - %du € Q,l4/k @Oy p. O

Lemma 23.44 (5.1). IfV is an irreducible affine, A = k[V'], then Qi/k =T(V, Q)
and similarly for r-forms.

PrOOF. We have Q}L‘/k c 0, (V) as A-modules. The previous claim implies
that localisations at each maximal ideal are equal so Q} k= (V) (cf. example
sheet II, question 12). O

Definition 23.50. The Zariski tangent space of V at P is defined
Ty.p = Hom y(mp/m%, k)
as a k = Oy p/mp vector space.

Assuming V is affine, A = k[V], Q%ﬂp = Q}A/k®ﬁv’]3. The derivation & A — Qi/k
induces a derivation
dmp — QlA/k ® ﬁv’p = Q:\l/7P
and hence a linear map of k = Oy, p/mp vector spaces

2 . dp:d®1 1 ~ 1 1
mp/mpzmp@)ﬁvﬁp/mp —> QA/k®ﬁV7P/mP:QV,P/mPQV,P

(and dp is zero on m% since dp(fg) = f(P)dg + g(P)df).
Proposition 23.45 (5.2). dp is an isomorphism of k-vector spaces.
PROOF. Exercise sheet III, question 10. O
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Definition 23.51. We say that P € V is smooth (or non-singular) if dim7Ty p =n
(=dim V) and hence iff dimmp/m% = dim Q%,7P/mpﬂ‘1/’P =n.

We are saying that the local ring is regular.

23.2. Case of curves. (For more details see my abbreviated lecture notes
from the algebraic curves course [Wil|]). When n = 1, then P is smooth iff
dimg mp/m% = 1 which is true iff (by Nakayama’s lemma) mp = (t), where ¢ is
any element of mp\m%. And this is the case iff (by [AM69] §9.2]) every element
a € Oy p is of the form ut™ for a unit u of Oy p and n > 0, i.e. Oy p is a discrete
valuation ring with valuation

vp: ﬁvﬁp\{O} - N

a=ut"~n

So proposition implies that dpt = df generates Q%/ P/me%,’ p- Thus by
Nakayama’s lemma, dt generates Q‘l/ p as an Oy p-module, whence dt generates
QY as an Oy g-module for all @ in some neighbourhood U 3 P (without loss of
generality V c AV, then dX;,...,dXy do generate and they can be expressed in
term of dt with coefficients in Oy, p). Therefore, there exists a surjection of sheaves
Oy — Q}J inducing isomorphisms on stalks for all Q € U i.e. QlU ~ Oy. Thus for V
a smooth curve, Q%, is invertible. For a smooth irreducible variety V' of dimension

n, a similar proof shows that €1, is an invertible sheaf, the canonical sheaf Ky of
V.

Theorem 23.46 (Serre duality). If V is a smooth projective variety of dimension
n, . a locally free Oy -module of rank r, then there exists a perfect pairing

HY(F)xH"(Ky ® F") — H"(Ky) 2k
for all i (cf.[21.38(d) for invertible sheaves on P") (where Kpn = Opn(-n—1)).

23.3. Divisors on smooth curves and Riemann-Roch theorem. For V'
a smooth irreducible curve, P € V, there exists a valuation vp: Oy p\{0} - N. A
local parameter ¢t at P is an element ¢ with vp = 1 i.e. mp = (¢). There exists an
extension to a valuation vp: k(V)* - Zie. vp(f) 2 0iff f € Oy p. Given f € k(V)*,
there exists only finitely many points P such that vp(f) # 0 (write f = F/G and
then vp(f) # 0 only when P is a zero of F or G - this is just a finite set of points
by example sheet III, question 3).

Lecture 24
4™ December 12:00

24.1. Curves and Riemann-Roch. Next term: Prof. Mark Gross: Intro-
duction to Mirror Symmetry, a graduate course.

A divisor D on V is a finite sum Y n; P; with n; € Z and P; € V called a Cartier
divisor on V. The group of divisors Div(V') is the free Abelian group on points
of V' and the degree of a divisor is given by deg D = Y n; € Z. For f € k(V)*, the
principal divisor associated to f is

(f)= > ve(f)P
PeV
Two divisors Dy, Do are linearly equivalent if there exists f € k(V)* such that
Dy = Dy + (f). If V is projective, then (f) =0 iff f € k* (corollary to proposition
.17,
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Definition 24.52. We define the divisor class group C1(V) by
Cl(V) =Div(V)/ ~
where the equivalence relation is linear equivalence.

We say that D = ¥ n;P; is effective (written D > 0) if n; > 0 for all i. Given
D =¥ n;P;, define a subsheaf &y (D) c k(V') by

fek(V):vp (f) 2 -n; forall P elU
and regular elements on U

r(w.0e(D) - | Juto)
If ¢; is a local parameter at P;, then &y (D) is invertible and locally generated by
;" (cf. Cartier divisors). The dual of Oy (D) is Oy (-D).

Lemma 24.47 (5.3). One has that Oy (D) = Oy iff D is principal (and thus
Oy (D) 2 Oy (Ds) iff Dy ~ D). Given an invertible sheaf £, there exists a divisor
D on'V such that £ = Oy (D) (thus CI(V) = Pic(V) given by D ~ Oy (D)).

ProoOF. If D = (f), then multiplication by f~! yields an isomorphism &y -
Oy (D). Conversely, if 0y = 0y (D), let f~! be a global section of @y (D) corre-
sponding to 1 € Oy (V). Then D = (f) so Dy ~ Do iff Dy — D5 is principal which
is true iff Oy (D; — D3) = Oy which is true iff Oy (D;) = Oy (D). Moreover ad-
dition of divisor classes corresponds to tensor products of corresponding invertible
sheaves. Finally, any invertible sheaf . comes from a divisor class on V - use
examples sheet ITI, question 1. 0

Given a non-zero rational 1-form w on V and P € V, choose a local parameter
t e my, p, a generator of the maximal ideal. Since we saw that dt is a local generator
of the 1-forms Q}, and ker Q{, is 1-dimensional basis over k(V) (which follows from
the result last time about transcendence bases or just from the remarks just made).
We deduce that there is f € K(V)* such that w = f d¢, and we define vp(w) = vp(f)
(this is independent of the choice of ¢, but it is not a trivial thing to see this and
t is zero except at finitely many points - see lemmas 3.1 & 3.2 from the algebraic
curves course notes [Will).

Definition 24.53. A canonical divisor Dy is of the form (w) = ¥ peyy vp(w)P. This
defines a unique divisor class (because the space of 1-forms is one-dimensional) - if

W' = feo, then () = () + (w).

Definition 24.54. For V' a smooth projective variety, the genus is defined
g(V) = dimy, (V)

Proposition 24.48 (5.4). Let Ky = (w) then O, 2 Oy (Ky).

PROOF. For any U c V, w’ € T'(U,Q},) iff vp(w’) > 0 for all P € U and this
is true iff W' = fw with (Ky + (f))|lv > 0 which is true iff f e I'(U, Oy (Kv)).
We write h'(V, D) for h'(V, 0y (D)) for i = 0,1. Serre duality then implies that
h'(V,D) = h°(Ky - D). For curves, there are also several classical proofs of Serre
duality. O

Theorem 24.49 (5.5, Riemann-Roch for curves). Let V' be a smooth projective
curve and let D be a divisor on V', then

RO(D) - h°(Ky - D) =1-g(V) +degD.
Putting D = Ky, we deduce in particular that deg(Ky ) = 2g - 2.
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PROOF. We are required to prove that x(V, 0y (D)) =1-g+degD (*). Write
D = D1-Dy (Dy,Ds >0 and disjoint). Suppose that Dy = Y n; P;, then there exists
a short exact sequence of sheaves

0% ﬁv(—Dg) ﬁv ﬁpz 0
where Op, denotes the skyscraper sheaf supported on the P;, with stalks
ﬁv’p/m?{ =
of P; (since Oy, p, is a discrete valuation ring, it is easy to see that Oy, p, /m’]; has

dimension n; over k). Therefore h°(0p,) = deg Dy and h*(Op,) =0 for i >0 (e.g.
Op, is flabby). We tensor the previous sequence to get

0 —— Ov(D) —— Ov(Dy) Op, 0

The long exact sequence on cohomology implies that x (V, &y (D)) = x(V, Oy (D1))-
deg D2. We now tensor the sequence

0—— Ov(-Dy) Oy Op, 0

by Ov(D1) to get a short exact sequence

0—— Oy —— Ov(Dy) Op, 0

and hence x(Ov(D1)) = x(Ov) + deg Dy (from the long exact sequence on coho-
mology). Putting these two formule together, we obtain (*). Setting D = Ky, and

using h°(Oy) = 1 (corollary [12.19] to proposition [11.17)), get g —1 =1 - g+ deg Ky
and thus deg Ky = 2g — 2. O
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