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Lecture 1

Lecture 1

11th October 12:00

A plan of the course

(1) Preliminaries on classical algebraic geometry & commutative algebra [Rei88],
[Wil], [AM69]. (4 lectures)

(2) Sheaf theory [Kem93], [Har92]. (4 lectures)
(3) Construction and properties of abstract varieties [Kem93], [Har92]. (4

lectures)
(4) Locally free and coherent modules [Kem93], [Har92]. (4 lectures)
(5) Sheaf cohomology [Kem93], [Har92]. (5 lectures)
(6) Differentials and Riemann-Roch for curves [Kem93], [Har92]. (2 lec-

tures)

The main reference for the course is the book of Kempf [Kem93] which es-
sentially covers the whole course. Some introductory reading is the book of Reid
[Rei88]. You might find it useful to consult my notes on the (old) Part II Alge-
braic Curves course [Wil]. Some useful reading for parts of the course is the book
of Shafarevich [Sha74]. For some background reading and lots of examples, see the
book of Harris [Har92]. A more advanced text is the book of Hartshorne [Har77]
which is a standard reference for the subject. A standard reference for commu-
tative algebra is the book of Atiyah & Macdonald [AM69]. And for a historical
reference for the material in the course, there is the beautifully written paper of
Serre [Ser55].

1.1. Some classical algebraic geometry. Throughout the following we take
an algebraically closed field k = k.

Definition 1.1. An affine variety V ⊆ An(k) (=kn) (same as kn, except we’ve just
forgotten the coordinates), given by the vanishing of polynomials

f1, . . . , fn ∈ k[X1, . . . ,Xn]
Equivalently, if I = ⟨f1, . . . , fr⟩ ⊲ k[X] then

V = V (I) = {z ∈ An∶ f(z) = 0 for all f ∈ I}.

For projective varieties, we have projective space

Pn(k) = (kn+1/{0})/k∗

where v ∼ λv for λ ≠ 0 with homogeneous coordinates (x0 ∶ x1 ∶ ⋅ ⋅ ⋅ ∶ xn).

Definition 1.2. A projective variety V ⊆ Pn is given by the vanishing of homoge-
neous polynomials

f1, . . . , fr ∈ k[X0, . . . ,Xn]
A homogeneous ideal is an ideal that satisfies: if f ∈ J , then so are its homogeneous
parts of each degree. For any homogeneous I ⊂ k[X0, . . . ,Xn], we define

V = V h(I) = {z ∈ Pn∶F (z) = 0, for all homogeneous F ∈ I}

1.2. Coordinate ring of an affine variety. If V = V (I) ⊂ An, set I(V ) =
{f ∈ k[X]∶ f(x) = 0, for all x ∈ V }. Observe that tautologically V = V (I(V )).
However, one obviously has

√
I ⊂ I(V (I)) (f ∈

√
I iff there exists an integer r > 0

such that fr ∈ I) and Hilbert’s nullstellensatz says that for algebraically closed

fields, I(V (I)) =
√
I (see [Rei88, § III] or [AM69, pp. 82-83]).

Definition 1.3. The coordinate ring of a variety V is k[V ] = k[X]/I(V ) dfn:coordinate-ring, the ring
of polynomial functions on V .
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Lecture 1

Remark. k[V ] is a finitely generated, reduced1 k-algebra.

Given a sub-variety W ⊂ V , we have I(V ) ⊂ I(W ) defines an ideal of k[V ] also
denoted I(W ) ⊲ k[V ].

Corollary 1.1 (corollary to nullstellensatz). If m is a maximal ideal of k[V ], then
one has

m = mp = {f ∈ k[V ]∶ f(p) = 0}
for some p ∈ V .

Proof. The nullstellensatz implies that I(V (m)) =
√
m = m ≠ k[V ]. So

V (m) ≠ ∅. Choose p ∈ V (m). Then m ⊂ mp. But m is maximal, so mp = m. �

Remark. Observe that {p} = V (mp) = V (m) and so there is a bijection

{points of V } ←→ {maximal ideals of k[V ]}

Definition 1.4. A variety W is irreducible if there do not exist proper subvarieties
W1,W2 of W with W =W1 ∪W2.

Lemma 1.2. A sub-variety W of an affine variety V is irreducible iff p = I(W ) is
prime, i.e. k[W ] is an integral domain.

Proof. If I(W ) is not prime then there exists f, g ∉ I(W ) such that fg ∈
I(W ). Set W1 = V (f) ∩W and W2 = V (g) ∩W - then W1,W2 are proper sub-
varieties with W =W1 ∪W2 i.e. W is not irreducible.

If W1,W2 are proper sub-varieties and W =W1 ∪W2, choose f ∈ I(W )/I(W1)
and g ∈ I(W )/I(W2). Then fg ∈ I(W ), so I(W ) is not prime. �

For a projective variety V ⊂ Pn, we have homogeneous ideals

Ih(V ) ⊂ k[X0, . . . ,Xn]

generated by having polynomials vanishing on V . Exercise: show that V is irre-
ducible iff Ih(V ) is prime.

Generalising the earlier argument, we have a bijection

{irreducible sub-varieties W
of an affine variety V

} ←→ {prime ideals p ⊂ k[V ]}

W z→ I(W )

Proof. Given a prime ideal p ⊂ k[V ], the nullstellensatz implies that I(V (p)) =√
p = p in k[V ] and so we have the inverse map. �

Theorem 1.3 (Projective nullstellensatz). Suppose that I is a homogeneous ideal

in k[X0, . . . ,Xn] and V = V h(I) ∈ Pn. Then if
√
I ≠ ⟨X0, . . . ,Xn⟩ (called the

irrelevant ideal), then Ih(V ) =
√
I.

Proof. See Reid’s book [Rei88, pp. 82] - easy deduction from the affine null-
stellensatz. �

Theorem 1.4. Suppose that V is a variety then we can write V = V1 ∪ ⋅ ⋅ ⋅ ∪ Vn
with Vi irreducible sub-varieties and this decomposition is essentially unique (up-to
reordering).

1Reduced means that if fn = 0 then f = 0.
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Lecture 2

Proof. Suppose that V is affine (similar proof works for a projective variety).
If such a decomposition does not exist, then there is strictly decreasing sequence of
sub-varieties

⋅ ⋅ ⋅ ⫋ V2 ⫋ V1 ⫋ V0 = V
(because if V =W ∪W ′, then at least one of the W,W ′ has no such decomposition
either, and let this be V1, then continue by induction using the ascending chain
condition (�)). Hence in k[V ] we have

0 = I(V0) ⊂ I(V1) ⊂ I(V2) ⊂ . . .
and Hilbert’s basis theorem implies that k[V ] is Noetherian, so there is N such
that I(VN+r) = I(VN) for all r ≥ 0. So VN+r = V (I(VN+r)) = V (I(VN)) = VN
for all r ≥ 0. So the process described (�) must terminate, and we end up with
a decomposition into irreducibles. See Reid’s book [Rei88, ex. 2.8] for an easy
‘topological’ argument showing that the decomposition is essentially unique. �

Lecture 2

14th October 12:00

We’ll carry on with the preliminary stuff.

2.1. Zariski topology. Let V be a variety (affine or projective). The Zariski
topology is the topology on V where the closed sets are the subvarieties. We should
check that it is a topology. Without loss of generality, let V be affine. Clearly V
and ∅ are closed. Observe that for ideals (Iα)α∈A on k[V ], we have

V (∑
α

Iα) = ⋂
α

V (Iα)

is closed. Similarly, V (IJ) = V (I) ∪ V (J) = V (I ∩ J) is closed as well (clearly
V (IJ) ⊇ V (I ∩J) ⊇ V (I) ∪V (J). Suppose that P ∈ V (IJ)/(V (I) ∪V (J)) then we
can choose f ∈ I such that f(P ) ≠ 0 and g ∈ J such that g(P ) ≠ 0. Then fg ∈ IJ
with value non-zero at P , a contradiction.) When V is affine, then we have a basis
of open sets D(f) for f ∈ k[V ] where

D(f) := {x ∈ V ∶ f(x) ≠ 0}
and any open set is of the form

V /V (f1, . . . , fr) = ∪iD(fi)
If V = A1, we get the cofinite topology, so the Zariski topology is not Hausdorff.
Exercise: the Zariski topology is compact, i.e. any open cover of V admits a finite
subcover. A little warning here: in some French texts, compactness means compact
and Hausdorff, and they say precompact for what we mean by compact.

Example. Let us determine all the closed subsets X ⊂ A1. Such a set is given by
a system of equations F1(T ) = ⋅ ⋅ ⋅ = Fm(T ) = 0 in one variable T . If all the Fi are
identically 0 then X = A1. If the Fi don’t have any common factor, then they don’t
have any common roots, and X does not contain any points. If the highest common
factors of all the Fi is P (T ) then P (T ) = (T − α1) . . . (T − αn) and X consists of
the finitely many points T = α1, . . . , T = αn.

Example. Let us determine all the closed subsets X ⊂ A2. A closed subset is given
by a system of equations

(2.1) F1(T ) = ⋅ ⋅ ⋅ = Fm(T ) = 0,

where now T = (T1, T2). If all the Fi are identically 0 then X = A2. Suppose this
is not the case. If the polynomials F1, . . . , Fm do not have a common factor then
the system of equations (2.1) has only a finite set of solutions (possibly empty).
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Lecture 2

Finally, suppose that the highest common factor of all the Fi(T ) is P (T ). Then
Fi(T ) = P (T )Gi(T ), where now the polynomials Gi(T ) do not have a common
factor. Obviously, then X = X1 ∪X2 where X1 is given by G1(T ) = . . .Gm(T ) = 0
and X2 is given by the single equations P (T ) = 0. As we have seen, X1 is a finite
set. The closed sets defined in A2 by one equation are the algebraic plane curves.
Thus a closed set X ⊂ A2 either consists of a finite set of points (possibly empty),
or the union of an algebraic plane curve and a finite set of points, or the whole of
A2.

Let us recall some stuff from part II.

2.2. Function field of irreducible varieties. If V is an irreducible affine
variety, the field of rational functionsdfn:rational-function or the function field is

k(V ) := fof k[V ]
where fof means field of fractions. In fact, define the dimensiondfn:dimension of V by dimV ∶=
tr degkk(V ). For V ⊆ Pn an irreducible projective variety, define

k(V ) = {F /G/∶F,G homogeneous polynomials of same degree, G /∈ Ih(V )}/ ∼
where F1/G1 ∼ F2/G2 iff F1G2 − F2G1 ∈ Ih(V ) (need V irreducible, i.e. Ih(V )
prime, for transitivity to hold).

Function fields are very crude invariants. One example of this is: if V ⊆ Pn
is irreducible and U is an affine piece of V (say U = V ∩ {X0 ≠ 0}) then U is
an affine variety, U ⊂ An and with the usual affine coordinates, the functions in
X1/X0, . . .Xn/X0, where the equations for U come from those for V by “putting
X0 = 1”. There is an easy check now that U is also irreducible and k(V ) ≅ k(U)
(this isomorphism is given by “putting X0 = 1”).

We say that h ∈ k(V ) is regulardfn:regular at P ∈ V if it can be written as

● f/g with f, g ∈ k[V ], g(P ) ≠ 0 (affine case).
● F /G with F /G homogeneous of same degree, G(P ) ≠ 0 (projective case)

Now we define

OV,P := {h ∈ k(V ) such that h is regular at P}
the local ring of V at P with unique maximal idealdfn:local-ring

mV,P = {h ∈ OV,P ∶h(P ) = 0} = ker(OV,P
evalP→ k)

This is the unique maximal ideal since OV,P /mV,P consists of units (i.e. invertible
elements) and any proper ideal consists of non-units and so is contained in mV,P .

2.3. Morphism of affine varieties. I’ll do the affine case, you can work out
the projective case yourself. When we do abstract varieties then we will do the
projective case as well. For V ⊆ An and W ⊆ Am, a morphismdfn:morphism φ∶V →W is given by
elements φ1, . . . , φm ∈ k[V ]. This yields a k-algebra (recall this is a ring in which
k is embedded) homomorphism φ∗∶k[W ] → k[V ] (where φ∗(f) = f ○ φ; so if yi
is a coordinate function on W , then φ∗(yi) = φi). Conversely, given a k-algebra
homomorphism α∶k[W ] → k[V ], we define a morphism

α∗ = ψ∶V →W

given by elements α(y1), . . . , α(ym) (where yi ∈ k[W ] is the coordinate function
corresponding to polynomial Yi).

Now there are a couple of remarks to be made here. Observe that for φ∶V →W
then φ∗∗ = φ and for α∶k[W ] → k[V ] then α∗∗ = α. For ψ∶U → V , then φψ∶U →W
a morphism with (φψ)∗ = ψ∗φ∗. For β∶k[V ] → k[U], then (βα)∗ = α∗β∗. So all
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Lecture 3

this formalism allows us to deduce that affine varieties V,W are isomorphic V ≅W
iff k[W ] ≅ k[V ] as k-algebras. So formally, there exists an equivalence of categories

{affine varieties over k

and morphisms
} ←→ {finitely generated reduced k-algebras

and their homomorphisms
}

op

So affine algebraic geometry is a branch of commutative algebra and consequently is
not very interesting. Then we could look at arbitrary rings, then this is the theory
of affine schemes - this course is really a course in affine schemes.

Lemma 2.5. For V an irreducible affine variety over k, then

{f ∈ k(V )∶ f regular everywhere} = k[V ]

Proof. Exercise on example sheet 1. �

This is not true for the projective case because the only ones regular everywhere
there, are the constant ones - think about holomorphic functions on a compact
Riemann surface.

Remark. A projective variety V ⊆ Pn is covered by finitely many open set which
are affine varieties, e.g. the open sets Ui ∩ {Xi ≠ 0} ⊂ An (affine coordinates
X0

Xi
, . . . , X̂i

Xi
, . . . , Xn

Xi
)

Lecture 3

16th October 12:00

3.1. A little commutative algebra. A will always denote a commutative
ring (with a 1). Result you learnt today in commutative algebra: Nakayama’s
lemma - if you aren’t taking that course then a reference is [AM69, pp. 21].

Lemma 3.6 (Nakayama). If M is a finitely generated A-module over a local ring
A with maximal ideal m such that M = mM , then M = 0.

Remark. Different from version in commutative algebra class because that one is
more amenable to rephrasing for the non-commutative case.

3.2. Rings & modules of fractions. Let A be a ring, S ⊆ A a multiplicative
subset (i.e. 1 ∈ S and if s, t ∈ S then st ∈ S), we can define an equivalence relation
on A × S by

(a, s) ∼ (a′, s′) ⇔ t(as′ − a′s) = 0 for some t ∈ S
(easy to check that ‘∼’ is an equivalence relation). Let a/s denote the equivalence
class of (a, s) and let S−1A denote the set of such elements a/s. Define addition
and multiplication on S−1A in the obvious way. Then S−1A is a ring and there
exists a homomorphism φ∶A → S−1A given by a ↦ a/1. S−1A is called the ring of
fractions of A with respect to S.

There is a universal property: if g∶A→ B is a homomorphism with g(S) ⊆ U(B)
(where U(B) is the set of units of B) then there exists a unique g′∶S−1A→ B with
g′φ = g (namely g′(a/s) = g(a)g(s)−1 ∈ B).

S−1A has a unit (= 1/1) and a zero (= 0/1). Also we have

a/s = 0⇔ ta = 0 for some t ∈ S
and S−1A = 0 iff 1/1 = 0 iff 0 ∈ S. The map A → S−1A is an isomorphism iff
S ⊆ U(A) (for the ‘←’ direction, let B = A and use the universal property).

Let T = the set of non zero-divisors - this is a multiplicative set. Then A→ S−1A
is an injection iff S ⊆ T . Call T −1A = tot (A), the total ring of fractions dfn:tot, so we

have an injection A ↪ T −1A. If A is an integral domain, then tot (A) = fof (A)
9



Lecture 3

(T = A/{0}) (for a reducible affine variety V , we should replace the fraction field
k(V ) by the ring Rat (V ) := tot (k[V ]) of rational functions.)

Some relevant examples

(1) If f ∈ A, let fN = {1, f, f2, . . .} = S. Write Af for S−1A in this case.
(2) If p is a prime ideal of A, then take S = A/p. Then we write Ap for S−1A

and this is called the localisation of A at p. This is a local ring with unique
maximal ideal denoted pAp consisting of elements a/s with a ∈ p, s ∉ p (all
the other elements are units).

If now M is an A-module and S ⊆ A is a multiplicative subset, then the module
of fractions is defined in the obvious way, S−1M (an A and S−1A-module).

3.3. Tensor products.

Definition 3.5. Given A-modules M,N , define M ⊗A N to be an A-module
equipped with an A-bilinear map from M×N →M⊗N with the universal property:
given any A-bilinear map f ∶M ×N → P , then there exists a unique morphism of
A-modules h making the following diagram commute

M ×N P

M ⊗A N

→f

→
g →h

and M ⊗A N is defined up to isomorphism by this property (the existence of such
a module is straightforward to prove but boring (see [AM69, pp. 24])). We denote
x⊗ y to be the image of (x, y) in M ⊗A N .

Some elementary properties of this (see [AM69, pp. 26]: for M,N,P A-
modules, we have

M ⊗N ≅ N ⊗M
(M ⊗N) ⊗ P ≅M ⊗ (N ⊗ P )
(M ⊕N) ⊗ P ≅ (M ⊗ P ) ⊕ (N ⊗ P )

A⊗M ∼→M

and these are all proved just using the universal property.

3.4. Change of ring. Given a homomorphism f ∶A → B (N.B. f(1) = 1) of
rings we call B an A-algebra. Given an A-algebra structure on B, f ∶A→ B and an
A-module M , set MB = B ⊗AM - also a B-module in the obvious way, B acting
on the first factor.

Proposition 3.7 (0.4).
(1) If a is an ideal of A then A/a⊗AM ≅M/aM .
(2) Let S ⊆ A be a multiplicative subset then S−1A⊗AM ≅ S−1M .

Proof.
(1) Use the universal property of the tensor product and define the map.
(2) Use the universal property of both S−1 and the tensor product - see

[AM69, pp. 40].
�

Proposition 3.8 (0.5). If M,N are A-modules, a ◁ A, S ⊂ A a multiplicative
subset, then

(1) A/a⊗ (M ⊗A N) ≅M/aM ⊗A/a N/aN .

(2) S−1(M ⊗A N) ≅ S−1M ⊗S−1A S−1N

10
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Proof. Exercise on example sheet 1. �

Example. If p is a prime ideal of A, then

(M ⊗A N)p ≅Mp ⊗Ap
Np

(where Mp = (A/p)−1M).

3.5. R-algebras. Given a ring R and R-algebras A,B, a morphism of R-
algebras is given by a commutative diagram

R A

B

→θ2

→θ1

→
Given R-algebras A,B, A⊗RB has the structure of an R-algebra, multiplication

is given by

(a⊗ b)(a′ ⊗ b′) = (aa′) ⊗ (bb′)
and a ring homomorphism

R → A⊗R B
r ↦ θ1(r) ⊗ 1 = 1⊗ θ2(r)

and we have equality here because recallA,B areR-algebras, and we have (for r ∈ R)
r ⋅ a := θ1(r)a and r ⋅ b := θ2(r)b for a ∈ A, b ∈ B so r(a⊗ b) = θ1(r)a⊗ b = a⊗ θ2(r)b.

We also have R-algebra homomorphisms

A B

A⊗R B
→

α →

β

given by a↦ a⊗ 1 and b↦ 1⊗ b. So there is a universal property: given R-algebra
homomorphisms

A B

C

→
α′ →

β′

then there exists a unique R-algebra homomorphism such that α′ = φα and β′ = φβ
and A⊗R B is determined (up to isomorphism) by this universal property.

A A⊗R B B

C

→α

→α′

→ φ

→β

→ β′

Using this, we deduce for instance that for R-algebras A,B,C, then one has

A⊗R (B ⊗R C) ≅ (A⊗R B) ⊗R C
are naturally isomorphisms of R-algebras (rather than just R-modules).

Lecture 4

18th October 12:00
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Lecture 4

4.1. §1: Sheaf theory. Let X be a topological space.

Definition 4.6. A presheaf F of algebras (resp. rings) on X consists of data

(1) for every open U ⊆X, an algebra (resp. ring) F (U),
(2) for inclusion of open sets V ⊆ U , a homomorphism (called restriction)

ρUV ∶F (U) →F (V ) such that
(a) F (∅) = {0},
(b) ρUU ∶F (U) →F (U) is the identity,
(c) if W ⊆ V ⊆ U are open, then ρVW ○ ρUV = ρUW .

Remark. If U denotes the category of open sets in X (where the morphisms are
inclusion) then a presheaf of Abelian groups on X is just a contravariant functor

F ∶U → Ab i.e. an element of the category, AbU
op

(where Ab is the category with
objects Abelian groups and morphisms group homomorphisms).

An element s ∈ F (U) is called a section of F over U . For s ∈ F (U) we denote
ρUV (s) by s∣V for open V ⊂ U .

Definition 4.7. A presheaf F on X is a sheaf if it satisfies two further conditions

(A) If U is open and U = ⋃i Vi is an open cover, and if s ∈ F (U) is such that
s∣Vi = 0 for all i, then s = 0.

(B) If U = ⋃i Vi as above and we have elements si ∈ F (Vi) such that for all
i, j we have

si∣Vi∩Vj = sj ∣Vi∩Vj
then there exists s ∈ F (U) such that s∣Vi = si for all i.

Example.
(1) Let X be a topological space, and A any algebra (resp. a ring). The

constant sheaf A determined by A is defined as follows
● A (∅) = {0}.
● For U ≠ ∅ open in X then

A (U) = {locally constant maps U → A}
an Abelian group (resp. ring) under the the obvious pointwise op-
erations. With the obvious restriction maps, A is a sheaf (a map
is locally constant if every point in the domain has a neighbourhood
such that the map is constant when restricted to this neighbourhood).

If U ≠ ∅ is a connected open set, then A (U) = A, but more generally if
U ≠ ∅ is open and its connected components are also open (e.g. true in a
locally connected topological space), then A (U) is a direct sum of copies
of A.

(2) If X is a differentiable (say C∞) manifold, then we can define the sheaf
of C∞-functions (real or complex valued, it doesn’t matter) on X, a sheaf
of rings. Similarly if X is a complex manifold, we can define the sheaf of
holomorphic functions on X. In both cases the sheaf is called the structure
sheaf OX - checking conditions 1,2 is fine because this sheaf is defined in
terms of functions.

(3) The great generalisation of Serre: for V an (irreducible) variety (affine,
projective, or quasi-projective2), we try to get a structure sheaf: we con-
sider V as a topological space with the Zariski topology and then corre-
sponding to the structure sheaf previously, there is an obvious definition:
for U open in V , set OV (U) to be the regular functions on U which is

{f ∈ k(V )∶ f is regular on U}
2Quasi-projective: an open subset of a projective variety.

12



Lecture 5

then OV is a sheaf of rings with respect to the Zariski topology, the struc-
ture sheaf of the variety V . A reminder: exercise 0.2 on the first example
sheet implies that OV (V ) = k[V ].

Definition 4.8. If F is a presheaf on X and P ∈X, we define the stalk FP of F
at P to be

FP = limÐ→
U∋P

F (U)

i.e. an element of FP is represented by a pair (U, s) where U ∋ P is an open
neighbourhood and s ∈ F (U) where (U, s) and (V, t) define the same element of
FP if there exists an open neighbourhood W ∋ P with W ⊆ U ∩ V such that
s∣W = t∣W . The elements of FP are called germs. If F is a sheaf of algebras, rings,
. . . then Fp is an algebra, ring, . . . in an obvious way.

Example.
(1) For the constant sheaf A , assigned to an algebra, ring, . . . , A, then it is

clear that AP = A.
(2) For X a C∞ (resp. complex) manifold with structure sheaf OX , the stalk

OX,P at P consists of germs of C∞ (resp. holomorphic) functions at P .
(3) For V an (irreducible) variety with structure sheaf OV , the stalk at P ∈ V

is

OV,P = local ring at P

as detailed before.

Definition 4.9. If F ,G are (pre-)sheaves on X, a morphism dfn:morphism-of-sheavesφ∶F → G consists
of homomorphisms F (U) → G (U) for each open U ⊆ X such that for V ⊆ U the
following diagram commutes

F (U) G (U)

F (V ) G (V )

→ ρUV

→φ(U)

→ ρUV
→φ(V )

i.e. ρUV ○φ(U) = φ(V )○ρUV or φ(U)(s)∣V = φ(V )(s∣V ) for all s ∈ F (U). A morphism
φ∶F → G induces a homomorphism φP ∶FP → GP for each P ∈X, i.e.

φP [(U, s)] = (U,φ(U)(s))
is well-defined.

Definition 4.10. A morphism φ∶F → G of (pre-)sheaves is injective if F (U) →
G (U) is injective for all U , e.g. sheaves of subgroups (resp. subrings) where F (U) ⊆
G (U) for all U then if this is the case then F is called a subsheaf of G . A morphism
φ∶F → G is called an isomorphism if there exists an inverse morphism ψ∶G → F .
This is equivalent to the statement that φ(U)∶F (U) → G (U) is bijective for all U ,
similarly we can define ψ(U) = φ(U)−1 gives inverse.

Lemma 4.9 (1.1). If φ∶F → G is a morphism of sheaves, then

(1) φ is injective iff φP is injective for all P ∈X.
(2) φ is an isomorphism iff φP is an isomorphism for all P ∈X.

Proof. Next time. �

Lecture 5

21st October 12:00
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5.1. Stalks & morphisms of sheafs.

Lemma 5.10 (1.1). If φ∶F → G is a morphism of sheaves, then

(1) φ is injective iff φP is injective for all P ∈X.
(2) φ is an isomorphism iff φP is an isomorphism for all P ∈X.

Proof.
(1) ‘→’ Suppose that there exists a germ sP ∈ F such that φP (sP ) = 0 in

GP , i.e. there exists an open neighbourhood W ⊂ U with P ∈W such that
φ(U)(s)∣W = 0. Therefore by commutativity of the maps of a morphism,
φ(W )(s∣W ) = 0. But φ is injective therefore s∣W = 0.
‘←’ Let φP be injective for all P , and let U be open: then it remains to
prove that φ(U)∶F (U) → G (U) is injective. Suppose that there exists
0 ≠ s ∈ F (U) such that φ(U)(s) = 0 in G (U). Let sP denote the germ
of s at P ∈ U : 0 = φ(U)(s)P = φP (sP ) for all P ∈ U . This implies that
sP = 0 in FP for all P ∈ U and this implies that for all P ∈ U , there
exists an open neighbourhood W ∋ P with W ⊆ U such that s∣W = 0, and
therefore U is covered by open sets Uα such that s∣Uα = 0 for all α and
this implies that s = 0 by the identity condition (sheaf condition (A)).

(2) ‘→’ Clear.
‘←’ φ(U)∶F (U) → G (U) is an injection for all open U by part (1). It
remains to prove that φ(U) is also surjective. Suppose then that t ∈ G (U)
and let tP ∈ GP be its germ at P ∈ U . Since φP is surjective, there exists
sP ∈ FP such that φP (sP ) = tP . Suppose that sP is represented by a pair
(V, s) with P ∈ V ⊆ U and s ∈ F (U). Then tP is represented by φ(V )(s)
i.e. (U, t) ∼

P
(V,φ(V )(s)). By shrinking V , we may assume that we have

an open neighbourhood U ⊇ VP ∋ P such that

φ(V )(s)∣VP = t∣VP
therefore denoting σ = s∣VP ∈ F (VP ), we have φ(VP )(σ) = t∣VP . In this
way, we can cover U by open sets U = ⋃αUα with sections sα ∈ F (Uα)
such that φ(Uα)(sα) = t∣Uα . On overlaps Uαβ = Uα ∩Uβ , we have

φ(Uαβ)(sα∣Uαβ) = t∣Uαβ = φ(Uαβ)(sβ ∣Uαβ)
Since F is a sheaf, the sα patch together to give a section s ∈ F (U) such
that s∣Uα = sα (condition (B) for F ). But then φ(U)(s)∣Uα = φ(Uα)(sα) =
t∣Uα for all α. Then sheaf condition (A) for G implies that φ(U)(s) = t.

�

Definition 5.11. A morphism of sheaves φ∶F → G is called surjective in the
category of sheaves3if φP ∶FP → GP is surjective for all P .

Definition 5.12. Given a presheaf/sheaf F on a topological space X and a con-
tinuous map f ∶X → Y we have an induced presheaf/sheaf f∗F on Y defined by

(f∗F )(U) = F (f−1U)
for U open in Y with obvious restriction maps

f∗F (U) f∗F (V )

F (f−1U) F (f−1V )

→

→

3One must make a distinction between surjectivity in the category of sheaves and surjectivity
in the category of presheaves.

14
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for V ⊆ U .

Definition 5.13. A ringed space dfn:locally-ringed-spaceis a pair (X,OX), X a topological space, OX a
sheaf of rings. Given ringed spaces (X,OX), (Y,OY ), a morphism of ringed spaces
(X,OX) → (Y,OY ) is a pair (f, f ♯) where f ∶X → Y is a continuous map and
f ♯∶OY → f∗OX is a morphism of sheaves of rings on Y . So f ♯ defines homomor-
phisms OY (U) → OX(f−1U) for all U open in Y compatible with restrictions.

Definition 5.14. If R is a commutative ring (e.g. a field), a ringed space dfn:ringed-spaceover
R is a ringed space (X,OX) with OX a sheaf of R-algebras (restriction maps are
homomorphisms of R-algebras). A morphism of ringed spaces over R is defined in
the obvious way.

Definition 5.15. A ringed space (X,OX) is a locally-ringed space dfn:locally-ringed-space(another name:
geometric space) if the stalks OX,P are local rings. A morphism of locally-ringed
spaces is given by a pair (f, f ♯) as above, with the induced maps

f ♯P ∶OY,f(P ) → OX,P

being local homomorphisms of local rings.

Remark. Regarding the induced maps above: setting φ = f ♯, the homomor-

phisms OY (U) φU→ OX(f−1U) for U ∋ f(P ) induces a homomorphism OY,f(P )

φP→
OX,P , namely a germ [(V, s)] with f(P ) ∈ V ⊆ U goes to a germ defined by
[(f−1V,φV (s))], and this is a well-defined homomorphism.

Definition 5.16. A homomorphism φ∶ (A,mA) → (B,mB) of local rings is called
local if φ−1(mB) = mA, or equivalently (exercise) φ(mA) ⊆ mB .

Example.
(1) (X,Z) with the constant sheaf, Z is a ringed space, but not locally-ringed.
(2) If X is a C∞-manifold (resp. complex manifold) with structure sheaf OX ,

then the pair (X,OX) is a locally ringed space over R (resp. C). A smooth
(resp. holomorphic) map f ∶X → Y yields a sheaf morphism of R-algebras
(resp. C-algebras), namely

f ∶OY → f∗OX

g ↦ g ○ f

(since a smooth (resp. holomorphic) function on Y pulls back to one on
X). Clearly g(f(P )) = 0 iff f ♯(g)(P ) = 0 and so f ♯P (mY,f(P )) ⊂ mX,P . So
(f, f ♯) is a morphism of locally ringed spaces on R (resp. C).

Lecture 6
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Continuing with the examples

(3) Let (V,OV ) be the ringed space given by an (irreducible) affine variety and
its structure sheaf. This is a locally ringed space over the base field k. If
φ∶V →W is a morphism of affine varieties in the sense that we have come
across classically, then there exists a morphism of locally ringed spaces

(φ,φ♯)∶ (V,OV ) → (W,OW )

i.e. for g ∈ OW (U), φ♯(g) = g ○ φ ∈ OV (φ−1U) (before we denoted φ♯ as
φ∗).

15
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Lemma 6.11 (1.2). If V,W are irreducible affine varieties and

(f, f ♯)∶ (V,OV ) → (W,OW )
is a morphism of locally-ringed spaces over k, then f is induced from a morphism
of varieties φ∶V →W with f ♯ = φ♯ defined as in (3) above.

Remark. Once we have defined OV on a reducible affine variety (with OV = k[V ])
the same result can be proved for the general case with essentially same proof.

Proof. Suppose that V ⊆ An and W ⊆ Am. Define gj = f ♯(yj) ∈ OV (V ) =
(0.2)

k[V ]4 where yj is the jth coordinate function on W . Define φ = (g1, . . . , gm), a
morphism V → Am. Suppose now that f(P ) = (b1, . . . , bm) ∈ W for P ∈ V . We
have yj − bj ∈ mW,f(P ) for all j thus f ♯(yj − bj) = yj ○ f − bj ∈ mV,P because f ♯ is
local which implies that gj(P ) − bj = 0 for all j which implies that φ(P ) = f(P ),
therefore φ∶V →W is the same map as f on the topological spaces. Since f ♯(yj) =
gj = yj ○ φ = φ♯(yj), it follows that f ♯ = φ♯ on both k[W ] and k(W ) and hence on
any OW (U) with k[W ] ⊂ OW (U) ⊂ k(W ) for U open in W . �

Because of the result just proven, we make the following definition.

Definition 6.17. So for V,W irreducible quasi-projective varieties, we define a
morphism of varieties V →W to be a morphism of the corresponding locally-ringed
spaces over k, (V,OV ) → (W,OW ).

6.1. OX-modules.

Definition 6.18. Let M be a sheaf of Abelian groups on a ringed space (X,OX),
then M is said to be an OX -moduledfn:OX-module if for every open set U ⊆ X, M (U) is an
OX(U)-module and for any W ⊆ U open, α ∈ OX(U), m ∈ M (U), we have

(αm)∣W = (α∣W )(m∣W )
Similarly we have the obvious definition for a morphism of OX -modules φ∶M →N .

Example. For V an (irreducible) quasi-projective variety with structure sheaf OV ,
and W ⊂ V a closed subvariety, we have a sheaf of ideals IW ⊂ OVdfn:ideal-sheaf , a subsheaf of
OV given by

IW (U) := {f ∈ OV (U)∶ f ∣W∩U ≡ 0}
This is clearly an OV -module.

Everything we’ve done so far goes through unchanged for OX -modules (apart
from one technicality) e.g. if M is an OX -module, then any stalk MP is an OX,P -
module, etc. So what is the technicality: the small change involves the push-forward
of an OX -module M under a morphism of ringed spaces

(X,OX) φ=(f,f
♯)Ð→ (Y,OY )

The sheaf f∗M is then an f∗OX -module via the morphism f ♯∶OY → f∗OX - we
can consider f∗M also as an OY -module, which we then denote φ∗M . Explicitly,
for U open in Y ,

f∗M (U) = M (f−1U)
is a module over f∗OX(U) = OX(f−1U). But

f ♯∶OY (U) → f∗OX(U) = OX(f−1U)
and so M (f−1U) is also a module over OY (U).

6.2. Sheafification. Given a presheaf F on X, there exists an associated
sheaf F+5 and a morphism θ∶F →F+ and this morphism has a universal property:

4From examples sheet 2.
5Some books denote it with two pluses, the one plus case is a “mono-presheaf”.
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for any sheaf G and morphism φ∶F → G , there exists a unique morphism of sheaves
ψ∶F+ → G such that φ = ψ ○ θ.

We construct F+ as follows: for U open in X, set

F+(U) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Functions s∶U →∐p∈U FP such that:
(1). for each P ∈ U , s(P ) ∈ FP , and
(2). for each P ∈ U , there exists an open neighbourhood
W of P in U , W ⊆ U and an element t ∈ F (W ) such
that s(Q) = tQ for all Q ∈W .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
It is clear that F+ is a sheaf (since the sections are given in terms of functions) and
there exists a morphism F → F+ where θ(U)∶F (U) → F+(U) by σ ↦ s where
s(P ) = σP for all P ∈ U . Moreover, if we start from a sheaf F , the sheaf conditions
imply that a section of F+(U) patches together to give a section of F (U) (noting
that if we have t, t′ ∈ F (W ) such that tQ = t′Q for all Q ∈ W , then t = t′ by sheaf

condition (A)), so there exists an inverse morphism and so θ is an isomorphism. In
general, it’s clear that F+ has the same stalks as F .

Lecture 7
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There is an example sheet on the web-page, and there will be an example class at
the beginning of the week after next.

7.1. Universal property of sheafification. Let θ∶F →F+ be as last time.
Given φ∶F → G with G a sheaf, we have morphisms of stalks φP ∶FP → GP for all
P ∈X and hence a unique ψ∶F+ → G + ≅ G such that φ = ψ ○ θ (on stalks, it’s clear
that φP = (ψ ○ θ)P = ψP ○ θP and then use sheaf condition (A) on G - see example
sheet 1, question 7).

The standard argument with universal properties shows that the pair (F+, θ)
is unique up to isomorphism.

Corollary 7.12 (1.3). Suppose that B is a base of open sets for X which is closed
under finite intersections6, and F is a B-sheaf (i.e. data specified only with respect
to open sets in B and satisfying sheaf conditions (A) and (B) with respect to open

sets in B). Then there exists a sheaf F ′ on X and isomorphisms F (U) ∼→F ′(U)
for U ∈ B compatible with restriction (i.e. F ≅ F ′∣B as B-sheaves and F ′ is unique
up to isomorphism).

Proof. The ‘+’ construction used above may be extended to the case where
F is only a B-presheaf yielding a sheaf on X, by only taking open sets W ∈ B in
condition (2) on sections. If G is a presheaf on X, it is clear that the sections of
G + correspond to the sections of G +

0 (the B-presheaf you get by only looking at
the elements of the basis B i.e. G0 is the B-presheaf G ∣B i.e. G +

0 = G +). The F+

described will just be F+. There exists an obvious morphism

θ(U)∶F (U) →F+(U)
for U ∈ B compatible with restriction. Furthermore, the B-sheaf conditions on F
imply that a section of F+(U) for U ∈ B, patches together to give a section of
F (U). We have that θ(U) is an isomorphism for all U ∈ B i.e. F ≅ F ′∣B. If now
F ′′ is a sheaf on X such that F ≅ F ′′∣B, then

F ′′ ≅ (F ′′)+ = (F ′′∣B)+ ≅ F+ = F ′

6The condition that it is closed under finite intersections is necessary to make sense as a sheaf
- they need to agree when you restrict to intersections, so the intersection had better also be in B

as well.
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as sheaves on X. �

7.2. Kernels of sheaf morphisms. If φ∶F → G is a morphism of (pre)-
sheaves of abelian groups, define a presheaf ker(φ) by

(kerφ)(U) = {s ∈ F (U)∶φ(U)(s) = 0}

a sub-sheaf of F . If F is a sheaf, then clearly kerφ satisfies sheaf condition (A).
If however U = ⋃Uα and sα ∈ (kerφ)(Uα) satisfying the compatibility condition on
overlaps, then they patch together to give an element s ∈ F (U) such that sα = s∣Uα .
But φ(U)(s)∣Uα = φ(Uα)(sα) = 0 for all α which implies that φ(U)(s) = 0 from
condition (A). If φ is a morphism of OX -modules, then kerφ is an OX -module.

Lemma 7.13 (1.4). If φ∶F → G is a morphism of presheaves & kerφ is defined as
above then (kerφ)P = kerφP for all P .

Proof. One has sP = [(U, s)] ∈ ker(φP ∶FP → GP ) iff (φ(U)(s))P = 0 ∈ GP
iff there exists an open neighbourhood W ⊆ U of P such that φ(W )(s∣W ) = 0 iff
s∣W ∈ (kerφ)(W ) for some open neighbourhood W ⊆ U of P , which is true iff
sP ∈ (kerφ)P . �

7.3. Cokernels of sheaf morphisms. If φ∶F → G is a morphism of sheaves
of Abelian groups, then we can define a presheaf C in an obvious way: C (U) =
G (U)/φ(U)F (U) for all U . This is not in general a sheaf.

Definition 7.19. We define the sheaf cokernel of φ, cokerφ = G /φF ∶= C +. Con-
sider the morphism of presheaves G → C , then for P ∈ X we have an induced
homomorphism on stalks GP → CP (it is a trivial check that the kernel we have in
this case is just φPFP ). There exists isomorphisms

GP /φPFP ≅ CP
∼→ C +

P

So the sheaf morphism φ is surjective (i.e. φP is surjective for all P ) iff cokerφ = 0.
In general, a sheaf morphism φ∶F → G induces a sheaf morphism G →

ψ
C + = cokerφ,

a surjection (since it’s surjective on stalks).

Definition 7.20. If φ∶F → G is a morphism of sheaves, then the image sheaf

Imφ = φ(F ) is the subsheaf of G given by ker(G ψ→ cokerφ).

Remark. We did not make the obvious definition, we could just have taken the
image presheaf of φ i.e. A (U) = φ(U)F (U), but this will not be a sheaf in general,
but of course we then could go and sheafify it and then in fact, one has A + ≅ Imφ
(see below). But defining the image sheaf the way that we did gives the new sheaf
naturally as a subsheaf of the original sheaf, so it is preferable for this reason.

Claim. A + ≅ Imφ.

Proof. There exists a morphism of presheaves

A G C C +↪ → →
→

ψ

→

where the composite is zero. Hence A
θ↪ kerψ induces a morphism of sheaves

A + (kerψ)+ kerψ→ →∼

18
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Since A (U) = ker(G (U) → C (U)) and lemma 7.13 implies that

AP = ker (GP CP )

C +
P

→

→ψP
≅

for all P so the induced map on stalks

A +
P ≅ AP (kerψ)P kerψP→θ →=

an isomorphism on stalks for all P , the morphism A + → kerψ is an isomorphism
of sheaves (lemma 5.10 (part 2)). �

Lecture 8
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Examples class: 4pm, Wednesday 6th November, MR5.
Recall that given a morphism φ∶F → G of sheaves, we have a morphism ψ∶G →

cokerφ := C + where C is the presheaf cokernel. We had

(8.2) GP /φPFP ≅ CP
∼→ C +

P

and we defined Imφ := kerψ.

Remark. If we define A (U) = φ(U)F (U) for all U , then Imφ ≅ A +.

Remark. Given φ∶F → G , a morphism of sheaves, we have a morphism of presheaves
φ∶F → A and hence a morphism of sheaves F → A + ≅ Imφ ⊂ G . Now, one has

(Imφ)P := (kerψ)P =
(see 7.13)

kerψP = ImφP

for all P since

kerψP = ker( GP C +
P GP /φPFP→ →

8.2

∼ ) = φPFP

which implies that F → Imφ is a surjective morphism of sheaves. For all s ∈ F (U),
one has

φ(U)(s) ∈ ker(G → C )(U) ⊂ ker(G → C +)(U) = (Imφ)(U)
and so we have a factorisation F → Imφ↪ G for φ with ker(F → Imφ) = kerφ.

Remark. For sheaves of OX -modules and their morphisms, we can construct the
cokernel/kernel/image as sheaves of Abelian groups and observe that these have a
natural structure as OX -modules. Similarly, if O is a sheaf of rings, I a sheaf of
ideals in O, then we can define the sheaf O/I , a sheaf of rings.

Definition 8.21. A sequence of sheaf morphisms

F G H→θ →φ

is exact (at G ) if the corresponding sequence of maps on stalks

FP GP HP→θP →φP

is exact at GP for all P (i.e. Im θP = kerφP ).

Proposition 8.14 (1.5).

(1) The sequence F G H→θ →φ is exact at G iff Im θ = kerφ as

subsheaves of G .
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(2) If 0 F G H→ →θ →φ is exact, then

0 F (U) G (U) H (U)→ →θ(U) →φ(U)

is exact for all U open in X.

Proof. (1) ‘←’: if Im θ = kerφ then (Im θ)P = (kerφ)P for all P ∈X. Therefore
Im θP = kerφP for all p ∈X (see remark 2, (lemma 7.13)). Therefore

FP GP HP→ →

is exact at GP for all P .

(1) ‘→’: conversely, suppose that FP GP HP→ → is exact at GP

for all P , then in particular (φθ)P = φP θP = 0 for all P therefore φθ = 0, thus with
image presheaf as above, the morphism A → H is zero and hence the morphism
of sheaves

A + Im θ G H→∼ ↪ → →

is zero i.e. Im θ ⊂ kerφ. Since we have equality on stalks, this implies that Im θ =
kerφ by lemma 5.10.

(2) Let K = kerφ = Im θ ⊂ G by (1), therefore θ induces a (surjective) morphism

of sheaves θ∶F → K . But KP = Im θP = kerφP , and so the corresponding maps

on stalks FP →KP are isomorphisms. Lemma 5.10 then implies that θ∶F ∼→K is

an isomorphism, hence θ(U)∶F (U) ∼→K (U) for all U where K (U) = (kerφ)(U).
Therefore

0 F (U) G (U) H (U)→ →θ(U) →φ(U)

is exact for all U . �

Remark. Even if one starts with a short exact sequence

0 F G H 0→ → → →

then the induced maps on sections G (U) →H (U) will not in general be surjective.
This is one of the reasons that we introduce sheaf cohomology to try to mend this
lack of surjectivity.

Example. To see an example where the surjectivity fails, let X = P1 and IP =
ideal sheaf of P ∈ X, k the field of definition, IP+Q = ideal sheaf of {P,Q}, say
P ≠ Q. Define the skyscraper sheafdfn:skyscraper-sheaf KQ at Q by

KQ(U) =
⎧⎪⎪⎨⎪⎪⎩

k if Q ∈ U
0 if Q ∉ U

so KQ has stalk k at Q and zero elsewhere. There exists a short exact sequence of
OX -modules (cf. example sheet 1, question 11)

0 IP+Q IP KQ 0→ ↪ → →f
evalQ
z→ f(Q) →

Now I want to go back to something that I sort of left hanging.

20



Lecture 9

8.1. Case of reducible varieties. For V ⊆ An any affine variety, we define
the regular functions dfn:regular-functionon V to be the polynomial functions, i.e. OV (V ) ∶= k[V ] the
coordinate ring. An open set has the form U = V /V (f1, . . . , fN) = ⋃D(fi) for
fi ∈ k[V ], where

D(f) = {P ∈ V ∶ f(P ) ≠ 0}
Then {D(f)∶ f ∈ k[V ]} forms a basis of open sets for V , closed under finite intersec-
tions. Now D(f) may be given the structure of an affine variety W ⊆ V ×A1 ⊂ An+1

defined by the equations for V and the extra equation Xn+1f(X1, . . . ,Xn) = 1. If
π∶W →D(f) is given by

(x1, . . . , xn+1) ↦ (x1, . . . , xn)
then π is a homeomorphism (with the Zariski topology) with inverse homeomor-
phism α∶D(f) →W given by x↦ (x1, . . . , xn,1/f(x)). Define

OV (D(f)) = α∗k[W ] = {functions on D(f) which are pullbacks
of regular functions on W

}

(one has that this is ≅ k[V ]f , noting that k[W ] ≅ k[V ][X]/(Xf − 1) ≅ k[V ]f ).

Remark. In the case when V is irreducible, this corresponds to the previous def-
inition, since an everywhere regular function on D(f) pulls back from one on W ,
i.e. an element of k[W ] by lemma 2.5.

An obvious question now is: is it independent of the choice of f? We will deal
with this next time.

Lecture 9
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Let V ⊂ An be an affine variety, and let f ∈ k[V ]. Let W ⊂ V ×A1 be given by the
extra equation

Xn+1f(X1, . . . ,Xn) = 1

and take

D(f) →W

x↦ (x1, . . . , xn,1/f(x))
a homeomorphism. Define the following

OV (D(f)) = {functions on D(f) which are pullbacks of regular functions on W}
= α∗k[W ] ≅ k[V ]f

This does not depend on the choice of f ∈ k[V ]: if D(f) = D(g) then D(f) =
D(fg) = D(g). Since g = g(X1, . . . ,Xn) is nowhere vanishing on W , then the
nullstellensatz implies that g is a unit in k[W ]. If now we define W ′ ⊂ V × A1

defined by the extra equation Xn+1fg = 1 then there is an obvious isomorphism

φ∶W →W ′

(x1, . . . , xn+1) ↦ (x1, . . . , xn, xn+1/g)
with an obvious inverse (which we denote by ψ). The diagram

D(f) Wφ

D(fg) W ′

→α

→ ∼

→α′
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commutes. Therefore OV (D(f)) depends only on the open set D(f) and not on
the choice of f ∈ k[V ]. The basic open sets D(f) are regarded as affine pieces.

Remark. More generally, for V projective (or quasi-projective) we can cover V
by a finite number of affine pieces and so we obtain a basis B of affine open sets,
closed under finite intersections. This is true for abstract varieties (see §2).

For arbitrary open U ⊂ V , we can define

(9.3) OV (U) := { continuous functions f ∶U → k such that there exists
a finite open affine cover U = ⋃Ui with f ∣Ui regular for all i

}

Remark. We have taken the easy way out here (Kempf does this in his book as
well) because we use functions to define the structure sheaf here but I will say
something about the other way to do this as well (§9.1).

What we need to check for this definition: if U is an affine variety covered
by affine pieces {Ui} and f ∣Ui ∈ k[Ui] for all i, then f ∈ k[U] (�)(i.e. definition
9.3 is well-defined). We have seen that OV (D(f)) is naturally isomorphic to Af
(A = k[V ], V an affine variety). Also if D(f) = D(g), then there exists natural
isomorphisms

Af Ag

Afg

→
∼ →∼

Moreover the restriction maps OV (V ) → OV (D(f)) are identified with natural ring
homomorphisms

A→ Af

a↦ a/1

N.B. restriction maps are not in general injective. The statement (�) follows from
the next thing

Lemma 9.15 (1.6). Suppose U = ⋃iD(fi) is a (finite) cover of an affine variety
U and gi ∈ k[U]fi such that for each i, j, the images gi/1 and gj/1 in k[U]fifj are
equal, then there exists g ∈ k[U] such that g/1 = gj in k[U]fj for all j.

Proof. Set A = k[U] (since U is compact, we can, without loss of generality,
take U = ⋃Ni=1D(fi) a finite cover). Moreover, choose r sufficiently large such
that gi = ai/fri in Afi with of course ai ∈ A. Now since my assumption was that
gi/1 = gj/1 in Afifj , there exists n ≥ 0 such that (fifj)n(frj ai − fri aj) = 0 in A. As
A is reduced, we may take n = 1 in this case so

(9.4) fr+1
j fiai − fr+1

i fjaj = 0

in A for all i, j. So far all we have done is thrown around the definition. So now:
since V (fr+1

i , . . . fr+1
N ) = V (f1, . . . , fN) = ∅, and so the nullstellensatz implies that

this is the whole ring so therefore there exists ei ∈ A such that 1 = ∑ eifr+1
i . Set

g = ∑ eifiai ∈ A. For each j, then if we look at fr+1
j g we find

fr+1
j g = ∑

i

eifif
r+1
j ai = ∑

i

eif
r+1
i fjaj = fjaj

(using 9.4) i.e. fj(frj g − aj) = 0 which implies that g/1 = aj/frj = gj in Afj for all
j. �
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9.1. Alternative approach to defining structure sheaf. We have a basis
B of affine open sets closed under finite intersection. We can define a B-presheaf by
OV (U) = k[U] for all U ∈ B. It is an easy check (examples sheet 2, question 1) that
sheaf condition (A) is satisfied over B. Lemma 9.15 is saying that sheaf condition
(B) is satisfied - in fact we can avoid using reducedness in the proof of lemma 9.15.
We have a B-sheaf here, thus corollary 7.12 (1.3) implies that there exists a unique
extension (up to isomorphism) to a sheaf OV on V . This approach is needed if

(1) we work with schemes rather than varieties, or
(2) we’re interested in OX -modules on a variety/scheme (for more details see

§3).

9.2. §2: Construction of abstract varieties. If F is a sheaf on X and
U is open in X, we have a sheaf F ∣U on U (restriction of F to U) defined by
(F ∣U)(W ) = F (W ) for W ⊂ U open. If (X,OX) is a locally ringed space over R
and U is open in X, let OU denote OX ∣U , then (U,OU) is a locally ringed space
over R.

Definition 9.22. If φ = (f, f ♯)∶ (X,OX) → (Y,OY ) is a morphism of locally ringed
spaces over R, then we say that φ is an isomorphism if f is a homeomorphism and
f ♯∶OY → f∗OX is an isomorphism of sheaves of R-algebras. In this case, there exists
an inverse morphism φ−1 = (g, g♯) where g = f−1 and g♯∶OX → g∗OY is defined by
setting the required homomorphisms (for W open in X) OX(W ) → OY (g−1W ) to
be the inverse of the isomorphism OY (U) → OX(f−1U) where U = g−1W .

Lecture 10
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Recall that the following are locally-ringed spaces over k:

(1) take k = R, Y ⊂ Rn open, then we have OY the sheaf of C∞ functions;
(2) take k = C, Y ⊂ Cn open, then we have OY the sheaf of holomorphic

functions on Y ;
(3) take k = k̄, Y an affine variety over k with the Zariski topology, then we

have OY the sheaf of regular functions on Y .

Definition 10.23. A C∞-manifold dfn:manifoldis a locally-ringed space (X,OX) over R such
that

(1) X is paracompact7 and Hausdorff,
(2) for every P ∈X, there exists an open neighbourhood P ∈ U ⊂X such that

(U,OU) is isomorphic as a locally-ringed space over R to (Y,OY ) as in (1)
above.

For complex manifolds, we substitute locally-ringed over C and locally isomorphic
to (Y,OY ) as in (2) above. A C∞-map (resp. holomorphic) map between C∞ (resp.
complex) manifolds is defined to be a morphism of them as locally-ringed spaces
over R (resp. C).

7Let {Wα}α∈I be a cover of a topological space X (we do not assume that it is an open
cover).

Definition 10.24. A cover {Tβ}β∈J is called a refinement of {Wα}α∈I if for all β ∈ J , there exists

α ∈ I such that Tβ ⊂Wα.

Definition 10.25. A collection {Wα}α∈I of subsets of X is called locally finite if each x ∈ X has
an open neighbourhood whose intersection with Wα is non-empty for only finitely many α.

Definition 10.26. A topological space X is called paracompact if every open cover of X has a

locally finite refinement.
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Exercise: the above definitions correspond to the usual ones in terms of charts
and atlases (see examples sheet 1, question 14).

Definition 10.27. A prevariety over k = k̄ is a locally ringed spacedfn:prevariety (X,OX) over
k such that

(1) X = ⋃Ui for a finite collection of open sets Ui,
(2) each (Ui,OUi) is isomorphic, as a locally ringed space over k, to some

affine variety (Y,OY ) over k. The Ui are called affine pieces.

Example. Consider X to be

× O1

× O2

the line with two origins i.e. take two copies of A1 and identify all corresponding
points except the origins. The topology is the quotient topology from the Zariski
topology on A1. Let X = U1 ∪ U2 where U1 = X/{O2} and U2 = X/{O1} and
each Ui is identified with A1

k. These identifications determine a locally-ringed space
structure over k, (X,OX). Note that if U ∋ {O1,O2} and f ∈ OX(U), then f(O1) =
f(O2) i.e. we cannot separate O1 and O2 by regular functions. We wish to rule out
this kind of prevariety.

Remark. Observe that a topological space is Hausdorff iff the diagonal ∆ ⊂X ×X
is closed in the product topology, i.e. if you give me a point (P,Q) ∉ ∆ then there
exists a basic open set U × V ∋ (P,Q) with (U × V ) ∩∆ = ∅ i.e. U ∋ P and V ∋ Q
and U ∩ V = ∅.

10.1. Products of pre-varieties. If V ⊂ An, and W ⊂ Am are affine varieties,
then the product V ×W ⊂ An+m has the natural structure of an affine variety. On
this we have the Zariski topology. Given two pre-varieties (X,OX) and (Y,OY )
with X = ⋃Ui and Y = ⋃Vj finite unions with (Ui,OUi) and (Vj ,OVj) affine for all
i, j, we can stipulate a topology on X × Y by G ⊂X × Y is open iff G ∩ (Ui × Vj) is
Zariski open in Ui × Vj for all i, j. An easy topological check: this doesn’t depend
on the choice of decomposition of X,Y into open sets (given U ′

k, V
′
l , we have

(Ui × Vj) ∩ (U ′
k × V ′

l ) = (Ui ∩U ′
k) × (Vj ∩ V ′

l )
open in Ui × Vj). Moreover, there exists a basis of open sets in this topology

B = {G ⊂ Ui × Vj Zariski open for some i, j}
and B is closed under finite intersections. We call the above topology the Zariski
topology on X × Y .

Definition 10.28. A pre-variety (X,OX) is called separateddfn:separated if the diagonal ∆X ⊂
X ×X is closed in the Zariski topology. We then call (X,OX) a variety over k.

Remark. An exercise is to show that the line with two origins defined above is not
a variety.

The idea now is to show you that the old things we called varieties are also
varieties under this new definition.

Example. Given projective varieties V ⊆ Pn and W ⊆ Pm, we can embed V ×W φ↪
Pnm+n+m by

(x0 ∶ ⋅ ⋅ ⋅ ∶ xn) × (y0 ∶ ⋅ ⋅ ⋅ ∶ ym) ↦ (z00 ∶ z01 ∶ ⋅ ⋅ ⋅ ∶ znm)
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where zij = xiyj , called the Segre embedding. If V is defined by homogeneous
polynomials {Fα(x0 ∶ ⋯ ∶ xn)}α∈A, and W is defined by homogeneous polynomials
{Gβ(y0 ∶ ⋯ ∶ ym)}β∈B , then φ(V ×W ) defined by equations zijzi′j′ = zij′zi′j and

{Fα(z0j ∶ z1j ∶ ⋅ ⋅ ⋅ ∶ znj)∶α ∈ A,0 ≤ j ≤m}
{Gβ(zi0 ∶ zi1 ∶ ⋅ ⋅ ⋅ ∶ zim)∶β ∈ B,0 ≤ i ≤ n}

and φ(x× y) = (zij) where x ∈ V and y ∈W and zij = xiyj satisfies these equations,
since if yj ≠ 0, then

(z0j ∶ ⋅ ⋅ ⋅ ∶ znj) = (x0 ∶ x1 ∶ ⋅ ⋅ ⋅ ∶ xn)
and if xi ≠ 0 then

(zi0 ∶ ⋅ ⋅ ⋅ ∶ zim) = (y0 ∶ y1 ∶ ⋅ ⋅ ⋅ ∶ ym)
Conversely, if (zij) satisfies these equations and without loss of generality let zpq ≠ 0,
then

(z0q ∶ ⋅ ⋅ ⋅ ∶ znq)
∈V

× (zp0 ∶ ⋅ ⋅ ⋅ ∶ zpm)
∈W

↦ zij

Finally observe that φ is injective, since points x ∈ V and y ∈ W are recovered

uniquely by this recipe. So the image φ(V ×W ) has the natural structure of a
projective variety e.g. for V = P1 = W , then P1 × P1 ↪ P3, is the image of the
smooth quadric z00z11 = z01z10.

Lecture 11

4th November 12:00

11.1. More on the Segre embedding; complete varieties. The examples
class is on Wednesday at 4pm in MR5.

Let V ⊂ Pn and W ⊂ Pm be projective varieties, then we talked about the Segre
embedding

φ∶V ×W ↪ Pmn+n+m

(x) × (y) ↦ (wij)

where wij = xiyj with 0 ≤ i ≤ n and 0 ≤ j ≤ m. The image φ(V ×W ) is naturally
a projective variety. If now V0 ⊂ V , W0 ⊂W are the affine pieces of V,W given by
X0 ≠ 0 (resp. Y0 ≠ 0), the image of V0 ×W0 under Segre in the affine piece of V ×W
is given by Z00 ≠ 0. Moreover, there exists an isomorphism of this affine piece with
V0 ×W0 ⊂ An ×Am = An+m

( zij
z00

) ↦ (z10

z00
, . . . ,

zn0

z00
) × (z01

z00
, . . . ,

x0m

z00
)
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with obvious inverse - this is reassuring. Identifying V ×W with its image under
Segre (i.e. V × W a projective variety) we see that G ⊂ V × W is open in the
usual projective Zariski topology iff G ∩ (Vi ×Wj) is open in the Zariski topology
on Vi ×Wj ⊂ An+m for all i, j which is true iff G ⊂ V ×W is open in the Zariski
topology as defined above. This is also reassuring. In particular, it’s clear that
the diagonal ∆V ⊂ V × V is closed in this case, since it’s just given by the extra
equations zij = zji (i, j = 0, . . . , n). This is comforting.

Corollary 11.16 (2.1). A quasi-projective variety (U,OU) is a variety.

Proof. Observe first that U is covered by a finite number of affine pieces.
It is sufficient to prove this when U is open in an affine variety V ⊂ An. If
U = V /V (f1, . . . fN), then U = ⋃Ni=1D(fi) for basic open sets D(fi), where by
the definition of OV , the locally-ringed space (D(fi),OD(fi)) over k is isomorphic

to an affine variety W ⊂ An+1, and where OV (D(fi)) ≅ k[V ]fi . Hence (U,OU) is a

pre-variety. If now U is open in a projective variety U , the topology on U × U is
just the subspace topology U ×U , and so ∆U ⊂ U ×U is closed, which implies that
∆U ⊂ U ×U is closed, therefore (U,OU) is a variety. �

Remark. Given any two varieties (X,OX) and (Y,OY ), the product space (with
the Zariski topology) can be given the structure of a variety. So how do we do
this? For each basic open set G ⊂ Ui × Vj , we can define OX×Y (G) = OUi×Vj(G),
the regular functions on G. Thus we can define a continuous function on any open
subset of X ×Y to be regular if its restriction to these basic affine pieces are regular
(alternatively use corollary 7.12 to define OX×Y from the B-sheaf on a base B

defined before). For fact that X × Y is separated, observe

∆X×Y = π−1
13 (∆X) ∩ π−1

24 (∆Y ) ⊂X × Y ×X × Y
where the maps π13 and π24 are continuous and hence ∆X×Y closed.

The Zariski topology is hardly ever Hausdorff so it’s a rubbish property, but
we have reinterpreted it in a way that is useful to us here. Compactness is also
a rubbish property, but we have interpreted that also in a way that has made it
useful to us.

Definition 11.29. Given varieties (X,OX) and (Y,OY ), we then consider the
continuous map of topological spaces π∶X×Y → Y (in fact a morphism of varieties).
The variety (X,OX) is called complete if π is a closed map, for any variety Y .

Remark. I said for any Y here, but I can take sort of special Y here: if Y = ⋃Ui, a
finite decomposition of Y into open affine pieces, and Z ⊂ Y , then Y /Z = ⋃i(Ui/Ui∩
Z), therefore Z is closed iff Z ∩ Ui is closed in Ui for all i, therefore without loss
of generality we may take Y to be affine, Y ⊂ An. Moreover, since Z is closed in
Y , this implies that Z is closed in Am, we may even take Y = An. E.g. A1 is not

complete, since the projection A1×A1 π→ A1 is not closed (image of xy = 1 is A1/{0}
under the map (x, y) π↦ y).

Proposition 11.17 (2.2). Any projective variety V ⊂ Pn is complete.

Proof. It is sufficient to prove that Pn is complete i.e. if Z ⊂ Pn×Am is closed,
then the image π(Z) is closed in Am.

Suppose that Pn has homogeneous coordinates X0, . . . ,Xn and Am has affine
coordinates Y1, . . . , Ym (I won’t be careful here in making a distinction between
coordinate functions and coordinates). Then Z ⊂ Pn ×Am is given by the vanishing
of some polynomials

Fα(X0, . . .Xn;Y1, . . . , Ym)
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homogeneous in the Xi but not necessarily in the Yj (follows easily from the above
decomposition of Pn ×Pm that the closed sets are given by polynomials in the Zij ,
and hence bi-homogeneous polynomials in each homogeneous set of variables) i.e.
x×y ∈ Z ⊂ Pn×Am iff Fα(x, y) = 0 for all α, therefore for y ∈ Am, the set Z ∩π−1(y)
consists of non-zero solutions of {Fα(X;Y )}α∈A (for A a finite set), i.e. y ∈ π(Z) iff

the equations Fα(X; y) = 0 have a non-trivial solution. Let

Am/π(Z) = U = {y ∈ Am∶Fα(X; y) = 0 have no non-trivial solution}

It remains to prove that Am/U is closed, i.e. U is open. Denote by JN the space of
homogeneous polynomials of degree N in X0, . . . ,Xn. The projective nullstellensatz
says that the above equations have no non-zero solutions iff the ideal ⟨Fα(X; y)⟩α∈A
in k[X0, . . . ,Xn] has radical containing (X0, . . . ,Xn) the “irrelevant ideal”. This
is true iff the ideal ⟨Fα(X; y)⟩ contains JN for some N . Let

UN := {y ∈ Am∶ ⟨Fα(X; y)⟩ ⊇ JN}

Since U = ⋃N UN , it is sufficient to prove that each Am/UN is closed. We’ll finish
this in the next class. �

Lecture 12
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We will finish the proof.

Proof. Recall: {Fα(X;Y )}α∈A a finite set of polynomials, homogeneous in
X0, . . . ,Xn. For y ∈ Am, the equations Fα(X; y) = 0 have no non-trivial solutions

iff the radical of the ideal ⟨Fα(X ∶ y)⟩◁k[X0, . . . ,Xn] contains (X0, . . . ,Xn) which

is true iff ⟨Fα(X,y)⟩α∈A ⊇ JN for some N ≫ 0, where JN = space of homogeneous
polynomials of degree N . Set

UN := {y ∈ Am∶ ⟨Fα(X; y)⟩ ⊇ JN}

It is sufficient to prove that each Am/UN is closed. Suppose that Fα(X; y) has

degree Nα in the Xj ’s and let {Mα,i∶ i = 1, . . . , sα} denote the set of monomials of
degree N −Nα in X0, . . . ,Xn. For y ∈ Am, consider the linear space spanned by

{Mα,i(X)Fα(X,y)∶1 ≤ i ≤ sα, for all α ∈ A} ⊂ JN
Thus y ∉ UN iff this space is not equal to JN , which is true iff

rank{coefficients of Mα,i(X)Fα(X; y)} < dimJN = r (say)

with respect to some basis of JN , which is true iff the r × r minors of the matrix
of coefficients all vanish, which is true iff y satisfies a certain set of polynomial
equations. �

Corollary 12.18 (1). The image of a projective variety V under a morphism
φ∶V → Pm is a projective variety.

Proof. Consider the graph of the morphism φ denoted by Γφ ⊂ V ×Pm, where

Γφ = {(P,φ(P ))∶P ∈ V }

i.e. Γφ = (φ × id)−1∆Pm , a closed subset. Thus π2(Γφ) = φ(V ) closed in Pm by
proposition 11.17 and so is the underlying set of a projective variety. �

Corollary 12.19 (2). The only everywhere regular functions on an irreducible
projective variety are constants.
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Proof. We prove this for any complete variety X. A global regular function
f ∈ OX(X) defines a closed graph Γf ⊂X × P1 where

Γf = {(P, f(P )) ∈X × P1}
(clear by looking at affine pieces of X). But X is complete which implies that
π2(Γf) = f(X) ⊆ A1 is closed in P1. So either f(X) is A1 or a finite set. But A1 is
not closed in P1, so it is a finite set S. We could then write X = ⋃s∈S f−1(s) which
would contradict that X is irreducible. This implies that f(X) is a point which
implies that f is constant. �

Corollary 12.20 (3). A quasi-projective variety U is complete iff it is projective.

Proof. Let us suppose that U ⫋ V ⊆ Pn, with V = U projective with

P = (1 ∶ 0 ∶ ⋅ ⋅ ⋅ ∶ 0) ∈ V /W
by choosing our coordinates appropriately. Consider Z ⊂ U ×An defined by equa-

tions X0 ⋅ yi = Xi (i = 1, . . . , n). It is clear that 0 ∈ π2(Z) (since π2 is continuous

and 0 = π2(P ) ∈ π2(Z) where Z ⊂ V ×An) but 0 ∉ π2(Z) since P ∉ U . �

Remark. There are obvious topological definitions for a variety being irreducible,
connected, etc. Clear (from affine case) that any variety is compact with respect to
the Zariski topology. Any variety X has a base of affine open sets.

12.1. Rational functions from the structure sheaf. We want to define
rational functions via the structure sheaf rather than vice-versa.

Definition 12.30. A rational function on a variety X is an equivalence class of
pairs (U,φ) where U is an open dense subset and φ ∈ OX(U) where (U,φ) ∼ (V,ψ)
iff there exists an open dense W ⊂ U ∩ V such that φ∣W = ψ∣W . The rational
functions form a ring Rat (X). The domain of definition of a rational function f ,
is

dom(f) = {x ∈X ∶x ∈ U for some (U,φ) representing f}
If U is an open dense subset of X (e.g. open, dense, affine), it is clear that

Rat (X) ∼→ Rat (U)
If X is irreducible, Rat (X) is a field, called the function field k(X) of X (observe
that X is irreducible iff any non-empty open set contained in it is dense). So for
X quasi-projective, this coincides with the previous definition. Then for P ∈ X,
there exists an injection OX,p ↪ k(X) (since an element of OX,p is also represented
by a pair (U,φ) with P ∈ U and φ ∈ OX(U)). Thus for X irreducible, OX(U) =
⋂p∈U OX,p ⊂ k(X). Note that for W ⊂ U open and g, h ∈ OU(W ) agree on an open
(dense) subset, then g = h.

Definition 12.31. Two varieties X and Y are birationally equivalent
dfn:birationally-equivalent

if there

exists open dense subsets U ⊂X, V ⊂ Y and an isomorphism of varieties (U,OU) ∼→
(V,OV ).

Exercise: (on example sheet 2, question 2) two varieties X and Y are bira-
tionally equivalent iff Rat (X) ≅ Rat (Y ) as k-algebras.

I’ll tell you a result now that I won’t prove, but it gives one example of the
importance of this idea.

Theorem 12.21 (Chow). Let Y be a complete irreducible variety. Then there
exists a projective variety X and a birational morphism φ∶X → Y (i.e. a morphism
inducing an isomorphism on suitable open subsets.)

Proof. Straightforward - see [Kem93, pp. 34]. �
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Remark. The converse is clearly true using proposition 11.17 and using the dia-
gram

X ×Am

Am

Y ×Am

→

(φ×id)
→

π̃2

→
π2

Lecture 13
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13.1. §3: Locally free and coherent OX-modules. Notation: (X,OX) is

locally-ringed space over k - in due course we’ll specialise to varieties over k = k.
Given two OX -modules M ,N on X, we define M ⊕ N in the obvious way.

To define an arbitrary sum ⊕i∈I Mi of OX -modules, in general we have to sheafify
(because glueing together an infinite set of sections may not be possible in the
presheaf sum). If however every open subset of X is compact, then this is not a
problem and we can define ⊕i∈I Mi is the simple minded way, since eventually the
sheaf coordinates will involve only finitely many non-zero entries). For U ⊂X open
and M an OX -module, we have an OU -module M ∣U .

Definition 13.32. An OX -module M is locally free of rank r if for each P ∈ X,
there exists an open neighbourhood U ∋ P such that M ∣U ≅ Or

U (i.e. O⊕r
U ).

Example. If (X,OX) is a C∞ (or complex) manifold and E → X a rank-r C∞

(resp. holomorphic) vector bundle over X, we can define a locally free OX -module
E of rank-r, where E (U) = C∞ (resp. holomorphic) sections σ of E over U . Since
E is locally trivial (i.e. U ×Rr, resp. U ×Cr) it’s clear that E is locally free of rank
r.

E∣U

U

→π →

σ

For the case of varieties X, we can define an algebraic vector bundle E over X in
the obvious way and obtain a sheaf of regular sections, a locally free OX -module.

Notation: sections of a presheaf/sheaf F over an open set U , then we write

F (U) = Γ(U,F ) =H0(U,F )
(we will see later that it is the zeroth cohomology group as well, so the latter
notation is sensible). So for E →X a vector bundle, and E a sheaf of sections, then
Γ(U,E) = Γ(U,E ).

For M a locally free OX -module of rank r, we have an open cover {Ui} of
X (when M is a variety we may take it to be a finite, affine, open cover) and
trivialisation M ∣Ui ≅ Or

Ui
. This then gives rise to isomorphisms on the overlaps

Uij := Ui ∩Uj

Or
Uij

Or
Uij

M ∣Uij

→ψji

→∼

→

∼
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i.e. elements ψji ∈ Γ(Uij ,GL(r,OX)) satisfying the compatibility conditions

● ψii = id on Ui,
● ψij = ψ−1

ji on Uij ,
● ψkjψji = ψki over Uijk ∶= Ui ∩Uj ∩Uk.

Remark. These maps ψji are called transition functions.

Proposition 13.22 (3.1). Two OX-modules M ,N which are locally trivialised by
the same data {Ui},{ψji} are isomorphisms as sheaves of OX-modules.

Proof. Take the given isomorphisms

M ∣Ui ≅ Or
Ui ≅ N ∣Ui

This induces an isomorphism on stalks MP →NP for all P ∈ X and these isomor-
phisms are well-defined (independent of Ui) since the transition functions are the
same by assumption, i.e. if αi∶M ∣Ui → Or

Ui
and βi∶N ∣Ui → Or

Ui
, then the following

diagram commutes

Or
Uij

M ∣Uij N ∣Uij

Or
Uij

→

ψji

→αi
∼

→αj

∼ →

βj

∼

→

βi
∼

i.e. M ∣Uij
∼→ N ∣Uij is well-defined. Consider now sheaves M + and N + - M +

consists of sections s∶U →∐P ∈U MP , locally given by a section of M , i.e. s(Q) = tQ
on some neighbourhood. Under the above isomorphisms on stalks, s yields a section
s′∶U → ∐p∈U Np, locally given by a section of N - i.e. we obtain a morphism of
OX -modules M + → N + inducing isomorphisms on stalks i.e. M + ≅ N +. Since
M ≃ M +, N ≃ N +, we deduce M ≅ N as OX -modules. �

Definition 13.33. A locally free OX -module of rank 1 is called invertible (which
then corresponds to a line bundle, and so we often refer to invertible OX -modules
as line bundles).dfn:line-bundle

Definition 13.34. Given OX -modules M ,N on (X,OX), define a presheaf T
by T (U) = M (U) ⊗O(U) N (U) for all open U , and this is clearly a presheaf of
OX -modules. Define M ⊗OX N to be the sheafification T +, and this is clearly an
O+
X -module and hence an OX -module.

Remark. We studied this in example sheet 1, question 9 where I told you to write
down the universal property satisfied by this.

Definition 13.35. Define a sheaf Hom OX (M ,N )8 bydfn:hom-sheaf

Hom OX (M ,N )(U) = Hom OU (M ∣U ,N ∣U)
(↖morphisms of OU -modules)

with obvious restriction maps.

8In class, he denotes this by Hom and in Hartshorne it is denoted H om, but Hom looks
better I think - this is what Ravi Vakil uses.
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Remark. In the above, an element φU ∈ Hom OU (M ∣U ,N ∣U) may be interpreted
as an element of Hom O+

U
(M +∣U ,N +∣U) i.e.

φU = ∐
P ∈U

φP ∶ ∐
P ∈U

MP Ð→ ∐
P ∈U

NP

with the property that for any section s ∈ M +(V ) for V ⊆ U (i.e. s∶V →∐P ∈V MP

with given local coordinates), we have φU ○ s ∈ N +(V ). It is clear from this that
Hom OX (M ,N ) is a sheaf. The OX -module structure is clear: given

φU ∶MU →NU

and f ∈ OX(U), we have a morphism fφ∣U ∶M ∣U →N ∣U .

Definition 13.36. The dual M ∨ of M , is M ∨ := Hom OX (M ,OX).

There exists a morphism of OX -modules M ⊗OX M ∨ → OX defined as follows:
(next time!).

Lecture 14

11th November 12:00

Let M be an OX -module, then we have the dual M ∨ = Hom OX (M ,OX), and then
there exists a morphism of OX -modules M ⊗M ∨ → OX defined as follows: let T
be the presheaf of OX -modules given by T (U) = M (U) ⊗OX M ∨(U) and define a
morphism of presheaves T → OX given by

m⊗ φÐ→ φ(U)(m)
for U ⊂X open, and wherem ∈ M = M ∣U(U) and φ ∈ M ∨(U) = Hom OU (M ∣U ,OU),
and this respects the OX(U)-module structure. The universal property of sheafifi-
cation yields a morphism of sheaves of OX -modules

M ⊗OX M ∨ = T + Ð→ OX

If now M is locally free of rank 1, then locally we have M ∣U ≅ OU and

M ∨∣U ≅ Hom OU (OU ,OU) ≅ OU

and thus the induced map on stalks (M ⊗OX M ∨)P → OX,P are all isomorphisms
i.e.

M ⊗OX M ∨ ∼Ð→ OX

by lemma 5.10.

Definition 14.37. The Picard group dfn:picard-groupPic(X) of the ringed space (X,OX) is the
Abelian group whose elements are isomorphism classes of invertible sheaves, com-
position is given by ⊗OX , the identity element is OX and the inverse of an invertible
sheaf M is its dual M ∨.

Remark. By proposition 13.22 we do have a set (!), and the rest is clear.

14.1. Pulbacks of sheaves. Let F be a sheaf of Abelian groups over a topo-
logical space Y and f ∶X → Y a continuous map. We define the pullback or inverse
image sheaf f−1F as follows: for U ⊂X open, set

(f−1F )(U) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

s∶U → ∐
P ∈U

Ff(P ) such that s(P ) ∈ Ff(P ), for all P ∈ U

and for any P ∈X, there exists open neighbourhoods V,W
with f(P ) ∈W and P ∈ V ⊂ f−1W and a section t ∈ F (W )

with s(Q) = tf(Q) for all Q ∈ V

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
If F = OY , we get a sheaf of rings f−1OY over X. Claim: if (f, f ♯)∶ (X,OX) →
(Y,OY ) is a morphism of varieties over k (or manifolds), there exists a natural
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morphism of sheaves of rings on X, f−1OY → OX . The obvious question is: is this
surjective? The answer is no, as you will see on the second examples sheet.

Proof of claim: given U open in X, define (f−1OY )(U) → OX(U) by

{s∶U → ∐
P ∈U

OY,f(P ) such that . . .} ↦ g

where locally s(Q) = hf(Q) for some h ∈ OY (W ) and all Q ∈ V ⊂ f−1W ⊂X then

g(Q) = h(f(Q)) = f ♯(h)(Q)
for all Q ∈ V (we have equality by the familiar argument - cf. lemma 6.11 and
questions 10, 14 on examples sheet 1 - uses (f, f ♯) a morphism of locally-ringed
spaces). We have f ♯∶OY (W ) → OX(f−1W ) and locally g = f ♯(h)∣V ∈ OV (V ) as
required.

Definition 14.38. Given a morphism of varieties/prevarieties f ∶X → Y , the in-
verse image sheaf f−1M of an OY -module M on Y is naturally an f−1OY -module
on X. Define the inverse image OX -module f∗M by f−1M ⊗f−1OY OX .

Remark. We have
f∗OY = f−1OY ⊗f−1OY OX = OX

Example. If Y is a point, then an OY -module is a k-vector space M . Clearly
f−1OY = k the constant sheaf (the germs of functions on a point, so it follows), and
in this case f−1OY ↪ OX is the obvious inclusion map. f−1M is the constant sheaf
M on X and f∗M is the free OX -module M ⊗k OX .

Definition 14.39. An OX -module M on a variety (X,OX) over k is said to be

(a) finitely generated9,
(b) quasi-coherent,
(c) coherent,

if for any P ∈X, there exists an open neighbourhood U ∋ P and an exact sequence
of OU -modules,

(a) Op
U M ∣U 0→ → where p is finite depending on U ,

(b) O⊕I
U O⊕J

U M ∣U 0→ → → where I, J are indexing sets de-

pending on U ,

(c) Oq
U Op

U M ∣U 0→ → → where p, q are finite, depending on

U .

Remark. We’ll see later that for varieties one has that (a) and (b) together imply
(c) and this is essentially Hilbert’s basis theorem.

Definition 14.40. The support of a sheaf F is defined

SuppF := {P ∈X ∶FP ≠ 0}
Lemma 14.23 (3.3). If M is a finitely generated OX-module on a ringed space
(X,OX), then Supp (M ) is closed.

Proof. It is required to prove that if MP = 0, then there exists an open
neighbourhood on which MQ = 0 for all Q ∈ the neighbourhood. There exists an

open U ∋ P such that Oq
U M ∣U 0→α → is exact i.e. α is surjective on

stalks. Therefore there are elements s1, . . . , sq ∈ M ∣U where the germs generates

9Sometimes called “of finite type”.

32



Lecture 15

MQ for all Q ∈ U . Assuming MP = 0, the germ of each si at P is zero implies that
there exists a neighbourhood P ∈W ⊂ U such that si∣W = 0 for all i which implies
that MQ = 0 for all Q ∈W . �

Lecture 15

13th November 12:00

Examples class 2 will be on Tuesday the 26th November in here (MR4). I will give
out the solutions the day before.

15.1. Coherent sheaves on affine varieties. Suppose that (X,OX) is an
affine variety: from the definition of OX we have

(1) OX(X) = k[X] (see beginning of §8.1),
(2) for any f ∈ k[X], OX(D(f)) ≅ k[X]f (also see §8.1),
(3) for any P ∈X with maximal ideal mP ◁ k[V ] then OX,P ≅ k[X]mP ,

It is an easy check to show that (2) implies (3).

Definition 15.41. If M is a k[X]-module and B is a basis of affine open sets of

the form D(f) for f ∈ k[X], we define a B-sheaf M̃ by

M̃(D(f)) :=M ⊗k[X] OX(D(f)) ≅M ⊗k[X] k[X]f ≅Mf

Clearly M̃ is a B-presheaf and arguing as in lemma 9.15 (but not reducing to the

case of n = 1) we deduce that M̃ is a B-sheaf (see examples sheet 2, question 1).

M̃ extends to a sheaf on X by corollary 7.12, and this sheaf also denoted
M ⊗k[X] OX i.e. the sheafification of the obvious presheaf of OX -modules. M̃
satisfies

(1) M̃(X) =M ,

(2) for any f ∈ k[X], one has M̃(D(f)) ≅Mf ,

(3) for any P ∈X, one has M̃P ≅MmP .

If we express M as a cokernel k[X]⊕I k[X]⊕J M 0→ → → then we

have an exact sequence

k[X]⊕If k[X]⊕Jf Mf 0→ → →

for any f ∈ k[X] (exercise: if P → Q → R is an exact sequence of A-modules
and S is a multiplicatively closed subset of A, then S−1P → S−1Q → S−1R is
an exact sequence of S−1A-modules - see the commutative algebra class or else
[AM69]). Therefore we have a corresponding morphism of sheaves O⊕I

X → O⊕J
X

and M̃ ≅ coker(O⊕I
X → O⊕J

X ) as they are both B-sheaves and hence by corollary
7.12 as sheaves. Therefore

O⊕I
X O⊕J

X M̃ 0→ → →

is exact and so M̃ is quasi-coherent.
Recall that an A-module is Noetherian if it has the ascending chain condition

on submodules. A ring A is Noetherian iff it is Noetherian as an A-module. The
standard argument: M is Noetherian iff every submodule is finitely generated. If

0 M1 M2 M3 0→ → → → is a short exact sequence A-modules,

then it is easy to see that M2 is Noetherian iff M1,M3 are both Noetherian. In
particular, if A is a Noetherian ring, then A⊕n is a Noetherian module and so too is
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any finitely generated A-module. For an affine variety X, Hilbert’s Basis theorem
implies that k[X] is Noetherian.

If M is a finitely generated k[X]-module, then there exists a surjection

k[X]p M 0→ →

with kernel also being finitely generated and thus there exists an exact sequence

k[X]q k[X]p M 0→ → →

therefore we see that M̃ is coherent.

Theorem 15.24 (3.4). Any quasi-coherent OX-module M on an affine variety X

is of the form M̃ for the k[X]-module M = M (X).

Remark. For X an affine variety, a sequence of quasi-coherent OX -modules

0 M1 M2 M3 0→ → → →

is exact iff the corresponding sequence on global sections

0 M1 M2 M3 0→ → → →

is exact. Proof: since Mi = M̃i for i = 1,2,3, the sequence on sheaves is exact iff
the sequence on stalks is exact iff the sequence

0 M1,m M2,m M3,m 0→ → → →

is exact for any m a maximal ideal of k[X] (by the nullstellensatz, since m = mP
for some P ∈X). This is true iff the sequence

0 M1 M2 M3 0→ → → →

is exact (standard result from commutative algebra - examples sheet 2, question
11).

Proof. If M is quasi-coherent then there exists a finite cover by basic affine
open sets X = ⋃D(gi) and for each i we have an exact sequence

O⊕I
D(gi)

O⊕J
D(gi)

M ∣D(gi) 0→θ → →

for some I, J (perhaps depending on i). Set A = k[X]. For a given i, let φ =
θ(D(gi)) : A⊕I

gi Ð→ A⊕J
gi a homomorphism of Agi-modules. Therefore

A⊕I
gi A⊕J

gi Cokerφ 0→ → →

and hence we get an exact sequence of sheaves over D(gi),

O⊕I
D(gi)

O⊕J
D(gi)

(Cokerφ)∼ 0→ → →

and hence an isomorphism (Cokerφ)∼ ≅ MD(gi) where

Cokerφ ≅ Γ(D(gi), (Cokerφ)∼) ≅ Γ(D(gi),M ∣D(gi)) = M (D(gi))
So for all i, we have M ∣D(gi) ≅ (M (D(gi)))∼. So we have proved the result we
want but only for the cover, so we need to ‘globalise’ the argument.

For any f ∈ A, we have a restriction map M = M (X) →M (D(f)). The univer-
sal property of modules of fractions implies that we have induced homomorphisms
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Mf →M (D(f)) i.e. homomorphisms M̃(D(f)) θ→M (D(f)) for all f ∈K[x]. Our

claim is that these are isomorphisms for all f and hence M ≅ M̃ (if we have an iso-
morphism of B-sheaves, there exists isomorphisms of sheaves via the +-construction
corollary 7.12). We’ll finish next lecture. �

Lecture 16

15th November 12:00

16.1. More on coherent OX-modules. The following is quite a crucial re-
sult of the course - we continue the proof from last time.

Theorem 16.25 (3.4). A quasi-coherent OX-module M on an affine variety (X,OX)
is of the form M = M̃ for M = M (X).

Proof. There exists a finite open cover X = ⋃D(gi) such that M ∣D(gi) ≅
(M (D(gi))∼. The natural map

M = M (X) →M (D(f))
induces a homomorphism

Mf ≅ M̃(D(f)) θ→M (D(f))
for all f ∈ k[V ] by the universal property. Our claim is that this is an isomorphism
for all f ∈ k[V ].

First we show injectivity: if m ∈ M (X) such that m∣D(f) = 0, then it is required

to prove that there exists l such that f lm = 0 in M . Since10

m∣D(fgi) ∈ M (D(fgi)) = M ∣D(gi)(D(fgi)) ≅ M (D(gi))f ,
and sincem∣D(f) = 0 andD(fgi) =D(f)∩D(gi) thusm∣D(fgi) = 0 inside M (D(gi))f
so there exists l such that f lm∣D(gi) = 0. Choosing l≫ 0, we can assume f lm∣D(gi) =
0 for all i, then sheaf condition (A) for M implies that f lm = 0.

Next we show that θ is surjective, which we are going to have to work a little
harder for. Given x ∈ M (D(f)), consider the restriction

x∣D(fgi) ∈ M (D(gi))f/1
say x∣D(fgi) = ti/f l for ti ∈ M (D(gi)) then pick l ≫ 0 large enough so that it
works for all i (just choose an l for each i then take the maximum). Consider
(ti − tj)D(gigj) ∈ M (D(gigj)). Since

(ti − tj)∣D(fgigj) = f l(x∣D(fgigj) − x∣D(fgigj)) = 0,

the injectivity argument previous implies that there exists m ≫ 0 (independent of
i, j) such that fm(ti − tj) = 0 in M (D(gigj)). Therefore we have sections fmti ∈
M (D(gi)) which agree on overlaps, then this implies (using sheaf condition (B))
that there exists s ∈ M (X) = M such that s∣D(gi) = fmti. Taking the image σ in

M (D(f)) of s/fm+l ∈Mf , we have

σ∣D(fgi) = (fmti)∣D(fgi)/fm+l = ti∣D(fgi)/f l = x∣D(fgi)

for all i. Then using the sheaf condition (A) we have that σ = x in M (D(f)). �

Corollary 16.26 (3.5). The coherent OX-modules on the affine variety X are of

the form M̃ for M a finitely generated k[X]-module.

10Also see Hartshorne [Har77, ii, lem. 5.3].
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Proof. We have done most of this, there is only one extra thing to prove: if M̃
is coherent, then the global sections M = M (X) is finitely-generated (the converse
has already been proved). We know that there exists an open cover X = ⋃rj=1D(fi)
such that M̃ ∣D(fj) is generated by elements say αj1, . . . , αjs(j) ∈ M̃(D(fj)) ≅Mfj .

This tells me that αj1, . . . , αjs(j) generate Mfj as an Afj -module. Write αji = aji/f lj
with aji ∈M for all i, j, and l≫ 0 is chosen sufficiently large so that it is independent
of i, j. Consider the finitely generated submodule N = ∑i,j Aaji ⊂M (a submodule

of M). Now we observe that if we restrict Ñ ∣D(fj) = M̃ ∣D(fj) for all j. So what

does this now say? The induced inclusion of OX -modules Ñ ↪ M̃ is in fact an
isomorphism. Therefore N =M is finitely generated. �

Just briefly, we will say some things about tensor products

(1) if M is an A-module, then ⊗AM is right exact on the category of A-
modules, i.e. given an exact sequence of A-modules

N P Q 0→ → →

then the sequence

N ⊗AM P ⊗AM Q⊗AM 0→ → →

is exact (see [AM69, prop. 2.18]).
(2) If (X,OX) is a ringed space and F ,G are OX -modules, then

(F ⊗OX G )P = FP ⊗OX,P GP

for all P ∈X. There is a more general categorical statement here: tensor-
ing commutes with direct limits. Let T (U) = F (U) ⊗OX(U) G (U) define
the presheaf tensor product. For any U ∋ P , the OX,P -product structure
on FP ⊗OX,P GP induces an OX(U)-module structure on FP ⊗OX,P GP .
For U ∋ P open, define

αU ∶F (U) × G (U) →FP ⊗OX,P GP

(s, t) ↦ sP ⊗ tP

This induces an OX(U)-module morphism

F (U) ⊗OX(U) G (U) →FP ⊗OX,P GP

and hence a morphism

(F ⊗OX G )P = TP
θÐ→FP ⊗OX,P GP

Define ψ∶FP × GP → TP by

(sP , tP ) ↦ (s∣U∩V ⊗ t∣U∩V )P

(where sP = (U, s) and tP = (V, t)) and this is plainly bilinear over OX,P
and hence defines a morphism

FP ⊗OX,P GP → TP

which is inverse to θ.
(3) For M an OX -module, (1) and (2) together imply that ⊗OXM is right

exact.

36



Lecture 17
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Proposition 17.27 (3.6). If φ∶X → Y is a morphism of affine varieties, inducing
a homomorphism of k-algebras A = k[Y ] → B = k[X], then for any A-module M ,

we have φ∗M̃ ≅ (M ⊗A B)∼.

Proof. There exists an exact sequence

(17.5) A⊕I A⊕J M 0→ → →

inducing an exact sequence

O⊕I
Y O⊕J

Y M̃ 0→ → →

which implies that

φ−1O⊕I
Y φ−1O⊕J

Y φ−1M̃ 0→ → →

is also exact (because φ−1 is an exact functor, since the stalk sequence at P of
φ−1F → φ−1G → φ−1H is by construction just the stalk sequence of F → G → H
at φ(P )). Tensoring with ⊗φ−1OXOY , we obtain

(17.6) O⊕I
X O⊕J

X φ∗M̃ 0→ → →

by fact 3. However, this sequence is also obtained by tensoring ⊗AB the sequence
(17.5)

B⊕I B⊕J B ⊗AM 0→ → →

which is exact by fact 1, yields

(17.7) O⊕I
X O⊕J

X (B ⊗AM)∼ 0→ → →

Since the first morphisms of (17.6) and (17.7) are the same, we deduce that φ∗M̃ ≅
(B ⊗AM)∼. �

Corollary 17.28 (3.7). For φ∶ (X,OX) → (Y,OY ) a morphism of varieties, M a
(quasi-)coherent OY -module, then φ∗M is a (quasi-)coherent OX-module.

Proof. Reduce to the affine case. �

17.1. Closed subvarieties. Let (X,OX) be a variety over k and Y ⊂ X a
closed subset. Let I be the sheaf of ideals given by

I (U) = {f ∈ OX(U)∶ f ∣Y ∩U ≡ 0}
One has IY ⊂ OX . On the affine piece U ⊂X, set I (U) = I = I(U ∩Y )◁k[U] and

then I ∣U = Ĩ (one would just check this on the basic open sets D(f)). Hilbert’s
basis theorem implies that I is finitely generated so I is coherent. Moreover there
exists a short exact sequence

0 I OX OX/I 0→ ↪ → → →

and hence OX/I is also coherent. The stalks of OX/I at P ∉ Y are zero. Let ι∶Y ↪
X, then for any open set U ⊂X, the definition of ι−1 yields natural isomorphisms

(OX/I )(U) (OX/I )+(U) ι−1(OX/I )(U ∩ Y )→∼ →∼

restriction
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Define OY = ι−1(OX/I ), a sheaf of rings on Y . If U ⊆ X is open and affine, then
by the remark following theorem 15.24, the sequence

0 I k[U] (OX/I )(U) 0→ → → →

is exact and so OY (Y ∩U) ≅ (OX/I )(U) ≅ k[U]/I = k[Y ∩U]. So OY restricts to
the correct structure on affine pieces and therefore (Y,OY ) is a variety (it is clearly
separated since Y is closed in X). Such varieties are called closed subvarieties of
X.

Remark. Any sheaf of ideals T ⊂ OX determines a closed subvariety; it determines
a closed subset Supp (OX/T ) = Y by lemma 14.23 and hence a closed subvariety.

Remark. If U ⊂X is open, then (U,OU) is also a variety, and an open subvariety
of X.

Definition 17.42. Given Y
ι↪ X closed, F any sheaf on Y , we call ι∗F the

extension of F . Clearly

(ι∗F )P =
⎧⎪⎪⎨⎪⎪⎩

FP if P ∈ Y
0 otherwise

therefore Supp (ι∗F ) ⊆ Y . Often we don’t distinguish between a sheaf on Y and
its extension by zero on X since

(ι∗F )(U) = F (U ∩ Y )
for all U open in X.

Example. If Y is a closed subvariety of X, then ι∗OY ≅ OX/I (I = sheaf of
reduced ideals corresponding to Y ) (clearly true on any open affine piece). Hence
there exists a short exact suquence of OX -modules

0 IY OX ι∗OY 0→ ↪ → → →

(usually written as

0 IY OX OY 0→ → → → )

Any OY -module F yields an OX -module ι∗F via OX → ι∗OY .

17.2. The invertible sheaves OPn(m). Suppose X is an irreducible variety;
an (irreducible) subvariety Y ⊂ X is called locally principaldfn:locally-principal if there exists an open
affine cover X = ⋃iUi such that

I(Y ∩Ui) = (fi) ◁ k[Ui]
Remark. codim(Y ) = 1 by the standard dimension theory - e.g. Krull’s principal
ideal theorem.

Then theorem 15.24 implies that IY ∣Ui = fiOUi and so IY is invertible. The
transition functions are obtained by figi = fjgj on Ui ∩ Uj i.e. gj = ψjigi with
ψji = fi/fj . We also have a sheaf of rational functions with at worst a simple pole
along Y (and regular elsewhere) denoted OX(Y ) where

Γ(U,OX(Y )) = {h ∈ k(X)∶ fih ∈ OX(U ∩Ui) for all i}
OX ⊂ k(X) the constant sheaf and OX(Y )∣Ui = 1

fi
OUi . So OX(Y ) is invertible with

transition functions ψji = fj/fi i.e. IY and OX(Y ) are dual. Notation: we usually
denote IY in this case as OX(−Y ).

Suppose X = Pn with the standard open affine cover {Ui}, Ui given by Xi ≠ 0
and H a hyperplane given by L = 0 for some homogeneous linear form L. Therefore
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H is given locally on Ui by L/Xi ∈ OPn(Ui), thus OPn(−H) defined by transition
functions ψ = xj/xi and OPn(H) defined by transition functions ψji = xi/xj . So we
see that the isomorphism classes of OPn(H) (respectively OPn(−H)) doesn’t depend
on H. Denote these invertible sheaves OPn(1) (respectively OPn(−1)). For m ∈ Z,
denote

OPn(m) = OPn(mH) ≅
⎧⎪⎪⎨⎪⎪⎩

OPn(1)⊗m m ≥ 0

OPn(−1)⊗∣m∣ m < 0

Remark. Suppose we have Y ⊂ Pn a hyperplane instead, defined by irreducible
homogeneous polynomials F (X0, . . . ,Xn) of degree m, then OPn(Y ) ≅ OPn(m) and
OPn(−Y ) ≅ OPn(−m).

Lemma 17.29 (3.7). Γ(Pn,OPn(m)) = 0 if m < 0 and is isomorphic to the vector
space of homogeneous polynomials of degree m if m ≥ 0.

Proof. Exercise on examples sheet 3. �

Remark. The result implies OPn(r) ≅ OPn(s) iff OPn(r − s) ≅ OPn iff r = s.

It is a fact that any invertible sheaf on Pn is of the form OPn(m) for some m ∈ Z
i.e. Pic(Pn) = Z.

Lecture 18

20th November 12:00

Addendum to last time:

Definition 18.43. Given a projective variety V
ι↪ Pn, we have invertible sheaves

OV (m) on V defined by OV (m) = ι∗OPn(m), restrictions of OPn(m). Aliter:
OV (U) = OV (V ∩H), etc. - the transition functions are just restrictions of these
for OPn(m).

18.1. §4: Sheaf cohomology.

Definition 18.44. A sheaf F of Abelian groups on a topological space X is called
flabby (flasque) if for all U open in X, the retriction map F (X) → F (U) is
surjective.

An important example: if F is an arbitrary sheaf/presheaf, we define a sheaf
D(F ) by

D(F )(U) := {s∶U → ∐
P ∈U

FP such that s(P ) ∈ FP }

- cf. the definition of F+. D(F ) is clearly a flabby sheaf.
We want to construct resolutions by flasque sheaves - the next result helps us

to do this. The idea is that to understand the cohomology of some sheaf, we try to
understand the cohomology of the resolution of that sheaf by flasque sheaves.

Lemma 18.30 (4.1). Suppose that 0 F1 F2 F3 0→ → → → is

a short exact sequence of sheaves of Abelian groups on X, then

(1) if F1 is flabby, then the sequence

0 F1(U) F2(U) F3(U) 0,→ → → →

is exact for all U ⊂X open,
(2) if F1,F2 are flabby, then so too is F3.
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Proof. (1). It is required to prove that σ ∈ F3(U) lifts to a section of F2(U)
(then the rest follows from proposition 8.14). Let τV be a lifting of σ∣V , where
V ⊂ U is open. If for any proper subset V ⫋ U and lifting τV of σ∣V , we can always
find an extension of τV to a strictly larger open subset V ′ ⊂ U such that τV ′ is a
lifting of σ∣V ′ , then we keep extending until we get a lifting to all of U (for general
case, there is an implicit use of Zorn’s lemma here - for X compact, X a variety,
then Zorn’s lemma is not needed).

So it is required to prove such an extension of τV always exists. Given a
point in U/V , there exists an open neighbourhood W such that σ∣W lifts to τW ∈
F2(W ) (map on stalks is surjective). If τW ∣V ∩W = τV ∣V ∩W , we can patch to get
a section τV ∪W which lifts σ∣V ∪W . If not, we modify our choice of τW : let ρ =
τV ∣V ∩W − τW ∣V ∩W ∈ F2(V ∩W ), then the image of ρ in F3(V ∩W ) is zero and
hence ρ comes from a section of F1(V ∩W ) by proposition 8.14 (b). Since F1 is
flabby, we may extend this to a section of F1(X), and hence we have ρ′ ∈ F2(X)
which extends ρ ∈ F2(V ∩ W ), with ρ′ coming from a section of F1(X). Set
τ ′W = τW + ρ′∣W ∈ F2(W ); the exactness of

0 F1(W ) F2(W ) F3(W ),→ → →

implies that the image of τ ′W is still ρ∣W and now by construction

τ ′W ∣V ∩W = τW ∣V ∩W + ρ′∣V ∩W = τW ∣V ∩W + ρ = τV ∣V ∩W .
Hence we can patch τ ′∣W and τV to give a lift of σ∣V ∪W , proving part (1).

(2) It is required to prove that r∶F3(X) →F3(U) is surjective for all U open
in X. We have a commutative diagram

F2(X) F3(X)

F2(U) F3(U)

→ r′
→φ(X)

→ r

→φ(U)

where part (1) implies that φ(U) is surjective since F1 is flabby. But r′ is surjective
since F2 is flabby. Hence r is surjective. �

The construction is as follows. Given a sheaf of Abelian groups X, we construct
a short exact sequence of sheaves

0 F D(F ) D(F )/F 0→ ↪ → → →

and the idea is to iterate the sequence (the D(F )/F isn’t flabby) - iterate as
follows:

C0(F ) = F

Di(F ) =D(CiF )
Ci+1(F ) =D(CiF )/CiF

and then the sequence

0 Ci(F ) D(CiF ) Ci+1(F ) 0→ → → →

is exact for all i. Putting these sequences together, we get an (exact) resolution

0 F D0(F ) D1(F ) . . .→ → → →

of F by a complex D∗(F ) where the sheaves DiF are all flabby.
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Definition 18.45. The ith cohomology group Hi(X,F ) is the ith cohomology of
the complex Γ(X,D∗F ) i.e.

Hi(X,F ) = ker(Γ(DiF ) → Γ(Di+1F ))
im(Γ(Di−1F ) → Γ(DiF ))

Since we have

0 Γ(X,F ) Γ(X,D0F ) Γ(X,C1F ) Γ(X,D1F )→ → → ↪ →

(is exact at Γ(X,D0F ) by proposition 8.14 (b)) and we have

H0(X,F ) = ker(Γ(D0F ) → Γ(D1F ) ≅ Γ(X,F )
So the global sections of a sheaf F are denoted F (X), Γ(X,F ) and H0(X,F )

Suppose that

0 F1 F2 F3 0→ → → →

is a short exact sequence of sheaves. We then have an exact sequence of morphisms
of sheaves

0 D∗F1 D∗F2 D∗F3 0→ → → →

i.e. a diagram

0 0 0

0 F1 F2 F3 0

0 D0F1 D0F2 D0F3 0

0 D1F1 D1F2 D1F3 0

⋮ ⋮ ⋮

→ → →

→ →

→

→

→

→

→

→ →

→

→

→

→

→

→ →

→

→

→

→

→

(the construction of the diagram follows easily from the universal property of cok-
ernels: the first step is to observe that

0 0 0

0 F1 F2 F3 0

0 D0F1 D0F2 D0F3 0

C1F1 C1F2 C1F3

→ → →

→ →

→

→

→

→

→

→ →

→

→

→

→

→

→ →

and then deduce that 0 → C1F1 → C1F2 → C1F3 → 0 is exact by checking on
stalks - i.e. use the corresponding result in the category of modules. Then iterate.)

Taking global sections and using lemma 18.30 (a), one obtains
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0 Γ(D0F1) Γ(D0F2) Γ(D0F3) 0

0 Γ(D1F1) Γ(D1F2) Γ(D1F3) 0

0 Γ(D2F1) Γ(D2F2) Γ(D2F3) 0

⋮ ⋮ ⋮

→ →

→

→

→

→

→

→ →

→

→

→

→

→
→ →

→

→

→

→
→

which by the standard homological algebra (examples sheet II, question 14) yields
a long exact sequence of cohomology groups:

0 H0(F1) H0(F2) H0(F3)

H1(F1) H1(F2) H1(F3)

H2(F1) . . .

→ → →

→

δ1

→ →

→
δ2

→

where the δ = δi∶Hi−1(X,F3) → Hi(X,F1) are called the connecting maps. Re-
mark: our construction of cohomology is functorial.

Lecture 19

22nd November 12:00

19.1. Local vanishing principle.

Lemma 19.31 (4.2). If F is a flabby sheaf, then Hi(X,F ) = 0, for all i > 0.

Proof. Using lemma 18.30, we have that D(F )/F is flabby and the exact
sequence

0 Γ(X,F ) Γ(X,D(F )) Γ(X,DF /F ) 0→ → → →

Repeating this argument shows that the whole complex

0 Γ(X,F ) Γ(X,D0F ) Γ(X,D1F ) . . .→ → → →

is exact and hence Hi(X,F ) = 0 for all i > 0. �

Lemma 19.32 (4.3, Resolution principle). Let

0 F F 0 F 1 . . .→ → → →

be a resolution of F by sheaves F i such that Hj(X,F i) = 0 for all i and for all
j > 0. Then Hi(X,F ) is naturally isomorphic to the ith cohomology of the complex

Γ(X,F 0) Γ(X,F 1) . . .→ →
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Proof. We have a short exact sequence 0→F →F 0 → G → 0 and an (exact)
resolution of G

0 G F 1 F 2 . . .

F 1/G

→ → →

→

→

↪
→

and proposition 8.14 (b) proves the claim for i = 0 as before. For i = 1, since
Hi(F 0) = 0 by hypothesis, the above construction implies that we have an exact
sequence

(19.8) Γ(X,F 0) Γ(X,G ) H1(X,F ) 0.→ → →

But proposition 8.14 (b) implies that

(19.9) 0 Γ(X,G ) Γ(X,F 1) Γ(X,F 2),→ → →

is exact and therefore we have induced isomorphisms

H1(X,F ) ≅ Γ(X,G )/Im Γ(X,F 0) from (19.8)

≅ ker(Γ(X,F 1) → Γ(X,F 2))
Im (Γ(X,F 0) → Γ(X,F 1)) from (19.9)

= first homology of complex Γ(X,F ∗)

If i > 1, then δ∶Hi−1(G ) →Hi(F ) is an isomorphism by hypothesis on Hj(X,F i),
and by induction on i, Hi−1(G ) is the (i − 1)-homology of the complex

Γ(X,F 1) Γ(X,F 2) . . .→ →

i.e. the ith homology of Γ(X,F ∗) �

Now we prove a locally vanishing principle. If U is an open subset of a topo-
logical space X and i∶U ↪X, we have a sheaf

UF := i∗(F ∣U)

i.e. UF (V ) = F (U ∩ V ) for V open in X. There exists an obvious morphism of
sheaves F → UF given by F (V ) → UF (V ) = F (U ∩ V ) for all open V in X.

Remark. U(−) is not right exact, e.g. take U = C/{0} ⊂ C and the exponential
short exact sequence.

Proposition 19.33 (4.4). Let B be a basis of open sets in X, closed under finite
intersections, F a sheaf of Abelian groups on X, and suppose Hj(V,F ∣V ) = 0 for
0 < j < i and for all V ∈ B. Then for any σ ∈Hi(X,F ), we can find an open cover
X = ⋃αWα with Wα ∈ B such that the image of σ in Hi(X,WαF ) is zero for each
α.

Remark. The proof in Kempf’s book [Kem93] is quite hard to understand because
he doesn’t draw the commutative diagram out (see below).

Proof. Suppose that i = 1 - in which case there are no conditions onHj(V,F ∣V ).
The universal property of cokernels implies that for any open W in X, there exists
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a commutative diagram

0 F DF DF /F 0

0 WF WDF (WDF )/(WF ) 0

W (DF /F )

→

→

→ →

→ →

→

→ → →

→

→↪
→

(to see (WDF )/(WF ) ↪ W (DF /F ) is injective - take U open in WDF - if we
have something in the image zero, then its preimage via WDF must locally be zero
by our construction here11). The cohomology class σ ∈H1(X,F ) is represented by
a section τ of D(F )/F over X since by lemma 19.31

H0(X,DF /F ) ↠H1(X,F ),
because DF is flabby. Choose a cover X = ⋃Wα with Wα ∈ B such that τ ∣Wα lifts
to a section of D(F )(Wα) for all α. Set W = Wα in the above diagram and take
sections over X. So the image of τ in Γ(X,W (DF /F )) = Γ(W,DF /F ) lifts to an
element of Γ(X,WDF ) = Γ(W,DF ), and so the image of τ in Γ(X,WDF /WF )
comes from this same element (using the fact that Γ(X,WDF /WF injects into
Γ(X,W (DF /F ))). Hence by the functoriality of our construction of cohomology,
the image of σ in H1(X,WF ) must be zero (since it comes from an element of
H0(X,WDF )) for W =Wα for all α.

Suppose now i > 1 and W ∈ B. Our claim is

(a) there exists a commutative diagram

0 F DF DF /F 0

0 WF WDF W (DF /F ) 0

→

→

→ →

→ →

→

→ → → →

(b) the sheaf D(F )/F satisfies the assumption of the proposition with i re-
placed by (i − 1)

Proof: (a) Recalling that Γ(V,WG ) = Γ(W ∩ V,G ) for any G , we obtain

0 F DF DF /F 0

0 WF WDF W (DF /F )

→

→

→ →

→ →

→

→ → →

It is required to prove that WD(F ) → W (DF /F ) is a surjection. For any V ∈ B,
we have W ∩ V ∈ B and so H1(W ∩ V,F ) =H1(W ∩ V,FW∩V ) = 0 by assumption.
Therefore

0 Γ(W ∩ V,F ) Γ(W ∩ V,DF ) Γ(W ∩ V,DF /F ) 0→ → → →

is exact, i.e.

0 Γ(V,WF ) Γ(V,WDF ) Γ(V,W (DF /F )) 0→ → → →

11From examples class 2.

44



Lecture 20

is exact. Since this is true for all V ∈ B, we deduce the stalk sequences are exact
and hence claim (a) follows.

Furthermore, Hj(V,DF /F ) ≅ Hj+1(V,F ) for j > 0 from the cohomology of
the flasque sheaf (lemma 19.31) and so (b) follows from our previous assumptions
on F .

As D(F ) and WD(F ) are flabby, claim (a) above implies that there exists
isomophisms in the commutative diagrams as shown

Hi−1(X,DF /F ) Hi(X,F )

Hi−1(X,W (DF /F )) Hi(X,WF )

→∼

→ →

→∼

and so the proposition follows from claim (b) and induction on i. �

Lecture 20

25th November 12:00

Theorem 20.34 (4.5, Serre). Let F be a quasi-coherent OX-module on an affine
variety X. Then Hi(X,F ) = 0 for all i > 0.

Proof. By induction on i. We consider our standard basis of affine open
sets B consisting of sets D(f) for f ∈ k[X]. B is certainly closed under finite
intersections and we now apply the result we proved last time (proposition 19.33):
given α ∈Hi(X,F ), there exists a finite open cover U1, . . . , Ud by elements of B such
that the image in Hi(X,UlF ) is zero for each l (using the induction hypothesis).
Consider the short exact sequence

0 F ⊕l UlF G 0→ → → →

where F (U) ↪ ⊕lF (U ∩ Ul) for all U (sheaf condition (A)). For each D(f) ∈ B,

D(f)F is also a quasi-coherent OX -module (namely, if F corresponds to a k[X]-
module M , the D(f)F corresponds to the k[X]-module Mf ) and so using theorem
15.24 it follows that F is also quasi-coherent (in fact G ≅ coker(M → ⊕jMfj)∼).

So by the cohomology long exact sequence α = δ(β) for some β ∈ Hi−1(X,G ). If
i > 1, then induction yeilds that β = 0 so α = 0. If i = 1, then α = 0 since Γ(X,−) is
an exact functor, for quasi-coherent sheaves on an affine variety X (see the remark
following theorem 15.24) and the fact that the long exact sequence on cohomology
is exact. Therefore α = 0 in this case too. �

Definition 20.46. A morphism φ∶X → Y is called affine if for every open affine
piece V of Y , φ−1(V ) is an open affine piece of X.

Remark. You may see a different definition in the books, but this is equivalent
(see [Kem93, §II.4]).

Lemma 20.35 (4.6). Let φ∶X → Y be an affine morphism of varieties and F a
quasi-coherent OX-module. Then there exists a natural isomorphisms Hi(X,F ) ≅
Hi(Y,φ∗F ).

Proof. Let o→F →F ∗ be a flabby-resolution of F . Then for all affine open
sets V in Y , by theorem 20.34 above, we have Hi(φ−1V,F ) = 0 for all i > 0. and so

0 Γ(φ−1V,F ) Γ(φ−1V,F 0) Γ(φ−1V,F i) . . .→ → → →
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is exact. Hence

0 φ∗F φ∗F
0 φ∗F

1 . . .→ → → →

induces an exact sequence on stalks, i.e. 0 → φ∗F → φ∗F
∗ a flabby resolution of

φ∗F (clearly if F 1 is flabby then φ∗F
i is flabby). Therefore Hi(Y,φ∗F ) is the

ith cohomology of Γ(Y,φ∗F ∗), which is the ith cohomology of Γ(X,F ∗) which is
=Hi(X,F ). �

Remark. For φ∶X → Y affine, F quasi-coherent/coherent on X, then theorem
15.24 implies that φ∗F is quasi-coherent/coherent on Y (for any affine piece U of
Y with A = k[U], then φ−1(U) has coordinate ring B with φ∗∶A → B and if F is
given by a B-module M , then φ∗F is given by M considered as an A-module).

Example. Let ι∶X ↪ Pn, X a projective variety, F a quasi-coherent sheaf on X,
then Hi(X,F ) ≅ Hi(Pn, ι∗F ) i.e. we may take the cohomology on X or Pn and
get the same results.

20.1. Cohomology of An/{0} and Pn. I am going to give a sketch of this
and refer you to Kempf [Kem93, §IX.1] for the details. Since OAn(U) is a k[An] =
k[X1, . . . ,Xn]-module for any open U ⊂ An/{0}, the cohomology groups

Hi(An/{0},OAn)

will all be k[X1, . . . ,Xn] modules in a natural way.

Proposition 20.36 (4.7). One has the following

(1) Hi(An/{0},OAn) = 0 unless i = 0 or i = n − 1,
(2) If n = 1, then H0(A1/{0},OA1) = k[X1,X

−1
1 ] and Hi(A1/{0},OA1) = 0 for

i > 0,
(3) if n > 1, H0(An/{0},OAn) = k[X1, . . . ,Xn] and

Hn−1(An/{0},OAn) = ⊕
p∈Z,pi≤−1

kXp1
1 . . .Xpn

n

(with the obvious module structure, i.e. Xa
i kills kXp1

1 . . .Xpn
n if pi+a ≥ 0).

Proof: (sketch). See Kempf [Kem93, §IX.1.1] for the details. We induct
on n. The case n = 1: A1/{0} = D(X1) an affine variety with H0(D(X1),OA1) =
k[X1,X

−1
1 ] and Hi(D(X1),OA1) = 0 for i > 0. The case n > 1: there exists a short

exact sequence

0 OAn/{0} D(Xn)OAn/{0} ⊕
pn≤−1

OAn/{0}X
pn
n 0→ → → →

(over affine pieces D(Xi), i ≠ n, this corresponds to

k[X1, . . . ,Xn,X
−1
i ] ↪ k[X1, . . . ,Xn,X

−1
i ,X−1

n ] → ⊕
pn≤−1

k[X1, . . . ,Xn−1,X
−1
i ]Xp

n

Over D(Xn), we have (An−1/{0}) ∩D(Xn) = ∅ and so sections of right-hand sheaf
are zero and we just have

k[X1, . . . ,Xn,X
−1
n ] ∼→ k[X1, . . . ,Xn,X

−1
n ] → 0) �
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Lecture 21

27th November 12:00

Proposition 21.37 (4.7). One has the following

(a) Hi(An/{0},OAn) = 0 unless i = 0 or i = n − 1,
(b) If n = 1, then H0(A1/{0},OA1) = k[X1,X

−1
1 ] and Hi(A1/{0},OA1) = 0 for

i > 0,
(c) if n > 1, H0(An/{0},OAn) = k[X1, . . . ,Xn] and

Hn−1(An/{0},OAn) = ⊕
p∈Z,pi≤−1

kXp1
1 . . .Xpn

n

(with the obvious module structure, i.e. Xa
i kills kXp1

1 . . .Xpn
n if pi+a ≥ 0).

Proof: (sketch). n > 1. We have a sequence

0 OAn/{0} D(Xn)OAn/{0} ⊕pn≤−1 OAn−1/{0}X
pn
n 0→ → → →

We have that this sequence is exact on each D(Xi) for all i and so we have a
short exact sequence of sheaves on An/{0}. Since D(Xn) is affine and the inclusion
D(Xn) ↪ An−1/{0} is an affine map, Serre duality 20.34 and lemma 20.35 implies
the middle sheaf has no higher Hi for i > 0 and so we have

H0( ) = k[X1, . . . ,Xn,X
−1
n ]

The long exact sequence on cohomology enables us to prove results by induction
on n - for more details see Kempf [Kem93, pp. 113-114]. �

Corollary 21.38 (4.8).
(a) Hi(Pn,OPn(d)) = 0 unless i = 0, n,
(b) H0(Pn,OPn(d)) ≅ k[X0, . . . ,Xn]deg d ((corollary 17.28) e.g. = 0 for d < 0

in particular this is zero if d > −(n + 1)),
(c) Hn(Pn,OPn(−n − 1)) is 1-dimensional and the multiplication

H0(Pn,OPn(d)) ×Hn(Pn,OPn(−n − 1 − d)) →Hn(Pn,OPn(−n − 1)) ≅ k
is non-degenerate for all d ≥ 0.

Remark. People who know about duality may recognise statement (c) as a man-
ifestation of Serre duality - the thing on the right Hn(Pn,OPn(−n − 1)) is the
‘canonical’ sheaf on projective space.

Proof:(sketch). See Kempf [Kem93, IX.1.2] for the ‘gory’ details. Consider
the projection map π∶An+1/{0} → Pn. There exists a basis B of open affine Dh(F )

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=Pn/V h(F )

of Pn (F a homogeneous polynomial) such that π−1(Dh(F )) =D(F ) ⊂ An+1/{0} is
an open affine subset of An+1/{0} therefore the conclusion and the proof of (4.6)
apply. Now show that

π∗OAn+1 ≅ ⊕
d∈Z

OPn(d),

where OPn(d) = OPn(dH) where without loss of generality H is the hyperplane
X0 = 0 (see example sheet III, question 5). Moreover, if we let k∗ act on An+1/{0},
and hence on OAn+1/{0} in the obvious way, we identify OPn(d) as the part of

π∗OAn+1/{0} which is homogeneous of degree d i.e. λ ∈ k∗ acts by s↦ λds. Therefore
lemma 20.35 implies that

Hi(An+1/{0},OAn+1) ≅Hi(Pn, π∗OAn+1/{0}) = ⊕
d∈Z

Hi(Pn,OPn(d))

(for all i) where the degree d part of the left hand side corresponds toHi(Pn,OPn(d)).
This enables Kempf to deduce corollary 21.38 from proposition 21.37. �
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21.1. Čech cohomology. Let X be a topological space, U = {U0, . . . , Ud} an
open cover. For F a sheaf of Abelian groups, define a complex

Č∗(U,F )∶ Č0(U,F ) δ
0

→ Č1(U,F ) δ
1

→ Č2(U,F ) δ
2

→ . . .

where

Čn(U,F ) = ⊕
i0<i1<...<in

Γ(Ui0...in ,F )

where (Ui0...in = Ui0 ∩ ⋅ ⋅ ⋅ ∩Uin) and differentials δn given by δn(α) = β, where

βi0,...,in+1 = ∑
0≤j≤n

(−1)jαi0,...,̂ij ,...,in ∣
Ui0,...,in+1

As usual, δ2 = δn+1δn = 0 and Č∗(U,F ) is a complex. Moreover, we have an
injection

0→ Γ(X,F ) ε→ Č0(U,F )
where s↦ (s0, . . . , sd), si = s∣Ui . Moreover, note that

δ(ε(s))ij = s∣Uij − s∣Uij = 0

Definition 21.47. The Čech cohomology Ȟi(U,F ) is the ith cohomology of the
complex Č∗(U,F ).

Remark. Ȟ0(U,F ) = ker δ0 consists of giving section (s1, . . . , sd) with si ∈ F (Ui)
such that si∣Uij = sj ∣Uij for all i, j and so the sheaf conditions imply that ε induces
an isomorphism

Γ(X,F ) ∼→ Ȟ0(U,F )

Lemma 21.39 (4.9). If Ul = X for some 1 ≤ l ≤ d, then the complex Č∗(U,F ) is
exact and Ȟi(U,F ) = 0 for i > 0.

Proof. For n > 0, we define maps

kn∶ Čn(U,F ) → Čn−1(U,F )
such that

(21.10) δn−1kn + kn+1δn = idČn

namely kn(α) = β where

βi0,...,in−1 =
⎧⎪⎪⎨⎪⎪⎩

(−1)kαi0,...,l,...in−1 if ik−1 < l < ik
0 otherwise

(aside: this is called a chain homotopy) (n.b. Kempf is missing the (−1)k factor)
(it is an easy check that (21.10) is true (see example sheet III, question 7)). So
given α ∈ Čn(U,F ) such that δnα = 0, we have α = δn−1(knα) and so the complex
is exact. �

Proposition 21.40 (4.10). If F is a quasi-coherent sheaf on a variety X which
has an open affine cover U = {U1, . . . , Ud}, then Hi(X,F ) ≅ Ȟi(U,F ) for all i.

Proof. For the given U, we define sheaves Či(F ) for i = 0,1, . . . as follows for
V ⊂X open, set Či(F )(V ) = Či(U′,F ), where U′ is the open cover of V given by
U0 ∩ V, . . . , Ud ∩ V and where the restriction maps are obvious. Since F is a sheaf,
so too are the Či(F ). We then get a complex of sheaves Č∗(F ), and a sequence

0 F Č0(F ) Č1(F ) . . .→ → → →

We’ll finish this next time. �
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Lecture 22

29th November 12:00

22.1. Cohomology of coherent sheaves.

Proposition 22.41 (4.10). If F is a quasi-coherent sheaf on a variety X with
open affine cover U = {U1, . . . , Ud}, then Hi(X,F ) ≅ Ȟi(U,F ).

Proof. We constructed a complex of sheaves

0 F Č0(F ) Č1(F ) . . .→ → → →

If we can show that F → Č∗(F ) is a resolution and Hj(X, Či(F )) = 0 for all i
and all j > 0, the result follows from lemma 19.32. The first statement is local,
so we may assume that X = Ul and the exactness follows lemma 21.39. To show
vanishing note that

Či(F ) ≅ ⊕
k0<k1<⋅⋅⋅<ki

Uk0∩⋅⋅⋅∩Uki
F

As X is separated, Ui ∩ Uj ≅ ∆X ∩ (Ui × Uj) is affine and so too is Uk0 ∩ ⋅ ⋅ ⋅ ∩ Uki ,
and moreover the inclusion ι∶Uk0 ∩ ⋅ ⋅ ⋅∩Uki →X is an affine map. For U open affine
in X, Uk0 ∩ ⋅ ⋅ ⋅ ∩Uk0 ∩U is affine. We have

Hj(X, (Uk0∩...Uki)F ) =Hj(X, ι∗(F ∣
Uk0∩⋅⋅⋅∩Uki

))

≅Hj(Uk0 ∩ ⋅ ⋅ ⋅ ∩Uki ,FUk0∩⋅⋅⋅∩Uki
) (by lemma 20.35)

= 0 (for j > 0) (by theorem 20.34) �

Remark. In particular, Hj(X,F ) = 0 for j > d, e.g. if X is a projective variety,
F a quasi-coherent sheaf on X, then Hj(X,F ) = 0 for j > dimX (since by a basic
result in dimension theory, all components of a general hyperplane section of X
have codimension 1, and so we can cover X by dimX + 1 affine pieces).

Lemma 22.42 (4.11). Suppose V ⊂ PN is a projective variety with affine pieces
Ui = V ∩ {Xi ≠ 0} and F a quasi-coherent sheaf on X. Given σ ∈ Γ(U0,F ),
there exists m ≥ 0 such that σ extends to a section in Γ(V,F (m)), where F (m) =
F ⊗OV OV (m).

Proof. Consider F (m) as F (mH) = F ⊗OV OV (mH) for H a hyperplane
X0 = 0. So F ∣U0≅ F (m) ∣U0 for all m. Set τ0 = σ ∈ Γ(U0,F ). For j > 0, let
A = k[Uj] and M = F (Uj) - if f = X0/Xj ∈ A, σ ∣U0∩Uj corresponds to an element
of Mf and so fmσ ∣U0∩Uj corresponds for some m > 0 to an element of M i.e.
extends to a section τj ∈ F (Uj). Without loss of generality, choose m≫ 0 to work
for all j > 0. Now, we have

τj ∣Uij∩U0 = (Xi

Xj
)
m

τi∣Uij∩U0

for all i, j > 0. Choosing Uij as an affine piece with Uij ∩U0 is given by X0/Xj ≠ 0,
then for some r ≥ 0 we have

(X0

Xj
)
r

τj ∣Uij = (Xi

Xj
)
m

(X0

Xj
)
r

τi∣Uij

= (Xi

Xj
)
m+r

(X0

Xi
)
r

τi∣Ui∩Uj
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Without loss of generality, the same r works for all pairs i, j > 0 and we may replace
τj by

(X0

Xj
)
r

τj = (X0

Xj
)
m+r

σ∣Uij

and replace m by m+ r. So for some m≫ 0, we have sections τj ∈ F (Uj) such that

τj ∣Uij = (Xi

Xj
)
m

τi∣Uij

for all i, j > 0. By construction

τj ∣U0j = (X0

Xj
)
m

τ0∣U0j

for all j. This however, is precisely the data needed to define a global section of
F (m), by examples sheet III, question 8. �

Theorem 22.43 (4.12). Let F be a coherent sheaf on a projective variety X ⊂ PN .
Then

(a) Hi(X,F ) finite dimensional over k for all i,
(b) there exists n0 such that Hi(X,F (n)) = 0 for i > 0, n ≥ n0.

Remark. This result and the previous are the two most significant ones from FAC
[Ser55].

Proof. First we do some mumbling, so that we can just take X = PN . Given
any coherent OX -module G , there exists natural morphisms of OPn -modules (ex-
amples sheet II, question 11). Consider

ι∗F ⊗OPN
ι∗G Ð→ ι∗(F ⊗OX G )

By considering affine pieces, some commutative algebra gives us that we get an
isomorphism on stalks and hence an isomorphism on sheaves. Take G = OX(m) =
ι∗OPN (n). By examples sheet II, question 13, we have

ι∗G = ι∗OX ⊗OPN
OPN (n)

Noting that

ι∗F ⊗OPN
ι∗OX

∼Ð→ ι∗F

(clear have B → A, therefore M ⊗B A ≅M) we deduce that

ι∗F ⊗OPN
OPN (n) ≅ ι∗(F (n))

Moreover, by corollary 16.26, ι∗F is a coherent OPN -module (over AN it corre-
sponds to a finitely generated k[X1, . . . ,XN ]-module). Therefore without loss of
generality we can take X = PN .

The proof is by downward induction on i. If i > N , we know the cohomology
is zero. For i ≤ N : on AN = U0, we have a surjection of sheaves

Op
An F ∣An 0→φ →

by corollary 16.26 i.e. F ∣AN is generated by sections s1, . . . , sp ∈ Γ(An,F ). By
lemma 22.42 above, then extend to give sections s̃1, . . . , s̃p of F (m) for some m > 0.

We deduce that φ extends to a morphism Op
PN

φ̃Ð→F (m), surjective on stalks over
U0. Taking the sum of such maps for i = 0, . . . ,N , we get a surjective morphism

Oq
PN

ψÐ→F (m)
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for some suitable m≫ 0. Now consider the short exact sequence

(22.11) 0 G Oq
PN (−m) F 0→ → → →

where G is coherent by corollary 16.26.
Now we prove (a). By corollary 21.38 we have Hi(PN ,F ) ≅ Hi+1(PN ,G ) for

1 ≤ i < N − 1. We have

HN−1(PN ,F ) ↪HN(PN ,G )
There exists a surjection

q

⊕
i=1

HN(PN ,OP(−m)) ↠HN(PN ,F )

Local map implies that HN(PN ,F ) is finite dimensional (since the left-hand-side is
finite dimensional by corollary 21.38) Therefore (a) is true for i = N . For i < N , the
result follows by downward induction from Hi+1(PN ,G ) being finite dimensional.

(b) The result follows from OPN (n) by corollary 21.38 and induction on i,
tensoring equation (22.11) by OPN (n) and passing to the long exact sequence of
cohomology. �

Definition 22.48. For F a coherent sheaf on a projective variety X of dimension
d, we define the Euler characteristic of F to be

χ(X,F ) :=
d

∑
i=0

(−1)ihi(X,F )

where hi(X,F ) = dimkH
i(X,F ) (which makes sense because of the last result).

Lecture 23

2nd December 12:00

Examples class III is Friday the 17th January at 4pm in MR3 (pavilion E).
The solutions to the problems will be in my pigeon-hole from Wednesday the 15th

January - help yourself to one copy.

23.1. §5: Differentials & Riemann-Roch for curves. Suppose that V is
an irreducible (it is possible to do this also in the general case) variety of dimension
n = tr degk k(V ). The space of rational 1-forms on V , denoted Ω1

k(V )/k is the k(V )-
vector space which is universal with respect to k-derivations into k(V ) vector spaces
M .

k(V ) Ω1
k(V )/k

M

→d

→
D

→ ∃!

Concretely, it is the k(V )-vector space generated by elements dg for g ∈ k(V )
quotiented by the relations

d(f + g) = df + dg,

d(fg) = f dg + g df,

da = 0,

for f, g ∈ k(V ) and a ∈ k (we say that such a d is a k-derivation). The space of
related r-forms is

Ωrk(V )/k := Ω1
k(V )/k ∧ . . . ∧Ω1

k(V )/k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r times
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Exercise: if x1, . . . , xn is a separating transcendence basis for k(V )/k i.e.

k(V )/k(x1, . . . , xn)
is separable, and finite, then dx1, . . . ,dxn is a basis for Ω1

k(V )/k over k(V ). It follows

that

dimk(V ) Ωrk(V )/k = (n
r
)

Definition 23.49. An r-form ω is regular at P ∈ V if it can be written

ω = ∑
i

fi dgi1 ∧ ⋅ ⋅ ⋅ ∧ dgir

with fi and gj in OV,P .

Given U open in V , set Ωr(U) to be the regular r-forms on U , a module over
OV (U). So we get a sheaf of regular r-forms ΩrV , an OV -module. Suppose that
V ⊆ AN affine and A = k[V ]. Let Ω1

A/k be the universal A-module with respect

to k-derivations in A-modules M , i.e. given D∶A → M a k-derivation, then there
exists a factorisation

A Ω1
A/k

M

→d

→
D

→

∃!

and we define ΩrA/k
:= ∧rΩ1

A/k.

If A = k[X1, . . . ,XN ]/I, then Ω1
A/k is the A-module generated by dX1, . . . ,dXN

with relations (�) df = 0 for all f ∈ I.
Claim: ω ∈ Ωrk(V )/k is regular at P ∈ V iff ω ∈ ΩrA/k ⊗OV,P ⊂ Ωrk(V )/k.

Proof. The direction ‘←’ is clear. For the direction ‘→’, note that for g =
h/u ∈ OV,P (h,u ∈ A,u(P ) ≠ 0), then we have dg = 1

u
dh − h

u2 du ∈ Ω1
A/k ⊗OV,P . �

Lemma 23.44 (5.1). If V is an irreducible affine, A = k[V ], then Ω1
A/k = Γ(V,Ω1

V )
and similarly for r-forms.

Proof. We have Ω1
A/k ⊂ Ω1

V (V ) as A-modules. The previous claim implies

that localisations at each maximal ideal are equal so Ω1
A/k = Ω1

V (V ) (cf. example

sheet II, question 12). �

Definition 23.50. The Zariski tangent space of V at P is defined

TV,P := Hom k(mP /m2
P , k)

as a k = OV,P /mP vector space.

Assuming V is affine, A = k[V ], Ω1
V,P ≅ Ω1

A/k⊗OV,P . The derivation d∶A→ Ω1
A/k

induces a derivation

d∶mP Ð→ Ω1
A/k ⊗OV,P = Ω1

V,P

and hence a linear map of k = OV,P /mP vector spaces

mP /m2
P ≅ mP ⊗OV,P /mP

dP ∶d⊗1Ð→ Ω1
A/k ⊗OV,P /mP ≅ Ω1

V,P /mPΩ1
V,P

(and dP is zero on m2
P since dP (fg) = f(P )dg + g(P )df).

Proposition 23.45 (5.2). dP is an isomorphism of k-vector spaces.

Proof. Exercise sheet III, question 10. �
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Definition 23.51. We say that P ∈ V is smooth (or non-singular) if dimTV,P = n
(= dimV ) and hence iff dimmP /m2

P = dim Ω1
V,P /mPΩ1

V,P = n.

We are saying that the local ring is regular.

23.2. Case of curves. (For more details see my abbreviated lecture notes
from the algebraic curves course [Wil]). When n = 1, then P is smooth iff
dimK mP /m2

P = 1 which is true iff (by Nakayama’s lemma) mP = (t), where t is
any element of mP /m2

P . And this is the case iff (by [AM69, §9.2]) every element
a ∈ OV,P is of the form utn for a unit u of OV,P and n ≥ 0, i.e. OV,P is a discrete
valuation ring with valuation

vP ∶OV,P /{0} → N
a = utn ↦ n

So proposition 23.45 implies that dP t = dt generates Ω1
V,P /mPΩ1

V,P . Thus by

Nakayama’s lemma, dt generates Ω1
V,P as an OV,P -module, whence dt generates

Ω1
V,Q as an OV,Q-module for all Q in some neighbourhood U ∋ P (without loss of

generality V ⊂ AN , then dX1, . . . ,dXN do generate and they can be expressed in
term of dt with coefficients in OV,P ). Therefore, there exists a surjection of sheaves
OU ↠ Ω1

U inducing isomorphisms on stalks for all Q ∈ U i.e. Ω1
U ≅ OU . Thus for V

a smooth curve, Ω1
V is invertible. For a smooth irreducible variety V of dimension

n, a similar proof shows that ΩnV is an invertible sheaf, the canonical sheaf KV of
V .

Theorem 23.46 (Serre duality). If V is a smooth projective variety of dimension
n, F a locally free OV -module of rank r, then there exists a perfect pairing

Hi(F ) ×Hn−i(KV ⊗F r) Ð→Hn(KV ) ≅ k

for all i (cf. 21.38(d) for invertible sheaves on Pn) (where KPn ≅ OPn(−n − 1)).

23.3. Divisors on smooth curves and Riemann-Roch theorem. For V
a smooth irreducible curve, P ∈ V , there exists a valuation vP ∶OV,P /{0} → N. A
local parameter t at P is an element t with vP = 1 i.e. mP = (t). There exists an
extension to a valuation vP ∶k(V )∗ → Z i.e. vP (f) ≥ 0 iff f ∈ OV,P . Given f ∈ k(V )∗,
there exists only finitely many points P such that vP (f) ≠ 0 (write f = F /G and
then vP (f) ≠ 0 only when P is a zero of F or G - this is just a finite set of points
by example sheet III, question 3).

Lecture 24

4th December 12:00

24.1. Curves and Riemann-Roch. Next term: Prof. Mark Gross: Intro-
duction to Mirror Symmetry, a graduate course.

A divisor D on V is a finite sum ∑niPi with ni ∈ Z and Pi ∈ V called a Cartier
divisor on V . The group of divisors Div(V ) is the free Abelian group on points
of V and the degree of a divisor is given by degD = ∑ni ∈ Z. For f ∈ k(V )∗, the
principal divisor associated to f is

(f) := ∑
P ∈V

vP (f)P

Two divisors D1,D2 are linearly equivalent if there exists f ∈ k(V )∗ such that
D1 = D2 + (f). If V is projective, then (f) = 0 iff f ∈ k∗ (corollary to proposition
11.17).
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Definition 24.52. We define the divisor class group Cl(V ) by

Cl(V ) = Div(V )/ ∼

where the equivalence relation is linear equivalence.

We say that D = ∑niPi is effective (written D ≥ 0) if ni ≥ 0 for all i. Given
D = ∑niPi, define a subsheaf OV (D) ⊂ k(V ) by

Γ(U,OV (D)) = {f ∈ k(V )∗∶ vPi(f) ≥ −ni for all Pi ∈ U
and regular elements on U

} ∪ {0}

If ti is a local parameter at Pi, then OV (D) is invertible and locally generated by
t−nii (cf. Cartier divisors). The dual of OV (D) is OV (−D).

Lemma 24.47 (5.3). One has that OV (D) ≅ OV iff D is principal (and thus
OV (D1) ≅ OV (D2) iff D1 ∼D2). Given an invertible sheaf L , there exists a divisor

D on V such that L ≅ OV (D) (thus Cl(V ) ∼→ Pic(V ) given by D ↦ OV (D)).

Proof. If D = (f), then multiplication by f−1 yields an isomorphism OV
∼→

OV (D). Conversely, if OV ≅ OV (D), let f−1 be a global section of OV (D) corre-
sponding to 1 ∈ OV (V ). Then D = (f) so D1 ∼ D2 iff D1 −D2 is principal which
is true iff OV (D1 −D2) ≅ OV which is true iff OV (D1) ≅ OV (D2). Moreover ad-
dition of divisor classes corresponds to tensor products of corresponding invertible
sheaves. Finally, any invertible sheaf L comes from a divisor class on V - use
examples sheet III, question 1. �

Given a non-zero rational 1-form ω on V and P ∈ V , choose a local parameter
t ∈ mV,P , a generator of the maximal ideal. Since we saw that dt is a local generator
of the 1-forms Ω1

V and ker Ω1
V is 1-dimensional basis over k(V ) (which follows from

the result last time about transcendence bases or just from the remarks just made).
We deduce that there is f ∈K(V )∗ such that ω = f dt, and we define vP (ω) := vP (f)
(this is independent of the choice of t, but it is not a trivial thing to see this and
t is zero except at finitely many points - see lemmas 3.1 & 3.2 from the algebraic
curves course notes [Wil]).

Definition 24.53. A canonical divisor DV is of the form (ω) = ∑P ∈V vP (ω)P . This
defines a unique divisor class (because the space of 1-forms is one-dimensional) - if
ω′ = fω, then (ω′) = (f) + (ω).

Definition 24.54. For V a smooth projective variety, the genus is defined

g(V ) := dimk Ω1
V (V )

Proposition 24.48 (5.4). Let KV = (ω) then Ω1
V ≅ OV (KV ).

Proof. For any U ⊂ V , ω′ ∈ Γ(U,Ω1
V ) iff vP (ω′) ≥ 0 for all P ∈ U and this

is true iff ω′ = fω with (KV + (f))∣U ≥ 0 which is true iff f ∈ Γ(U,OV (KV )).
We write hi(V,D) for hi(V,OV (D)) for i = 0,1. Serre duality then implies that
h1(V,D) = h0(KV −D). For curves, there are also several classical proofs of Serre
duality. �

Theorem 24.49 (5.5, Riemann-Roch for curves). Let V be a smooth projective
curve and let D be a divisor on V , then

h0(D) − h0(KV −D) = 1 − g(V ) + degD.

Putting D =KV , we deduce in particular that deg(KV ) = 2g − 2.
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Proof. We are required to prove that χ(V,OV (D)) = 1− g + degD (*). Write
D =D1−D2 (D1,D2 ≥ 0 and disjoint). Suppose that D2 = ∑niPi, then there exists
a short exact sequence of sheaves

0 OV (−D2) OV OD2 0→ → → →

where OD2 denotes the skyscraper sheaf supported on the Pi, with stalks

OV,P /mniPi ≅ k
ni

of Pi (since OV,Pi is a discrete valuation ring, it is easy to see that OV,Pi/mniPi has

dimension ni over k). Therefore h0(OD2) = degD2 and hi(OD2) = 0 for i > 0 (e.g.
OD2 is flabby). We tensor the previous sequence to get

0 OV (D) OV (D1) OD2 0→ → → →

The long exact sequence on cohomology implies that χ(V,OV (D)) = χ(V,OV (D1))−
degD2. We now tensor the sequence

0 OV (−D1) OV OD1 0→ → → →

by OV (D1) to get a short exact sequence

0 OV OV (D1) OD1 0→ → → →

and hence χ(OV (D1)) = χ(OV ) + degD1 (from the long exact sequence on coho-
mology). Putting these two formulæ together, we obtain (*). Setting D =KV , and
using h0(OV ) = 1 (corollary 12.19 to proposition 11.17), get g − 1 = 1 − g + degKV

and thus degKV = 2g − 2. �
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