Example Sheet 2

- (1) Let (X, \mathcal{O}_X) be an abstract variety and A denote the k-algebra $\mathcal{O}_X(X)$. For $f \in A$, we set $X_f = \{P \in X : f(P) \neq 0\}$; prove that $\mathcal{O}_X(X_f) = A_f$.
- (2) In $\S 2$, we defined C^{∞} and complex manifolds sheaf-theoretically; show these definitions are equivalent to the classical ones, expressed in terms of charts, at lases and transition functions.
- (3) If X and Y are irreducible varieties, show that the product $X \times Y$, with the Zariski topology, is an irreducible space (and hence, once one has defined the structure sheaf, is an irreducible variety).
- (4) Show that a smooth manifold M is compact if and only if, for any smooth manifold N, the projection map $\pi: M \times N \to N$ is closed.
- (5) Show that the forms of degree d in $k[X_0, \ldots, X_N]$, modulo multiplication by non-zero constants, are parametrized by a projective space of dimension $\binom{d+N}{N} 1$. Show that the reducible forms correspond to a closed subvariety.
- (6) Let X be an irreducible variety defined over \mathbb{C} . We define the classical topology on X by defining it on the affine pieces U of X in the obvious way: we can embed $U \hookrightarrow \mathbb{C}^n$ and then take the induced topology from the classical topology on \mathbb{C}^n . If X is complete, why does Chow's Theorem imply that X is compact in the classical topology?
- (7) If X is a variety over k with decomposition $X = X_1 \cup ... \cup X_N$ into irreducible components, show that

$$\operatorname{Rat}(X) \cong k(X_1) \times \ldots \times k(X_N)$$

as a product of k-algebras. Prove that two irreducible varieties are birationally equivalent if and only if their function fields are isomorphic over k. Deduce that two general varieties X and Y are birationally equivalent if and only if $Rat(X) \cong Rat(Y)$ as k-algebras.

- †(8) If X is an affine variety with coordinate ring A and irreducible components $X_1, \ldots X_N$, and Z is a closed subset of X not containing any component X_i , prove that there exists $f \in I(Z) \subset A$ which does not vanish identically on any X_i . Prove that a basic open set D(g), where $g \in A$, is dense if and only if g is not a zero-divisor. Deduce that $\text{Rat}(X) \cong \text{tot}(A)$ as k-algebras.
- (9) If V and W are affine varieties, we consider the k-algebra $A = k[V] \otimes_k k[W]$; show that A is a finitely generated algebra. Let P now denote the k-algebra of all functions $V \times W \to k$, with pointwise addition and multiplication. We can define a morphism of k-algebras $\phi: A \to P$ by $f \otimes g \mapsto \theta$, where $\theta(x,y) = f(x)g(y)$, extended linearly. Show that ϕ is injective and deduce that A is a reduced k-algebra.

Deduce now that $k[V \times W] \cong A$. What universal property is satisfied by the product variety $V \times W$?

- (10) If a locally free \mathcal{O}_X -module \mathcal{M} of rank r is trivialized with respect to an open cover $\{U_i\}$ by transition functions $\psi_{ji} \in \Gamma(U_{ij}, GL(r, \mathcal{O}_X))$, show that its dual \mathcal{M}^{\vee} is trivialized with respect to $\{U_i\}$ by transition functions given by the transpose of $\psi_{ji}^{-1} = \psi_{ij}$.
- (11) Given a finite open cover $\{U_i\}$ of a ringed space (X, \mathcal{O}_X) , and transition functions $\psi_{ji} \in \Gamma(U_{ij}, GL(r, \mathcal{O}_X))$ satisfying the usual compatibility conditions, prove that there exists a locally free \mathcal{O}_X -module of rank r with these transition functions.
- (12) Let V denote an affine variety with k[V] = A, and M an A-module. Let \mathcal{B} denote the basis of open sets of the form D(f) for $f \in A$ and \tilde{M} denote the \mathcal{B} -presheaf of \mathcal{O}_X -modules defined by $\tilde{M}(D(f)) = M \otimes_A \mathcal{O}_X(D(f))$. Show that \tilde{M} is in fact a \mathcal{B} -sheaf (cf (1.6)).
- (13) Let $\phi = (f, f^{\sharp}) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of varieties. Is the morphism $f^{-1}\mathcal{O}_Y \to \mathcal{O}_X$ of sheaves of rings on X in general either surjective or injective?
- (14) Let $f: X \to Y$ be a continuous map between topological spaces, and let \mathcal{F} be a sheaf of abelian groups on Y. If $f^{-1}\mathcal{F}$ is the inverse image sheaf as defined in lectures, and $P \in X$, show that $(f^{-1}\mathcal{F})_P \cong \mathcal{F}_{f(P)}$.

For U open in X, we define

$$\mathcal{G}(U) = \lim_{V \supset f(U)} \mathcal{F}(V),$$

where the (direct) limit is taken over all open subsets V of Y containing f(U); by defining appropriate restriction maps, show that \mathcal{G} may be made into a presheaf.

Show that there is a natural morphism of presheaves $\mathcal{G} \to f^{-1}\mathcal{F}$. *Show that this morphism defines isomorphisms an stalks.* Deduce that the sheafification of \mathcal{G} is isomorphic to $f^{-1}\mathcal{F}$.

(15) For M an A-module, prove that M = 0 if and only if $M_{\mathbf{m}} = 0$ for all maximal ideals \mathbf{m} in A. Deduce that a sequence of A-modules

$$0 \to M \to N \to P \to 0$$

is exact if and only if the sequences of $A_{\mathbf{m}}$ -modules

$$0 \to M_{\mathbf{m}} \to N_{\mathbf{m}} \to P_{\mathbf{m}} \to 0$$

are exact for all maximal ideals m.

 \dagger (16) Suppose that $\phi: Y \to X$ is a morphism of affine varieties, and \mathcal{F} is a quasi-coherent \mathcal{O}_X -module on X. Show that $\phi_*\phi^*\mathcal{F} \cong \mathcal{F} \otimes_{\mathcal{O}_X} \phi_*\mathcal{O}_Y$. Deduce the same result holds when ϕ is a morphism of abstract varieties with the property that for any affine piece U of X, the inverse image $\phi^{-1}U$ is an affine piece of Y.