Example Sheet 1

- (1) If V is an affine or projective variety, show that the Zariski topology on V is compact.
- (2) Suppose that V is an irreducible affine variety. Show that the ring of everywhere regular rational functions on V is just the coordinate ring. Show that the only everywhere regular rational functions on \mathbf{P}^n are the constants.
- (3) For $\phi: V \to W$ a morphism of affine varieties, and $\phi^*: k[W] \to k[V]$ the induced map on coordinate rings, show
 - (a) ϕ is dominating (i.e. its image is dense in W) iff ϕ^* is injective.
 - (b) ϕ is an isomorphism onto a subvariety of W iff ϕ^* is surjective.
- (4) Using the universal property of tensor product, show that for A-modules M, N, P, there exists an isomorphism

$$\operatorname{Hom}_A(M \otimes_A N, P) \cong \operatorname{Hom}_A(M, \operatorname{Hom}_A(N, P)).$$

(5) Suppose M is an A-module, N is an (A, B)-bimodule and P is a B-module. Show that $N \otimes_B P$ is an A-module, and $M \otimes_A N$ is a B-module. Using the universal property of tensor product, prove that

$$(M \otimes_A N) \otimes_B P \cong M \otimes_A (N \otimes_B P).$$

- (6) Let M, N be A-modules, I an ideal of A and S a multiplicative subset of A. Using the result from Question 5, or otherwise, prove that
 - (a) $A/I \otimes_A (M \otimes_A N) \cong M/IM \otimes_{A/I} N/IN$,
 - (b) $S^{-1}(M \otimes_A N) \cong S^{-1}M \otimes_{S^{-1}A} S^{-1}N$.
- (7) Let \mathcal{F} be a presheaf on a topological space X and \mathcal{G} a presheaf on X satisfying sheaf condition (A). If $\phi, \psi : \mathcal{F} \to \mathcal{G}$ are two presheaf morphisms such that $\phi_x = \psi_x : \mathcal{F}_x \to \mathcal{G}_x$ for all $x \in X$, show that $\phi = \psi$.
- (8) Show that the sheafification of a presheaf is unique up to isomorphism.
- †(9) State, and prove carefully, the universal property satisfied by:
 - (a) the sum of two sheaves of abelian groups,
 - (b) the tensor product of two \mathcal{O}_X -modules.

Show then that these universal properties determine the sheaves in (a) and (b) up to isomorphism.

- †(10) Given a morphism $\phi: \mathcal{F} \to \mathcal{G}$ of sheaves of abelian groups on a topological space, verify the universal properties satisfied by the kernel and cokernel sheaves of ϕ . If now $\phi = \theta \psi$ with $\psi: \mathcal{F} \to \mathcal{H}$ and $\theta: \mathcal{H} \to \mathcal{G}$ morphisms of sheaves, show that there is a unique morphism $\alpha: \operatorname{Coker} \phi \to \operatorname{Coker} \theta$, a surjection making the obvious diagram commute. Deduce that $\operatorname{Im} \phi \subseteq \operatorname{Im} \theta$, and prove that equality holds if and only if α is an isomorphism.
- (11) Let U be an open subset of \mathbf{C} , and \mathcal{O}_U the sheaf of holomorphic functions, and \mathcal{O}_U^* the multiplicative sheaf of nowhere vanishing holomorphic functions. Define an exact sequence of sheaves $0 \to \mathbf{Z} \to \mathcal{O}_U \to \mathcal{O}_U^* \to 1$, where \mathbf{Z} here denotes the constant sheaf, and where by convention we use a 1 rather than 0 on the right since the operation in \mathcal{O}_U^* is multiplication. [Hint: The exponential function will be needed here.] When is the map of sections $\Gamma(U, \mathcal{O}_U) \to \Gamma(U, \mathcal{O}_U^*)$ surjective?
- (12) *Show that the monomials for degree d in X_0, X_1, \ldots, X_n define an embedding v_d : $\mathbf{P}^n \hookrightarrow \mathbf{P}^N$, where $N+1=\binom{n+d}{n}$, i.e. v_d defines an isomorphism of \mathbf{P}^n with its image.*

 For $V \subset \mathbf{P}^n$ a projective variety, and $F \in k[X_0, \ldots, X_n]$ a homogeneous polynomial of degree d > 0, prove that the open subset $V \setminus V^h(F)$ has the natural structure of an affine variety.
- (13) We saw in lectures that given a smooth/complex, manifold X, we had a corresponding locally ringed space (X, \mathcal{O}_X) over \mathbf{R} , respectively \mathbf{C} . Moreover, a smooth/holomorphic map between smooth/complex manifolds gave rise to a morphism between the corresponding locally ringed spaces over \mathbf{R} , respectively \mathbf{C} ; show that all morphisms of the locally ringed spaces over \mathbf{R} , respectively \mathbf{C} , arise in this way.
- (14) (Extended exercise) Let $V \subset \mathbf{P}^n$ and $W \subset \mathbf{P}^m$ be (irreducible) projective varieties over an algebraically closed field k. We can define a rational map $\phi: V \to \mathbf{P}^m$ to be given by an (m+1)-tuple $(h_0: h_1: \ldots: h_m)$ of elements of k(V), not all zero, subject to two (m+1)-tuples giving the same rational map if they are multiples of each other by some non-zero $h \in k(V)$. A rational map ϕ is said to be regular at a point $P \in V$ if there exists such a representation with h_j regular at P for all p, with at least one p-vertically p-ver