

Example Sheet 3

1. Given vector bundles E_1, E_2 over a manifold M with connections D_1 , respectively D_2 , define corresponding connections $D_1 \oplus D_2$ on $E_1 \oplus E_2$ and $D_1 \otimes D_2$ on $E_1 \otimes E_2$. If a connection D is given on a vector bundle E , and E^* denotes the dual bundle with (\cdot, \cdot) the natural pairing from $E^* \times E$ to the trivial bundle, show that there is a connection D^* (the *dual connection*) satisfying

$$X(s^*, s) = (D_X^* s^*, s) + (s^*, D_X s)$$

for all local sections s^* of E^* , s of E and vector fields X . If D has connection matrix $\theta = (\theta_{ij})$ with respect to some local frame e_1, \dots, e_r , what is the connection matrix of D^* with respect to the associated coframe on E^* (on each fibre giving the dual basis to e_1, \dots, e_r)?

2. Show that there is a globally defined connection \tilde{D} on the bundle $\text{Hom}(E_1, E_2)$, associated to the connections D_1 and D_2 , and specializing to the dual connection in the case when E_2 is trivial of rank one (and D_2 is the trivial connection). Give a coordinate free description of this connection on $\text{Hom}(E_1, E_2)$.

3. We saw in lectures how a connection D on a vector bundle E over M gave rise to covariant derivatives $d^E : \Omega^p(E) \rightarrow \Omega^{p+1}(E)$ for all $p \geq 0$, and that the curvature map $\mathcal{R} = d^E \circ d^E : \Omega(E) \rightarrow \Omega^2(E)$ was represented by the curvature tensor $R \in \Omega^2(\text{End}(E))$ via $\sigma \mapsto R \wedge \sigma$. Show that for all $p \geq 0$, the map $d^E \circ d^E : \Omega^p(E) \rightarrow \Omega^{p+2}(E)$ is given by $\sigma \mapsto R \wedge \sigma$.

4. With the notation as in the previous question, and using Example Sheet 2, Question 3, show that for any element $\mu \in \Omega^1(E)$ and vector fields X, Y ,

$$d^E(\mu)(X, Y) = D_X(\mu(Y)) - D_Y(\mu(X)) - \mu([X, Y]).$$

Deduce that, for any section σ of E ,

$$(\mathcal{R}\sigma)(X, Y) = D_X D_Y \sigma - D_Y D_X \sigma - D_{[X, Y]} \sigma.$$

5. If D is a connection on a vector bundle E , let \tilde{D} denote the connection on $\text{End}(E)$ you defined in Question 2. Set d^{Hom} to denote the corresponding covariant derivative. With $R \in \Omega^2(\text{End}(E))$ denoting the curvature of E , prove that $d^{\text{Hom}}(R) = 0$. Verify that this is just the Bianchi identity as given in lectures, written in a coordinate free form.

6**. Prove the following *integrability theorem* for flat connections. If E is a vector bundle over the open hypercube $H = \{x \in \mathbb{R}^n : \max_i |x_i| < 1\}$ and D is a flat connection on E then there is a bundle isomorphism taking E to the trivial bundle over H and D to the trivial (product) connection.

[Hint: One can define parallel translation (along a curve) on the fibres of E in the

obvious way. This can be used to define a global frame on H . It is then a good idea to use induction on n . Killing the coefficients Γ_{ij}^k for any fixed i amounts to solving a linear ODE (with parameters).]

7. (i) Assuming the fact that for any smooth manifold we can find an arbitrarily fine open cover $\mathcal{U} = \{U_\alpha\}_{\alpha \in A}$ such that $U_\alpha \cap U_\beta$ is connected for all $\alpha, \beta \in A$, deduce from the previous question that if a vector bundle admits a flat connection, then there is a choice of local trivializations of the bundle so that the corresponding transition functions are *constant*, $\psi_{\beta\alpha}(x) \equiv h_{\beta\alpha}$, for all $x \in U_\beta \cap U_\alpha$.
(ii) Show further that a flat connection on a vector bundle over a simply-connected base manifold, B say, determines an isomorphism of this bundle to the trivial bundle, i.e. a (global) trivialization over all of B . [Hint: Covariantly constant sections.]
8. Let M be a smooth manifold and ∇ denote a connection on TM . Suppose that V_1, \dots, V_n denote a parallel frame along a smooth curve γ , and that $\varphi_1, \dots, \varphi_n$ denotes the dual coframe along γ . Show that the φ_i are parallel along γ (with respect to the induced connection ∇ on T^*M defined via parallel transport). Deduce, as in lectures, that for any 1-form ω and any vector fields X, Y ,

$$\nabla_X(\omega(Y)) = (\nabla_X\omega)(Y) + \omega(\nabla_X Y).$$

9. Let ∇ denote a Koszul connection on a smooth manifold M . Prove that the extension of ∇ to any tensor bundle $T_l^k(M)$, defined as in lectures by means of parallel transport, does indeed define a connection on the tensor bundle. [Hint: Argue by induction.]
- 10*. Suppose that ∇ is a Koszul connection on a manifold M , and that $\tilde{\nabla}$ is the induced connection on the bundle $\wedge^2 T^*M \otimes \text{End}(TM)$, and thereby determining a map on sections

$$\Omega^2(\text{End}(TM)) \rightarrow \Gamma(T^*M \otimes \wedge^2 T^*M \otimes \text{End}(TM)).$$

Show also that there is a natural map

$$\wedge : T^*M \otimes \wedge^2 T^*M \otimes \text{End}(TM) \rightarrow \wedge^3 T^*M \otimes \text{End}(TM),$$

and hence also a corresponding map on sections. Let $d^{\text{End}(TM)} : \Omega^2(\text{End}(TM)) \rightarrow \Omega^3(\text{End}(TM))$ denote the covariant exterior derivative map determined by the induced connection on $\text{End}(TM)$; if ∇ is a symmetric connection, prove that

$$d^{\text{End}(TM)} = \wedge \circ \tilde{\nabla}$$

as maps on $\Omega^2(\text{End}(TM))$.

Deduce the second Bianchi identity for ∇ from the result in Question 5.