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Example Sheet 3

. Given vector bundles F;, E, over a manifold M with connections Dy, respectively

Dy, define corresponding connections Dy & Dy, on E; @ Ey and Dy ® Dy on E; ® Es.
If a connection D is given on a vector bundle E, and E* denotes the dual bundle
with (1, ) the natural pairing from E* x E to the trivial bundle, show that there is
a connection D* (the dual connection) satisfying

X(s*,s) = (D%s*,s)+ (s*, Dxs)

for all local sections s* of E*, s of E and vector fields X. If D has connection matrix
6 = (6;;) with respect to some local frame e, ..., e,, what is the connection matrix
of D* with respect to the associated coframe on E* (on each fibre giving the dual
basis to ey, ...,e.)?

. Show that there is a globally defined connection D on the bundle Hom(E, Es),

associated to the connections D; and Ds, and specializing to the dual connection in
the case when E, is trivial of rank one (and D, is the trivial connection). Give a
coordinate free description of this connection on Hom(FEy, Es).

We saw in lectures how a connection D on a vector bundle E over M gave rise to
covariant derivatives d¥ : QP(E) — QPFY(E) for all p > 0, and that the curvature
map R = df o d¥ : Q(F) — Q*(E) was represented by the curvature tensor R €
O?(End(E)) via 0 — R Ao. Show that for all p > 0, the map d¥ o d¥ : QP(E) —
OPT2(E) is given by 0 — R A 0.

. With the notation as in the previous question, and using Example Sheet 2, Question

3, show that for any element p € Q'(F) and vector fields X, Y,
d"(1)(X,Y) = Dx(u(Y)) = Dy (u(X)) — pu([X, Y]).

Deduce that, for any section o of F,
(RU)(X, Y) = Dny(T - DyDXU - D[X7y}0'.

. If D is a connection on a vector bundle F, let D denote the connection on End(FE)

you defined in Question 2. Set d°™ to denote the corresponding covariant derivative.
With R € Q*(End(E)) denoting the curvature of E, prove that d"°™(R) = 0. Verify
that this is just the Bianchi identity as given in lectures, written in a coordinate free
form.

. Prove the following integrability theorem for flat connections. If E is a vector bundle

over the open hypercube H = {x € R" : max; |z;| < 1} and D is a flat connection
on E then there is a bundle isomorphism taking F to the trivial bundle over H and
D to the trivial (product) connection.

[Hint: One can define parallel translation (along a curve) on the fibres of E in the



10%*.

obvious way. This can be used to define a global frame on H. It is then a good idea
to use induction on n. Killing the coefficients Tfj for any fixed ¢ amounts to solving
a linear ODE (with parameters).]

. (i) Assuming the fact that for any smooth manifold we can find an arbitrarily fine

open cover U = {U, }aea such that U,NUp is connected for all o, § € A, deduce from
the previous question that if a vector bundle admits a flat connection, then there
is a choice of local trivializations of the bundle so that the corresponding transition
functions are constant, Vs (x) = hga, for all x € Us N U,.

(ii) Show further that a flat connection on a vector bundle over a simply-connected
base manifold, B say, determines an isomorphism of this bundle to the trivial bundle,
i.e. a (global) trivialization over all of B. [Hint: Covariantly constant sections.]

. Let M be a smooth manifold and V denote a connection on T'M. Suppose that

Vi,...,V, denote a parallel frame along a smooth curve 7, and that ¢i,..., 0,
denotes the dual coframe along . Show that the ; are parallel along v (with respect
to the induced connection V on T*M defined via parallel transport). Deduce, as in
lectures, that for any 1-form w and any vector fields X, Y,

Vi (w(Y)) = (Vyw)(Y) + w(VxY).

. Let V denote a Koszul connection on a smooth manifold M. Prove that the exten-

sion of V to any tensor bundle T}(M), defined as in lectures by means of parallel
transport, does indeed define a connection on the tensor bundle. [Hint: Argue by
induction.

Suppose that V is a Koszul connection on a manifold M, and that V is the induced
connection on the bundle A*T*M ® End(T'M), and thereby determining a map on
sections
Q*(End(TM)) — T(T*M @ A*T*M ® End(TM)).
Show also that there is a natural map
A:T*M @ AN*T*M @ End(TM) — A*T*M @ End(T M),
and hence also a corresponding map on sections. Let d™d("™) . O(End(TM)) —
O3(End(T'M)) denote the covariant exterior derivative map determined by the in-
duced connection on End(T'M); if V is a symmetric connection, prove that
JERA(TM) _ A o

as maps on Q%(End(TM)).
Deduce the second Bianchi identity for V from the result in Question 5.



