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This article was published in the GLIM newsletter No 23, 1994 (ISSN
0269-0772). It is given on this web-page as I have now added some conjec-
tures, and a little numerical example.
1. Introduction
Altham (1984) proved a result for maximum likelihood estimators, showing
that one of the purposes of fitting a parsimonious model is to improve the
precision of estimation of those parameters that remain. Here this result is
extended to quasi-likelihood and generalized linear models.
2. Statement and Proof of Result
Altham (1984) proved the following result. Suppose that a random sample of
size n has log-likelihood function Ln(p), where p is a k-dimensional unknown
parameter. Let ω be the hypothesis

ω : pi = pi(θ) for i = 1, · · · , k

where pi(·) are known functions, θ is an f -dimensional parameter, and f < k.
Suppose that p̂ maximises Ln(p), and p∗ maximises Ln(p) subject to pǫω, and
let φ(p) be an arbitrary function of p. Then, for large n, under ω,

var(φ(p∗)) ≤ var(φ(p̂)). (1)

This is essentially proved from a particular matrix inequality.
The result remains true when we recast it in terms of quasi-likelihood func-
tions and the Generalized Linear Model: thus it is not necessary to know
Ln(p) exactly. Following the notation of Chapter 9 of McCullagh and Nelder
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(1989), let Y be the n-dimensional response vector, with expectation µ and
covariance matrix σ2V , where V = V (µ) is a matrix of known functions and
σ2 is unknown.
Assume µ = µ(β), where β is a vector of dimension p. The the quasi-
likelihood estimator for β is β̂, where β̂ is the solution of

U(β̂) = 0,

and
U(β) = DT V −1(Y − µ(β))/σ2,

and D is the n × p matrix of derivatives of µ, thus

Dir =
∂µi

∂βr

, 1 ≤ i ≤ n, 1 ≤ r ≤ p.

We assume D is of rank p.
As shown in McCullagh and Nelder,

cov(β̂) ≃ σ2(DT V −1D)−1.

Now suppose that in fact E(Y ) can be represented by a simpler model than
µ(β): specifically suppose that

E(Y ) = µ(β) and β = β(γ),

wher γ is a q-dimensional vector, q < p, and β(γ) is a known function. Then
the quasi-likelihood estimating equations for γ must be

W (γ̂) = 0

where
W (γ) = ET V −1(Y − µ)/σ2

and

E = (Eis) = (
∂µi

∂γs

).

Hence
cov(γ̂) ≃ (ET V −1E)−1.

Let γ0 be the true value of γ. Then, to a first approximation,

β(γ̂) ≃ β(γ0) + A(γ0)(γ̂ − γ0)
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where

A = (Ars) = (
∂βr

∂γs

),

a p × q matrix, assumed to be of rank q.
Hence

cov(β(γ̂)) ≃ A cov(γ̂)AT .

We prove below that, if β = β(γ), then

cov(β(γ̂)) ≤ cov(β̂) (2)

i.e. that
σ2A(ET V −1E)−1AT

≤ σ2(DT V −1D)−1. (3)

Now the chain rule for derivatives shows us that

E = DA

so we need to prove that

σ2A(AT DT V −1DA)−1AT
≤ σ2(DT V −1D)−1. (4)

Put Σ−1 = DT V −1D; this is a p× p positive definite matrix of full rank, and
we see that (4) is equivalent to

A(AT Σ−1A)−1AT
≤ Σ. (5)

This inequality, which was of course also the key to the proof given in Altham
(1984), is familiar from least squares theory.
Thus we have shown that approximately

cov(β(γ̂)) ≤ cov(β̂) (6)

so that for any real-valued function φ(·), the following inequality is approxi-
mately true:

var(φ(β(γ̂)) ≤ var(φ(β̂)). (7)

It appears that quasi-likelihood function is special in this respect. If we use
a more general linear estimating function (see p347 of McCullagh and Nelder
1989) and have, say

HT (Y − µ(β̂)) = 0 (8)
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where H is an n×p matrix, then for β = β(γ) the natural estimating equation
for γ appears to be

(HA)T (Y − µ(β(γ̂))) = 0, (9)

with the matrix A defined above. However, it appears that we cannot expect
the inequality (2) to hold for a general n × p matrix H.
3. The estimation of σ2

Of course, the inequality (7) is one that is ‘well known’ to practical statisti-
cians. The application is straightforward for the ‘error functions’ such as the
binomial or the Poisson, where the scale parameter σ2 is considered known.
However, if σ2 is not specified in advance the application is not entirely
straightforward. This is because as we run through a sequence of dropping
unnecessary parameters from a model, say in GLIM, we observe that the
s.e.’s of the estimates of the parameters that remain decline satisfactorily,
but of course our estimate of σ2 also changes according to the model fitted.
Thus in any standard generalized linear model package, if the scale parame-
ter is unknown, we do not see a simple numerical example of the inequality
(2), because the estimate of σ2 used on the left-hand side of (3) (where the
model β = β(γ) is assumed) is in general smaller than the estimate of σ2

used in the right-hand side of (3), provided that the model β = β(γ) fits well.
So the numerical estimates for the left- and right-hand sides of (3) actually
enhance the inequality.
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Queries/conjectures (June 2006)
1. Is the quasi-likelihood function special in this respect, ie in ensuring that
the inequality (2) will always hold?
2. Is there a Bayesian formulation of this result?
3. Is there a formal link with the Akaike Information Criterion?
4. When I published this paper in 1994, I thought it obvious that we are
assuming n > p. But now, of course, in these days of micro-array analysis,
it may well be the case that n << p. Can we formulate and prove a version
of the above inequality about precisions for this case of ‘large p, small n’?
To be able to do so simply for the case of constrained linear regression, eg
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minimise (Y − Xβ)T (Y − Xβ) subject to βTβ < s
would seem a good way to start.
5. Here is an example, in R, illustrating the inequality about precision of esti-
mates. I use the ‘quine’ dataset from Venables and Ripley, ‘Modern Applied
Statistics with S’. I’m using two models that are rather simple compared
with the ones presented by Venables and Ripley: this is to give you a really
straightforward application of the inequality in the context of quasilikelihood.
(The fact that when I originally derived the inequality, it would be several
years before I learnt how to illustrate it so easily with some actual data, is
rather exciting to me, although I guess it was actually not so difficult in the
1980’s to get GLIM to do this example.)
We follow the convention below in writing σ2 = φ (and this quantity will be
estimated from the fit of the model). The output has been slightly reduced.

>library(MASS)

>quine.qp = glm(Days ~ ., family = quasipoisson, data = quine)

>summary(quine.qp)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.7154 0.2347 11.569 < 2e-16 ***

EthN -0.5336 0.1520 -3.511 0.000602 ***

SexM 0.1616 0.1543 1.047 0.296911

AgeF1 -0.3339 0.2543 -1.313 0.191410

AgeF2 0.2578 0.2265 1.138 0.256936

AgeF3 0.4277 0.2456 1.741 0.083830 .

LrnSL 0.3489 0.1888 1.848 0.066759 .

(Dispersion parameter for quasipoisson family taken to be 13.16677)

Null deviance: 2073.5 on 145 degrees of freedom

Residual deviance: 1696.7 on 139 degrees of freedom

Number of Fisher Scoring iterations: 5

Thus we see that with the assumption E(Yi) = µi, var(Yi) = φµi, we find
that φ̂ = 13.16677. Here φ̂ is taken as X2 divided by the df, as you can check
(using the obvious quantities for y and e) from
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> chisq= sum((y-e)*(y-e)/e); chisq/139

In this model the SexM term is not significant.
We therefore remove this from the model, to get the submodel

>quine.qp1 = glm(Days ~ . - Sex, family = quasipoisson, data = quine)

>summary(quine.qp1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.8352 0.2021 14.025 <2e-16 ***

EthN -0.5331 0.1518 -3.512 0.0006 ***

AgeF1 -0.3767 0.2511 -1.500 0.1359

AgeF2 0.2443 0.2271 1.076 0.2839

AgeF3 0.3800 0.2404 1.581 0.1162

LrnSL 0.3123 0.1862 1.677 0.0957 .

(Dispersion parameter for quasipoisson family taken to be 13.14278)

Null deviance: 2073.5 on 145 degrees of freedom

Residual deviance: 1711.1 on 140 degrees of freedom

Number of Fisher Scoring iterations: 5

Observe that now φ̂ = 13.14278, slightly less than before, and all the remain-
ing parameter estimates have se’s that are less than the corresponding se’s
given in the ‘full’ model.
You can see that I have used the standard (default in R) corner-point con-
straints for the factor parameters.
You might like to compare these results with what happens when you do

> anova(quine.qp1, quine.qp, test="F")

> summary(glm(Days ~ ., poisson, data = quine))

> summary(glm(Days ~ . - Sex, poisson, data = quine))


