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Abstract

We show that there is a rational vector space V' such that, whenever
V is finitely coloured, there is an infinite set X whose sumset X + X is
monochromatic. Our example is the rational vector space of dimension
sup{Xg, 2%, 22N0, ... }. This complements a result of Hindman, Leader
and Strauss, who showed that the result does not hold for dimension
below N,. So our result is best possible under GCH.

1 Introduction

It is a well-known consequence of Ramsey’s theorem that, whenever the nat-
urals are finitely coloured, there is an infinite set X such that all pairwise
sums of distinct elements of X have the same colour. If one asks for a stronger
conclusion, that the entire sumset X +X = {z +y: 2,y € X} is monochro-
matic, then the answer is no: this is because such a sumset automatically
contains two numbers with one roughly twice the other, and this can easily
be ruled out by a suitable 3-colouring (see e.g. [3]).

We mention in passing that it is, surprisingly, unknown as to whether or
not this can be achieved with a 2-colouring: this is called Owings’ problem
[5]. For background on this, and other results mentioned in this introduction,
see [4] — although we mention that this paper is self-contained and does not
rely on any results from [4].

What happens if one passes to a larger ambient space, for example the
rationals? Here again, the answer is no: there is a finite colouring of Q with
no infinite sumset monochromatic (see e.g. [4]). What about for the reals?
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Hindman, Leader and Strauss [4] showed that, for every rational vector
space of dimension smaller that N, there is a finite colouring without an
infinite monochromatic sumset. Note that this establishes the answer for
the reals if we assume CH. (It is still unknown if the reals have such a bad
colouring if we do not make extra set-theoretic assumptions.) However, they
were unable to find a vector space with the positive property (of having no
bad colourings).

Our aim in this paper is to show that such a vector space does exist.
We show that this is the case for any dimension that is at least 3, (read
‘beth-omega’), which is defined to be sup{R, 2%, 22" . 1. Note that if we
assume GCH then this is exactly N, which would be best possible in light
of the result of [4]. We do not know if the vector space of dimension X, has
this property if we do not assume GCH.

We also prove a similar result for multiple sums such as X + X + X
and so on. The proof involves a perhaps unexpected use of the Hales-Jewett
theorem.

For a finite or infinite cardinal x, we write Q" to denote the vector space
of dimension k over Q. That is, Q" is the direct sum of x copies of Q, not
the direct product. We shall take Q" to come equipped with a basis ey, €1,
es, ... that is well-ordered by the smallest ordinal of cardinality x.

2 Main Result

Consider Q= , the J,-dimensional vector space over Q. As remarked above,
we shall consider Q% to come equipped with a well-ordered basis B whose
elements we shall denote by eg, €1, es, .. ..

Suppose x € Q> with  # 0. We may write 2 in terms of the basis B
and delete all zero entries to obtain a finite list of non-zero rationals. We
call this list the pattern of z. More formally, given a non-zero z € Q=
there is a unique way to express x in the form x = > | x;e,, where n is
a positive integer, each x; is a non-zero rational and a; < as < -+ <
are ordinals. The pattern of = is (z1,22,... ,x,). We shall often denote
the pattern (xy,za,...,2,) simply by zixs...2,. We say that the pattern
1Ty . .. T, has length n and write ((x125 . .. x,) = n.

Given a finite colouring of Q=+, we seek an infinite set X C Q= with
X + X monochromatic. There are two stages to the proof.

We first show (Lemma 1) that, given a finite set II of patterns, there is a
large subspace of Q% on which the colour of an  with pattern in IT depends
only on the pattern. The subspace produced is spanned by a subset of the
original basis B of Q2. This part of the proof is a fairly standard application



of the Erdds-Rado theorem [1].

The heart of the proof comes in the second stage. The main obstacle
to overcome is to determine how we should proceed following the reduction
given by Lemma 1. That is to say, which patterns should we consider and how
do we force all the elements of X + X to have the desired pattern or patterns?
While we are able to work within a subspace spanned by a countable subset
A C B, it is interesting to note that our proof often requires this subset A to
have an order-type greater than w. We therefore ask the subspace produced
in Lemma 1 to have dimension Xy; this allows us to always find A as required.

We now proceed to the first of the two stages detailed above. First, we
recall the Erdés-Rado theorem. As usual, we denote by exp, (k) the r-fold
exponential of x, i.e. expy(k) = r and exp, (k) = 25,

Erdés-Rado theorem ([1]). Let r be a non-negative integer and let k be an
infinite cardinal. Suppose the (r + 1)-element subsets of a set of cardinality
exp, (k)T are coloured with k colours. Then there is a subset of cardinality
kT all of whose (r + 1) — element subsets are the same colour.

In particular, this immediately implies that for every positive integer r,
if the r-element subsets of a set of cardinality 3,, are coloured with finitely
many colours then there is a subset of cardinality N; all of whose r-element
subsets are the same colour.

Lemma 1. Let k be a positive integer and suppose Q= is k-coloured. Let
IT be a finite set of patterns. Then there is a subset A C B of cardinality Ny
such that for each m € I the set

{z € Q™ : z is in the span of A and has pattern 7}
s monochromatic.

Proof. Let ¢ be the given k-colouring of Q=.
Let r be the length of the longest pattern in II. Let

'={00...07: 7 € II}.

r—e(m)
Write I = {71, 7@ ... 7™} We define n k-colourings ci, ¢y, ..., ¢,
of the r-element subsets of B as follows. Given S C B with |S| = r, write
S ={Ca1;Caps--- »€a,t With a; < ag <--- < a,. Then set

ci(S) = Z 7Tj(-l)€a]..
=1
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Now define a single k"-colouring ¢’ of the r-element subsets of B by
C/(S) = (Cl(S)a C2<S>7 s Cn(S>>

We apply the Erdés-Rado theorem to this final colouring ¢ to obtain
A" C B with all r-subsets of A’ the same colour and |A’| = R;. Removing
the r least elements of A’, we obtain our set A as required. n

We are now ready to proceed to the main part of the proof.

Theorem 2. Let k be a positive integer, and suppose Q= is k-coloured. Then
there is an infinite set X C Q= such that the sumset X + X is monochro-
matic.

Proof. Let ¢ be the given k-colouring of Q=.
Fora=0,1, 2, ..., k, let m, be the pattern

T, =22...211...1
(k—a)
a 2(k—a

and let I = {7, : 0 < a < k}. By Lemma 1, we can find A C B with
|A| = Ny and colours ¢, (0 < a < k) such that if z is in the span of A and
has pattern 7, then c¢(x) = ¢,. By the pigeonhole principle, we must have
Cq = ¢ for some a and b with 0 < a < b < k.

Let C be a subset of A of order-type a = w(b—a+2) and list the elements
of C'in order as fy, f1, fo, ...

Now let X = {z; : i < w}, where, for each i < w, we define

a—1 b—a (k—b)—1 1
Ty = Z fr + Z ferri + Z §fw(b—a+1)+r-
r=0 r=1 r=0

Then for all 7, j € N, we observe that x; + z; has pattern 7, or m, according
as i # j or i = j. Thus X 4+ X is monochromatic, as claimed. O]

3 Extensions

There are two obvious directions in which one might seek to extend Theorem
2.

First, what if instead of simply requiring that X be infinite, we seek an X
of cardinality Wi, say, or of some larger specified cardinality? This is possible
if we start with a vector space of sufficiently large cardinality, and requires
only a trivial modification to the proof of Theorem 2.
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Theorem 3. Let k be a positive integer and let k be an infinite cardinal. Then
there is an infinite cardinal A such that whenever the \-dimensional rational
vector space Q is k-coloured, there is a subset X C Q* with |X| = xk and
X + X monochromatic.

Indeed, with a similar application of the Erdés-Rado theorem as above,

we may take
A = sup{x,27,2%", ... }.

More interestingly, what if rather than simply looking for the sumset
X 4+ X we seek a monochromatic sum of many copies of X? For example,
define the triple sumset of X to be

X+ X+X={z+y+z:2,y,2€ X}

If we finitely colour Q=, can we always find an infinite X C Q= with
X + X + X monochromatic?

Let us first consider informally how one might try to extend the proof of
Theorem 2 to deal with this problem. Previously, we split our basis vectors
into “stretches” of length w. Depending on the colouring, we then defined
each z; to either take value % or 1 on certain fixed coordinates in the stretch
(a “fixed stretch”), or we defined each z; to take value 1 on coordinate i of
the stretch and 0 elsewhere (a “variable stretch”). This resulted in z; + z;
always having a pattern consisting of 1’s and 2’s. More precisely, the pattern
on a given fixed stretch is always the same, whereas the pattern on a variable
stretch could be either 11 or 2.

Now, suppose we consider xj, + x; + x; with a similar definition of the z;.
The variable stretches will now have pattern 111 or 21 or 12 or 3. To deal
with this, it turns out that we need a somewhat unexpected application of
the Hales-Jewett Theorem [2].

Theorem 4. Let k and t be positive integers and suppose Q= is k-coloured.
Then there is an infinite set X C Q= such that X+X+---+X is
M

monochromatic.

Proof. Let ¢ be the given k-colouring of Q2.

Let II be the set of all patterns of the form x 25 . .. x,, where x1, xq, ..., x,
are positive integers summing to ¢. Note that II is finite. Let N be a positive
integer such that whenever IV is k-coloured it contains a monochromatic
combinatorial line. (Such N exists by the Hales-Jewett Theorem.) Let II" be
the set of patterns obtained by concatenating N patterns from II.

By Lemma 1, there exist a subset A C B with |A| = X; and colours ¢,
(m € I') such that if  is in the span of A and has pattern 7 then c¢(z) = ¢,.
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We induce a colouring of IV by giving (my, ... ,7y) € IIV the colour of any
x in the span of A with pattern mmy ... 7y. (Note that this does not depend
on the choice of ).

We may now find a monochromatic combinatorial line L in IIV. Let J
be the set of active coordinates of L and, for each 7 € II, let I. be the set of
inactive coordinates where L takes constant value m. (Note that we take our
coordinates to range from 0 to N — 1.)

Let C' be a subset of A of order-type wN and list the elements of C' in
order as fy, f1, f2, .... Let X = {x; 1 i < w} where

£(m)
T, = Z fwr+i + Z Z Z %fwr+s~

red mnell rel, s=1

Then each element of X + X +..-4+ X has pattern in L and thus

t
2( + X+ 4+ X/ is monochromatic. O

t

We remark that, exactly as the proof of Theorem 2 was adapted to yield
Theorem 3, we may similarly adapt the proof of Theorem 4 to give:

Theorem 5. Let k and t be positive integers and let k be an infinite cardinal.
Then there is an infinite cardinal X such that whenever Q* is k-coloured there
is an infinite set X C Q* with |X| = k and X + X + -+ + X monochro-

t
matic.

As with Theorem 3, it suffices to take

A =sup{x,27,2%", ...}
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