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Abstract

Our aim in this paper is to prove Deuber’s conjecture on sparse par-
tition regularity, that for every m, p and c there exists a subset of the
natural numbers whose (m, p, c)-sets have high girth and chromatic num-
ber. More precisely, we show that for any m, p, c, k and g there is a
subset S of the natural numbers that is sufficiently rich in (m, p, c)-sets
that whenever S is k-coloured there is a monochromatic (m, p, c)-set, yet
is so sparse that its (m, p, c)-sets do not form any cycles of length less
than g.

Our main tools are some extensions of Nešetřil-Rödl amalgamation and
a Ramsey theorem of Bergelson, Hindman and Leader. As a sideline, we
obtain a Ramsey theorem for products of trees that may be of independent
interest.

1 Introduction

The notion of a ‘sparse’ Ramsey theorem goes back to Erdős. The starting case
of Ramsey’s theorem is the assertion that whenever the edges of a complete
graph on six points (a K6) are 2-coloured, there is a monochromatic triangle. It
is natural to ask the converse: if G is a graph such that whenever its edges are
2-coloured there is a monochromatic triangle, then must G contain a K6? Some
simple examples show that the answer is no: in fact, it is easy to construct such
a graph G that does not even contain a K5. The question of whether or not
such a graph must contain a K4 remained open for some time (it was a question
of Erdős), until Folkman [4] answered it in the negative. This was extended by
Nešetřil and Rödl [13] to any (finite) number of colours, using their important
‘amalgamation’ method.

This result is a typical ‘sparse’ theorem: it says that a graph can be very
non-dense in edges and yet still have enough edges to have the required Ramsey
property. (More precisely, it is a ‘restricted’ Ramsey theorem; the ‘sparse’
version, which was also proved by Nešetřil and Rödl, asserts that there is such a
graph G whose triangles are so spread out that there is no short cycle of them.
Here, as usual, a cycle in a hypergraph is a sequence A1, x1, A2, x2, . . . , An,
xn where A1, A2, . . . , An are edges of the hypergraph and x1, x2, . . . , xn are
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vertices of the hypergraph, with all of the Ai and all of the xi distinct, and
satisfying xi ∈ Ai ∩ Ai+1 for all i, where An+1 means A1. In this case, we
consider the hypergraph whose vertices are the edges of G and whose edges
are the triangles of G.) Spencer [20] observed that a restricted version of van
der Waerden’s theorem holds—he gave a set that is Ramsey for arithmetic
progressions of length m, yet contains no arithmetic progression of length m+1.
Rödl [18] proved a sparse version of van der Waerden’s theorem—here the set of
arithmetic progressions of length m in the set is not allowed to have any short
cycles. For other approaches, see Frankl, Graham and Rödl [5], and Prömel and
Voigt [16]. Around the same time, Nešetřil and Rödl [14] proved a sparse version
of the Finite Sums theorem. (The Finite Sums theorem states that for any n,
whenever the positive integers are finitely coloured there exist positive integers
x1, x2, . . . , xn such that all of the sums

∑
i∈A xi for non-empty A ⊂ [n] have

the same colour.) All of these results were placed in a more general context,
and greatly extended, by Nešetřil and Rödl (see for example [15]).

However, despite these results, one conjecture remained open: a sparse ver-
sion of Rado’s theorem, which we now describe.

A (finite) matrix A over the integers is said to be partition regular (PR)
if whenever the positive integers are finitely coloured, there exists a vector x
with all entries the same colour and satisfying Ax = 0. We may also refer to
‘the system of linear equations Ax = 0’ as being PR. Rado [17] provided a
characterization of all PR matrices. We shall be concerned with a version of
this characterization given by Deuber [2] in his refinement of Rado’s theorem.

To describe this characterization, it is necessary to introduce the notion of
an (m, p, c)-set. These can be thought of as ‘iterated arithmetic progressions’.
Given positive integers m, p and c, and positive integers x1, x2, . . . , xm, the
(m, p, c)-set generated by x1, x2, . . . , xm is the set consisting of all sums of the
form cxk +

∑k−1
i=1 λixi for k = 1, 2, . . . , m and λi (1 ≤ i ≤ k − 1) integers with

0 ≤ λi ≤ p. So, in particular, a (2, p, 1)-set is simply an arithmetic progression
of length p + 1 together with its common difference. Deuber [2] proved that
a system of linear equations is PR if and only if there exist some m, p and
c such that every (m, p, c)-set contains a solution to the system. So (m, p, c)-
sets are the ‘building-blocks’ of partition regularity, and are in a sense the only
important PR systems.

Returning to the sparse version of Rado’s theorem, Deuber [3] conjectured
that for any m, p and c, there should exist a set S such that whenever S is
finitely coloured there is a monochromatic (m, p, c)-set, but the (m, p, c)-sets in
S form a hypergraph of large girth. Our main aim in this paper is to prove this
conjecture.

One of the main obstacles to proving Deuber’s conjecture is the fact that
there is really no ‘abstract’ version of Rado’s theorem—as opposed to, say, van
der Waerden’s theorem, where the Hales-Jewett theorem may be viewed as its
abstract version. Rather, to prove Rado’s theorem one has to iterate some
Ramsey results (such as the Hales-Jewett theorem). This appears to be the
reason why even the very general results of Nešetřil and Rödl [15] do not seem
to help with Deuber’s conjecture.

We shall discuss more about the ideas of the proof once we have defined the
notion of a ‘picture’ in §3. For the moment, let us say that the proof is largely
based on two notions. One is an extension of Nešetřil-Rödl amalgamation. The
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other is a Ramsey theorem of Bergelson, Hindman and Leader [1]—it was used
in [1] to show that for every n, there is a subset S of the positive integers which is
partition regular for every PR system of n equations (meaning that for any PR
matrix A with n rows, whenever S is finitely coloured there is a monochromatic
vector x with Ax = 0), but with S not partition regular for some PR system of
n + 1 equations. We shall explain the relevance of this Ramsey theorem when
we define a ‘picture’; it will be needed as a ‘starting point’ for all of the later
amalgamation, and will provide a framework within which the amalgamation
can take place.

We begin by considering the simplest interesting case, namely the triangle-
free case for arithmetic progressions with common difference. It is convenient
to refer to a (2, p, 1)-set (or arithmetic progression of length p+1 with common
difference) as a p-line. So, in other words, we wish to find a subset S of the
natural numbers such that whenever S is k-coloured there is a monochromatic
p-line, but such that the p-lines in S do not form a triangle. All of the main
ideas necessary for the general result are present in the proof of this case, but
the notation is less impenetrable. In §2, we present the Ramsey theorem of
[1] in this case, and give a proof in our language. As a digression, we explain
how the result can be extended to give a Ramsey theorem for products of trees.
This result is not required in our proof of the sparse Rado theorem, but may
be of independent interest—in the language of Nešetřil and Rödl [12], we show
that the class of tree-products has the vertex-Ramsey property. Next, in §3,
we carry out the amalgamation to complete the proof of our main result in this
case. Finally, in §4, we explain how our methods can be extended to prove the
sparse version of Rado’s theorem in full generality.

We generally use standard notation throughout the paper. We denote by N
the set {0, 1, 2, . . . } of natural numbers, and by N+ the set N−{0} = {1, 2, 3, . . . }
of positive integers. For n ∈ N+, we write [n] to denote the finite set
{1, 2, . . . , n}.

2 Ramsey results

Our main aim in this section is to present a proof of Theorem 3. This is a result
from [1]; we need it here because it will provide a ‘framework’ within which the
later amalgamation can take place. We provide a proof to familiarize the reader
with the language we are using—the concepts in the proof will be important
later.

Our other aim is to generalize Theorem 3 to a Ramsey theorem for products
of trees. While this more general result will play no part in the proof of the sparse
Rado theorem (and so the reader should feel free to omit §2.2 if so desired), it
may be of independent interest as it shows that the class of tree-products has a
natural Ramsey structure.

We make extensive use of the Hales-Jewett theorem, of which we shall remind
the reader after some necessary definitions. This theorem can be thought of as
an ‘abstract’ version of van der Waerden’s theorem.

Let A be a finite set and d a positive integer. We work in Ad, the d-
dimensional Hales-Jewett cube on alphabet A. A combinatorial line in the cube
Ad is a set L of the form

L = {(x1, x2, . . . , xd) ∈ Ad : xi = xj for i, j ∈ I, xi = ci for i ∈ [d]− I}
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where I is a non-empty subset of [d] and the ci (i ∈ [d]− I) are elements of the
alphabet A. We call I the set of active coordinates of L and [d] − I the set of
inactive coordinates of L. We are now ready to state the Hales-Jewett theorem.

Theorem 1 (The Hales-Jewett theorem [7]). Let A be a finite set and k
a positive integer. Then there exists a positive integer d such that whenever Ad

is k-coloured, it contains a monochromatic line.

Observe that van der Waerden’s theorem follows easily from the Hales-Jewett
theorem. It is possible to map the Hales-Jewett cube [n]d into the positive
integers N+ in such a way that each combinatorial line in [n]d is taken to an
arithmetic progression of length n in N+: for example, define φ : [n]d → N+ by

φ(x1, x2, . . . , xd) = x1 + x2 + · · ·+ xd.

Then a k-colouring of N+ induces a k-colouring of [n]d, which, assuming d is
sufficiently large, gives a monochromatic line in [n]d, which in turn gives a
monochromatic arithmetic progression of length n in N+.

We shall also require a multi-dimensional extension of this theorem. An
m-dimensional combinatorial subspace of a Hales-Jewett cube Ad (m = 1, 2,
3, . . . ) is a set L of the form

L =
{

(x1, x2, . . . , xd) ∈ Ad :
for each j = 1, 2, . . . ,m, xi = xh for i, h ∈ Ij ,
xi = ci for i ∈ [d]−

⋃m
j=1 Ij

}
where I1, I2, . . . , Im are disjoint non-empty subsets of [d] and the ci
(i ∈ [d]−

⋃m
j=1 Ij) are elements of the alphabet A. We call I1, I2, . . . , Im the

active coordinate sets of L and [d] −
⋃m

j=1 Ij the set of inactive coordinates of
L. Note that a 1-dimensional combinatorial subspace is simply a combinatorial
line.

Theorem 2 (The multi-dimensional Hales-Jewett theorem [7]). Let A
be a finite set, and let k and m be positive integers. Then there exists a positive
integer d such that whenever Ad is k-coloured, it contains a monochromatic
m-dimensional subspace.

While this result does not appear explicitly in [7], it follows immediately
from Theorem 1 by applying it to the alphabet Am (see, for example, [6]).

2.1 Products of trees

We begin by constructing, for each p and k, a particular subset F of the pos-
itive integers such that whenever F is k-coloured it contains a monochromatic
(2, p, 1)-set. When constructing the set F , we try to avoid endowing it with
unnecessary structure. In particular, F will have no 2-cycles of (2, p, 1)-sets
(i.e. any pair of (2, p, 1)-sets in F will intersect in at most one point), but it will
turn out to contain triangles of (2, p, 1)-sets. This sparseness in the structure of
F is crucial when we come to use F to index the sets in our amalgamation in
§3.

To that end, let p be a positive integer.
A p-line is a set of the form {a, x, x + a, x + 2a, . . . , x + pa}, where a and

x are non-zero elements of N, i.e. a (2, p, 1)-set. We also consider more general
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p-lines, where we allow x and a to be non-zero elements of Ne for any e ≥ 1. A
set of this form but with a or x allowed to be zero will be called a p-pseudo-line.
A map φ : L→ L′ between p-pseudo-lines L and L′ is called a homomorphism if
there exist integers a, a′, x and x′ with L = {a, x, x+ a, x+ 2a, . . . , x+ pa}
and L′ = {a′, x′, x′ + a′, x′ + 2a′, . . . , x′ + pa′} such that φ(a) = a′ and
φ(x+ λa) = x′ + λa′ for λ = 0, 1, . . . , p. An isomorphism between p-lines
is a bijective homomorphism.

We note that there are two isomorphism classes of p-lines: those with x 6= a,
which have order p+2, and those with x = a, which have order p+1. In general
we shall only need to deal with those of the first class; we refer to those in the
second class as degenerate p-lines, and we shall construct our structures in such
a way that they do not arise.

A p-tree of height 0 is a set of the form {a} for some non-zero a ∈ N.
A p-tree of height 1 is a non-degenerate p-line T ⊂ N; in other words,
T = {a, x, x+ a, x+ 2a, . . . , x+ pa} for non-zero a, x ∈ N with a 6= x. We
say that the p-tree {a} of height 0 is a pre-tree of T . A p-tree of height h
(h ≥ 2) is a set T of the form

T = R ∪
⋃

a∈S−R

{a, xa, xa + a, xa + 2a, . . . , xa + pa}

where S is a p-tree of height h− 1 with pre-tree R and the xa (a ∈ S −R) are
non-zero elements of N chosen so that all the xa +λa (a ∈ S−R, 0 ≤ λ ≤ p) are
distinct and not contained in S and so that no unnecessary p-lines are created
in T : in other words, the only p-lines in T are those in S together with those
of the form {a, xa, xa + a, xa + 2a, . . . , xa + pa} for a ∈ S −R. In particular, T
contains no degenerate p-lines. We say that S is a pre-tree of T . Note that it
is possible to find a p-tree of any given height h: simply select each xa, in turn,
sufficiently large.

If T is a tree of height h, we say that (T0, T1, . . . , Th) is a tree-sequence for
T if Ti is a tree of height i (0 ≤ i ≤ h), Ti is a pre-tree of Ti+1 (0 ≤ i ≤ h− 1)
and Th = T . (The reader may check that, apart from in certain trivial cases,
the tree-sequence for a given tree is unique.)

Two p-trees T and T ′ are said to be isomorphic if there is a bijection
φ : T → T ′ such that

• for L ⊂ T , φ(L) is a p-line in T ′ precisely when L is a p-line in T ; and

• for each p-line L in T , the restriction of φ to L is an isomorphism (of
p-lines).

It is clear that two p-trees are isomorphic precisely when they have the same
height. We refer to an isomorphic image of a p-tree T as a copy of T .

A p-tree-product of dimension d is a set F ⊂ Nd of the form

F = {(t1, t2, . . . , td) : ti ∈ Ti ∪ {0}, ti not all 0}

where T1, T2, . . . , Td are p-trees. We say that F is the tree-product of the trees
T1, T2, . . . , Td, and we sometimes write F = T1♦T2♦ · · ·♦Td, or F = ♦d

i=1Ti.
A p-tree-product is said to be of height h if each p-tree in the definition is of
height h. Observe that a p-tree-product of dimension 1 is simply a p-tree.
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We define isomorphisms and copies of p-tree-products exactly as for p-trees.
In general, we allow the image of an isomorphism to be any subset of Ne for any
e ≥ 1, and we refer to any copy of a p-tree-product as a p-tree-product. So, in
particular, we may encounter p-trees as subsets of Ne for e > 1.

Note that it is possible to embed any p-tree-product of any dimension in
N. In other words, given a p-tree product F = T1♦T2♦ · · ·♦Td, there is an
isomorphism φ from F to some subset of N; for example, we may take the map

(t1, t2, · · · , td) 7→ a1t1 + a2t2 + · · ·+ adtd,

where a1, a2, . . . , ad are positive integers selected, in turn, sufficiently large
that no new p-lines are introduced.

Note also that p-tree-products do not contain any degenerate p-lines. For
suppose that {x, 2x, 3x, . . . , (p+ 1)x} is a degenerate p-line in the tree-product
F = T1♦T2♦ · · ·♦Td. Choose some i such that x has ith coordinate x′ 6= 0.
Then {x′, 2x′, 3x′, . . . , (p+ 1)x′} is a degenerate p-line in Ti, a contradiction.

We generally regard p as being a fixed positive integer and suppress the
p-dependence in the notation, referring simply to lines, trees, tree-products,
etc.

We are now ready to give a proof of the Ramsey theorem of Bergelson,
Hindman and Leader. (While this result does not appear explicitly in [1], it
may be read out of Theorem 2.5 of [1] using Lemma 2.6 and Theorem 2.7 of
[1].)

Theorem 3 ([1]). Let p and k be positive integers. Then there exists a p-
tree-product F such that whenever F is k-coloured, it contains a monochromatic
p-line.

Proof. For the remainder of this proof, ‘line’, ‘tree’ and ‘tree-product’ shall
mean ‘p-line’, ‘p-tree’ and ‘p-tree-product’. (In future, we shall often use such
terminology without comment.)

Let T be a tree of height k+1 with tree sequence (T0, T1, . . . , Tk+1). Define
a finite sequence d0, d1, d2, . . . , dk+1 of positive integers inductively as follows:

• d0 = 1;

• for 1 ≤ n ≤ k + 1, take dn sufficiently large that whenever T dn
n is k-

coloured, there exists a monochromatic combinatorial subspace of dimen-
sion dn−1.

Note that dn is guaranteed to exist by the Hales-Jewett theorem [7]. We take
F to be the tree-product of dk+1 copies of T .

Suppose F is k-coloured. This induces a k-colouring of the subset T dk+1
k+1 and

so, by our choice of dk+1, we may find a monochromatic dk-dimensional subspace
Sk. We may assume without loss of generality that the active coordinates of S
are [dk], i.e. that there exist zdk+1, zdk+2, . . . , zdk+1 ∈ Tk+1 such that

Sk = {(t1, t2, . . . , tdk
, zdk+1, zdk+2, . . . , zdk+1) : t1, t2, . . . , tdk

∈ Tk+1}.

[The conscientious reader may be concerned at this point that some of
the active coordinate sets of S may contain two or more coordinates varying
together. But this does not cause a problem—we may simply identify such
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coordinates by a suitable isomorphism. This will result in a smaller number of
inactive coordinates in the set S, but the number of inactive coordinates has no
bearing on the remainder of the proof.]

Now, write

Fk = {(t1, t2, . . . , tdk
, 0, 0, . . . , 0︸ ︷︷ ︸

dk+1−dk

) : t1, t2, . . . , tdk
∈ Tk ∪ {0}, ti not all 0}.

Note that we may think of Fk as a tree-product of height k by considering it as
the tree product of dk copies of Tk; i.e. we identify Fk with the set

{(t1, t2, . . . , tdk
) : t1, t2, . . . , tdk

∈ Tk ∪ {0}, ti not all 0}.

Now, our original colouring induces a k-colouring of Fk, which in turn gives a
k-colouring of the subset T dk

k . By our choice of dk, we may find a monochromatic
dk−1-dimensional subspace Sk−1. We may assume that the active coordinate
set of S is [dk−1]. So there exist zdk−1+1, zdk−1+2, . . . , zdk

∈ Tk such that

Sk−1 = {(t1, t2, . . . , tdk−1 , zdk−1+1, zdk−1+2, . . . , zdk
) : t1, t2, . . . , tdk−1 ∈ Tk}.

Now, write

Fk−1 = {(t1, t2, . . . , tdk−1 , 0, 0, . . . , 0︸ ︷︷ ︸
dk−dk−1

) : t1, t2, . . . , tdk−1 ∈ Tk−1∪{0}, ti not all 0}.

Note that we may think of Fk−1 as a tree-product of height k−1 by considering
it as the tree product of dk−1 copies of Tk−1; i.e. we identify Fk−1 with the set

{(t1, t2, . . . , tdk−1) : t1, t2, . . . , tdk−1 ∈ Tk−1 ∪ {0}, ti not all 0}.

And so we continue. After k + 1 applications of Hales-Jewett, we have
obtained sequences F0, F1, . . . , Fk of subsets of F and z1, z2, . . . , zdk+1 of
elements of T satisfying:

• Fi = {(t1, t2, . . . , tdi
, 0, 0, . . . , 0︸ ︷︷ ︸

dk+1−di

) : t1, t2, . . . , tdi ∈ Ti ∪ {0}, ti not all 0};

• Si = {(t1, . . . , tdi
, zdi+1, . . . , zdi+1 , 0, 0, . . . , 0︸ ︷︷ ︸

dk+1−di+1

) : t1, . . . , tdi
∈ Ti+1} is

monochromatic, with colour ci, say;

• zi ∈ Tj for i ≤ dj .

Now, by the pigeonhole principle, some two of the sets S0, S1, . . . , Sk must
have the same colour; say cm = cn for some 0 ≤ m < n ≤ k. Choose arbitrarily

a = (a1, a2, . . . , adm+1 , 0, 0, . . . , 0︸ ︷︷ ︸
dk+1−dm+1

) ∈ Sm.

Note that for each i, 1 ≤ i ≤ dm+1, we have ai ∈ Tm+1 and so there is
some xi such that xi, xi + ai, xi + 2ai, . . . , xi + pai ∈ Tm+2 ⊂ Tn+1. So,
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choosing xdm+1+1, xdm+1+2, . . . , xdn
∈ Tn+1 arbitrarily, and setting xi = zi for

dn + 1 ≤ i ≤ dn+1, we may take

x = (x1, x2, . . . , xdn+1 0, 0, . . . , 0︸ ︷︷ ︸
dk+1−dn+1

) ∈ Sn.

We now have a ∈ Sm and x, x + a, x + 2a, . . . , x + pa ∈ Sn, and so the line
{a, x, x+ a, x+ 2a, . . . , x+ pa} is monochromatic with colour cm = cn.

Theorem 3 asserts that given any p and k, there exists a tree-product G
such that whenever G is k-coloured, it contains a monochromatic p-line. In
fact, much more than this is true: given any tree-product F and positive integer
k, there is some tree-product G such that whenever G is k-coloured, it contains
a monochromatic copy of F . It turns out that this result is not needed in
the proof of the sparse Rado theorem. Nevertheless, it may be found to be of
independent interest as it shows that the class of tree-products has a natural
Ramsey structure. The reader who is interested only in the proof of the sparse
Rado theorem may safely skip to the beginning of §3.

2.2 A full Ramsey theorem for products of trees

Our aim in this section is to extend Theorem 3 to a full Ramsey theorem for
products of trees. The result of §2.1 showed that whenever a sufficiently large
tree-product is k-coloured, it contains a monochromatic line. Here, we prove
that we can find not only a monochromatic line, but a monochromatic copy
of any tree-product we desire: given any tree-product F , there exists a tree-
product G such that whenever G is k-coloured, it contains a monochromatic
copy of F .

We begin by considering the case where F is a single tree. Note that Theorem
3 is simply this result with h = 1. Our proof is a slight extension of the proof
of Theorem 3.

Lemma 4. Let p, h and k be positive integers. Then there exists a p-tree-
product F such that whenever F is k-coloured, it contains a monochromatic
p-tree of height h.

Proof. This time, we begin by taking a tree T of height kh+1 with tree sequence
(T0, T1, . . . , Tkh+1) and a finite sequence d0, d1, . . . , dkh+1 defined inductively
by:

• d0 = 1;

• for 1 ≤ n ≤ kh + 1, take dn sufficiently large that whenever T dn
n is k-

coloured, there exists a monochromatic combinatorial subspace of dimen-
sion dn−1.

We take F to be the tree product of dkh+1 copies of T .
Proceeding exactly as in the proof of Theorem 3, we apply Hales-Jewett

kh + 1 times to obtain sequences F0, F1, . . . , Fkh of subsets of F and z1,
z2, . . . , zdkh+1 of elements of T satisfying:

• Fi = {(t1, t2, . . . , tdi
, 0, 0, . . . , 0︸ ︷︷ ︸

dkh+1−di

) : t1, t2, . . . , tdi
∈ Ti ∪ {0}, ti not all 0};
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• Si = {(t1, . . . , tdi
, zdi+1, . . . , zdi+1 , 0, 0, . . . , 0︸ ︷︷ ︸

dkh+1−di+1

) : t1, . . . , tdi
∈ Ti+1} is

monochromatic;

• zi ∈ Tj for i ≤ dj .

Now, by the pigeonhole principle, we may find n0 < n1 < · · · < nh such that
the sets Sn0 , Sn1 , . . . , Snh

all have the same colour, c, say.
We shall inductively construct trees U0, U1, . . . , Uh such that

• Ui is of height i and has tree sequence (U0, U1, . . . , Ui);

• U0 ⊂ Sn0 and Ui − Ui−1 ⊂ Sni for 1 ≤ i ≤ h.

In particular, Uh will be a tree of height h contained in the monochromatic
set

⋃h
j=0 Snj

, precisely as required.
First, we take U0 to be any singleton subset of Sn0 .
Now, suppose that we have already constructed Ui−1 as required for some i,

1 ≤ i ≤ h. Suppose a ∈ Ui−1 − Ui−2 (where we interpret U−1 to be the empty
set). Then a ∈ Sni−1 and so

a = (a1, a2, . . . , adni−1+1 , 0, 0, . . . , 0︸ ︷︷ ︸
dkh+1−dni−1+1

)

for some a1, a2, . . . , adni−1+1 ∈ Tni−1+1.
For each j ≤ dni−1+1, we have aj ∈ Tni−1+1 and so there is some xj

such that xj , xj + aj , xj + 2aj , . . . , xj + paj ∈ Tni−1+2 ⊂ Tni+1. So, choos-
ing xdni−1+1+1, xdni−1+1+2, . . . , xdni

∈ Tni+1 arbitrarily, and setting xj = zj for
dni

+ 1 ≤ j ≤ dni+1, we may take

xa = (x1, x2, . . . , xdni+1
, 0, 0, . . . , 0︸ ︷︷ ︸
dkh+1−dni+1

) ∈ Sni .

Then set

Ui = Ui−2 ∪
⋃

a∈Ui−1−Ui−2

{a, xa, xa + a, xa + 2a, . . . , xa + pa}

(where we interpret U−1 as ∅).

We now consider general tree-products F = ♦d
i=1Ti. The proof proceeds in

two stages. First, by a product argument, we can find a tree-product G such
that whenever G is k-coloured, G contains a copy of F in which each of the
2d−1 possible Cartesian products of the form ×d

i=1Ui with Ui = Ti or Ui = {0}
for each i (not all Ui zero) is monochromatic. The result then follows by an
application of the Finite Unions theorem, that given any positive integers d
and k, there exists some positive integer D such that whenever the non-empty
subsets of [D] are k-coloured, there exists a collection S = {S1, S2, . . . , Sd} of
pairwise disjoint subsets of [D] with all non-empty unions of sets in S the same
colour.
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Theorem 5. Let p, k, d and h be positive integers. Then there exists a p-
tree-product F such that whenever F is k-coloured, it contains a monochromatic
p-tree-product of d trees of height h. In particular, given any p-tree-product F ,
there exists a p-tree-product G such that whenever G is k-coloured, it contains
a monochromatic copy of F .

Proof. It is enough to prove the following claim:

For all positive integers p, d, k and h, there exists a tree-product
F such that whenever F is k-coloured, it contains a tree-product
♦d

i=1Ti of trees of height h with every set of the form×d
i=1Ui (Ui = Ti

or Ui = {0} for each i, not all Ui zero) is monochromatic.

We can then deduce the theorem immediately by use of the Finite Unions the-
orem. For suppose that we have proved this claim, and that we are given p, k,
d and h. Pick D large enough that whenever P([D])−∅ is k-coloured, there are
disjoint non-empty sets S1, S2, . . . , Sd ⊂ [D] with all non-empty unions of the
Si having the same colour. Now apply the claim, but with d replaced by D: we
obtain a tree-product ♦D

i=1T
′
i , with each ×D

i=1Ui (Ui = T ′i or Ui = {0} for each
i, not all Ui zero) monochromatic. This induces a k-colouring of P([D])−∅: we
simply give S ⊂ [D] the colour of the monochromatic set ×D

i=1Ui where Ui is
taken to be T ′i for i ∈ S and {0} otherwise. So we can now find S1, S2, . . . , Sd

as in the Finite Unions theorem, and set

Ti =
⋃
t∈T

{(u1, u2, . . . , uD) : uj = t if j ∈ Si, uj = 0 otherwise},

where T is a tree of height h which we identify with each T ′i by a suitable
isomorphism. Then each Ti is a tree of height h, and their tree-product satisfies
the conclusion of the claim.

So it remains to prove the claim. We shall do so by induction on d. The
case d = 1 is simply Lemma 4, so assume d > 1 and fix p, k and h.

Let G be a tree-product which satisfies the conclusion of the claim, but with
d replaced by d − 1 and k replaced by k2; this is of course possible by the
induction hypothesis. Then take a tree-product H such that whenever H is
k|G|+1-coloured, it contains a monochromatic tree of height h; we may do this
by Lemma 4. Define F = G♦H.

Now suppose that we are given a k-colouring c of F . This induces a k|G|+1-
colouring of H: simply colour each t ∈ H by the entire colouring of (G∪{0}, t).
By our choice of H, we can find a monochromatic tree Td of height h for this
colouring.

We now have two k-colourings c0 and c1 of G, defined by

c0(t) = c(t, 0)

and
c1(t) = c(t, t0),

where t0 is some arbitrary element of Td; note that c1 does not depend on the
choice of t0.

Consider the k2-colouring (c0, c1) of G. By our choice of G, there is a tree-
product ♦d−1

i=1 Ti of trees of height h which satisfies the conclusions of the claim

10



when applied to this colouring, and so also satisfies the conclusions of the claim
when applied to the colourings c0 and c1 separately.

We now claim that the set ♦d
i=1Ti will do. This is easy to check, as fol-

lows. Firstly, the fact that ♦d−1
i=1 Ti satisfies the conclusions of the claim for the

colouring c0 means that each of the sets(
×d−1

i=1 Si

)
× {0} (Si = Ti or Si = {0} for each i, not all Si zero)

is monochromatic; and for the colouring c1 that each of the sets(
×d−1

i=1 Si

)
× Td (Si = Ti or Si = {0} for each i, not all Si zero)

is monochromatic. Finally, the fact that Td is monochromatic for our k|G|+1-
colouring of H gives us that the set

{0}d−1 × Td

is monochromatic.

3 The triangle-free extended van der Waerden
theorem

We now begin the proof of our main result in the (2, p, 1)-set case. We start
with the ‘triangle-free’ version:

Theorem 6. Let p and k be positive integers. Then there exists a p-tree-product
P ⊂ N and a subset S ⊂ P such that

• whenever S is k-coloured, it contains a monochromatic p-line; and

• S contains no triangle of p-lines.

This result could be described as a ‘triangle-free extended van der Waerden
theorem’.

We begin by developing some machinery which will be necessary for the
proof. Roughly speaking, we will apply a kind of Nešetřil-Rödl amalgamation.
We emphasize that the proof of the triangle-free result presented in this section is
entirely self-contained, although for background the reader may wish to see one
of the original uses of amalgamation by Nešetřil and Rödl, to construct graphs of
large girth and chromatic number [11], and follow-up results of Frankl, Graham
and Rödl [5]. We mention that in our proof of the general sparse Rado theorem
in §4, we will require some extra machinery in the form of a sparse Hales-Jewett
theorem from [18] and [16].

The main idea is that the ‘indexing’ of the amalgamation (the index-set for
a ‘picture’ as defined below) will be carried out by Theorem 3. This seems to
give us the flexibility we need to make the amalgamation work. We remark that
if we indexed by (m, p, c)-sets themselves (which would be the ‘conventional’
approach), there would be no way to control the presence of superfluous p-lines.
This is why it is so important to realise that this result from [1] gives us precisely
what we need to start the amalgamation.
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Now, fix p and k. We begin by fixing a tree-product F0 such that whenever
F0 is k-coloured, it contains a monochromatic line. (We can of course do this
by Theorem 3.) F0 will be used to index the sets in our amalgamation.

A picture S in a tree-product F will consist of disjoint sets Sv ⊂ F for each
v ∈ F0. The underlying set of S is the set

⋃
v∈F0

Sv ⊂ F ; we often simply refer
to this set as S. A line L = {a, x, x+ a, x+ 2a, . . . , x+ pa} ⊂ S will be called
a picture-line if there exist b, y ∈ F0 such that a ∈ Sb, x ∈ Sy, x + a ∈ Sy+b,
x+ 2a ∈ Sy+2b, . . . , x+ pa ∈ Sy+pb.

An isomorphism between pictures S and S′ is a bijection φ : S → S′ such
that

• for L ⊂ S, φ(L) is a picture-line in S′ precisely when L is a picture-line
in S; and

• whenever L is a picture-line in S, the restriction of φ to L is an isomor-
phism (of lines).

3.1 Starting Picture

To start, find a picture S inside some large tree-product F such that:

• for any line {a, x, x+ a, x+2a, . . . , x+ pa} in F0, there exist b and y such
that b ∈ Sa, y ∈ Sx, y + b ∈ Sx+a, y + 2b ∈ Sx+2a, . . . , y + pb ∈ Sx+pa—
in other words, “for each line in F0 there is a corresponding line in the
picture S”;

• the collection of lines in
⋃

v∈F0
Sv contains no triangle; and

• every line in S is a picture-line.

This is of course possible. For each line L in F0, we choose disjointly a line
L′ in F , making sure that the union of the L′’s contains no lines other than the
L′’s themselves. We then take our picture S to have underlying set the union
of the L′’s, with the points assigned appropriately to the Sv’s.

Observe that whenever S is k-coloured with each Sv monochromatic, it con-
tains a monochromatic line. For such a k-colouring of S induces a k-colouring
of F0, giving a monochromatic line in F0, which in turn gives a monochromatic
line in S.

3.2 Amalgamation

Now we “try to force the Sv to be monochromatic”.
Specifically, given a picture S satisfying the above conditions, and a fixed

u ∈ F0, we want to find a picture S′ in some tree-product which still satisfies
our conditions, and such that whenever S′ is k-coloured, it contains a copy of S
with Su monochromatic. This ‘amalgamation’ is at the heart of the proof; the
difficulty lies in somehow finding a way to construct the set S′ which preserves
the properties we need. Once this has been successfully carried out, we will
have proved our result; for we obtain the required tree-product by applying this
to each u ∈ F0 in turn.

We shall require the notion of a homomorphism of tree-products. So suppose
F and G are tree-products. A homomorphism π from F to G is a function
π : F → G such that
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• whenever L ⊂ F is a line, π(L) ⊂ G is a pseudo-line; and

• whenever L is a line in F , the restriction of π to L is a homomorphism (of
pseudo-lines).

If F is a tree-product, we write F̄ = F ∪{0}. We use the exact same conditions
to define homomorphisms from F to Ḡ and from F̄ to Ḡ. When π : F → Ḡ is a
homomorphism, we shall, without comment, also denote by π the extension of
this homomorphism to the domain F̄ given by setting π(0) = 0.

It is vital to the amalgamation that there is a large supply of such homo-
morphisms. Specifically, we need the following lemma.

Lemma 7. Let F be a p-tree-product, and suppose u and v are distinct elements
of F . Then there exists a homomorphism π : F → F♦F such that π(u) = (u, 0)
but π(v) 6= (v, 0).

Proof. We first deal with the case where F is a single tree T . Let (T0, T1, . . . , Th)
be a tree sequence for T . For each x ∈ T , we define the height h(x) of x to be
the least i such that x ∈ Ti. If a ∈ T with h(a) < h then there is a unique line
in T of the form {a, x, x+a, . . . , x+pa} with h(x) = h(a)+1. We write xa = x
and La = {a, xa, xa + a, . . . , xa + pa}.

The set of descendants of x is defined to be the smallest set Dx such that

• x ∈ Dx; and

• if y ∈ Dx with h(y) < h then Ly ⊂ Dx.

Note that Dx is itself a tree. The set Gw of siblings of w is the collection of
all elements of T at the same height as w which lie in a common line with w
(including w).

We now proceed to the definition of π. There are two cases to consider:

Case (i): v is not a descendant of u.
For each sibling u′ of u, there is a unique isomorphism πu′ : Du′ → Du taking
u′ to u. We define π : T → T♦T by

π(w) =
{

(πu′(w), 0) if w ∈ Du′ for some u′ ∈ Gu

(0, 0) otherwise .

Case (ii): v is a descendant of u.
For each sibling v′ of v, there is a unique isomorphism πv′ : Dv′ → Dv taking v′

to v. We define π : T → T♦T by

π(w) =
{

(w, πv′(w)) if w ∈ Dv′ for some v′ ∈ Gv

(w, 0) otherwise .

In each case, it is a routine matter to check that π is indeed a homomorphism;
and it is obvious that π(u) = (u, 0) but that π(v) 6= (v, 0).

We now proceed to consider a general tree-product F = ♦d
i=1Ti. Suppose

first that u and v differ in some coordinate where they are both supported;
without loss of generality, we assume that u1 6= v1 with u1 and v1 both non-zero.
By our result for a single tree, there is some homomorphism π′ : T1 → T1♦T1
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with π′(u1) = (u1, 0) but π′(v1) 6= (v1, 0). We may then define π : F → F♦F
by

π(x1, x2, . . . , xd) = (π′1(x1), x2, x3, . . . , xd, π
′
2(x1), 0, 0, . . . , 0︸ ︷︷ ︸

d−1

)

where π′1, π
′
2 : T → T̄ are homomorphisms such that π′ = (π′1, π

′
2).

Suppose instead that v is supported on some coordinate where u is not, say
v1 6= 0 = u1. Then we may simply define

π(x1, x2, . . . , xd) = (0, x2, x3, . . . , xd, 0, 0, . . . , 0︸ ︷︷ ︸
d

).

Finally, if neither of the above holds then we must have u supported on
some coordinate where v is not. There must also be some coordinate on which
v is supported, and u must agree with v on this coordinate. So we may assume
without loss of generality that u1 6= 0, v1 = 0 and u2 = v2 6= 0. Let D1 and D2

denote the sets of descendants of u1 in T1 and of u2 in T2 respectively.
If the height of the tree D1 does not exceed the height of the tree D2, then

there is a homomorphism π′ : D1 → D2 taking u1 to u2. Writing Dx for the set
of descendants of a point x in T1, we know that for each sibling u′ of u1 there
is an isomorphism πu′ : Du′ → Du1 = D1 taking u′ to u1. So we may extend π′

to the whole of T1 by setting

π′(x) =
{
π′(πu′(x)) if x ∈ Du′ for some u′ ∈ Gu1

0 otherwise .

(Note that this agrees with our previous definition on Du1 as the isomorphism
πu1 : Du1 → Du1 must be the identity.) Then define π : F → F♦F by

π(x1, x2, . . . , xd) = (x1, π
′(x1), x3, x4, . . . , xd, 0, 0, . . . , 0︸ ︷︷ ︸

d

).

If instead the height of the tree D1 does exceed the height of the tree D2,
then we may find a homomorphism π′ : T2 → T1 taking u2 to u1. We can then
set

π(x1, x2, . . . , xd) = (π′(x2), x2, x3, x4, . . . , xd, 0, 0, . . . , 0︸ ︷︷ ︸
d

).

In what follows, it will often be convenient to think of F as being embedded
in F♦F by means of the injective homomorphism x 7→ (x, 0). We shall do
so without comment; when we do, we shall, by an abuse of notation, refer to
(x, 0) ∈ F♦F simply as x. In this language, Lemma 7 says that for any u, v ∈ F
with u 6= v we can find a homomorphism from F to F♦F which fixes u and
moves v.

We also require the following trivial observation:

Lemma 8. Let F0 and F be p-tree-products, and let u ∈ F0. Then there exists
a p-tree-product F ′ and an injective homomorphism θ : F → F ′ such that, given
any c ∈ F , there exists a homomorphism θc : F0 → F ′ with θc(u) = θ(c).
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Proof. We may assume without loss of generality that F0 is a product of n
copies of a tree T0 of height h, and that F is a product of N copies of a tree T
of height H. Let F ′ be a product of N copies of a tree T ′ of height H + h. Let
φ : T → T ′ be an injective homomorphism taking the root of T to the root of
T ′. Then define θ : F → F ′ by θ(x1, x2, . . . , xN ) = (φ(x1), φ(x2), . . . , φ(xN )).

Now, suppose that (u1, u2, . . . , un) ∈ F0 and (c1, c2, . . . , cN ) ∈ F . We may
assume without loss of generality that u1 6= 0. For 1 ≤ i ≤ N and for each
u′ ∈ Gu1 , let θ(u

′)
i : Du′ → T ′ be a homomorphism taking u′ to φ(ci). (Note

that this is possible as Du′ is a tree of height at most h, and φ(ci) is either
zero or a point at height at most H in a tree of height H + h.) Then define
θci

: F0 → F ′ by

θci
(x1, x2, . . . , xn) =

 (θ(u
′)

1 (x1), . . . , θ
(u′)
N (x1)) if x1 ∈ Du′ for some u′ ∈ Gu1

(0, 0, . . . , 0︸ ︷︷ ︸
N

) otherwise .

We now return to the amalgamation. Recall that we are given a picture S,
inside some large tree-product F , satisfying the conditions of §3.1, and u ∈ F0.
With F ′, θ and θc (c ∈ F ) as given by Lemma 8, we may regard S as a picture
inside the tree-product F ′ (i.e. we replace S with the copy θ(S)). Making this
identification, we see that for each c ∈ Su we have θc(u) = c. Our goal is a
picture S′ which also satisfies the conditions of §3.1, and such that whenever S′

is k-coloured, it contains a copy of S with Su monochromatic. We call S′ the
amalgamation of S over Su and define it as follows:

First, fix some e such that whenever the Hales-Jewett cube (Su)e is k-
coloured, it contains a monochromatic Su-line. (Here, by ‘Su-line’, we of course
mean a line in the usual sense of the Hales-Jewett theorem. We can find such an
e by applying Hales-Jewett on alphabet Su.) We list all of the Su-lines in (Su)e

as S(1)
u , S(2)

u , . . . , S(D)
u . Note that (Su)e lies inside some large tree-product

G = F ′e.
Next, fix j with 1 ≤ j ≤ D. Let I ⊂ [e] be the set of active coordinates of

the line S(j)
u in (Su)e. Then there exist ci ∈ Su (i ∈ [e]− I) such that

S(j)
u = {x ∈ G : xi = ci for i ∈ [e]− I and xi = xh ∈ Su for all i, h ∈ I} .

For each v ∈ F0, define

S(j)
v = {x ∈ G : xi = θci

(v) for i ∈ [e]− I and xi = xh ∈ Sv for all i, h ∈ I} .

We observe that this is consistent with our original definition of S(i)
u .

Now, let πi (1 ≤ i ≤ n) be all the homomorphisms from F0 to F0♦F0 which
fix u, with π1 being the identity. Let fj (1 ≤ j ≤ N = nD) be the collection of
all functions from [D] to [n], with f1 being the constant function with value 1.
We define our goal picture S′ in F0♦F0

N♦G by

S′v =
D⋃

i=1

(πf1(i)(v), πf2(i)(v), . . . , πfN (i)(v), S(i)
v ).

The S′v are indeed disjoint as each S′v has first coordinate v.

15



Note in particular that

S′u =
(
u, u, . . . , u,

D⋃
i=1

S(i)
u

)
.

Note also that we have D copies S(1), S(2), . . . , S(D) of S in S′, with
(S(i))v = (πf1(i)(v), πf2(i)(v), . . . , πfN (i)(v), S

(i)
v ) ⊂ S′v. Moreover, these copies

intersect only in S′u. For if v 6= u then, by Lemma 7, we can find some homo-
morphism π which fixes u and moves v. Now, given i and j with i 6= j, there is
some coordinate in which (S(i))v has v and (S(j))v has π(v) 6= v.

We must now check that S′ does indeed have the properties we claim. Specif-
ically, we need the following lemma.

Lemma 9. Let S be a picture satisfying the conditions of §3.1, let u ∈ F0, and
let S′ be the amalgamation of S over Su. Then (i) whenever S′ is k-coloured, it
contains a copy of S with Su monochromatic; and (ii) S′ satisfies the conditions
of §3.1.

We shall use the following result on lines in S′:

Lemma 10. Let S be a picture satisfying the conditions of §3.1, let u ∈ F0, and
let S′ be the amalgamation of S over Su. Then any line in S′ is a picture-line
and is entirely contained in one of the copies S(i) of S.

Proof. Let L = {a, x, x+ a, x+ 2a, . . . , x+ pa} be a line in S′. Suppose a ∈ S′a′
and x ∈ S′x′ . Then a has first coordinate a′ and x has first coordinate x′.
Hence for λ = 1, 2, . . . , p, the first coordinate of x + λa is x′ + λa′, and so
x+ λa ∈ Sx′+λa′ . So L is a picture-line.

We now come to the proof of the second assertion of the lemma, beginning
with the simpler case where u 6∈ L′ = {a′, x′, x′ + a′, x′ + 2a′, . . . , x′ + pa′}.
Suppose that x and a are in different copies of S, say x ∈ S(i) and a ∈ S(j)

with i 6= j. Suppose first that x + a 6∈ S(j). Then let π be a homomorphism
which fixes u and moves a′. By looking at an appropriate column, we find
x′ + π(a′) = x′ + a′, a contradiction. If instead x + a ∈ S(j) then we may
similarly find that, for some homomorphism π′ which fixes u and moves x′,
π′(x′) + a′ = x′ + a′, again a contradiction.

Hence x and a are in the same copy of S, say x, a ∈ S(i). Now suppose
that for some λ with 1 ≤ λ ≤ p we have x + λa 6∈ S(i). Then for some homo-
morphism π which fixes u and moves x′ +λa′ we have x′ + λa′ = π(x′ + λa′), a
contradiction. So in fact x+ λa ∈ S(i) for all λ, which completes the proof.

We must now deal with the case where u ∈ L′. Let w ∈ L be the unique
point of L which lies in S′u. By a precisely similar argument to the foregoing, we
see that there is some copy of S, say S(i), which contains every point of L−{w}.
It is impossible to obtain any better result than this by considering the first N
coordinates, as πj(u) = u for every j. Hence we are forced to examine what
happens in the final coordinate.

The projection of L onto this final coordinate forms a line L′′ in the tree
product G. For each y ∈ L, denote the corresponding points in L′ and L′′ by
y′ and y′′ respectively. So y ∈ S′y′ and y′′ is the projection of y onto G. In
particular, u = w′.
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Let I ⊂ [e] denote the set of active coordinates of the line S(i)
u in Se

u, and
for each j ∈ [e]− I, let cj ∈ Su be the constant for position j in S

(i)
u (i.e. such

that given any x ∈ S
(i)
u we have xj = cj for every j ∈ [e] − I). Now, for each

y ∈ L − {w}, we know that y′′ ∈ S
(i)
y′ . Hence we can find dy ∈ Sy′ such that

y′′j = θcj
(y′) for j ∈ [e] − I and y′′j = dy for j ∈ I. Now, choose dw ∈ G such

that {dy : y ∈ L} is a line (for example, take dw = w′′
j for an arbitrary j ∈ I).

Consider the point W defined by Wj = cj = θcj (u) for j ∈ [e]− I and Wj = dw

for j ∈ I. Then L′′ − {w′} ∪ {W} is a line in G. But a line in a tree-product is
completely determined by specifying all but one of its points, and so W = w′′.
Finally, as w′′ ∈ Su, we have w′′

j ∈ Su for every j ∈ [e], and in particular

dw ∈ Su. Hence w′ ∈ S(i)
u and so w ∈ S(i) as required, and we are done.

We proceed to the verification of the desired properties of S′:

Proof (of Lemma 9). (i) Suppose that S′ is k-coloured; say we have some
k-colouring c of S′. This induces a k-colouring c′ of (Su)e given by
c′(t) = c(u, u, . . . , u, t). By our choice of e, the Hales-Jewett cube (Su)e must
contain a monochromatic Su-line, say S(i)

u for some i with 1 ≤ i ≤ D. But then
S(i) is a copy of S with S(i)

u monochromatic.
(ii) We now verify that S′ satisfies the conditions of §3.1. We have already

shown in Lemma 10 that every line in S′ is a picture line, so there are only two
remaining conditions to be checked.

First, we must check the condition that for each line in F0 there is a cor-
responding line in the picture S′. But this is easy. For if L is a line in F0

then there is a corresponding line in S, and S′ contains copies S(i) of S with
S

(i)
v ⊂ S′v for each v ∈ F0.

Finally, we must ensure that S′ is triangle-free. So suppose we have some
triangle L1x1L2x2L3x3 in S′, i.e. suppose that L1, L2 and L3 are distinct lines
and x1, x2 and x3 are distinct points with x1 ∈ L1 ∩ L2, x2 ∈ L2 ∩ L3 and
x3 ∈ L3 ∩ L1. By Lemma 10, each of L1, L2 and L3 must be a picture-line
and be contained entirely within some copy of S; say L1 ⊂ S(i1), L2 ⊂ S(i2)

and L3 ⊂ S(i3). Each copy of S is triangle-free, and so i1, i2 and i3 cannot
all be equal. As copies of S intersect only in S′u, at least two of the points of
intersection, say x1 and x2, must lie in S′u. But then L2 has two points in S′u,
which is impossible as it must be a picture-line and F0 contains no degenerate
lines. So S′ is triangle-free as required.

This is enough to establish our main result:

Proof (of Theorem 6). Take the starting picture of §3.1, and amalgamate over
each u ∈ F0 in turn. By the preceding lemmas, the resulting set S has the
properties we require and the theorem is proved.

4 The general sparse Rado theorem

We have so far been able to show that given any p and k, there is a subset S of
the natural numbers such that

• whenever S is k-coloured, it contains a monochromatic (2, p, 1)-set (‘line’);
but
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• no triangle is formed by the lines in S.

In fact, the bulk of the work is now behind us and it is relatively easy to complete
the proof of the general result. For the moment, we shall stay with the case of
(2, p, 1)-sets but attempt to force the set S to have arbitrarily large girth.

4.1 Large girth

Recall that we constructed our set S to contain no triangle of lines. In fact, it
also contains no 4-cycle of lines.

Clearly our starting picture contains no 4-cycle of lines—no two lines in the
starting picture intersect, so it contains no cycles at all.

Let us consider how a 4-cycle of lines could arise while carrying out the
amalgamation. Suppose that we have some picture S containing no 4-cycle of
lines, but that when we amalgamate over the set Su the picture S′ thus formed
does contain such a 4-cycle, say L1x1L2x2L3x3L4x4. By our earlier work, we
know that each of L1, L2, L3 and L4 must be a picture-line and be contained
entirely within some copy of S. But since none of the copies of S contains a
4-cycle and copies of S intersect only in S′u, the only way that this can happen
is if L1 and L2 are contained in the same copy of S, say S(i), and also L3 and
L4 are contained in the same copy of S, say S(j), with i 6= j. Then S(i) and
S(j) intersect in at least two points, namely x2 and x4. This means that the
distinct (Su)-lines S(i)

u and S
(j)
u must intersect in at least two points. But this

is impossible—distinct lines in a Hales-Jewett cube can intersect in at most one
point.

By a similar argument, we shall see (in the proof of Theorem 12) that a
g-cycle of lines in S′ can only arise if we have a cycle of (Su)-lines in (Su)e of
length at most g/2. This suggests that what is needed is precisely the sparse
Hales-Jewett theorem of Rödl [18] (see also Prömel and Voigt [16]).

Theorem 11 ([18]). Let A be a finite alphabet with |A| ≥ 3, and let k and
g be positive integers. Then there exists a Hales-Jewett cube Ae and a subset
R ⊂ Ae such that

• whenever R is k-coloured it contains a monochromatic line; and

• there is no cycle of lines in R of length ≤ g.

Armed with this result, we are now able to prove the following theorem.

Theorem 12. Let p, k and g be positive integers. Then there exists a set S ⊂ N
such that

• whenever S is k-coloured it contains a monochromatic p-line; and

• there is no cycle of p-lines in S of length ≤ g.

Proof. We carry out precisely the construction of §3 except that when defining
the amalgamation S′ of S over Su, we replace the Hales-Jewett cube (Su)e by
some subset R of an appropriate Hales-Jewett cube such that

• whenever R is k-coloured it contains a monochromatic line; and

• there is no cycle of lines in R of length ≤ g/2.
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We know that R of course exists by Theorem 11.
The proof carries through almost identically to the proof of Theorem 6. All

we must check is that if S is a picture with no cycle of length ≤ g and S′ is the
(newly-defined) amalgamation of S over Su then also S′ has no cycle of length
≤ g.

So suppose that L1x1L2x2 . . . Lrxr (r ≤ g) is a cycle of lines in S′. We know
that each Li must be a picture-line and contained entirely within some copy of
S. Moreover, the copies of S intersect only in S′u. Hence the xi which belong
to S′u must induce a cycle of (Su)-lines in R; for if i < j with xi, xj ∈ S′u but
xi+1, xi+2, . . . , xj−1 6∈ S′u then, by our construction, xi and xj must lie in the
same copy of S. (As each copy of S has no cycle of length ≤ g, we cannot have
all the xi lying in the same copy of S and so this must involve more than one
(Su)-line; i.e. we genuinely do obtain a cycle.) Moreover, no two consecutive xi

can belong to S′u as each Li is a picture line and so intersects S′u at most once.
Hence the cycle of lines we obtain in R has length ≤ g/2. But this contradicts
our choice of R, and so no such cycle of lines in S′ can exist, which is enough
to establish our theorem.

4.2 (m, p, c)-sets

We now proceed to generalize the preceding results to general (m, p, c)-sets.
Throughout this section, we shall regard m, p and c as fixed positive integers,
and refer to an (m, p, c)-set as a line. At one point in the proof, we need to
assume that p and c are not both 1—but fortunately this case is precisely the
sparse Finite Sums theorem of Nešetřil and Rödl [14].

4.2.1 Ramsey results

Our first task is to give an appropriate definition of a tree such that an ana-
logue of Theorem 3 holds. The following definitions and result are essentially a
paraphrase of work of Bergelson, Hindman and Leader [1].

Recall that now a line is an (m, p, c)-set generated by, say, non-zero
x1, x2, . . . , xm ∈ N. We shall find it convenient to denote this set by
[x1, x2, . . . , xm]. As before, we also consider more generally lines of the form
[x1, x2, . . . , xm] for non-zero x1, x2, . . . , xm ∈ Ne for any e ≥ 1. We define
a pseudo-line in exactly the same way, but allowing any or all of the xi to
be zero. A map φ : L → L′ between pseudo-lines L and L′ is called a homo-
morphism if we can find x1, x2, . . ., xm such that L = [x1, x2, . . . , xm] and
L′ = [ 1cφ(cx1), 1

cφ(cx2), . . . , 1
cφ(cxm)]. Again, an isomorphism between lines is

a bijective homomorphism.
We now define an (m, p, c)-tree of height 0 to be a set of the form {cx1}

for some non-zero x1 ∈ N. An (m, p, c)-tree of height 1 is an (m, p, c)-set
T = [x1, x2, . . . , xm] ⊂ N, with the property that all of the sums cxk+

∑k−1
i=1 λixi

(1 ≤ k ≤ m and 0 ≤ λi ≤ p for 1 ≤ i ≤ k − 1) are distinct; we say that the tree
{cx1} of height 0 is a pre-tree of T . An (m, p, c)-tree of height h (h > 0) is a set
T of the form

T = R ∪
⋃

ca∈S−R

[a, x(a)
2 , . . . , x(a)

m ]

where S is an (m, p, c)-tree of height h − 1 with pre-tree R and the x
(a)
i

(ca ∈ S −R, 2 ≤ i ≤ m) are non-zero elements of N chosen so as to create
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no unnecessary lines in T and so that all of the new sums required are distinct
and do not already appear in S. So, in particular, our (m, p, c)-trees contain no
degenerate lines.

Observe that a (2, p, 1)-tree is simply a p-tree in the sense of §2.1.
To ensure that short cycles cannot be created by the amalgamation process

described below, it will be necessary to work with tree-products containing no
degenerate lines. Unless p = 1, this can be achieved by insisting that no tree in
the product contains both x and 2x for any x ∈ N+. (It is, of course, possible
to construct such an (m, p, c)-tree of any given height, simply by taking each
new variable sufficiently large.) For if [x1, x2, . . . , xm] is a line in such a tree-
product then x2, x3, . . . , xm must all be supported on any coordinate where x1

is supported, and so a degenerate line in the product gives rise to a degenerate
line in some single coordinate. If p = 1 then c 6= 1 and we may instead take
trees which do not contain x and cx for any x ∈ N+. Hence we may assume
that none of the tree-products with which we work contains a degenerate line.

Again, it is clear that (m, p, c)-trees of arbitrary height exist in N: we can
construct an (m, p, c)-tree of any given height in Q+ by successively choosing
elements sufficiently large to ensure that there are no unnecessary lines, then
multiply up by an appropriate constant to make each element an integer. When
m, p and c are fixed, we shall often refer to (m, p, c)-trees simply as trees.

The remainder of our definitions are precisely as in §2.
We are now ready to prove an analogue of Theorem 3. The proof is a minor

adaptation of that of the (2, p, 1)-set result.

Theorem 13 ([1]). Let m, p, c and k be positive integers. Then there exists
an (m, p, c)-tree-product F such that whenever F is k-coloured, it contains a
monochromatic (m, p, c)-set.

Proof. Let T be a tree of height K = (m − 1)k + 1 with tree sequence
(T0, T1, . . . , TK). Define a finite sequence d0, d1, . . . , dK inductively, exactly as
before, using the Hales-Jewett theorem:

• take d0 = 1;

• for 1 ≤ n ≤ K, take dn sufficiently large that whenever T dn
n is k-coloured,

there exists a monochromatic combinatorial subspace of dimension dn−1.

Take F to be the tree product of dK copies of T and assume that we are given
a k-colouring of F .

As in the proof of Theorem 3, afterK applications of Hales-Jewett, we obtain
sequences F0, F1, . . . , FK−1 of subsets of F and z1, z2, . . . , zdK

of elements of
T satisfying:

• Fi = {(t1, t2, . . . , tdi , 0, 0, . . . , 0︸ ︷︷ ︸
dK−di

) : t1, t2, . . . , tdi
∈ Ti ∪ {0}, ti not all 0};

• Si = {(t1, . . . , tdi
, zdi+1, . . . , zdi+1 , 0, 0, . . . , 0︸ ︷︷ ︸

dK−di+1

) : t1, t2, . . . , tdi ∈ Ti+1} is

monochromatic, with colour ci, say;

• zi ∈ Tj for i ≤ dj .
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Now, as K = (m − 1)k + 1, we can find some m of the sets S0, S1,
S2, . . . , SK−1 with the same colour; say cn1 = cn2 = · · · = cnm

for some
0 ≤ n1 < n2 < · · · < nm ≤ K − 1. Choose arbitrarily

cx1 = (cx(1)
1 , cx

(2)
1 , . . . , cx

(dn1+1)
1 , 0, 0, . . . , 0︸ ︷︷ ︸

dK−dn1+1

) ∈ Sn1 .

Now, for each i, 1 ≤ i ≤ dn1+1, we have cx(i)
1 ∈ Tn1+1 and so there exist x(i)

2 ,
x

(i)
3 , . . . , x(i)

m such that [x(i)
1 , x

(i)
2 , . . . , x

(i)
m ] ⊂ Tn1+2 ⊂ Tnj+1 for all j > 1. So,

choosing cx(dn1+1+1)
2 , cx(dn1+1+2)

2 , . . . , cx(dn2 )
2 ∈ Tn2+1 arbitrarily, and setting

cx
(i)
2 = zi for dn2 + 1 ≤ i ≤ dn2+1, we may take

x2 = (x(1)
2 , x

(2)
2 , . . . , x

(dn2+1)
2 , 0, 0, . . . , 0︸ ︷︷ ︸

dK−dn2+1

).

Observe that cx2 + λx1 ∈ Sn2 for 0 ≤ λ ≤ p.
Now, for each i with dn1+1 + 1 ≤ i ≤ dn2+1, we have cx(i)

2 ∈ Tn2+1 and so
there exist x(i)

3 , x(i)
4 , . . . , x(i)

m , y such that [x(i)
2 , x

(i)
3 , . . . , x

(i)
m , y] ⊂ Tn2+2 ⊂ Tnj+1

for all j > 2. [Note that we are not interested in y; indeed, our interest in the
line [x(i)

2 , x
(i)
3 , . . . , x

(i)
m , y] only goes so far as to ensure that the appropriate linear

combinations of x(i)
2 , x(i)

3 , . . . , x(i)
m are in all the Tnj+1 for j > 2.] So, choosing

cx
(dn2+1+1)
3 , cx(dn2+1+2)

3 , . . . , cx(dn3 )
3 ∈ Tn3+1 arbitrarily, and setting cx(i)

3 = zi

for dn3 + 1 ≤ i ≤ dn3+1, we may take

x3 = (x(1)
3 , x

(2)
3 , . . . , x

(dn3+1)
3 , 0, 0, . . . , 0︸ ︷︷ ︸

dK−dn3+1

).

Observe that cx3 + λx2 + µx1 ∈ Sn3 for 0 ≤ λ, µ ≤ p.
Continuing in this way, we define x4, x5, . . . , xm in such a way that for all

i with 1 ≤ i ≤ m, we have cxi +
∑i−1

j=1 λjxj ∈ Sni for all λ1, λ2, . . . , λi−1 with
0 ≤ λ1, λ2, . . . , λi−1 ≤ p. Hence the line [x1, x2, . . . , xm] is monochromatic.

We observe that this again generalizes to give a Ramsey theorem for products
of trees, which again will not be necessary for the argument to follow:

Theorem 14. Let m, p, c and k be positive integers, and let F be an (m, p, c)-
tree-product. Then there exists an (m, p, c)-tree-product G such that whenever
G is k-coloured, it contains a monochromatic copy of F .

Proof. This result is deduced from Theorem 13 in exactly the same way as
Theorem 5 was deduced from Theorem 3.

4.2.2 Main Result

We now come to the proof of our main result for (m, p, c)-sets. Again, the proof
is almost identical to that for (2, p, 1)-sets.

The basic definitions are essentially the same as those given at the start of
§3. The only definition deserving of comment is that of a picture-line: we now
say that a line L in a picture S indexed by a tree-product F0 is a picture-line
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if there is some line L′ in F0 and an isomorphism φ : L → L′ such that for all
x ∈ L we have x ∈ Sφ(x). Note that in the case m = 2 and c = 1 this reduces
to the definition given in §3.

As before, we take a starting picture S inside some large tree-product F .
The conditions that we now require S to satisfy are:

• for any line L in F0, there is a line L′ in S and an isomorphism φ : L→ L′

such that for all x ∈ L, φ(x) ∈ Sx;

• the collection of lines in
⋃

v∈F0
Sv contains no cycle of length ≤ g; and

• every line in S is a picture-line.

We define homomorphisms as before. To carry out our amalgamation, we will
need an analogue of Lemma 7 to tell us that there are enough homomorphisms.
However, we now need a larger codomain available for our homomorphisms.

We define the extension F+ of a tree-product F to be the tree-product
obtained from F by ‘growing each tree in F one extra level’. Formally, if
F = ♦n

i=1Ti where Ti is a tree of height hi, we define F+ = ♦n
i=1T

+
i , where

T+
i is a tree of height hi + 1; we identify F with a suitable subset of F+ via an

isomorphism mapping each Ti into T+
i with the root of Ti being taken to the

root of T+
i .

Lemma 15. Let F be an (m, p, c)-tree-product, and suppose u and v are distinct
elements of F . Then there exists a homomorphism π : F → F+♦F+ such that
π(u) = (u, 0) but π(v) 6= (v, 0).

Proof. The proof is similar to that of Lemma 7, but with some additional com-
plications. Again, we start with the case where F is a single tree T with
tree-sequence (T0, T1, . . . , Th). Again, for each x ∈ T , we define the height
h(x) of x to be the least i such that x ∈ Ti. If a ∈ T with h(a) < h
then there is a unique line L in T of the form L = [a, x2, x3, . . . , xm] with
h(x2) = h(x3) = · · · = h(xm) = h(a) + 1. We write La = L and x

(a)
i = xi for

2 ≤ i ≤ m. We define the set of descendants Dx and the set of siblings Gx of a
point x ∈ T as in the proof of Lemma 7. We shall denote the set of descendants
of a point x ∈ T+ by D+

x . Given x ∈ T with h(x) > 0, there is a unique
x1 ∈ T with x ∈ Lx1 = [x1, x2, . . . , xm] and h(x1) = h(x) − 1. We may then
express x uniquely in the form x = cxr +

∑r−1
i=1 λixi for some r, 2 ≤ r ≤ m and

0 ≤ λ1, λ2, . . . , λr−1 ≤ p. We call r the rank of x and denote it by r(x). We
define the set of younger siblings of x to be the set G−

x = {y ∈ Gx : r(y) ≥ r(x)}.
The definition of π is again divided into two cases.

Case (i): v is not a descendant of u.
As v is not a descendant of u, we must have h(u) > 0, and
h ∈ Lx1 = [x1, x2, . . . , xm] for some x1 with h(x1) = h(u)− 1. Write r = r(u),
and Lu = [y1, y2, . . . , ym] ⊂ T+ (so y1 = u). For each t ∈ G−

u , we may
write t = cxr(t) +

∑r(t)−1
i=1 µixi for some 0 ≤ µ1, µ2, . . . , µr(t)−1 ≤ p. Define

t′ = cyr(t)−r+1 +
∑r(t)−r

i=1 µi+r−1yi ∈ T+. Then there is an isomorphism
πt : Dt → D+

t′ taking t to t′. We define π : T → T+♦T+ by

π(w) =
{

(πt(w), 0) if w ∈ Dt for some t ∈ G−
u

(0, 0) otherwise .
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Case (ii): v is a descendant of u.
Similarly to the above, by taking for each t ∈ G−

v a suitable t′ ∈ T+ and an
isomorphism πt : Dt → D+

t′ , we may define a homomorphism π : T → T+♦T+

by

π(w) =
{

(w, πt(w)) if w ∈ Dt for some t ∈ G−
v

(w, 0) otherwise .

We have now dealt with the case where F is a single tree. Suppose instead
F = ♦d

i=1Ti. If u and v differ in some coordinate where they are both supported,
or if v is supported somewhere where u is not, then we can finish exactly as in
the proof of Lemma 7. In the only remaining case, we may assume without loss
of generality that u1 6= 0, v1 = 0 and u2 = v2 6= 0. Denote by D1 and D2 the
sets of desendants of u1 in T1 and u2 in T2 respectively.

Suppose that the height of the tree D1 does not exceed the height of the
tree D2. Then, similarly to the constructions earlier in this proof, for each
t ∈ G−

u1
, we may choose a point t′ ∈ D+

2 , with u′1 = u2, and an isomorphism
πt : Dt → D+

t′ taking t to t′, in such a way that we can define a homomorphism
π : T1 → T+

2 by

π′(x) =
{
πt(x) if x ∈ Dt for some t ∈ G−

u1

0 otherwise .

We may then define π : F → F+♦F+ by

π(x1, x2, . . . , xd) = (x1, π
′(x1), x3, x4, . . . , xd, 0, 0, . . . , 0︸ ︷︷ ︸

d

).

If instead the height of the tree D1 does exceed the height of the tree D2

then we may find a homomorphism π′ : T2 → T+
1 taking u2 to u1. We can then

set
π(x1, x2, . . . , xd) = (π′(x2), x2, x3, x4, . . . , xd, 0, 0, . . . , 0︸ ︷︷ ︸

d

).

Again, we embed F in F+♦F+ by means of the injective homomorphism
x 7→ (x, 0). We also have an analogue of Lemma 8:

Lemma 16. Let F0 and F be (m, p, c)-tree products, and let u ∈ F0. Then there
exists an (m, p, c)-tree-product F ′ and an injective homomorphism θ : F → F ′

such that, given any c ∈ F , there exists a homomorphism θc : F0 → F ′ with
θc(u) = θ(c).

Proof. Assume without loss of generality that F0 is a product of n copies of a
tree T0 of height h and that F is a product of N copies of a tree T of height H,
and let F ′ be a product of N copies of a tree T ′ of height H + h + 1. Define
θ : F → F ′ as in Lemma 8.

To construct the θc : F0 → F ′ as we did in Lemma 8, all we need is that for
any w ∈ T0 and b ∈ T , we can find a homomorphism ψ : T0 → T ′ taking w to
φ(b). But this is easy—if φ(b) = 0, take ψ(x) = 0 for all x ∈ T0; otherwise, by
the same procedure as used in the proof of Lemma 15, we can construct such a
ψ with ψ(x) 6= 0 precisely for x ∈ ∪t∈G−

w
Dt.

23



We can now define the amalgamation S′ as before, using the sparse Hales-
Jewett theorem. It only remains to check that S′ has the required properties.
As long as we can prove an analogue of Lemma 10, the remainder of the proof
will go through exactly as for (2, p, 1)-sets. Given the work that we have already
done on homomorphisms, the proof of this lemma is only a slight extension of
the proof of Lemma 10.

Lemma 17. Let S be a picture (in the sense of this section, i.e. for (m, p, c)-
sets), let u ∈ F0 and let S′ be the amalgamation of S over Su. Then any line
in S′ is a picture-line and is entirely contained in one of the copies S(i) of S.

Proof. Let L = [x1, x2, . . . , xm] be a line in S′. Suppose for each i = 1, 2, . . . , m
that cxi ∈ S′cx′i

. Then cxi has first coordinate cx′i, and so xi has first coordi-
nate x′i. Hence for any k with 1 ≤ k ≤ m and λi (1 ≤ i ≤ k − 1) with
0 ≤ λi ≤ p, we see that cxk +

∑k−1
i=1 λixi has first coordinate cx′k +

∑k−1
i=1 λix

′
i

and so cxk +
∑k−1

i=1 λixi ∈ S′cx′k+
∑k−1

i=1 λix′i
. So L is a picture-line.

Assume that u 6∈ L, and suppose that cxi and cxj (i < j) are in different
copies of S, say cxi ∈ S(a) and cxj ∈ S(b) with a 6= b. Suppose first that
cxj + xi ∈ S(e) for some e 6= b. Then let π be a homomorphism which fixes u
and moves cx′j . By taking some column in which S(a) and S(e) have the identity
map but S(b) has π, we get π(cx′j) + x′i = cx′j + x′i, a contradiction. If instead
cx′j + x′i ∈ S(b) then by taking a homomorphism π which fixes u and moves cx′i
and looking at an appropriate column, we get cx′j + 1

cπ(cx′i) = cx′j + x′i, again
a contradiction. So all of the cxi (1 ≤ i ≤ m) must be in the same copy of S,
say S(a).

Now, if L is not contained entirely within S(a) then we can choose i with
1 ≤ i ≤ k and λ1, λ2, . . . , λi−1 with 0 ≤ λj ≤ p for 1 ≤ j ≤ i − 1 such
that y = cxi +

∑i−1
k=1 λxk 6∈ S(a), say y ∈ S(b). Then choose a homomor-

phism which fixes u but moves y′ = cx′i +
∑i−1

k=1 λx
′
k, the first coordinate of

y. Picking a column in which S(a) has the identity but S(b) has π, we get
y = cx′i +

∑i−1
k=1 λx

′
k = π(y), a contradiction.

Hence L is contained entirely within S(a).
Finally, if u ∈ L then, precisely as in the proof of Lemma 10, we show that

all but one point of L is contained in some copy of S(a) of S, and deduce that
the whole of L is contained in S(a).

The remainder of the proof goes through exactly as before, and we have thus
established our sparse version of Rado’s theorem:

Theorem 18. Let m, p, c, k and g be positive integers. Then there exists a
subset S ⊂ N such that

• whenever S is k-coloured it contains a monochromatic (m, p, c)-set; and

• the (m, p, c)-sets in S form no cycle of length < g.

This settles the Deuber conjecture.
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5 Concluding remarks

Let us end by mentioning that all of the work in this paper relates to finite
partition regular systems. In contrast, in the infinite case nothing at all is known
about sparseness. For example, recall the Finite Sums theorem: for any k and
n, whenever N+ is k-coloured there exist x1, x2, . . . , xn ∈ N+ such that the set
FS(x1, x2, . . . , xn) of all non-zero finite sums of the xi is monochromatic. As
we mentioned above, a sparse version of this result was proved by Nešetřil and
Rödl [14]: for any k, g and n, there exists a subset S ⊂ N+ such that whenever
S is k-coloured it contains a monochromatic set of the form FS(x1, x2, . . . , xn),
but such that S contains no cycle of length ≤ g of sets of this form. This
immediately gives us also a restricted Finite Sums theorem: for any k and n,
there exists a subset S ⊂ N+ such that whenever S is k-coloured it contains a
monochromatic set of the form FS(x1, x2, . . . , xn), but such that S contains no
set of the form FS(x1, x2, . . . , xn+1).

An infinite version of the Finite Sums Theorem was proved by Hindman [8]:
whenever N+ is finitely coloured, there exists a monochromatic set of the form
FS(x1, x2, x3, . . . ). A sensible first question to ask is whether we can produce
some restricted Hindman theorem.

For k a positive integer, denote by FS≤k(x1, x2, x3, . . . ) the set of all non-
zero sums of at most k elements from x1, x2, x3, . . . . An obvious question to
ask is the following.

Question 19 ([10]). Let k be a positive integer. Does there exist a subset
S ⊂ N+ such that whenever S is finitely coloured it contains a monochromatic
set of the form FS≤k(x1, x2, x3, . . . ) but such that S contains no set of the form
FS≤k+1(x1, x2, x3, . . . )?

Nešetřil and Rödl [15] have conjectured that the answer to this question is
yes; while Hindman [9] has conjectured that the answer is no. Even the simplest
case, k = 2, is unknown. Indeed, it is not even known if there is a set S ⊂ N
such that whenever S is finitely coloured there is a sequence x1, x2, x3, . . . ,
with all xi and all xi + xj (i 6= j) the same colour, but such that S contains no
set of the form FS(y1, y2, y3, . . . ). See [10] for related questions and discussion.
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