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Abstract
A family A of sets is said to be intersecting if A ∩ B 6= ∅ for

all A, B ∈ A. It is a well-known and simple fact that an intersect-
ing family of subsets of [n] = {1, 2, . . . , n} can contain at most 2n−1

sets. Katona, Katona and Katona ask the following question. Suppose
instead A ⊂ P[n] satisfies |A| = 2n−1 + i for some fixed i > 0. Create
a new family Ap by choosing each member of A independently with
some fixed probability p. How do we choose A to maximize the prob-
ability that Ap is intersecting? They conjecture that there is a nested
sequence of optimal families for i = 1, 2, . . . , 2n−1. In this paper,
we show that the families [n](>r) = {A ⊂ [n] : |A| ≥ r} are optimal
for the appropriate values of i, thereby proving the conjecture for this
sequence of values. Moreover, we show that for intermediate values of
i there exist optimal families lying between those we have found. It
turns out that the optimal families we find simultaneously maximize
the number of intersecting subfamilies of every possible order.

Standard compression techniques appear inadequate to solve the
problem as they do not preserve intersection properties of subfami-
lies. Instead, our main tool is a novel compression method, together
with a way of ‘compressing’ subfamilies, which may be of independent
interest.

1 Introduction

Many problems of extremal combinatorics concern intersecting familes of
finite sets. A family A is said to be intersecting if A∩B 6= ∅ for all A, B ∈ A.
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How large an intersecting family can we find in the discrete cube Qn =
P [n] = P{1, 2, . . . , n}? It is easy to achieve |A| = 2n−1, for example by
taking A = {A ⊂ Qn : 1 ∈ A}. And it is easy to see that we can do no
better than this—an intersecting family cannot contain both a set and its
complement.

A more interesting question arises if we require our intersecting family
to be uniform. Given a set S and a positive integer r, write S(r) for the
collection {A ⊂ S : |A| = r} of all subsets of S of size r. How large an
intersecting family A ⊂ [n](r) can we find?

As in the non-uniform case, it seems natural to try taking
A = {A ∈ [n](r) : 1 ∈ A}, here achieveing |A| =

(
n−1
r−1

)
. And indeed, in their

significant paper of 1964, Erdős, Ko and Rado [4] show that if r 6 n/2 we
can do no better than this. (We remark in passing that the problem is of no
interest if r > n/2, as then the entirety of [n](r) is itself intersecting.)

In this paper we shall be concerned with two related probabilistic ques-
tions posed by Katona, Katona and Katona [8]. We begin with the non-
uniform case.

Recall from above that if A ⊂ P [n] is intersecting then |A| 6 2n−1.
Suppose that we are instead required to choose a somewhat larger family A
and then randomly discard some of the sets in A to form a subfamily B. How
can we maximize the probability that B is intersecting? A precise statement
of the problem is as follows.

Problem 1 ([8]). Let n and i be positive integers with i 6 2n−1 and let
p ∈ (0, 1). Given A ⊂ P[n], write Ap for the (random) subfamily of A
obtained by choosing each set in A independently with probability p. How
should we choose A with |A| = 2n−1 + i to maximize P(Ap is intersecting)?

Katona, Katona and Katona [8] solve the first cases of this problem,
that is, for i 6

(
n−1

d(n−3)/2e

)
. They construct their optimal families by taking

‘large’ subsets of the cube. More precisely, for n odd take all sets of size at
least (n + 1)/2 and any i sets of size (n − 1)/2 that contain the element 1.
Similarly, for n even take all sets of size n/2 + 1, all sets of size n/2 that
contain the element 1, and any other i sets of size n/2. They conjecture
that a continuation of this construction gives an optimal family A for each
i, leading to a nested sequence A1 ⊂ A2 ⊂ · · ·A2n−1 of optimal families for
i = 1, 2, . . . , 2n−1.

In this paper, we show that the families [n](>r) = {A ⊂ P [n] : |A| ≥ r}
are optimal for the appropriate values of i, thereby proving the conjecture for
this sequence of values. Moreover, we show that for intermediate values of
i there exist optimal families lying between those we have found. Our main
result is as follows.
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Theorem 1. Let n be a positive integer and p ∈ (0, 1). Let r be a positive
integer with r ≤ n/2. Then, over all A ⊂ P [n] with |A| =

∑n
j=r

(
n
j

)
, the

probability P(Ap is intersecting) is maximized by A = [n](>r).
Moreover, suppose i is any positive integer with i 6 2n−1 and let r be

such that
∑n

j=r+1

(
n
j

)
6 2n−1 + i 6

∑n
j=r

(
n
j

)
. Then, over all A ⊂ P [n] with

|A| = 2n−1 + i, the probability P(Ap is intersecting) is maximized by some A
with [n](>r+1) ⊂ A ⊂ [n](>r).

We remark that the result of Theorem 1 is independent of the value of p.
In fact, for 2n−1 + i =

∑n
j=r

(
n
j

)
, the family [n](>r) simultaneously maximizes

the number of intersecting subfamilies of each possible order. This result
may be of independent interest.

We also consider the uniform version of the problem.

Problem 2 ([8]). Let n, r and i be positive integers with r 6 n/2 and
i 6

(
n−1

r

)
, and let p ∈ (0, 1). How should we choose A ⊂ [n](r) with

|A| =
(

n−1
r−1

)
+ i to maximize P(Ap is intersecting)?

Results on this problem seem rather harder to come by: Katona, Katona
and Katona [8] solve only the first case i = 1. Using methods similar to those
used to prove Theorem 1, we show that, for each i, there is an optimal family
that is left-compressed (as explained below). Unfortunately, our methods
are not sufficient to determine which amongst the left-compressed families of
given order is best.

Theorem 2. Let n, r and i be positive integers with r 6 n/2 and i 6
(

n−1
r

)
,

and let p ∈ (0, 1). Then there exists a left-compressed family A ⊂ [n](r) with
|A| =

(
n−1
r−1

)
+ i that maximizes P(Ap is intersecting) over all subfamilies of

[n](r) of order
(

n−1
r−1

)
+ i.

Many fruitful approaches to intersection problems involve the use of com-
pression techniques, first introduced by Erdős Ko and Rado [4] in the proof
of their uniform intersection theorem mentioned above. The idea behind
such techniques is that, starting from an intersecting family A, one ‘moves’
certain sets in A to make A ‘nicer’ in some way whilst A retains the prop-
erty of being intersecting. The proof of the Erdős-Ko-Rado theorem applies
ij-compressions, defined as follows.

Let i, j ∈ [n] with i < j. If A ∈ [n](r) then the ij-compression of A is

CijA =

{
(A ∪ {i})− {j} if j ∈ A, i 6∈ A

A otherwise
.

3



If A ⊂ [n](r), the ij-compression of A is

CijA = {CijA : A ∈ A} ∪ {A ∈ A : CijA ∈ A}.

Informally, we replace j by i whenever we can. We may be prevented from
replacing j ∈ A by i either because i is already in A or because CijA is
already in A. When we replace j ∈ A by i, we say that A moves; that is,
A moves if j ∈ A, i 6∈ A and CijA 6∈ A. We say that A is blocked from
moving by CijA if A 6= CijA and CijA ∈ A. A family A is ij-compressed if
A = CijA. It is left-compressed if it is ij-compressed whenever i < j.

Erdős, Ko and Rado show that if A ⊂ [n](r) is intersecting then so is CijA.
They also check that any A ⊂ [n](r) can be transformed to a left-compressed
family by repeated ij-compressions. It hence suffices for them to consider
only left-compressed families in their proof.

It seems at first that a similar approach to Problems 1 and 2 of Katona,
Katona and Katona cannot possibly succeed. We know from [4] that com-
pressing an intersecting family yields an intersecting family. Unfortunately, if
we compress a non-intersecting family A then there may exist an intersecting
subfamily of A which moves to a non-intersecting subfamily of CijA.

Here is a simple example which illustrates the main obstacle. Consider
applying a 12-compression to the family A = {13, 23, 24}. Only 24 moves,
giving C12A = {13, 23, 14}. But now B = {23, 24} ⊂ A is intersecting and
moves to {23, 14} which is not. (What has gone wrong? The set 23 was
blocked from moving by the set 13 which is in A but not in B.)

Nevertheless, we are able to show that the family CijA has at least as
many intersecting subfamilies of each given order as does the family A. In
fact, there is a fairly natural injection φ from the collection A of intersect-
ing subfamilies of A to the collection C of intersecting subfamilies of CijA.
Starting from an intersecting family B ∈ A, we form the family φ(B) by
replacing appropriately chosen B ∈ B by CijB. We must obviously choose to
replace those B ∈ B that move when A is compressed to CijA, as in this case
B 6∈ CijA. But we also choose to replace certain B ∈ B that were blocked
from moving by CijB ∈ A but for which CijB 6∈ B. The choice of which
such B to replace depends both on the family A and the subfamily B. In §2
we give the details of our construction and prove that the resulting families
φ(B) are indeed intersecting as required. This will establish Theorem 2.

Our launching pad for Theorem 2 was the use of ij-compressions to prove
the Erdős-Ko-Rado theorem. Can we find something to play a similar role
for Theorem 1? The right place to start turns out to be from a more general
compression operator first introduced by Daykin [3] in his beautiful proof
of the Kruskal-Katona theorem ([9], [7]). These “UV -compressions” were
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independently discovered by Frankl and Füredi [5] in their proof of Harper’s
theorem. They also turn out to be a special case of a compression oper-
ator later developed by Bollobás and Leader [2], who use them to prove
intersection theorems such as the Erdős-Ko-Rado theorem and Katona’s t-
intersecting theorem [10]. This proof of the t-intersecting theorem was also
found independently by Ahlswede and Khachatrian [1].

When attempting to apply these methods to Problem 1, the same obstacle
arises as in the proof of Theorem 2 and is overcome in the same way. However,
further difficulties arise in this case. To preserve intersection properties in
the proof of the t-intersecting theorem, it is necessary to carry out the UV -
compressions in a carefully chosen order. But even when this is done, we
are unable to show that the number of intersecting subfamilies of each order
increases whenever an individual UV -compression is applied. Instead, it
appears that we must apply a sequence of several UV -compressions together,
after which there are at least as many intersecting subfamilies of each order
as before. We shall explain this further in §3, where we prove Theorem 1.

Finally, in §4, we make some concluding remarks and mention some open
problems.

Our notation is mostly standard. We draw the reader’s attention to
certain points. We write [n] for the set {1, 2, . . . , n} and [m, n] for the set
{m, m+1, . . . , n}. For any set S, we write S(r) for the set {A ⊂ S : |A| = r}
of all subsets of S of order r, and S(>r) for the set {A ⊂ S : |A| > r} of all
subsets of S of order at least r. If X and Y are sets we write X − Y for
the set {x ∈ X : x 6∈ Y }. For ease of reading, we often omit set brackets
and union symbols. Thus, for example, 123 denotes the set {1, 2, 3}, 12XY
denotes the set {1, 2} ∪X ∪ Y , and 1X ∩ Y denotes the set ({1} ∪X) ∩ Y .
If A is a family of sets, we write I(A) for the collection of all intersecting
subfamilies of A; that is, I(A) = {B ⊂ A : B is intersecting}.

2 Left-compression

Our aim in this section is to prove Theorem 2.
Let i, j ∈ [n] with i < j. Recall from §1 the definition of the ij-

compression. If A ∈ [n](r) then the ij-compression of A is

CijA =

{
(A ∪ {i})− {j} if j ∈ A, i 6∈ A

A otherwise
.

If A ⊂ [n](r), the ij-compression of A is

CijA = {CijA : A ∈ A} ∪ {A ∈ A : CijA ∈ A}.
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It is easy to see that for any A ⊂ [n](r) we may obtain a left-
compressed family by applying an appropriate sequence of ij-compressions.
(For example, the quantity

∑
A∈A

∑
a∈A a decreases whenever we apply a

non-trivial ij-compression.) So it suffices to prove that if C = CijA then
P(Cp is intersecting) > P(Ap is intersecting). This will follow immediately
from the following lemma which is the heart of the proof.

Lemma 1. Let A ⊂ [n](r), let i, j ∈ [n] and let C = CijA. Then there exists
an injection φ : I(A) → I(C) such that |φ(B)| = |B| for all B ∈ I(A).

Proof. Assume wlog i = 1 and j = 2. Write A = I(A) and C = I(C). Let

A1 = {X ⊂ [3, n] : 1X ∈ A, 2X 6∈ A}
A2 = {X ⊂ [3, n] : 1X 6∈ A, 2X ∈ A}
A12 = {X ⊂ [3, n] : 1X, 2X ∈ A}
A0 = {X ∈ A : 1, 2 ∈ X or 1, 2 6∈ X}.

Observe that A may be written as the disjoint union

A = {1X : X ∈ A1 ∪ A12} ∪ {2X : X ∈ A2 ∪ A12} ∪ A0.

We make similar definitions and a similar observation for the family C. We
have C1 = A1 ∪ A2, C2 = ∅, C12 = A12 and C0 = A0.

Suppose X = (X1,X2,X12,(0),X12,(1),X12,(2),X0) where X1 ⊂ A1, X2 ⊂ A2,
X0 ⊂ A0 and X12,(0), X12,(1), X12,(2) form a disjoint partition of A12. Let
AX ⊂ A be the collection of intersecting families B ⊂ A satisfying the
following conditions:

(i) for X ∈ A1, 1X ∈ B ⇐⇒ X ∈ X1;

(ii) for X ∈ A2, 2X ∈ B ⇐⇒ X ∈ X2;

(iii) for X ∈ A0, X ∈ B ⇐⇒ X ∈ X0;

(iv) for X ∈ A12:

• if X ∈ X12,(0) then 1X, 2X 6∈ B;

• if X ∈ X12,(1) then 1X ∈ B or 2X ∈ B but not both;

• if X ∈ X12,(2) then 1X, 2X ∈ B.

Let CX ⊂ C be the collection of intersecting families B ⊂ C satisfying cond-
tions (i), (iii) and (iv), and the additional condition:

(ii)’ for X ∈ A2, 1X ∈ B ⇐⇒ X ∈ X2.
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Observe that A and C can be written as disjoint unions A =
⋃
X AX and

C =
⋃
X CX , the union in each case ranging over all permissible values of X .

Moreover, for each X there is a positive integer m such that |B| = m for
every B ∈ AX ∪ CX . Hence it suffices to construct, for each X , an injection
φX : AX → CX .

So fix X . Let

Y = {X ∈ X12,(1) : 2X ∈ B for all B ∈ AX}.
Define φX : AX → CX by

φX (B) =
(
B ∪ {1X : X ∈ X2 ∪ Y}

)
− {2X : X ∈ X2 ∪ Y}.

In order to check that φX is well-defined, we must check that φX (B) is inter-
secting for each B ∈ AX . It will then be clear that φX is an injection from
AX to CX .

Assume for a contradiction that B ∈ AX but that D = φX (B) is not
intersecting. So there are sets A, B ∈ D with A∩B = ∅. As B is intersecting,
we cannot have both A, B ∈ B, so assume wlog A 6∈ B. Then A = 1X for
some X ∈ X2 ∪ Y and 2X ∈ B. Now we must have B ∈ B (as otherwise we
would have 1 ∈ B). So B∩2X 6= ∅ but B∩1X = ∅. Hence B = 2Y for some
Y ⊂ [3, n] with X ∩ Y = ∅. We cannot have 1Y ∈ B (as 1Y ∩ 2X = ∅) so
Y ∈ X2 ∪ X12,(1). But, as 2Y ∈ D, we have Y 6∈ X2 ∪ Y . So Y ∈ X12,(1) − Y ;
that is, there is some E ∈ AX with 1Y ∈ E . But X ∈ X2 ∪Y and so 2X ∈ E .
But 1Y ∩ 2X = ∅, a contradiction (as E is intersecting).

Thus φX is an injection from AX to CX for each X . Putting together all
of the φX , we obtain the required injection φ : I(A) → I(C).

We immediately obtain the main result of this section.

Theorem 2. Let n, r and i be positive integers with r 6 n/2 and i 6
(

n−1
r

)
,

and let p ∈ (0, 1). Then there exists a left-compressed family A ⊂ [n](r) with
|A| =

(
n−1
r−1

)
+ i that maximizes P(Ap is intersecting) over all subfamilies of

[n](r) of order
(

n−1
r−1

)
+ i.

Proof. Let A ⊂ [n](r) be a family of order k maximizing P(Ap is intersecting)
over all families of order k. Carry out a sequence of ij-compressions
Ci1j1 , Ci2j2 , . . . , Cimjm to obtain families A1 = Ci1j1A, A2 = Ci2j2A1, . . . ,
Am = CimjmAm−1, with Am left-compressed.

It follows from Lemma 1 that, for any family B and any i, j, we
have P((CijB)p is intersecting) > P(Bp is intersecting). Hence, by induc-
tion, P((Am)p is intersecting) > P(Ap is intersecting). But the family
A was chosen to maximize this probability, so in fact we have that
P((Am)p is intersecting) = P(Ap is intersecting) and Am is our required left-
compressed family.
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3 Main result

We now turn to the proof of our main result, Theorem 1. As we remarked
in §1, we begin from a certain proof of Katona’s t-intersecting theorem using
UV -compressions. In §3.1 we define UV -compressions, briefly outline this
proof of the t-intersecting theorem, and explain where the difficulties lie in
translating these methods to solve Problem 1. In §3.2 we define our new
compression operators. Finally, in §3.3 we prove Theorem 1.

3.1 Background

Let n be a positive integer and let U , V ⊂ [n] be disjoint. If A ⊂ [n] then
the UV -compression of A is

CUV A =

{
(A ∪ U)− V if V ⊂ A, U ∩ A = ∅

A otherwise
.

If A ⊂ P[n], the UV -compression of A is

CUVA = {CUV A : A ∈ A} ∪ {A ∈ A : CUV A ∈ A}.

As with ij-compressions, it is generally helpful to think of the compression
‘moving’ certain sets by replacing V with U where possible. Indeed, ij-
compressions are simply the special case of UV -compressions where U and
V are both singleton sets.

Again as with ij-compressions, a typical application aims to compress an
initial family to make it ‘nicer’ in some way whilst preserving some property
of the family. However, one must often take great care over the order in
which the compressions are applied.

A well known example is the t-intersecting theorem. A family A ⊂ P [n]
is said to be t-intersecting if |A ∩ B| > t for all A, B ∈ A. How large can
such a family be?

Assume for simplicity that n + t is even. One obvious example is to take

A = [n](> n+t
2 ). Katona [6] showed that this was best possible. We sketch a

later proof based on UV -compressions.
The proof begins with a t-intersecting family A and aims to transform

it into a family B with [n](>r+1) ⊂ B ⊂ [n](>r). This can be done by a
sequence of UV -compressions with |V | < |U | in each case. (In fact, we need
only use UV compressions with |U | = |V | + 1.) If the resulting family B is
t-intersecting then the theorem is proved.

Unfortunately, this need not always be the case: the family A = {45, 46}
is 1-intersecting but C123,45A = {123, 46} is not. However, this problem can
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be resolved by carrying out the simplest available compression at each stage—
here A is not (12, 4)-compressed, and C12,4A = {125, 126} is 1-intersecting.
(To be precise, it is now easy to check that if A is t-intersecting and U ′V ′-
compressed for all U ′ ⊂ U and V ′ ⊂ V with |U ′| > |V ′| and (U ′, V ′) 6= (U, V )
then CUVA is t-intersecting.) This suffices to prove the t-intersecting theorem.

We now consider how this can be applied to Problem 1. We begin
with a family A ⊂ P [n] which we aim to compress to a family A′ with
[n](>r+1) ⊂ A′ ⊂ [n](>r) by means of UV -compressions with |U | = |V | + 1.
Our initial hope might be that if these compressions are applied in an appro-
priate order then, as with ij-compressions in §2, the number of intersecting
subfamilies of each possible order increases after each compression.

We may clearly apply a UV -compression with |V | = 0—each intersecting
subfamily of A moves to an intersecting subfamily of CUVA.

If |V | = 1 then, as with ij-compressions, it is possible for an intersecting
subfamily of A to move to a non-intersecting subfamily of CUVA. But this
problem can be resolved precisely as it was for ij-compressions in the proof
of Lemma 1.

The real problem first arises when |V | = 2. Now we are unable to show
that CUVA contains more intersecting subfamilies of each order than does A,
even if we assume that we have already performed all simpler compressions
(although we do not have a counterexample).

Why does the proof of Lemma 1 not carry over? Suppose, say, we perform
the compression C123,45 on A, and B ⊂ A is intersecting. Perhaps when
forming φ(B) we replace 45 ∈ B with 123. Now, if also 4 ∈ B then 4 does
not move but 4 ∩ 123 = ∅. However, we know that A is (12, 4)-compressed
so maybe we can replace 4 with 12. But what if, say, 34 ∈ B? Now 34 does
not intersect 12 . . .

At some point in the proof, it appears that we need to perform an illegal
replacement, say 34 → 125. And we cannot assume that A is (125, 34)-
compressed as then we do not obtain a well-founded order in which to carry
out our compressions.

The solution is to perform four compressions together—instead of com-
paring A with C123,45A, we compare it with C = C123,45C125,34C134,25C145,23A.
It is now possible to arrange that all of the necessary replacements are legal,
yielding a proof that C contains at least as many intersecting subfamilies of
each possible order as does A.

3.2 (U, v, f)-compressions

It is convenient to define a new compression operator which carries out all of
the necessary compressions simultaneously. In fact, it moves sets in such a
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way that we no longer need to worry about carrying out simpler compressions
first.

Let X be a set. A pairing function on X is a function f : X → X such
that f ◦ f is the identity and f has no fixed point. We may think of f as
‘pairing’ the elements of X. Note that if X is finite then it must have even
order.

Let U ⊂ [n] be of even order, v ∈ [n] − U and f : U → U be a pairing
function. We define the (U, v, f)-compression on P [n] by

CU,v,f (A) =

{
A if v ∈ A

f(A ∩ U) ∪ {v} ∪ (A− U) if v 6∈ A

for A ∈ P [n] and

CU,v,f (A) = {CU,v,f (A) : A ∈ A} ∪ {A ∈ A : CU,v,f (A) ∈ A}

for A ⊂ P[n].
We remark that in the case whereA is already U ′V ′-compressed for all dis-

joint pairs (U ′, V ′) with V ′ ⊂ U , U ′ ⊂ U∪{v}, |V ′| < |U |/2, |U ′| 6 |U |/2 + 1
and |U ′| > |V ′| then CU,v,f can be written as a composition of UV compres-
sions. Indeed, in this case CU,v,f = CU1V1CU2V2 · · ·CUkVk

where V1, V2, . . . , Vk

are the subsets of U of order |U |/2 and Ui = (U − Vi) ∪ {v}.
As an illustration, we prove that (U, v, f)-compressions preserve the prop-

erty of a family being intersecting.

Proposition 2. Let A ⊂ P [n] be intersecting, let U ⊂ [n] be of even order,
let v ∈ [n] − U and let f : U → U be a pairing function. Then CU,v,fA is
intersecting.

Proof. Write C = CU,v,fA. Suppose that C is not intersecting. Choose A,
B ∈ C with A∩B = ∅. As A is intersecting, we cannot have both A, B ∈ A,
so assume wlog that A 6∈ A. Then A = vf(W )X for some W ⊂ U and
X ⊂ [n] − (U ∪ {v}) with WX ∈ A. As A ∩ B = ∅, we must have v 6∈ B
and thus B ∈ A and B = TY for some T ⊂ U and Y ⊂ [n] − (U ∪ {v}).
Moreover, T ∩ f(W ) = ∅ and X ∩ Y = ∅. Now, as v 6∈ B and B ∈ C
we must have vf(T )Y ∈ A. Now consider WX, vf(T )Y ∈ A. We have
W ∩ f(T ) = f(f(W ) ∩ T ) = ∅ and X ∩ Y = ∅, and so WX ∩ vf(T )Y = ∅.
But this is a contradiction, as A is intersecting.

Note that, unlike with standard UV -compressions, there is no restriction
here on the order in which these compressions may be applied. However, we
remark in passing that the order would be important if we wanted to retain
the property of A being 2-intersecting; in this case we would again have to
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apply compressions with smaller U first. For example, takingA = {23, 1236},
U = {2345}, v = 1, f(2, 3, 4, 5) = (4, 5, 2, 3), we have A 2-intersecting but
CU,v,fA = {145, 1236} not 2-intersecting.

3.3 Proof of main result

The heart of the proof is the following lemma. The proof of the lemma
mirrors the proof of Lemma 1, but using our (U, v, f)-compressions in place
of ij-compressions.

Lemma 3. Let A ⊂ P[n], let U , v and f be as above and let C = CU,v,f (A).
Then there exists an injection φ : I(A) → I(C) such that |φ(B)| = |B| for all
B ∈ I(A).

Proof. Write A = I(A), C = I(C) and S = [n]− (U ∪{v}). For each W ⊂ U ,
let

AW
1 = {X ⊂ S : WX 6∈ A, vf(W )X ∈ A}

AW
2 = {X ⊂ S : WX ∈ A, vf(W )X 6∈ A}

AW
12 = {X ⊂ S : WX, vf(W )X ∈ A}.

Observe that A may be written as the disjoint union

A =
⋃

W⊂U

(
{vf(W )X : X ∈ AW

1 ∪ AW
12} ∪ {WX : X ∈ AW

2 ∪ AW
12}

)
.

We make similar definitions and a similar observation for the family C. For
each W ⊂ U we have CW

1 = AW
1 ∪ AW

2 , CW
2 = ∅ and CW

12 = AW
12 .

Suppose X = (XW
1 ,XW

2 ,XW
12,(0),XW

12,(1),XW
12,(2))W⊂U where, for each

W ⊂ U , we have XW
1 ⊂ AW

1 , XW
2 ⊂ AW

2 and XW
12,(0), XW

12,(1) and XW
12,(2) form-

ing a disjoint partition of AW
12 . Let AX ⊂ A be the collection of intersecting

families B ⊂ A satisfying, for each W ⊂ U , the following conditions:

(i) for X ∈ AW
1 , vf(W )X ∈ B ⇐⇒ X ∈ XW

1 ;

(ii) for X ∈ AW
2 , WX ∈ B ⇐⇒ X ∈ XW

2 ;

(iii) for X ∈ AW
12 :

• if X ∈ XW
12,(0) then WX, vf(W )X 6∈ B;

• if X ∈ XW
12,(1) then WX ∈ B or vf(W )X ∈ B but not both;

• if X ∈ XW
12,(2) then WX, vf(W )X ∈ B.

11



Let CX be the collection of intersecting families B ⊂ C satisfying, for each
W ⊂ U , conditions (i) and (iii) and the additional condition

(ii)’ for X ∈ AW
2 , vf(W )X ∈ B ⇐⇒ X ∈ AW

2 .

Observe that A and C can be written as disjoint unions A =
⋃
X AX and

C =
⋃
X CX , and that, for each X , there is a positive integer m such that

|B| = m for all B ∈ AX ∪ CX . Hence, as before, it suffices to construct, for
each X , an injection φX : AX → CX .

So fix X . For each W ⊂ U let

YW = {X ∈ XW
12,(1) : WX ∈ B for all B ∈ AX}.

Define φX : AX → CX by

φX (B) = B∪
⋃

W⊂U

{vf(W )X : X ∈ XW
2 ∪YW}−

⋃
W⊂U

{WX : X ∈ XW
2 ∪YW}.

Again, all that we need to check is that φX (B) is intersecting for each B ∈ AX .
Assume for a contradiction that B ∈ AX but that D = φX (B) is not

intersecting. So there are sets A, B ∈ D with A∩B = ∅. As B is intersecting,
we cannot have both A, B ∈ B so assume wlog A 6∈ B. Then A = vf(W )X
for some W ⊂ U , X ∈ XW

2 ∪ YW and WX ∈ B. Now, we must have B ∈ B
(as otherwise we would have v ∈ B and so A∩B 6= ∅). So B ∩WX 6= ∅ but
B ∩ vf(W )X = ∅. Hence B = TY for some T ⊂ U and Y ⊂ [n]− (U ∪ {v})
with T ∩ f(W ) = ∅ and X ∩ Y = ∅.

It is easy to check that vf(T ) ∩ W = ∅. Indeed, suppose instead that
there is some a ∈ vf(T )∩W . As v 6∈ W we must have a 6= v and so a = f(t)
for some t ∈ T . But then t = f(a) ∈ f(W ), contradicting T ∩ f(W ) = ∅.

Now, we have vf(T )∩W = ∅ and X ∩Y = ∅, so vf(T )Y ∩WX = ∅. But
WX ∈ B so vf(T )Y 6∈ B. Now, vf(T )Y 6∈ B but TY ∈ B so Y ∈ X T

2 ∪X T
12,(1).

But TY = B ∈ D so Y 6∈ X T
2 ∪YT . Hence Y ∈ X T

12,(1) −YT ; that is, there is

some E ∈ AX with vf(T )Y ∈ E .
But vf(W )X = A ∈ D and vf(W )X 6∈ B so X ∈ XW

2 ∪ YW . Hence
WX ∈ E . But now vf(T )Y , WX ∈ E with vf(T )Y ∩WX = ∅, a contradic-
tion.

We now obtain our main result.
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Theorem 1. Let n be a positive integer and p ∈ (0, 1). Let r be a positive
integer with r ≤ n/2. Then, over all A ⊂ P [n] with |A| =

∑n
j=r

(
n
j

)
, the

probability P(Ap is intersecting) is maximized by A = [n](>r).
Moreover, suppose i is any positive integer with i 6 2n−1 and let r be

such that
∑n

j=r+1

(
n
j

)
6 2n−1 + i 6

∑n
j=r

(
n
j

)
. Then, over all A ⊂ P [n] with

|A| = 2n−1 + i, the probability P(Ap is intersecting) is maximized by some A
with [n](>r+1) ⊂ A ⊂ [n](>r).

Proof. It clearly suffices to prove the second statement as the first follows
immediately. Starting from any family A, we observe that it is possible to
obtain a family C with [n](>r+1) ⊂ C ⊂ [n](>r) for some r by a sequence
of (U, v, f)-compressions. Indeed, suppose that A is not already of the
required form. Then is is easy to see that there are some disjoint sets W ,
V ∈ [n] with |W | = |V | + 1 and A not WV -compressed. Take v=min W ,
U = (W −{v})∪V and f : U → U a pairing function with f(W −{v}) = V .
Then A is not (U, v, f)-compressed so we may apply CU,v,f to obtain a new
family. But every time we apply a non-trivial (U, v, f)-compression the quan-
tity

∑
A∈A |A| increases and so this process must terminate with some A of

the required form. Hence Theorem 1 follows from Lemma 3 precisely as
Theorem 2 follows from Lemma 1.

Examining the proof of Lemma 3, we note that CU,v,fA has at least as
many intersecting subfamilies of each possible order as does A. Hence our
optimal families simultaneously maximize the number of intersecting sub-
families of every possible order. This may be of independent interest.

Corollary 4. Let A ⊂ P [n] with |A| =
∑n

j=r

(
n
r

)
. Then the family [n](>r)

has at least as many intersecting subfamilies of every possible order as has
A.

In fact, Theorem 1 also solves Problem 1 in the cases. where
2n−1 + i =

( ∑n
j=r

(
n
r

))
± 1. Moreover, Lemma 1 holds for A ⊂ P [n] as well

as for A ⊂ [n](r) with an identical proof, allowing us to solve Problem 1 in
the cases where 2n−1 + i =

( ∑n
j=r

(
n
r

))
± 2. For completeness, we state these

results explicitly.

Corollary 5. Let n and r be positive integers with r ≤ n/2.

• Over all A ⊂ P[n] with |A| =
( ∑n

j=r

(
n
r

))
+ 1, the probability

P(Ap is intersecting) is maximized by

A = [n](>r) ∪ {123 . . . r − 1}.
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• Over all A ⊂ P[n] with |A| =
( ∑n

j=r

(
n
r

))
− 1. the probability

P(Ap is intersecting) is maximized by

A = [n](>r) − {(n− r + 1)(n− r + 2) . . . n}.

• Over all A ⊂ P[n] with |A| =
( ∑n

j=r

(
n
r

))
+ 2, the probability

P(Ap is intersecting) is maximized by

A = [n](>r) ∪ {123 . . . r − 1, 123 . . . (r − 2)r}.

• Over all A ⊂ P[n] with |A| =
( ∑n

j=r

(
n
r

))
− 2, the probability

P(Ap is intersecting) is maximized by

A = [n](>r)−{(n−r)(n−r+2)(n−r+3) . . . n, (n−r+1)(n−r+2) . . . n}.

Moreover, in each case the optimal family simultaneously maximizes the num-
ber of intersecting subfamilies of every possible order.

4 Concluding remarks

Theorem 1 gives us substantial information about the structure of the optimal
families solving Problem 1: they consist of the top layers of the cube together
with some collection of sets from the next layer down. However, we know
little about what happens within the layers. The analogue of Lemma 1
for families in P [n] gives that we may take our optimal family to be left-
compressed, but this still leaves open many possibilities. In particular, we
would be interested to know if there is indeed a nested sequence of optimal
families as conjectured by Katona, Katona and Katona [8].

We observed in Corollaries 4 and 5 that in all the cases of Problem 1 that
we could solve, the optimal family simultaneously maximized the number of
intersecting subfamilies of every given order. We would like to know if this
is always possible.

Question 6. Let N 6 2n. Does there exist a family A ⊂ P [n] of order
N which simultaneously maximizes the number of intersecting subfamilies of
every possible order?

Finally, we noted in §3.1 that we were unable to prove that UV -
compressions (applied in appropriate order) always increased the number
of intersecting subfamilies of each order. However, we also have no coun-
terexample. Hence we ask:

14



Question 7. Let A ⊂ P[n] and U , V ⊂ [n] be disjoint with |U | > |V |. Sup-
pose A is U ′V ′-compressed for all U ′ ⊂ U and V ′ ⊂ V with (U ′, V ′) 6= (U, V )
and |U ′| > |V ′|. Must CUVA have at least as many intersecting subfamilies
of every possible order as has A?
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