
Probably Intersecting Families are Not Nested

Paul A. Russell∗ Mark Walters†

August 21, 2011

Abstract

It is well known that an intersecting family of subsets of an n-
element set can contain at most 2n−1 sets. It is natural to wonder
how ‘close’ to intersecting a family of size greater than 2n−1 can be.
Katona, Katona and Katona introduced the idea of a ‘most probably
intersecting family.’ Suppose that A is a family and that 0 < p <

1. Let A(p) be the (random) family formed by selecting each set
in A independently with probability p. A family A is most probably

intersecting if it maximises the probability that A(p) is intersecting
over all families of size |A|.

Katona, Katona and Katona conjectured that there is a nested
sequence consisting of most probably intersecting families of every
possible size. We show that this conjecture is false for every value of p
provided that n is sufficiently large.

We start by recalling the definition of an intersecting family : we say that
A ⊂ P([n]) is intersecting if for any A,A′ ∈ A we have A∩A′ 6= ∅. Since no
intersecting family can contain both a set A and its complement Ac, it is easy
to see that there is no intersecting family containing more than 2n−1 sets.
We remark that this upper bound is tight and that, in fact, any intersecting
family can be extended to an intersecting family of this size.

Having observed this bound, it is natural to wonder how ‘close’ to in-
tersecting a family of size greater than 2n−1 can be. Katona, Katona and
Katona [4] introduced the idea of a most probably intersecting family. Sup-
pose that A is a family and that 0 < p < 1. Let A(p) be the (random) family
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formed by selecting each set in A independently with probability p. They
asked which family A of given size maximises the probability that A(p) is
intersecting.

In the same paper, they solve this problem in cases where |A| is only
a little greater than 2n−1. More precisely, they find extremal families for
|A| 6 2n−1 +

(
n−1

⌊(n−3)/2⌋

)
.

They also conjectured that there are extremal families Ai with |Ai| =
2n−1 + i which are nested: that is, Ai ⊂ Aj whenever i < j. In their paper
it is a little unclear for which p they make this conjecture: there seems to
be no reason to believe the optimal families are the same for different p. We
remark that there is a simple counter-example if p ≪ 2−n (see the discussion
following Theorem 2 below) and so clearly this was not what was meant. In
this paper we prove the following theorem which shows that the conjecture
is false for all p.

Theorem 1. Suppose that n > 21. Let 2 6 s 6 2n−1. Then

• [n](>3) ∪ {A ∈ [n](2) : 1 ∈ A} is the unique (up to reordering the co-
ordinates) family of size

∑n
k=3

(
n
k

)
+ n − 1 maximising the number of

intersecting subfamilies of size s.

• [n](>3) ∪ {A ∈ [n](2) : n 6∈ A} is the unique (up to reordering the
coordinates) family of size

∑n
k=3

(
n
k

)
+
(
n−1
2

)
maximising the number of

intersecting subfamilies of size s.

Clearly these families are not nested, even with a reordering of the coordi-
nates.

We can think of forming A(p) by first choosing a random variable s ∼
Binom(|A|, p) and then choosing s sets uniformly at random from A. Hence
Theorem 1 shows that these families are the unique most probably intersect-
ing families for these two specific sizes for any 0 < p < 1.

If p ≪ 2−n then the most likely scenario is that Ap is empty and the
next most likely is that it consists of a single set. In each case the subfamily
Ap is trivially intersecting regardless of our choice of the original family A
(assuming, of course, that ∅ 6∈ A). The next most likely case is that there are
exactly two sets in Ap; this is far more likely than there being more than two
sets. Hence, for very small p, proving Theorem 1 for the case s = 2 would
give a counterexample to the conjecture. This was essentially done (except
the uniqueness) by Frankl [3] and independently by Ahlswede [1].

Our proof of Theorem 1 consists of two main steps summarised by the
following two theorems.
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Theorem 2. Suppose that n > 4, N ∈ N and 2 6 s 6 2n−1. If

n = 2t is even and N > 2n−1 + 1
2

(
n
t

)
− t

or
n = 2t+ 1 is odd and N > 2n−1 +

(
n−1
t−1

)
− t− 1

then any family A ⊂ P([n]) of size N containing the maximal number of
intersecting subfamilies of size s is of the form [n](>r+1) ∪B where B ⊂ [n](r)

and r satisfies
∑n

k=r+1

(
n
k

)
6 N <

∑n
k=r

(
n
k

)
.

In [5] it is shown that there exists some family of this form maximising
the number of intersecting subfamilies of size s. Theorem 2 strengthens this
result by showing that all the optimal families are of this form. This result
may be of interest in its own right.

As we remarked above, the extremal families for s = 2 have been widely
studied. However, it does not appear to have been proved, even in this case,
that every extremal family must have the above form.

As P([n]) contains many different intersecting families of order 2n−1, we
trivially require N > 2n−1 in Theorem 2. In fact, it is easy to see that a
larger lower bound on N is actually required. Indeed if we take any maximal
intersecting family A0 and form the family A by adding a maximal set A not
in A0 then this new family is extremal for all s, since A and Ac are the only
pair of disjoint sets in A. In fact, the bound stated in Theorem 2 is tight: in
Theorem 12 we construct, for all appropriate values of N , extremal families
which are not of the desired form.

The final step is the following theorem which is at the heart of the proof.

Theorem 3. Suppose that n > 21. Let 2 6 s 6 2n−1 and 0 6 i 6
(
n
2

)
.

Suppose that A ⊂ P([n]) is any family of size
∑n

k=3

(
n
k

)
+ i of the form

[n](>3) ∪ B with B ⊂ [n](2), and that, subject to these conditions, A contains
the maximal number of intersecting subfamilies of size s. Then B is a family
of size i contained in [n](2) that contains the maximal number of intersecting
pairs.

The families B ⊂ [n](2) of size i maximising the number of intersecting
pairs are well understood: each is either a quasi-clique or a quasi-star. We
define these terms and discuss for which i each of these cases occurs after the
following proof.

Note that we could rephrase the theorem to say that the family A that
maximises the number of intersecting subfamilies of size s necessarily also
maximises the number of intersecting pairs. This is clearly equivalent as
each set in B intersects the same number of sets in [n](>3) = A \ B.

Given Theorems 2 and 3, it is easy to prove Theorem 1.
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Proof of Theorem 1. First suppose that A is a family of size
∑n

k=3

(
n
k

)
+n−1

maximising the number of intersecting subfamilies of size s. Theorem 2
tells us that A = [n](>3) ∪ B for some B ⊂ [n](2). Clearly we must have
|B| = n − 1. Now Theorem 3 tells us that B contains the maximal number
of intersecting pairs over all families in [n](2) of size n− 1. It is obvious that
B = {B ∈ [n](2) : 1 ∈ B} maximises the number of intersecting pairs, as all
pairs intersect, and, since |B| > 3, that it is the unique (up to reordering
coordinates) family that does. Hence in this case A must have the required
form.

For the second case, suppose that A is a family of size
∑n

k=3

(
n
k

)
+
(
n−1
2

)

maximising the number of intersecting subfamilies of size s. As above, we
see that A = [n](>3)∪B for some B ⊂ [n](2) and that B contains the maximal
number of intersecting pairs over all families in [n](2) of size

(
n−1
2

)
. Again,

the extremal family B is unique up to reordering the coordinates: it consists
of all the 2-sets not containing n. This is a little less obvious but follows
from the result for i = n − 1 above. Indeed, the family B containing the
most intersecting pairs minimises the number of intersecting pairs with one
element in B and one element in Bc. Thus it also maximises the number of
intersecting pairs in Bc. By the above, Bc is {A : 1 ∈ A} and the result
follows (after a reordering of the coordinates).

In fact, the extremal families B have been precisely determined. Suppose
i =

(
a
2

)
+ b with 0 6 b < a. The quasi-complete graph of order n with i edges

is the graph formed by taking a complete graph on a vertices, adding a single
vertex joined to b of the vertices of the complete graph and adding n− a− 1
isolated vertices. A quasi-star is the complement of a quasi-complete graph.

Ahlswede and Katona [2] showed that the families of 2-sets (graphs) with
the most intersecting pairs (adjacent edges) are either quasi-complete graphs
or quasi-stars. Moreover, they showed that there exists some non-negative
integer R (depending on n) such that for i < 1

2

(
n
2

)
− R and for 1

2

(
n
2

)
6 i 6

1
2

(
n
2

)
+R the extremal family is a quasi-star, while for all other values of i the

extremal family is a quasi-complete graph. Wagner and Wang [6] extended
this by finding the value of R explicitly and showing that it is non-zero for a
proportion

√
2 − 1 of numbers n. Combining Theorem 3 with these results

we see that the extremal families even for N in this range are surprisingly
complicated: for many values of n (i.e., those for which R 6= 0) the extremal
families can switch between the two classes three times just in this single
layer.
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Layout of Paper

In the first section we define the notation we shall use and recall the defi-
nitions and some of the properties of the compressions that we use. In the
second section we prove a slightly weaker version of Theorem 2 that is suf-
ficient (in combination with Theorem 3) to prove Theorem 1. In the third
section we prove Theorem 3. In the fourth section we prove the remaining
cases of Theorem 2 and give the constructions showing that the lower bound
on N in Theorem 2 is tight. We conclude the paper with a discussion of some
open problems.

1 Notation and Preliminaries

Most of the notation we use is standard. We write [n] for the set {1, 2, . . . , n}
and [m,n] for the set {m,m + 1, . . . , n}. For any r we use [n](r) to denote
the set of subsets of [n] of size r, and [n](>r) to denote the set of subsets of
[n] of size at least r.

For any family A we let I(s)(A) denote the collection of intersecting sub-
families of A of size s. For clarity, when s is clear from the context we
suppress the superscript.

In much of this paper we shall be aiming to change or compress a family
A into a nice form without decreasing the number of intersecting subfamilies
of a given size.

We use three type of compression. The first is very simple: we replace a
set A ∈ A by a set A′ ⊃ A with A′ 6∈ A. Obviously this preserves the size
of A and does not decrease the number of intersecting subfamilies. We call
this an up-set-compression.

The second operation we use is a very standard compression called an
ij-compression. We take each set A in A and, if i 6∈ A and j ∈ A, we replace
A by the set A∪{i}\{j} provided that this set is not already in A. We note
that these compressions do not change the size of any set in A.

Again it is easy to see that this preserves the size of A. This time, it is not
obvious that the compression does not decrease the number of intersecting
subfamilies. It is, however, proved in [5].

We will generally be applying these compressions when i < j and we call
such a compression a left-compression.

The final operation we use is the (U, v, f)-compression recently introduced
in [5]. Suppose that U ⊂ [n] has even size, that f : U → U is a permutation
of order 2 with no fixed point, and that v ∈ [n] \ U . We move each set
A ∈ A with v 6∈ A to (A \ U ∪ {v}) ∪ f(A ∩ U) unless this set is already in
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A. Informally, we add v and swap the points inside U . Again it is clear that
this does not change the size of A. Note also that every set moved by this
compression contains v after the move.

We shall use the following key property of these (U, v, f)-compressions

(proved in [5]). For any such compression C there exists an injection Ĉ
from I

(s)(A) to I
(s)(C(A)) and so, in particular, the number of intersecting

subfamilies of any given order does not decrease. The only property of Ĉ
that we shall use is that Ĉ(B) ∈ I(C(A)) is formed from B ∈ I(A) by
sending each set A ∈ B to either A or C(A). We remark that constructing

the injection Ĉ is non-trivial.

2 Proof of Theorem 2

In this section we prove a slightly weaker version of Theorem 2 covering all
the cases where N >

∑n
k=⌈n/2⌉−1

(
n
k

)
: that is, the N for which our putative

extremal family would contain all of the first layer below the middle. This is
sufficient for our main result (Theorem 1). For completeness, we prove the
remaining cases in Section 4.

Define r = r(N, n) to be the unique number r satisfying
∑n

k=r+1

(
n
k

)
6

N <
∑n

k=r

(
n
k

)
. Thus the bound for N above corresponds to r < n/2− 1.

We start by showing that if A has a particularly nice form then there
is a (U, v, f)-compression that strictly increases the number of intersecting
subfamilies of size s.

Lemma 4. Let 2 6 s 6 2n−1 and ℓ < n
2
− 1. Suppose that A satisfies

[n](>ℓ+1) ⊂ A, [n − ℓ, n] 6∈ A and [ℓ] ∈ A. Then there is a (U, v, f)-
compression C such that |I(s)(C(A))| > |I(s)(A)|.

Proof. Choose C to be any (U, v, f)-compression with v = n that moves [ℓ]
to [n−ℓ, n], and let C = C(A) be the resulting family. We construct a family

in I
(s)(C) that is not the image of any family in I

(s)(A) under the injection Ĉ.
Consider the family

D = {[n− ℓ, n]} ∪ [n](>n−ℓ−1) \ {[n− ℓ− 1]}.

This is intersecting, since ℓ < n/2−1 and so n−ℓ−1 > n/2. Thus it extends
to a maximal intersecting family D′ of size 2n−1 in P([n]). Since D′ contains
all sets of size at least n−ℓ−1 except [n−ℓ−1] and is intersecting, D′ contains
no set of size less than or equal to ℓ+ 1 except [n− ℓ, n]. By hypothesis, A
contains all of [n](>ℓ+1) and thus so does C. Moreover, [ℓ] ∈ A is moved to
[n−ℓ, n] so [n−ℓ, n] ∈ C. Hence D′ ⊂ C. Also, since

∣∣ [ℓ+1, n−1]
∣∣ = n−ℓ−1,
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we have [ℓ+1, n−1] ∈ D′. Let D′′ be any subfamily of size s of D′ containing
both [n− ℓ, n] and [ℓ+ 1, n− 1]. Note D′′ ∈ I(C).

Suppose that there is an intersecting subfamily B of A with Ĉ(B) = D′′.

Recall that Ĉ(B) is formed from B by sending each set A ∈ B to either A
or C(A). Now [n − ℓ, n] ∈ D′′ but [n − ℓ, n] 6∈ A so [n − ℓ, n] 6∈ B. Hence
[n − ℓ, n] must have come from [ℓ] ∈ B. Also, [ℓ + 1, n − 1] ∈ D′′ and, since
n 6∈ [ℓ + 1, n − 1], this set has a unique pre-image under C, namely the set
[ℓ + 1, n − 1] itself. Therefore [ℓ + 1, n − 1] ∈ B. But we also have [ℓ] ∈ B,
contradicting the fact that B is intersecting.

We conclude that D′′ is not the image under Ĉ of any family in I
(s)(A).

Hence |I(s)(C)| > |I(s)(A)|.

In Section 4 we slightly strengthen this result, proving that with some
extra conditions it holds for ℓ = ⌈n/2⌉ − 1.

Corollary 5. Let n,N ∈ N with r = r(N, n) < n/2 and 2 6 s 6 2n−1.
Suppose that [n](>r+1) ⊂ A and that A contains a set of size strictly less than
r. Then there is a family of size N that contains strictly more intersecting
subfamilies of size s than does A.

Proof. By the definition of r we see that A does not contain all of [n](r).
Hence by applying left-compressions we can ensure that [n − r + 1, n] 6∈ A.
Also, since A contains some set of size at most r − 1, by applying up-set-
compressions and left-compressions we can ensure that [r− 1] ∈ A; it is easy
to check that we can do this without putting [n − r + 1, n] into A. Thus
Lemma 4 applies with ℓ = r − 1.

Lemma 6. Suppose that n,N ∈ N with r = r(N, n) < n/2 − 1, that
[n](>r+1) 6⊂ A, and that 2 6 s 6 2n−1. Then there is a family that con-
tains strictly more intersecting subfamilies of size s than does A.

Proof. We aim to compress the family until it contains nearly all of [n](>r+1).
We then apply one more compression and use Lemma 4 to show strict in-
equality for this final compression. We need to be careful that the earlier
compressions do not ‘accidentally’ put all sets in [n](>r+1) into our family
since then we would not necessarily obtain strict inequality when applying
the final compression.

We construct a sequence of familiesA = A0,A1,A2, . . . ,Ak, with [n](>r+1) 6⊂
Ai for any i, by applying at each stage any ‘allowed’ up-set-compression, left-
compression or (U, v, f)-compression—that is, one which does not result in
our family containing the whole of [n](>r+1). We finish with a family Ak that
is unchanged by any compression C with [n]>(r+1) 6⊂ C(Ak). Note that Ak
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is left-compressed since ij-compressions do not change the size of any set.
Also, by considering up-set-compressions, we see that A+ = Ak ∩ [n](>r+1)

is an up-set and A− = Ak ∩ [n](6r) is an up-set when viewed as a subset of
[n](6r). Obviously A+ 6= [n](>r+1) and so A− is non-empty.

We claim that A+ = [n](>r+1) \ {[n− r, n]}. If only one set from [n](>r+1)

is missing from A+ then it must be [n − r, n]. Thus we may assume for a
contradiction that at least two of the sets in [n](>r+1) are missing from A+.
Since A+ is a left-compressed up-set we see that these missing sets must
include [n− r, n] and {n− r − 1} ∪ [n− r + 1, n]. Similarly, as A− is a non-
empty left-compressed ‘up-set’, we see that [r] ∈ A−. We have now shown
that [r] ∈ Ak, that [n− r, n] 6∈ Ak and that {n− r− 1}∪ [n− r+1, n] 6∈ Ak.
The upper bound on r implies that the sets [r] and [n − r, n] are disjoint.
Hence we can map the former to the latter using a (U, v, f)-compression with
v = n− r. This does not add the set {n− r− 1}∪ [n− r+1, n] since all sets
added by such a compression contain v = n − r. Hence this is an allowed
(U, v, f)-compression which contradicts the definition of Ak.

So Ak contains all of [n](>r+1) except for the set [n− r, n] and, as before,
it must contain [r]. Hence Lemma 4 applies with ℓ = r.

This essentially completes the proof of Theorem 2 for r < n
2
− 1. Indeed,

by Lemma 6, [n](>r+1) ⊂ A and so, by Corollary 5, A has the required form.
The only remaining cases are n

2
− 1 6 r 6 n

2
. We deal with these cases in

Section 4.

3 Proof of Theorem 3

Fix s and, as usual, let I = I
(s) denote the collection of intersecting subfam-

ilies of A of size s. For B ⊂ A ∩ [n](2) let

IB = {E ∈ I : E ∩ [n](2) = B}.

We see that I is the disjoint union of the sets IB over all collections B of
2-sets in A. Moreover, IB is empty unless B is intersecting. Since all sets in B
have size two, the structure of these intersecting families is simple. Indeed,
for all 0 6 r 6 n − 1 except r = 3, there is a unique (up to reordering
the coordinates) intersecting family of size r in [n](2), namely the star Sr

consisting of the sets {1t} for 2 6 t 6 r + 1. Trivially, for n > 4 there
is no intersecting family of size greater than n − 1. For r = 3 there are
two intersecting families (again up to reordering the coordinates), namely
S3 = {12, 13, 14} and T = {12, 13, 23} which we shall call the star and the
triangle respectively.
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Since, by hypothesis, we know that A contains all sets of size at least 3
and no sets of size 1, we have

IB =
{
E ⊂ P

(
[n](>2)

)
: E ∩ [n](2) = B, E intersecting

}
.

Hence the cardinality of IB depends only on which of S0,S1, . . .Sn−1, T is
isomorphic to B. Let

Ir =
{
E ⊂ P

(
[n](>2)

)
: E ∩ [n](2) = Sr, E intersecting

}

and
IT =

{
E ⊂ P

(
[n](>2)

)
: E ∩ [n](2) = T , E intersecting

}
.

Let ar be the number of intersecting subfamilies of A ∩ [n](2) isomorphic
to Sr and b be the number isomorphic to T . Then

|I| =
n−1∑

r=0

ar|Ir|+ b|IT |.

Obviously a0 = 1 and a1 = |A ∩ [n](2)| = i so the first two terms of the
sum are independent of the collection A. Trivially we have ar 6 n

(
n−1
r

)
and

b 6
(
n
3

)
. If we compare Ir and Ir−1 we see that a family in Ir has two extra

restrictions: it must contain the set {1, r+1} (which gives us one fewer set to
place) and each set must intersect {1, r+1} (which places an extra restriction
on where these other sets can lie). Thus we might expect Ir−1 to be much
larger than Ir. That is precisely what Lemma 8 will show. First we need the
following simple result.

Lemma 7. |IT | 6 |I3|.

Proof. There is a unique maximal intersecting family containing T and thus
every intersecting family containing T is contained in this unique maximal
family. Hence the number of intersecting families of size s containing T is
the smallest it can possibly be, namely

(
2n−1−3
s−3

)
.

We give one definition that will be useful in the proof.

Definition. Suppose that E ,F are families in P([n]). We say they are cross-
intersecting (or that they cross-intersect) if for every E ∈ E and F ∈ F we
have E ∩ F 6= ∅.

Lemma 8. If r > 3 then |Ir−1| >
(
2n−r−2 − n−r

2

)
|Ir| and if r = 3 then

|Ir−1| >
(
2n−5 − n−1

2

)
|Ir|.
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Proof. For r > 3 we construct a mapping Φ: [r+2, n](>2)×Ir → Ir−1 under
which every family in Ir−1 has at most two pre-images. In the case r = 3 we
instead construct Φ: [r+2, n](>2)×Ir → Ir−1∪IT . Recalling that |IT | 6 |I3|
this suffices to prove the lemma.

Throughout the proof we write Xc to denote the complement of the set
X relative to [r+2, n]: that is, for X ⊂ [r+2, n] we write Xc = [r+2, n]\X.

Suppose that E ∈ Ir and U ∈ [r+2, n](>2). Let U ′ = {1, r+1}∪U . First
we tweak E slightly to make sure that it contains U ′. If U ′ ∈ E let Ē = E ;
otherwise let Ē = E \ {{1, r + 1}} ∪ {U ′}. Note that the new family Ē is still
intersecting since {1, r + 1} ⊂ U ′.

We split Ē into pieces as follows:

E0 = {E ∈ Ē : 1 ∈ E,E ∩ [2, r] 6= ∅}
E1 = {E ∈ Ē : 1 ∈ E,E ∩ [2, r + 1] = ∅}
E2 = {E ∈ Ē : 1 6∈ E}
E3 = {E ∈ Ē : 1, r + 1 ∈ E,E ∩ [2, r] = ∅}.

Clearly E2 = {E ∈ E : 1 6∈ E}. As E ∈ Ir we know that E is intersecting and
{1, j} ∈ E for 2 6 j 6 r + 1. Hence E2 = {E ∈ Ē : E ∩ [r + 1] = [2, r + 1]}.

We define E ′
1, E ′

2, E ′
3 to be the restrictions of E1, E2, E3 to [r+2, n]: that is,

E ′
i = {E ∩ [r+ 2, n] : E ∈ Ei} for i = 1, 2, 3. Since the intersection of a set in

Ei (i = 1, 2, 3) with [1, r+1] depends only on i, we see that the sets E1, E2, E3
are determined by E ′

1, E ′
2, E ′

3 respectively.
We make a couple of remarks about this partition that will be helpful

later in the proof. First, U ′ ∈ E3 and so U ∈ E ′
3. Secondly, E ′

1 and E ′
2 are

cross-intersecting.
To define our new intersecting family F = Φ(U, E) we split into two cases

according to whether U c ∩ E 6= ∅ for all E ∈ E ′
1. Note that if this condition

does not hold then U meets every element of E ′
2. Indeed, suppose F ∈ E ′

2

with F ∩ U = ∅ and E ∈ E ′
1 with E ∩ U c = ∅. Then F ⊂ U c and E ⊂ U so

E ∩F = ∅ which contradicts the cross-intersection property observed above.

Case 1: U c ∩ E 6= ∅ for all E ∈ E ′
1.

This is the simpler case: here starting from Ē we replace each set X ∈ Ē
satisfying {1, r + 1} ⊂ X ⊂ U ′ by its complement. Formally, let Fi = Ei for
i = 0, 1, 2, let

F3 = {{1, r + 1} ∪ E : E ∈ E ′
3, E ∩ U c 6= ∅}

and let
F4 = {[2, r] ∪ Ec : E ∈ E ′

3, E ⊆ U}.
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Set F = F0 ∪ F1 ∪ F2 ∪ F3 ∪ F4.
The families F0,F1, . . . ,F4 are pairwise disjoint and there is an obvious

bijection from E3 to F3 ∪ F4. Hence |F| = |E|.
Moreover, this new family F is intersecting: obviously F0∪F1∪F2∪F3 ⊂

E and so is intersecting, and F4 is an intersecting family, so we only need
to check that F4 cross-intersects each of the other Fi. Trivially F4 cross-
intersects F0 and F2. We see that F3 and F4 cross-intersect as U

c intersects
every set in F3 and is contained in every set in F4. Finally, F1 and F4

cross-intersect because we are assuming that U c intersects everything in E ′
1.

Next we show that if r > 4 then F ∩ [n](62) is Sr−1, and if r = 3 then
F ∩ [n](62) is either Sr−1 or T . Since E ∩ [n](62) = Sr, we see that Ē ∩ [n](62)

is either Sr or Sr−1. Clearly Sr−1 ⊂ E0. If {1, r + 1} ∈ Ē then it is in E3 but
not F3. Hence (F0 ∪ F1 ∪ F2 ∪ F3) ∩ [n](62) = Sr−1. Finally, if r > 4 then
F4 ∩ [n](62) = ∅; if r = 3 then F4 ∩ [n](62) is either empty or {{2, 3}}. Thus
we have shown that if r > 4 then F ∈ Ir−1 and if r = 3 then F ∈ Ir−1 ∪ IT .

Finally, if we know that F comes from this case then we can reconstruct
Ē . Indeed, given F , set F4 = {F ∈ F : F ∩ [1, r + 1] = [2, r]}. Then form Ē
from F by replacing each set in F4 by its complement. We also know U since
[2, r] ∪ U c is the unique minimal element of F4. Once we know Ē and U , it
easy to reconstruct E .

Case 2: U ∩ E 6= ∅ for all E ∈ E ′
2.

This time the construction is a little more complicated. We define

F0 = E0
F1 = {{1, r + 1} ∪ E : E ∈ E ′

1}
F2 = {[2, r] ∪ E : E ∈ E ′

2}
F3 = {{1} ∪ E : E ∈ E ′

3, U ⊆ E}
F4 = {[2, r + 1] ∪ Ec : E ∈ E ′

3, E
c ∩ U 6= ∅}

and, as before, set F = F0 ∪ F1 ∪ F2 ∪ F3 ∪ F4.
Again F0 = E0 but this time F1 6= E1 and F2 6= E2. However, there are

bijections between F1 and E1, and between F2 and E2. As before there is a
bijection between F3 ∪ F4 and E3. Hence |F| = |E|.

Again F is intersecting. Indeed, each Fi is trivially intersecting, F0 is
cross-intersecting with each of the others, and each of the pairs (F1,F3),
(F1,F4) and (F2,F4) is trivially cross-intersecting. We see that F3 and F4

cross-intersect as U is contained in every set in F3 and intersects every set in
F4. Also, F1 and F2 cross-intersect because E ′

1 and E ′
2 are cross-intersecting.

Finally, F2 and F3 cross-intersect because we are assuming that U intersects
everything in E ′

2.
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Next we show that if r > 4 then F ∩ [n](62) is Sr−1, and if r = 3 then
F ∩ [n](62) is either Sr−1 or T . We consider each Fi∩ [n](62) in turn. We have
F0∩[n](62) = E0∩[n](62) = Sr−1. As {1} 6∈ E , ∅ 6∈ E ′

1 so F1∩[n](62) = ∅. If r >
4 then F2 ∩ [n](62) = ∅; if r = 3 then F2 ∩ [n](62) is either empty or {{2, 3}}.
As |U | > 2, F3∩ [n](62) = ∅. Finally, it is obvious that F4∩ [n](62) = ∅. Again
we have shown that if r > 4 then F ∈ Ir−1 and if r = 3 then F ∈ Ir−1 ∪ IT .

Now, given F we can determine F0,F1, . . . ,F4 by considering intersec-
tions with [1, r + 1]. Thus, if we knew we were in this case, we could re-
construct E and U . (This time {1} ∪ U is the unique minimal element of
F3).

However, we cannot (necessarily) tell from which case the family F came.
Thus the function is not necessarily injective but each family in Ir−1 has at
most two pre-images as required.

The rest of the proof is straightforward calculation. Recall that, by hy-
pothesis, n > 21. It follows from Lemma 8 that |I3| 6 26−n|I2|. It also
follows that |I4| 6 27−n|I3|, and that |Ir| 6 |Ir−1| for r > 5. Thus, for all
r > 4, |Ir| 6 213−2n|I2|. Furthermore, by Lemmas 7 and 8, |IT | 6 26−n|I2|.
Recall a0 = 1 and a1 = i. Now

|I| =
n−1∑

r=0

ar|Ir|+ b|IT |

= |I0|+ i|I1|+ a2|I2|+
n−1∑

r=3

ar|Ir|+ b|IT |

= |I0|+ i|I1|+ |I2|
(
a2 +

n−1∑

r=3

ar
|Ir|
|I2|

+ b
|IT |
|I2|

)

and

n−1∑

r=3

ar
|Ir|
|I2|

+ b
|IT |
|I2|

6 n

(
n− 1

3

)
26−n +

(
n

3

)
26−n +

n−1∑

r=4

n

(
n− 1

r

)
213−2n.

It is easy to verify that the quantity on the right-hand-side of the inequality
is less than 1 for all n > 21.

This essentially completes the proof. Indeed, suppose B′ ⊂ [n](2) is a
family of size i with strictly more intersecting pairs than B. Let a′r and b′ be
the corresponding values for B′. Then a′0 = 1, a′1 = i, and a′2 > a2 + 1. Let
I
′ be the collection of intersecting families of size s in [n](>3) ∪B′. Using the

12



above we have

|I′| =
n−1∑

r=0

a′r|Ir|+ b′|IT |

> |I0|+ i|I1|+ a′2|I2|
> |I0|+ i|I1|+ (a2 + 1)|I2|

>
n−1∑

r=0

ar|Ir|+ b|IT |

= |I|,

contradicting the maximality of A.

4 The middle-layer cases of Theorem 2

In this section we conclude the proof of Theorem 2 by showing that it holds
for n

2
− 1 6 r 6 n

2
. We consider separately the cases of n even and n odd.

First we deal with some cases where N is not too close to the bound
stated in Theorem 2. In each case we prove a slight variant on Lemma 4 and
use it to deduce the result.

Case 1: n = 2t and
∑n

k=t

(
n

k

)
6 N <

∑n
k=t−1

(
n

k

)

The bounds on N imply that r = t− 1 = n
2
− 1. Also, the lower bound on N

is equal to 2n−1 + 1
2

(
n
t

)
so this covers nearly all of the remaining possibilities

for N .

Lemma 9. Let n be even, 2 6 s 6 2n−1 and ℓ = n
2
− 1. Suppose that A

satisfies [n](>ℓ+1) \ {[n − ℓ, n]} ⊂ A, [n − ℓ, n] 6∈ A and [ℓ] ∈ A. Then there
is a (U, v, f)-compression C such that |I(s)(C(A))| > |I(s)(A)|.

Proof. Exactly as before choose C to be any (U, v, f)-compression with v = n
that moves [ℓ] to [n − ℓ, n], and let C = C(A) be the resulting family. We
construct a family in I

(s)(C) that is not the image of any family in I
(s)(A)

under the injection Ĉ.
Consider the family

D = {[n− ℓ, n], [n− ℓ− 1, n− 1]} ∪ [n](>ℓ+1)

Note that
∣∣[n−ℓ, n]

∣∣ =
∣∣[n−ℓ−1, n−1]

∣∣ = ℓ+1 = n
2
and so D is intersecting.

Thus it extends to a maximal intersecting family D′ of size 2n−1 in P([n]).
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Since D′ contains all sets of size at least ℓ+ 2 = n/2 + 1 and is intersecting,
it contains no set of size less than or equal to ℓ. By hypothesis A contains all
of [n](>ℓ+1) except [n − ℓ, n] and thus so does C. Moreover [ℓ] ∈ A is moved
to [n− ℓ, n] so [n− ℓ, n] ∈ C. Thus, in fact, C contains all of [n](>ℓ+1). Hence
D′ ⊂ C.

Let D′′ be any subfamily of D′ of size s containing [n− ℓ, n] and [n− ℓ−
1, n − 1]. Note D′′ ∈ I(C). Exactly as before we see that any intersecting

family mapping to D′′ under Ĉ would have to contain [ℓ] and [n−ℓ−1, n−1]
which is not possible as [n−ℓ−1, n−1] = [ℓ+1, n−1] is disjoint from [ℓ].

Proof of Theorem 2 in this case. Using Lemma 9 instead of Lemma 4 we can
prove a result analogous to Lemma 6. Combining this with Corollary 5 is
sufficient to complete the proof in this case.

Case 2: n = 2t+ 1 and
∑n

k=t+1

(
n

k

)
+
(
n−1
t−1

)
6 N <

∑n
k=t

(
n

k

)

In this case the bounds on N imply that r = t = n−1
2
. Also, the lower bound

on N is equal to 2n−1 +
(
n−1
t−1

)
.

Lemma 10. Let n be odd, 2 6 s 6 2n−1 and ℓ = n−1
2
. Suppose that A

satisfies [n](>ℓ+1) \ {[n − ℓ, n]} ⊂ A and [n − ℓ, n] 6∈ A, and that there exist
A,A′ ∈ [n](ℓ) ∩ A with n 6∈ A, n 6∈ A′ and A ∩ A′ = ∅. Then there is a
(U, v, f)-compression C with |I(s)(C(A))| > |I(s)(A)|.

Proof. As A and A′ are distinct we may assume without loss of generality
that A′ 6= [ℓ− 1]. In particular this implies that A′ ∩ [n− ℓ, n] 6= ∅.

This time we choose C to be any (U, v, f)-compression with v = n that
moves A to [n − ℓ, n]. Let C = C(A) be the resulting family. We again
construct a family in I

(s)(C) that is not the image of any family in I
(s)(A)

under the injection Ĉ.
Let

D = [n](>ℓ+1) \ {[n] \ A′} ∪ {A′}.
This is itself a maximal intersecting family. Since C(A) = [n − ℓ, n] we see
that C contains all of [n](>ℓ+1). Further, since A is the only set in A of size ℓ
that moves, we see that A′ ∈ C. Hence D ⊂ C.

Let D′′ be any subfamily of size s of D containing [n− ℓ, n] and A′. Then
D′′ ∈ I(C). Similarly to the previous cases, we see that any intersecting

family mapping to D′′ under Ĉ would have to contain A and A′ which is not
possible.
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Proof of Theorem 2 for this case. Here we require a little more care. If [n](>r+1) ⊂
A then Corollary 5 tells us that A has the required form. Hence we may as-
sume that A does not contain all of [n](>r+1). We aim to compress A into a
form where we can apply Lemma 10.

Exactly as in the proof of Lemma 6 we construct a sequence of families
A = A0,A1,A2, . . . ,Ak such that [n](>r+1) 6⊂ Ai for any i, by applying at
each stage an allowed compression. Let A′ = Ak be the final compressed
family. As before the only set of [n](>r+1) not in A′ is [n− r, n].

Since t = r the lower bound on N implies that |A′ ∩ [n](6r)| >
(
n−1
r−1

)
+ 1.

We claim that, in fact, there are at least this many sets in the layer [n](r).
If A′ contains no set of size less than r then the claim holds trivially.

Otherwise, A′ ∩ [n](6r−1) is a non-empty left-compressed up-set in [n](6r−1),
and so [r − 1] ∈ A′. Moreover, there is a (U, v, f)-compression with v = r
moving [r−1] to {r}∪[n−r+2, n]. Since all sets added by such a compression
contain v = r this does not add [n − r, n] and, thus, A′ is closed under this
compression. Hence {r} ∪ [n− r + 2, n] ∈ A′.

Since A′ is left-compressed and {r}∪ [n−r+2, n] ∈ A′, the family A′ also
contains every set that can be obtained from {r}∪ [n−r+2, n] by (repeated)
left-compression. This includes every set in [n](r) containing an element less
than or equal to r. It is easy to see that there are strictly more than

(
n−1
r−1

)

such sets and so our claim holds.
Now since A′ contains strictly more than

(
n−1
r−1

)
sets in [n](r), the Erdős-

Ko-Rado Theorem tells us that A′ must contain two disjoint sets A and A′.
We now complete the proof by applying Lemma 10 unless either A or A′

contains n.
So assume, without loss of generality, that n ∈ A. Now there must be

some m 6= n contained in neither A nor A′. Since A′ is left compressed, and
so in particular mn-compressed, the set A′′ = A ∪ {m} \ {n} is also in A′.
The set A′′ is disjoint from A′ and does not contain n. Hence we can apply
Lemma 10 with sets A′′ and A′ to conclude the proof in this case.

The final few cases

For completeness we prove the final few cases of Theorem 2. The arguments
in this section are completely different from those given earlier: they are not
compression-based. The only remaining cases are

• n = 2t with 2n−1 + 1
2

(
n
t

)
− t < N < 2n−1 + 1

2

(
n
t

)
; and

• n = 2t+ 1 with 2n−1 +
(
n−1
t−1

)
− t− 1 < N < 2n−1 +

(
n−1
t−1

)
.
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Any family of size N must contain at least N−2n−1 complementary pairs.
For N in the range we are now considering, Katona, Katona and Katona [4]
give an example of a family containing exactly this many complementary
pairs and no other non-intersecting pairs. Moreover, they observe that any
such family contains the maximal number of intersecting subfamilies of size
s for every s. Conversely, it is easy to check that if a family A contains
the maximal number of subfamilies of size s for any fixed s then all non-
intersecting pairs in A must be complementary.

It follows that each set in a complementary pair must be a minimal ele-
ment of A. Furthermore the subfamily B given by

B =

{
A ∩ [n](6t) n = 2t+ 1 odd

A ∩
(
[n](<t) ∪ {A ∈ [n](t) : 1 ∈ A}

)
n = 2t even

must be intersecting since in each case we take the intersection of A with a
family not containing any complementary pairs. Note that |A| 6 2n−1 + |B|
and hence, using the lower bound on N , that |B| >

(
n−1
t−1

)
− (n − t). Since

every set in a complementary pair is minimal and every complementary pair
contains an element of B, the following lemma completes the proof.

Lemma 11. Let B ⊂ [n](6t) be an intersecting family with B 6⊂ [n](t). Then
B has at most

(
n−1
t−1

)
− (n− t) minimal elements.

Proof. Let
U = {B ∈ B : B minimal, |B| < t}

and
V = {B ∈ B : B minimal, |B| = t}.

Let ∂U = {A ∈ [n](t) : B ⊂ A for some B ∈ U} be the upper shadow of U
in layer t. Note that, by definition of U and V , the families ∂U and V are
disjoint. It is easy to see that ∂U ∪ V is an intersecting family and so, by
the Erdős-Ko-Rado Theorem, must have size at most

(
n−1
t−1

)
. Thus the total

number of minimal elements of B is

|V|+ |U| = |V|+ |∂U|+ |U| − |∂U| 6
(
n− 1

t− 1

)
− (|∂U| − |U|)

and so it suffices to show that |∂U| − |U| > n − t. As U is an antichain, it
follows easily from the Kruskal-Katona Theorem that U is no larger than its
upper shadow in the (t− 1)th layer. Hence, we may assume U ⊂ [n](t−1).

Form a bipartite graph G with vertex-sets [n](t−1) and [n](t). For A ∈
[n](t−1) and B ∈ [n](t) we take AB to be an edge of G whenever A ⊂ B.
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Every vertex in [n](t−1) has degree n − t + 1 and every vertex in [n](t) has
degree t. Fix A ∈ U and let Γ(A) denote the set of neighbours of A in
G. Form a graph G′ by deleting {A} ∪ Γ(A) from G. Since every vertex in
[n](t−1) \ {A} is joined to at most one deleted vertex, we see that the degree
in G′ of every vertex in [n](t−1) \ {A} is at least n− t. Hence, since n− t > t,
a standard application of Hall’s Theorem shows that there exists a matching
in G′ from [n](t−1) \ {A} to [n](t) \ Γ(A). Thus

|∂U| > |U| − 1 + |Γ(A)| = |U|+ n− t.

Constructions showing the bound is tight

Recall that a family A of size N containing precisely N − 2n−1 comple-
mentary pairs and no other non-intersecting pairs maximises the number of
intersecting subfamilies of every possible size. We remark that an equivalent
condition is that A meets every complementary pair in P([n]) and the only
non-intersecting pairs in A are complementary.

Theorem 12. Suppose that

(i) n = 2t and 2n−1 < N 6 2n−1 + 1
2

(
n
t

)
− t; or

(ii) n = 2t+ 1 and 2n−1 < N 6 2n−1 +
(
n−1
t−1

)
− t− 1.

Then there exists a family A containing the maximal number of intersecting
families of every possible size that is not of the form [n](>t+1) ∪ B for any
B ⊂ [n](t).

Proof. (i) Consider the family

A = {[t− 1]} ∪ [n](>t) \ {A ∈ [n](t) : A ∩ [t− 1] = ∅}.

This family has size 2n−1 + 1
2

(
n
t

)
− t and meets every complementary pair in

P([n]), and the only non-intersecting pairs in A are complementary pairs.
Thus, A satisfies the conclusion of the theorem for N = 2n−1 + 1

2

(
n
t

)
− t.

Moreover, for 2n−1 < N < 2n−1 + 1
2

(
n
t

)
− t we may obtain a suitable family

by deleting from A the appropriate number of sets in [n](t) that contain the
element 1.

(ii) In this case we apply an identical argument starting from the family

A = {[t−1]}∪{A ∈ [n](t) : 1 ∈ A}∪ [n](>t+1) \{A ∈ [n](t+1) : A∩ [t−1] = ∅}

of size 2n−1+
(
n−1
t−1

)
−t−1 and deleting sets in [n](t) that contain the element 1

but do not contain all of [t− 1].
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5 Concluding Remarks and Open Questions

As we remarked earlier there seems to be no reason to believe that the max-
imising families for different values of p are the same. However, in all cases
where the maximising families are known, including the new examples in
this paper, they are in fact the same for all p. Even more is true: the known
examples simultaneously maximise the number of intersecting subfamilies of
every possible size. We therefore recall the following question first asked
in [5].

Question. Suppose N > 2n−1. Does there exist a family A of size N which
simultaneously maximises the number of intersecting subfamilies of size s for
every s?

One could, of course, ask an analogous question for families A restricted
to lie in a single layer of the cube P([n]). But here it is not always possible
to simultaneously maximise the number of intersecting families of every size.
Indeed we have seen that in [n](2) the family of size

(
n−1
2

)
with the most

intersecting pairs is {A ∈ [n](2) : n 6∈ A}. However, this is obviously not
the family containing the most intersecting subfamilies of size n: it does not
contain any at all.

The exact extremal families for most values of N remain unknown. In-
deed, even the following question is open.

Question. For every N satisfying the lower bound of Theorem 2, is there
a unique (up to reordering the coordinates) family A that maximises the
probability that Ap is intersecting?

The family is not unique forN less than the bound given: for example, the
optimal family constructed in Theorem 12 is not the same as that constructed
in [4]. Theorem 2 shows that the family is unique for certain values of N ,
primarily N of the form N =

∑n
k=r

(
n
k

)
.

We remark that, for fixed s, the family containing the most intersecting
subfamilies of size s is not always unique: indeed, for s = 2, n ≡ 0, 1 mod
4 and N =

∑n
k=3

(
n
k

)
+ 1

2

(
n
2

)
, the results of Ahlswede and Katona [2] imply

that the families obtained by taking the union of [n](>3) with a quasi-clique
or a quasi-star are both optimal. However, it is easy to check that, at least
for large n, the family with the quasi-star has far more intersecting triples
and, indeed, far more intersecting families of size s for all s > 2. Hence the
family maximising the probability Ap is intersecting is unique in this case.
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