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Abstract

We shall be interested in the following Erdős-Ko-Rado-type question.
Fix some set B ⊂ [n]. How large a family A ⊂ P[n] can we find such that
the intersection of any two sets in A contains a cyclic translate (modulo
n) of B? Chung, Graham, Frankl and Shearer have proved that, in the
case where B is a block of length t, we can do no better than to take A to
consist of all supersets of B. We give an alternative proof of this result,
which is in a certain sense more ‘direct’.

1 Introduction

Many questions in extremal combinatorics concern the pairwise intersections of
families of subsets of a finite set. For example. how large a family A ⊂ [n](r) =
{A ⊂ [n] : |A| = r} can we find with A∩B 6= ∅ for all A, B ∈ A? This question
was answered in the seminal paper of Erdős, Ko and Rado [2]: for r ≤ n/2, we
can do no better than to take A to be the collection of all r-sets containing some
fixed element of [n]. (We note in passing that the question is of no interest for
r > n/2 as then the entire family [n](r) is intersecting.)

Since the publication of [2], the field has rapidly expanded and is now rich
in interesting problems, many of which remain unsolved. Several such problems
arise when we endow the ground-set with some sort of structure. The question
we shall be interested in here is the following. Fix some set B ⊂ [n]. How
large a family A ⊂ P[n] can we find such that the intersection of any two sets
in A contains a cyclic translate (modulo n) of B? It is conjectured by Chung,
Graham, Frankl and Shearer [1] that a kernel system is again best; they are able
to establish their conjecture in the case where B is a block of length t:

Theorem 1 ([1]). Let n and t be positive integers with t ≤ n, and let A be
a family of subsets of [n] such that whenever we take A, A′ ∈ A then A ∩ A′

contains some cyclic translate (modulo n) of the set [t]. Then |A| ≤ 2n−t.

The aim of this paper is to give an alternative proof of this theorem. As
we remark below, it is sufficient to consider instead the problem of finding the
largest possible family of subsets on [n] with any two agreeing on some cyclic
translate of the set [t]. The original proof of Theorem 1 in [1] proceeds in two
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stages. First, the authors show that, for t < n ≤ 2t, if A is a family of subsets
of [n] with any two agreeing on some cyclic translate of [t] either modulo n or
modulo n−1 then |A| ≤ 2n−t. They then apply this result to prove the theorem
in general, working in the Abelian group (P[n],4) and applying a partitioning
argument. Here, 4 denotes the symmetric difference operation on the power
set P[n] of [n], i.e. for A, B ⊂ [n], we define

A4B = {x ∈ A : x 6∈ B} ∪ {x ∈ B : x 6∈ A}.

We again work in the group (P[n],4). However, instead of going via a
preliminary result, in our proof we show directly that P[n] can be partitioned
into 2n−t parts in such a way that no two distinct sets in the same part agree
on any cyclic translate of [t] modulo n.

2 Algebraic methods

In this section, we remind the reader of a certain general method for bringing
algebraic methods to bear on this sort of problem. Our problem comes from
the general class of problems of the following form:

Suppose B is some fixed family of subsets of [n] = {1, 2, . . . , n}.
How large can we make a family A of subsets of [n] subject to the
condition that for all A, A′ ∈ A, there is some B ∈ B with B ⊂
A ∩A′?

We denote by v(B) the maximal size of a family A with this property. Note
that the above problems on graphs and arithmetic progressions also fall into
this class.

Unfortunately, the set P[n] does not seem to posess any useful algebraic
structure under the intersection operation ∩. However, when endowed instead
with the symmetric difference operation 4, the set P[n] becomes an Abelian
group. This leads one to consider a modified version of the problem, where we
insist only that any two sets in A agree on some set in B:

Suppose B is some fixed family of subsets of [n] = {1, 2, . . . , n}.
How large can we make a family A of subsets of [n] subject to the
condition that for all A, A′ ∈ A, there is some B ∈ B with B ⊂
[n]− (A4A′)?

We denote by v̄(B) the maximal size of a family A with this property.
It is clear that for any family B we have v(B) ≤ v̄(B). In particular, if a

kernel family is best for the modified problem then the same must also be true
for the original problem. Remarkably, it was proved by Chung, Graham, Frankl
and Shearer that equality always holds. This is reassuring, as it means that we
know it is always sufficient to attack the modified problem—a solution to this
modified problem will instantly give a solution to the original problem.

Theorem 2 ([1]). Let B be a family of subsets of [n]. Then v(B) = v(B).

Let us now explain the algebraic idea. As we have already mentioned, an
important advantage of considering our problem in the modified form above is
that, under the operation 4, P[n] forms an Abelian group, and the condition
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B ⊂ [n]− (A4A′) is equivalent to (A4A′)∩B = ∅. Now, assume every set in
B has size t. Then we know that v(B) ≥ 2n−t (by considering a kernel system).
Suppose now that we manage to find some subgroup G ≤ P[n] of order 2t such
that every non-zero set in G intersects every set in B. Then, given g ∈ P[n] and
h, h′ ∈ G, we have the set (g 4 h)4 (g 4 h′) = h4 h′ intersecting every set in
B unless h4h′ = ∅, i.e. unless h = h′. So any family A satisfying the condition
that for all A, A′ ∈ A there is some B ∈ B with B ⊂ [n]− (A4A′) can contain
at most one element from each coset of G. We may then deduce immediately
that v̄(B) ≤ 2n−t and hence that v(B) = 2n−t.

This approach has been used for example by Griggs and Walker [4] to show
that if B consists of all ordinary translates (rather than cyclic translates) of a
fixed set of order t then v(B) = 2n−t, and by Füredi, Griggs, Holzman and
Kleitman [3] to show that if B consists of all cyclic translates of a fixed set of
order 3 then v(B) = 2n−3.

In the following section, we apply the method to the case where B consists
of all cyclic translates of a block of length t, hence producing a new proof of
Theorem 1. The work comes in finding a suitable subgroup G, which in general
seems far from obvious.

3 Cyclic translates of a block

We now proceed to our proof of Theorem 1. In view of the preceding section,
it is enough to find a subgroup G of (P[n],4) of order 2t with every non-zero
element of G intersecting every block of order t. We shall define the group G by
giving a list g1, g2, . . . , gt of t generators. For 1 ≤ i, j ≤ t, we shall insist that
i ∈ gj if and only if i = j. This ensures that all of the sums

∑
i∈I gi (I ⊂ [t])

are distinct, and hence that |G| = 2t.
We begin by considering a number of special cases, beginning with cases

where it is easy to construct the subgroup G and building up to progressively
more complicated cases. We hope that this will give the reader some feel for
the construction before we come to the (fairly complicated) construction of G
in general.

The simplest case of all is where t|n. Then simply take

gi = {x ∈ [n] : x ≡ i (mod t)}.

It is clear that each gi intersects each block of length t. Moreover, the gi are
pairwise disjoint. Hence any non-zero element of G contains some gi, and so
intersects every block of length t.

Suppose instead n ≡ 1 (mod t), say n = qt + 1. Then we can take

gi = {x ∈ [n] : x ≡ i (mod t) or x = n}.

By the same reasoning as above, every non-zero g ∈ G intersects every block of
length t which is contained entirely within [n− 1]. Can some g fail to intersect
some block B of length t with n ∈ B? If so then n 6∈ g, and so g =

∑
i∈I gi

for some non-empty I ⊂ [t] of even order. In particular, |I| ≥ 2. Let i = min I
and j = max I. Then B must contain at least one of i and (q − 1)t + j (as
(n + i)− ((q − 1)t + j) = t + 1 + i− j ≤ t), and both of these points are in g, a
contradiction.
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More generally, if n ≡ r (mod t) for some r|t, say n = qt + r, then we may
take

gi = {x ∈ [n] : x ≡ i (mod t) or (x > n− r and x ≡ i (mod r))}.

The proof that each non-zero g intersects each block of length t is very similar
to the previous case. The only time when things could conceivably go wrong is
if g =

∑
i∈I gi for some I ⊂ [t] containing distinct a and b with a ≡ b (mod r).

But then letting i and j be the least and greatest elements of I congruent to a
modulo t, we have i, (q−1)t+j ∈ g and (n+ i)− ((q−1)t+j) = t+r+ i−j ≤ t
and we are done.

The final special case we consider is where n ≡ r (mod t) for some r - t, say
n = qt + r, but with t ≡ r′ (mod r) for some r′|r. For i ≤ t− r′ we set

gi = {x ∈ [n] : x ≡ i (mod t) or (x > qt and x− qt ≡ i (mod r))}

while for i > t− r′ we set

{x ∈ [n] : x ≡ i (mod t) or (x > qt and x− qt ≡ i (mod r′))}.

Again, the gi ∩ [n − r] for i ∈ [t] are pairwise disjoint, and things can only go
wrong if g =

∑
i∈I gi for some I ⊂ [t] containing distinct i, j with gi ∩ gj 6= ∅.

There are two ways that this can happen. The first is if I contains i 6= j with
i ≡ j (mod r), but we can deal with this case as in the previous paragraph.
The other possibility is if I contains i ≤ t − r′ < j with i ≡ j (mod r′). Let l
be the least positive residue of i modulo r, and assume that i is chosen so as to
minimize l. We may assume l > r′, as otherwise we would have i ≡ j (mod r)
which was dealt with in our first case. So g contains each of the points i and
qt + l − r′, and n + i− (qt + l − r′) = (i− l) + r + r′ ≤ (t− r − r′) + r + r′ = t
so we are done.

We now proceed to define the group G for general n and t. The construction
can be thought of as an iteration of ideas similar to those used above.

Let n, t be positive integers with t ≤ n. We apply Euclid’s algorithm to n
and t, thus obtaining

n = q1t + r1

t = q2r1 + r2

r1 = q3r2 + r3

...
...

...
ri−2 = qiri−1 + ri

...
...

...
rk−3 = qk−1rk−2 + rk−1

rk−2 = qkrk−1,

where t > r1 > r2 > · · · > rk−1 > 0.
Observe that for k odd we have

n = q1t + q3r2 + q5r4 + · · ·+ qkrk−1

t = q2r1 + q4r3 + q6r5 + · · ·+ qk−1rk−2 + rk−1
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while for k even we have

n = q1t + q3r2 + q5r4 + · · ·+ qk−1rk−2 + rk−1

t = q2r1 + q4r3 + q6r5 + · · ·+ qkrk−1.

We define the partial sums of n by

nm = q1t + q3r2 + · · ·+ q2m−1r2m−2

and of t by
tm = q2r1 + q4r3 + · · ·+ q2mr2m−1,

where in each case we allow m to take any value for which the above expressions
make sense. We interpret n0 = t0 = 0 and n1 = q1t. It will sometimes be
convenient to write r0 = t and rk = 0. Observe that we have n = nm + r2m−1

and t = tm + r2m for each m.
Fix i with 1 ≤ i ≤ t. We define gi in terms of its intersections with the

intervals (nj−1, nj ]. Take a maximal with ta < i. Now, for 0 ≤ j ≤ a, we set

g
(j)
i = {x ∈ (nj , nj+1] : x− nj ≡ i− tj (mod r2j)}.

So in particular, we have

g
(0)
i = {1 ≤ x ≤ n− r1 : x ≡ i (mod t)}.

Define also

g
(a+1)
i =

{
{na+1 + [i− ta]r2a+1} if k 6= 2a + 1
∅ if k = 2a + 1 ,

where [y]z denotes the least strictly positive residue of y modulo z. Now, set
gi =

⋃a+1
j=0 g

(j)
i . We define Gn,t to be the subgroup of P[n] generated by g1,

g2, . . . , gt. Observe that in the cases k = 1, 2, 3, this reduces to our earlier
definitions.

Lemma 3. Let n and t be positive integers with t ≤ n, and define Gn,t as above.
Then

(i) |Gn,t| = 2t; and

(ii) every non-zero element of Gn,t intersects every cyclic translate modulo
n of [t].

Proof. (i) is trivial—observe, for example, that if 1 ≤ s, u ≤ t then u ∈ gs if
and only if s = u.

(ii) Let 0 6= g ∈ Gn,t. It is enough to show that we can find
x1, x2, . . . , xm ∈ g with x1 < x2 < · · · < xm satisfying xi+1 − xi ≤ t for
i = 1, 2, . . . , m− 1 and x1 + n− xm ≤ t.

Suppose first that g = gi for some i with 1 ≤ i ≤ t. Then g contains every
x ∈ [n] with x ≡ i (mod t), so it is enough to show that if we take x1 = min g
and xm = max g then x1 + n− xm ≤ t. Now, clearly x1 = i. What is xm?
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Take a maximal with ta < i. If k 6= 2a + 1 then we must have
xm = na+1 + [i− ta]r2a+1 . Now, i − ta ≤ ta+1 − ta = q2a+2r2a+1 and so
(i− ta)− [i− ta]r2a+1 ≤ (q2a+2 − 1)r2a+1. Hence

x1 + n− xm = i + n− (na+1 + [i− ta]r2a+1)
= (i− [i− ta]r2a+1) + (n− na+1)
≤ ((q2a+2 − 1)r2a+1 + ta) + r2a+1

= ta + q2a+2r2a+1

≤ ta + r2a = t.

On the other hand, if k = 2a + 1 then, since i− ta ≤ t − ta = r2a, we have
xm = na+1−r2a+i−ta = n−r2a+i−ta. Hence x1+n−xm = i+r2a−i+ta = t.

Now, in general, we can write g =
∑

i∈I gi for some non-empty I ⊂ [n]. If
the gi (i ∈ I) are pairwise disjoint, then pick some i ∈ I. We know that gi ⊂ g
and that gi intersects every block of length t. So g also intersects every block
of length t.

So we may assume that there exist distinct i, j ∈ I such that gi ∩ gj 6= ∅.
Pick i, j ∈ I with i < j such that y ∈ gi∩gj , where y is the least positive integer
which lies in at least two of the gi (i ∈ I). We take x1 = i and x2 < · · · < xm

to be the elements of gj ∩ [y − 1]. As gj intersects every block of length t, it is
enough to check that n + i− xm ≤ t.

Take b maximal such that nb < y. Suppose first that j ≤ tb. Then, as
y ∈ gj , we must have j > tb−1 and y = nb + [j − tb−1]r2b−1 . Furthermore,
i < j ≤ tb and y ∈ gi, so similarly we have y = nb + [i− tb−1]r2b−1 . Hence i ≡ j (
mod r2b−1), and, in particular, i ≤ j − r2b−1. Now, as tb−1 < j ≤ tb, we know
that gj contains no elements greater than nb other than y, and that the elements
of gj in (nb−1, nb] are precisely those x ∈ (nb−1, nb] with x − nb−1 ≡ j − tb−1 (
mod r2b−2). But 0 < j − tb−1 ≤ t − tb−1 = r2b−2 and r2b−2|nb − nb−1. Hence
xm = nb − r2b−2 + j − tb−1. So

i + n− xm = i + n− (nb − r2b−2 + j − tb−1)
≤ (j − r2b−1) + (n− nb) + r2b−2 − j + tb−1

= (j − r2b−1) + r2b−1 + r2b−2 − j + (t− r2b−2)
= t,

as required.
Now, suppose instead that j > tb. As y ∈ gj , we must have

y − nb ≡ j − tb (mod r2b). If we also suppose i > tb then, similarly, we have
y − nb ≡ i− tb (mod r2b), and so i ≡ j mod r2b; but t ≥ i, j > tb = t − r2b,
giving a contradiction as i 6= j. So i ≤ tb and y = nb + [i − tb−1]r2b−1 . Now,
j − tb ≤ t− tb = r2b so y ≥ j − tb + nb.

If in fact y = j − tb + nb, then i− tb−1 ≡ j − tb (mod r2b−1). But tb−1 ≡ tb (
mod r2b−1), so i ≡ j (mod r2b−1) and so i ≤ j − r2b−1. Furthermore, xm =
nb − r2b−2 + j − tb−1, and so

i + n− xm ≤ (j − r2b−1) + n− (nb − r2b−2 + j − tb−1)
= (j − r2b−1) + (n− nb) + r2b−2 − j + tb−1

= (j − r2b−1) + r2b−1 + r2b−2 − j + (t− r2b−2)
= t,
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as required.
Otherwise, y > j − tb + nb. In this case, we have xm = y − r2b. Now,

i− tb−1 ≤ tb − tb−1 = q2br2b−1. So (i − tb−1) − [i − tb−1]r2b−1 ≤ (q2b − 1)r2b−1,
and so

y ≥ nb + (i− tb−1)− (q2b − 1)r2b−1

= (nb + r2b−1) + i− (t− r2b−2)− q2br2b−1

= n + i− t + (r2b−2 − q2br2b−1)
= n + i− t + r2b.

Hence i + n− xm = i + n− (y − r2b) ≤ t, as required.

Theorem 1 now follows immediately, as explained earlier. While it is inter-
esting to know that Theorem 1 can be proved by this direct algebraic argument,
we cannot at present see any way to generalize this to deal with cyclic translates
of a more general set; the proof seems to rely heavily on the points of [t] being
adjacent.
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