Principal Ideal Domains and Factorization

A principal ideal domain (PID) is an integral domain R in which every ideal is principal, i.e. of the form

$$(a) = \{ra | r \in R\}$$

for some $a \in R$.

An element $a \neq 0$ in a ring R is said to be irreducible if a is not a unit and whenever $a = bc$ then one of b, c is a unit.

An element $a \neq 0$ of a ring R is said to be prime if a is not a unit and whenever $a | bc$ then either $a | b$ or $a | c$.

Proposition 1. If R is an integral domain then a prime element is necessarily irreducible.

Proof. Take a prime in R, an integral domain. Then a is not a unit. Also, if $a = bc$ then $a | b$ and so wlog we may assume $a | b$ so $b = ra$ for some $r \in R$ and so $a = arc$; as R is an integral domain, $1 = rc$ and c is a unit.

Proposition 2. An irreducible element in a PID is prime.

Proof. Take an irreducible in a PID R. Suppose $a | bc$. Consider

$$(a, b) = \{\lambda a + \mu b | \lambda, \mu \in R\} \triangleleft R.$$

As R is a PID we have $(a, b) = d$ for some $d \in R$. Now, $d | a$ and so we can write $a = de$, say. As a is irreducible, EITHER d is a unit and so $(a, b) = (1) = R$ and we can write $1 = \lambda a + \mu b$ for some $\lambda, \mu \in R$— but then $c = \lambda ca + \mu bc$, and as $a | \lambda ca$ and $a | \mu bc$ we have $a | c$; OR e is a unit, in which case $d = ae^{-1}$ and $a | d$ but then $d | b$ (because $b \in (d)$) and so $a | b$. This shows that a is prime.

Proposition 3. Every PID is Noetherian.

Proof. Let R be a PID and suppose we have an ascending chain

$$(a_1) \subset (a_2) \subset (a_3) \subset \ldots$$

of ideals in R. Then

$$\bigcup_{i=1}^{\infty} (a_i) \triangleleft R.$$

So

$$\bigcup_{i=1}^{\infty} (a_i) = (b)$$
for some $b \in R$. So $b \in (a_k)$ for some k, and then

$$(b) \subset (a_k) \subset (a_{k+1}) \subset \ldots \subset (b)$$

and so

$$(a_k) = (a_{k+1}) = (a_{k+2}) = \ldots.$$

\[\Box\]

Proposition 4. In a PID, every non-zero element factorizes as a product of irreducible elements (“units are empty products”).

Proof. Suppose not. Then there is a non-factorizable element a, say. a is not irreducible and so we can write $a = a_1 b_1$ a proper factorization and where we have a_1, say, non-factorizable. Continuing this argument we get $a_1 = a_2 b_2$, $a_2 = a_3 b_3$, and so on, proper factorizations with each a_i a non-factorizable element, i.e. we have a sequence a, a_1, a_2, a_3, \ldots with

$$(a) \not\subsetneq (a_1) \not\subsetneq (a_2) \not\subsetneq (a_3) \not\subsetneq \ldots$$

contradicting Proposition 3. \[\Box\]

Theorem 5. In a PID, any non-zero element can be factorized as $a = u p_1 \ldots p_k$ where u is a unit, p_1, p_2, \ldots, p_k are prime, and this factorization is essentially unique in the sense that if $a = up_1 \ldots p_k = vq_1 \ldots q_l$ are two prime factorizations then $k = l$ and, after renumbering the q_i, we have $p_i \sim q_i$, i.e. there exists a unit w_i such that $p_i = w_i q_i$.

Proof. In a PID we have factorization into irreducibles; but the irreducibles are prime; so any $a \neq 0$ (whether a is a unit or not) can be written in the form $a = up_1 \ldots p_k$. Suppose $a = up_1 \ldots p_k = vq_1 \ldots q_l$. Then $p_k | vq_1 \ldots q_l$ so, as p_k prime, p_k must divide some q_j so by renumbering we can assume $p_k | q_j$. Then $p_k \sim q_j$, say $p_k = w q_j$ where w is a unit. Then $up_1 \ldots p_{k-1} w q_j = v q_1 \ldots q_{j-1} q_j$ and cancelling q_j, we get $uw p_1 \ldots p_{k-1} = v q_1 \ldots q_{j-1}$ and so we complete by induction. \[\Box\]